
Complexity Measures for Assembly Sequences
�

Michael Goldwasser

wass@cs.stanford.edu

Jean-Claude Latombe

latombe@cs.stanford.edu

Rajeev Motwani

rajeev@cs.stanford.edu

Abstract

Our work examines various complexity measures for

two-handed assembly sequences. Many present assem-

bly sequencers take a description of a product and

output a valid assembly sequence. For many prod-

ucts there exists an exponentially large set of valid

sequences, and a natural goal is to use automated

systems to attempt to select wisely from the choices.

Since assembly sequencing is a preprocessing phase for

a long and expensive manufacturing process, any work

towards �nding a \better" assembly plan is of great

value when it comes time to assemble the physical

product in mass quantities.

We take a step in this direction by introducing a for-

mal framework for studying the optimization of several

complexity measures. This framework focuses on the

combinatorial aspect of the family of valid assembly

sequences, while temporarily separating out the spe-

ci�c geometric assumptions inherent to the problem.

With an exponential number of possibilities, �nding

the true optimal cost solution seems hard. In fact in

the most general case, our results suggest that even

�nding an approximate solution is hard. Future work

is directed towards using this model to study how the

original geometric assumptions can be reintroduced to

prove stronger approximation results.

1 Introduction

In this paper we study issues of product complexity

in the assembly sequencing problem. In general terms,

the input to an assembly sequencer is a product, de-
scribed by a geometric model of its parts as well as

their relative positions, and a family of allowable mo-

�Department of Computer Science, Stanford University,
Stanford, CA 94305. Research supported by a grant from
the Stanford Integrated Manufacturing Association (SIMA),
NSF/ARPA Grant IRI-9306544, and by NSF Grant CCR-
9215219. In addition, the third author is supported by an Al-

fred P. Sloan Research Fellowship, an IBM Faculty Partnership
Award, and by NSF Young Investigator Award CCR-9357849
with matching funds from IBM, SchlumbergerFoundation, Shell
Foundation, and Xerox Corporation.

tions. The output is a sequence of operations resulting
in the construction of the product from its individual

parts. Each operation combines a set of subassemblies

using a motion from the allowable set.

The use of automation in assembly sequencing has

increased rapidly over the years [1, 4, 8, 9, 10, 13, 14,

21, 22, 23, 24]. Progressing from days when assembly

sequencing was purely a craft of the human design-

ers, computers have become a powerful tool in the se-

quencing process. Early systems resulted in ine�cient

generate-and-test sequencers, operating by generating

candidate operations, and then testing their feasibil-

ity [10, 23]. Theoretical results show that assembly

sequencing, in its most general form, is intractable

[11, 12, 17, 24]. This fact led some researchers to con-

sider restricted, but still interesting, versions of the

problem (e.g., monotone sequences, where each oper-

ation generates a �nal subassembly, and two-handed
sequences, where every operation merges exactly two

subassemblies). For many of these restricted classes,

polynomial algorithms were designed which �nd an as-

sembly sequence if one exists [20, 21]. There are also

algorithms which can enumerate all possible assem-

bly sequences [4], however there may be exponentially

many such sequences for a given product. A logical

continuation is to use automated reasoning to �nd the

\best" assembly sequence under a certain complexity

measure.

Several researchers have acknowledged the need to

extend automated reasoning to search for better as-

sembly sequences, however results have been limited.

Several empirical measures have been suggested in [2].

The system in [24] considers several measures in a sim-

pli�ed model for evaluating the quality of an assem-

bly sequence. For a restricted class of inputs, which

have a \total ordering" property, an algorithm is given

which produces the minimal length sequence to remove

any given part [25]. Using a hierarchical approach

to identify common subassemblies in products reduces

the computational complexity required for many large

products, allowing more e�ort to be used towards �nd-

ing a \better" assembly sequence [3]. Although practi-

cal, this technique simply delays the eventual need for

1

better automated reasoning to overcome increasingly

large data sets.

A more complete discussion on using automated

reasoning to evaluate the complexity of assembly se-

quences is given by [20], where they suggest several

complexity measures including the number of hands

used, the length of the longest sequence of operations,

and the number of degrees of freedom required. They

prove decidability for some simple questions such as,

\can a product be assembled entirely from one direc-

tion?" Many of these same complexity measures are

looked at by the STAAT assembly sequencer, however

to optimize over these measures it must either perform

an expensive brute force search, or settle for simple

heuristics [19].

We attempt to formalize the task of optimizing

assembly sequencing for several complexity measures

motivated by industrial applications, by introducing a

theoretical model generalizing several variants of the

assembly sequencing problem. Many of these opti-

mization problem turn out to be NP-complete, and

so we approach them using techniques common to the

theory of approximability [5, 16].

Section 2 discusses the polynomial time assembly

sequencers that motivate our framework. The model

is de�ned in Section 3. Some preliminary results are

given in Section 4. Section 5 brie
y describes experi-

mental results. Finally, Section 6 contains conclusions

and open problems.

2 Background on Decidability

A common approach to devising an assembly plan is to

construct a disassembly plan, and then to reverse the

entire plan. Although in practice these two tasks are

not always symmetric, we work under the assumption

that they are, and thus we will freely interchange the

concepts of assembling and disassembling.

With this in mind, the goal of a binary, monotone

assembly sequencer is to start with the fully assem-

bled product and partition the set of parts into two

groups which can be separated by a collision-free mo-

tion. Once this is done, each of the resulting subassem-

blies can be disassembled. The assembly plan can be

represented naturally as a binary tree. For a more de-

tailed discussion, see [20, 21, 24]. Figure 1 gives an

example, taken from [20], of an assembly tree for a

simple 2-dimensional product.

Our work build upon the notion of the non-
directional blocking graph (NDBG) [21]. Given any

single motion d, a directional blocking graph (DBG)
is de�ned as follows. A DBG is a directed graph G

Figure 1: Assembly Tree for a simple product

P1 P2

P3 P4

P1 P2

P3 P4

P1 P2

P3 P4

d1 d2

Figure 2: A simple assembly and two dbgs

with a node for each part of the assembly, and an edge

A ! B, if A collides with B when the motion d is

applied to part A while part B remains stationary.

Figure 2, also from [20], gives an example of a 2D

product as well as two directional blocking graphs for

in�nitesimal translation. Notice that a directed cut

between subset S and subset T in a DBG represents

a collision-free separation.

The construction of the NDBG produces a

polynomially-sized set of candidate motions, which

are representatives for equivalence classes of motions

having identical directional blocking graphs. For a

given class of motions, this set of blocking graphs com-

pletely captures the necessary geometric information

for identifying all valid assembly sequences.

Computational geometry techniques allow for the

construction of the NDBG for a wide range of mo-

tion classes, including in�nitesimal translations [20],

extended translations (i.e., to in�nity) [20], multiple

step translations [7], and in�nitesimal generalized mo-

tions (i.e., rigid body motions) [6, 20].

For each of these families of motion, the NDBG

framework immediately provides a polynomial time al-

gorithm for constructing an assembly sequence. After

2

constructing the set of DBG's, an arbitrary assembly

sequence can be found by taking any legal separation

in any direction, and recursing on the resulting sub-

assemblies. However searching for a \good" sequence

is not so simple.

3 A Framework for Analyzing

Complexity Measures

Here we de�ne an optimization problem which gener-

alizes this set of assembly sequencing problems. The

motivation is that the set of blocking graphs com-

pletely characterizes the spatial relationships between

the parts, and so we focus solely on that part of the

problem. We de�ne the following model which we will

call the Set Decomposition problem.

Input: An abstract set, P, of n \parts", and a poly-

nomial sized family, F , of directed graphs on n nodes.

We will call each member of the family a \direction."

Output: An assembly tree for P using only directions

from F .

We inherit the de�nition of \legal" motions from

the notion of directed blocking graphs. Given a subset

of parts P 0 � P , a direction d 2 F can be used to

partition P 0 into sets A and B if the graph d has no

edges directed from a part in B to a part in A, (i.e.,

the partition provides a directed cut on the induced

subgraph for P 0).

Clearly this model is more general then an instance

of assembly sequencing. Given any of the original as-

sembly sequence instances, by calculating the DBG's

and working from there, we get an instance of the set

decomposition problem. However, in the new model

we assume nothing about the properties of the indi-

vidual graphs or their interdependence, whereas an

instance coming from an original assembly may have

structure due to the underlying geometry.

Therefore, any positive results on the set decom-

position problem will immediately yield results for all

versions of the assembly sequencing problems which

can be converted to DBG's. Negative results on this

model do not automatically carry over to the assembly

sequencing problem, however such results may high-

light additional structure in the original problemwhich

can be utilized for better approximations.

3.1 Possible Tasks

Originally, we said that the goal of an assembly se-

quencer is to produce an entire assembly tree that

completely decomposes the original product into its in-

dividual parts. This is indeed a common task, however

there are other variants which are highly motivated by

industrial applications.

Remove a key part

Instead of disassembling the entire product, it is of-

ten desirable to quickly remove a single key part from

an assembly without necessarily disassembling the en-

tire product. The motivation for this variant stems

from problems of maintenance and of recycling.

The classic maintenance example is to replace a

spark plug without taking the entire car apart. A clas-

sic recycling example is to strip down old computers

for valuable parts while throwing out the rest.

For this variant, we assume that we are given a

product as well as the label for one key part which is

to be removed. The assembly tree returned is allowed

to have leaf nodes which are subassemblies rather than

single parts, so long as the key part is isolated at some

leaf. The compacted assembly tree will be a simple

path from the root down to the key leaf.

Remove a given set of parts

A task that is possibly more di�cult than removing

a single part would be to remove an arbitrary subset

of parts. That is, the goal is to start with the fully

assembled product and reach a state where each part

in the given set is either isolated or grouped only with

other parts from this set.

Break a given contact

Another possible variant that has been suggested is

the following. Given a product and a key contact be-

tween two parts, the goal is to get those two parts into

separate subassemblies. (Note: the two parts need

not be removed from the entire assembly, just sepa-

rated into components that do not include the other

key part.)

3.2 Possible Complexity Measures

At this point, we begin to look at measures for de-

ciding which of two assembly plans is the better one

for a given product. Of course, every client asked will

give a di�erent de�nition of what they consider better.

Even in the same application the exact cost measure

may depend on the current stage of the design and on

manufacturing concerns not even known at the time.

Each section below introduces a \primitive" complex-

ity measure, well motivated by speci�c aspects of in-

dustrial applications. Our hope is that studying these

primitivemeasures in depth can eventually lead to sys-

tems which will be able to specialize complexity mea-

3

sures for custom purposes. Many of these measures

are generalizations of ideas introduced in [20].

Fewest Number of Directions

The cost of an assembly tree is equal to the number

of directions in F which are used. Note that once a

direction has been used, future uses of the same direc-

tion are free of charge. The motivation here is that

in manufacturing, each direction requires a di�erent

type of movement for a robot, and it is more e�cient

to have robots that have as few degrees of freedom as

possible.

Fewest Re-orientations

Here the output is considered to be not only an as-

sembly tree, but also a sequential ordering of the steps

consistent with the assembly tree (i.e., a linear exten-

sion of the partial order). The cost of a sequence is

equal to the number of re-orientations necessary while

performing the sequence [24]. In some manufacturing

situations, the main cost of a robot is in orienting it

to perform a type of motion, yet once it is oriented,

it is fairly inexpensive to perform several motions of

that type. For instance, many robots perform opera-

tions from a vertical direction, in which case using a

di�erent motion direction corresponds to re-orienting

the subassembly on the assembly line. This is typically

slow and might require additional expensive �xtures.

Also, using an orientation that was encountered earlier

in the process is not any more e�cient if the product

is not still in that orientation.

Fewest Number of Non-Linear Steps

A linear step is a step where one of the two sub-

assemblies is a single part. The cost of an assembly

tree is equal to the number of non-linear steps. The

motivation here is that at times parallelism is costly.

In theory, every step is based on two recursive sub-

problems which come together during this step. In a

linear step, one of the subproblems is a single part,

and so there is really only one subproblem on which

to recurse.

Minimum Depth of an Assembly Sequence

The cost of an assembly tree is equal to the depth of

the tree. The motivation here is that in many assembly

environments, parallelism in production is helpful, and

so the minimumdepth tree has the quickest \through-

put." Also, for the key part problem, this cost is equal

to the depth of the key leaf. This corresponds to the

number of steps that must be taken to free a key part

from the rest of the product.

Maximum Depth of an Assembly Sequence

Again, the cost of an assembly tree is equal to the

depth of the tree. The motivation here is again from

the case where parallelism is undesirable. This cap-

tures a di�erent measure then the number of non-linear

steps, however it is not clear which is a more accurate

measure for practical manufacturing, or if they both

have merit.

4 Preliminary Results

We look at set decomposition as a classical optimiza-

tion problem. For a given complexity measure from

Section 3.2, the ideal goal for an algorithmwould be to

�nd the true optimal cost solution. However if this is

not possible, the next goal would be to �nd another so-

lution and to guarantee that the cost of this solution is
not too far away from the cost of the optimal solution.

A standard measure for the quality of an approxima-

tion algorithm is the performance ratio between the

cost of the solution returned by the algorithm versus

the cost of the optimal solutions. This �eld of approx-
imability theory has been well researched in classical

computer science [5, 16]; we examine the set decompo-

sition problem in a similar manner. The importance of

this type of analysis over studying purely experimen-

tal heuristics is to gain a better understanding of the

quality of the approximations and the asymptotic be-

havior as the input size increases. As products become

more complex and more densely packed, such analysis

could grow in importance.

We give a series of results, proving not only the

hardness of �nding the exact optimal solutions in this

model, but even of �nding reasonable approximation

algorithms. To do so, we use approximation-preserving
reductions [18, 16]. Classical reductions, for instance

those equating all NP-complete problems, show that

�nding the optimal solution for one problem can be

used to �nd the optimal solution for another prob-

lem. Such classical reductions do not guarantee any-

thing about the relation between approximate solu-

tions. In fact, some NP-complete problems can be ap-

proximated very well in polynomial time, whereas for

other NP-complete problems, it is NP-hard to even

�nd an approximate solution. So to compare the ap-

proximability of di�cult problems, it is necessary to

use such approximation-preserving reductions which

show not only that �nding an optimum of one problem

can be used to �nd an optimal of the other, but also

that �nding an approximate solution can be translated

to an approximate solution for the other of similar per-

formance ratio.

We will concentrate speci�cally on analyzing the

cost measure of fewest re-orientations, however most of

the following results hold for all complexity measures

4

listed in Section 3.2. Using approximation-preserving

reductions, we prove that the task of fully decompos-

ing an assembly is at least as hard as removing a given

keypart. Then we claim that removing a keypart in

this model is at least as hard as the SetCover prob-

lem (de�ned in [5]). We rely on a result of [15] claiming

the hardness of approximatingSetCover. Finally, we

use a self-ampli�cation technique to further strengthen

the hardness results of approximating the set decom-

position problem.

Theorem 1 The problem of removing a key part
from the rest of the assembly can be reduced, in an
approximation-preserving fashion, to the problem of
separating a key pair of parts from each other while
using the fewest number of re-orientations.

The intuition of the reduction is that we will take

an instance problem of removing a key part k, and we

will construct an instance problem of separating two

parts by breaking k into two distinct parts k1 and k2
which are interlocked unless they have been completely

separated from all other parts.

We modify each graph in F by breaking up part k

and adding edges (k1; k2) and (k2; k1). Finally we add

in one new graph which is the complete graph with

the two edges (k1; k2) and (k2; k1) removed. Notice

that this graph will allow parts k1 and k2 to separate

only if they are the only two parts in a subassembly,

and this graph is the only one which will ever allow

these parts to be separated. Additionally, for all other

subassemblies, this graph will be strongly connected

and thus will not provide any legal separations.

Similarly, this reduction can be done in the opposite

direction using di�erent techniques, and therefore the

key part and key pair tasks are essential identical in

this framework.

Theorem 2 The problem of separating a key pair
of parts from each other can be reduced, in an
approximation-preserving fashion, to the problem of
fully decomposing the product while using the fewest
number of re-orientations.

The intuition of the reduction is that we will take

an instance problem of separating parts i and j, and

we construct a full decomposition problem by adding

one extra directional graph which will allow the entire

product to fall apart if either i or j is missing, but will

allow nothing on any subassembly with both i and j.

This simulates both the fact that we don't care about

what happens to subassemblies that do not include ei-

ther part, and the fact that once i and j have been

separated from each other, the problem is essentially

I J

Figure 3: Separation of pair reduces to full decompo-

sition

1u

u

u

u

u

2

3

4

5

KEY

31Set {u ,u }

Figure 4: Example construction for SetCover reduc-

tion

solved. The newly created graph allowing this behav-

ior is shown in Figure 3.

Theorem 3 The SetCover problem can be reduced,
in an approximation-preserving fashion, to the problem
of removing a single part from the rest of the subassem-
bly while using the fewest number of re-orientations.

Proof: We use the following notation for Set Cover.

The input is a collection S of sets S1; S2; . . . ; Sm over a

universe of items U , with jU j = n. The goal is to pick

the minimum cardinality subcollection S0 � S such

that each element u 2 U is in at least one set Si 2 S
0.

Given an instance of the Set Cover problem, we

create an instance of the problem of removing a key

part as follows. For each item in the universe U , we

create a part, and in addition we add one extra part,

KEY. Removing KEY will be the goal.

For each set Si in the collection, we create a graph

in the family F . By default, this graph is a star graph

centered on KEY, however we delete the edges between

KEY and any part j such that uj is in the set Si. See

Figure 4 for an example.

Notice that for KEY to be completely removed from

the rest of the assembly, it must be separated from

5

each part uj . And so for KEY to be removed com-

pletely, then for each uj, there must be some direction

chosen which corresponds to a set Si which contains

uj.

We claim that any set of directions which admit a

valid assembly sequence can be translated directly to a

solution to the SetCover problem. Similarly, any so-

lution to the SetCover problem can be translated to

a valid assembly sequence. Both of these translations

preserve the cardinality of the solutions.

Lemma 4 [15] There is no polynomial time approxi-
mation algorithm for Set Cover with ratio c logn un-
less ~P = N ~P , for any 0 < c < 1=4.

The classes ~P and N ~P represent the analog of

the usual complexity classes with quasi-polynomial

bounds. It is also widely believed that ~P 6= N ~P , and

thus this lemmacombined with Theorem 3, provide ev-

idence towards the di�culty of accurately approximat-

ing the set decomposition problem. It is important to

note that the reduction we give from SetCover to this

model does not seem to be realizable in the original

assembly sequencing problem. Rather, for the original

problem we can realize a reduction from Rectangle

Cover, a geometric version of the set cover problem,

which is conjectured to be as hard as SetCover [16].

In any event, the set decomposition problem ap-

pears to be even more complex that the well under-

stood SetCover problem, as is brought out by the fol-

lowing theorem.

Theorem 5 If there exists a polynomial approxima-
tion algorithm for removing a key part with mini-
mum number of re-orientations which achieves a ratio
of c logn, then there exists a set-cover approximation
with ratio

p
c(logn+ log jFj)

Although we do not give the full proof, the addi-

tional strength results from the following ampli�ca-

tion of our original SetCover reduction. Originally,

selecting a set Si in the cover corresponded to using an

additional DBG in the decomposition problem, thus

incresing the cost by one unit for both problems. We

can instead using a \locking" device which will force

an algorithm so solve a complicated recursive version

of the decomposition problem to simulate selecting a

set for the SetCover problem. This penalty ampli-

�es the cost of mistakenly choosing too many sets in

the SetCover solution.

5 Experimental Results

Although there exists the hardness result for SetCover
in Lemma 4, there exists a simple greedy algorithm

which achieves the given performance ratio. It would

be nice to prove similar results about greedy algo-

rithms for the decomposition problem. For the prob-

lem of removing a key part using as few steps as possi-

ble, we considered greedy heuristics such as removing

as many parts as possible in each step. Unfortunately

many greedy heuristics are easily defeated in the worst

case by counterexamples attaining poor performance

ratios.

We implemented such heuristics and the experimen-

tal results show that the pitfalls causing poor perfor-

mance are not isolated examples, rather are quite com-

mon. We used data sets obtained from products run

through the STAAT assembly sequencer [19]. Larger

data sets were generated randomly, modeling pseudo-

assemblies.

6 Conclusions

A great deal of research has lead to the advancement of

automated assembly sequencers, and their promise to-

wards industrial use. However, it seems that the qual-

ity and the cost e�ectiveness of the sequences should

be considered before using the assembly plans in manu-

facturing. This framework takes a �rst step at provid-

ing a theoretical basis for analyzing the optimization

of assembly sequencing.

Together, our results show that in this general

model, there is little hope of �nding an algorithm

which can reasonably approximate the optimal solu-

tion for any of these cost measures. However the re-

ductions we give are not realized geometrically. The

question is whether the original geometric version of

this problem is equally as hard, or whether the set

of blocking graphs that result from actual assemblies

have additional properties which can be utilized algo-

rithmically.

Recall, each cell of an NDBG represents a subset

of the directional space, within which the blocking

relationships are constant. The border between two

cells is caused by two parts whose blocking relation-

ship reaches a sliding contact, and therefore the block-

ing graphs between any two neighboring cells in an

NDBG di�er by at most one edge. Although it is not

clear how to take advantage of this speci�c structure,

our hope is that properties such as this may provide

additional strength for better approximations.

6

Acknowledgements

The authors wish to thank Leo Guibas, Danny

Halperinn and Randy Wilson for many conversations

during the formation of this model, and to Sam-

path Kannan for many helpful discussions and sug-

gestions reguarding the reductions between versions of

the problem.

References

[1] D. F. Baldwin. Algorithmic methods and software

tools for the generation of mechanical assembly se-
quences. M.Sc. thesis, Massachusetts Inst. Tech.,

Cambridge, MA, 1990.

[2] G. Boothroyd. Assembly Automation and Product De-

sign. Marcel Dekker, Inc., New York, NY, 1991.

[3] S. Chakrabarty and J. Wolter. A hierarchical ap-
proach to assembly planning. In IEEE Inter. Conf.

of Robotics and Automation, pages 258{263, 1994.

[4] T. L. De Fazio and D.E. Whitney. Simpli�ed gen-
eration of all mechanical assembly sequences. IEEE

Inter. Journal of Robotics and Automation, 3(6):640{
658, 1987.

[5] M. R. Garey and D. S. Johnson. Computers

and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York, NY, 1979.

[6] L. J. Guibas, D. Halperin, H. Hirukawa, and J.-C.

Latombe R. H. Wilson. A simple and e�cient pro-
cedure for polyhedral assembly partitioning under in-

�nitesimal motions. In IEEE Inter. Conf. of Robotics
and Automation, pages 2553{2560, 1995.

[7] D. Halperin and R. H. Wilson. Assembly partition-

ing along simple paths: the case of multiple transla-
tions. In IEEE Inter. Conf. of Robotics and Automa-

tion, pages 1585{1592, 1995.

[8] R. L. Ho�man. A common sense approach to assem-

bly sequence planning. In Computer-AidedMechanical

Assembly Planning, pages 289{314. Kluwer Academic
Publishers, Boston, 1991.

[9] L. S. Homem de Mello and A. C. Sander-

son. Computer-Aided Mechanical Assembly Planning.
Kluwer Academic Publishers, Boston, 1991.

[10] L. S. Homem de Mello and A. C. Sanderson. A cor-

rect and complete algorithms for the generation of me-
chanical assembly sequences. IEEE Inter. Journal of

Robotics and Automation, 7(2):228{240, 1991.

[11] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the

complexity of motion planning for multiple indepen-

dent objects: P-space hardness of the \Warehouse-
man's Problem". Internat. J. Robot. Res., 3(4):76{88,

1984.

[12] L. Kavraki, J.-C. Latombe, and R. Wilson. Com-
plexity of partitioning an assembly. In Proc. 5th

Canad. Conf. Comput. Geom., pages 12{17, Water-
loo, Canada, 1993.

[13] S. S. Krishnan and A. C. Sanderson. Path planning
algorithms for assembly sequence planning. In IEEE

Inter. Conf. on Intelligent Robotics, pages 428{439,

1991.

[14] S. Lee and Y. G. Shin. Assembly planning based

on geometric reasoning. Computation and Graphics,
14(2):237{250, 1990.

[15] C. Lund and M. Yannakakis. On the hardness of ap-
proximating minimization problems. In Proc. 25th

Annu. ACM Sympos. Theory Comput. (STOC 93),

pages 286{293, 1993.

[16] R. Motwani. Approximation algorithms. Tech. Re-

port STAN-CS-92-1435, Dept. Comput. Sci., Stanford
Univ., Stanford, CA, 1992.

[17] B. K. Natarajan. On planning assemblies. In Proc. 4th

Annu. ACM Sympos. Comput. Geom., pages 299{308,

1988.

[18] C. H. Papadimitriou and M. Yannakakis. Optimiza-

tion, approximation, and complexity classes. J. Com-
put. Systemm Sci., 43:425{440, 1991.

[19] B. Romney, C. Godard, M. Goldwasser, and
G. Ramkumar. An e�cient system for geometric as-

sembly sequence generation and evaluation. In Pro-

ceedings of the ASME International Computers in En-
gineering Conference, page To appear, 1995.

[20] R. Wilson and J.-C. Latombe. Geometric reason-
ing about mechanical assembly. Arti�cial Intelligence,

71(1), 1995.

[21] R. H. Wilson. On Geometric Assembly Planning.

Ph.D. thesis, Dept. Comput. Sci., Stanford Univ.,
Stanford, CA, March 1992. Stanford Technical Re-

port STAN-CS-92-1416.

[22] R. H. Wilson, L. Kavraki, and T. Lozano-P�erez. Two-

handed assembly sequencing. Tech. Report STAN-CS-

93-1478, Dept. Comput. Sci., Stanford Univ., Stan-
ford, CA, June 1993.

[23] R. H. Wilson and J. F. Rit. Maintaining geometric
dependencies in and assembly planner. In IEEE In-

ter. Conf. of Robotics and Automation, pages 890{895,

1990.

[24] Jan D. Wolter. On the Automatic Generation of Plans

for Mechanical Assembly. Ph.D. thesis, University of

Michigan, September 1988.

[25] T.C. Woo and D. Dutta. Automatic disassembly and

total ordering in three dimensions. Journal of Engi-

neering for Industry, 113(2):207{213, 1991.

7

