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Abstract:

This paper reports on recent work and directions in modern software architectures and their formal
models with respect to software maintenance. Related earlier work, now entering practice, provides
automatic creation of object structures for customer applications using such models and their alge-
bra, and we will summarize that work. Our focus on maintenance intends to attack the most costly
and frustrating aspect in dealing with large-scale software systems: keeping them up-to-date and
responsive to user needs in changing environments.

We introduce the concept of domain-speci�c mediators to partition the maintenance e�ort.
Mediators are autonomous modules which create information objects out of source data. These
modules are placed into an intermediate layer, bridging clients and servers. These mediators contain
knowledge required to establish and maintain services in a coherent domain. A mediated architecture
can reduce the cost growth of maintenance to a near-linear function of system size, whereas current
system architectures have quadratic factors.

The domain knowledge in a mediator de�nes the terms and relationships among the source
elements and desired information. It is represented as an ontology which models the domain. These
models provide the means for the maintainer to share knowledge with the customer. We sketch a
conservative algebra for interoperation among these models. The customers can become involved
in the maintenance of their task models without having to be familiar with the details of all the
resources to be employed. These resources encompass the many kinds of databases that are becoming
available on our networks. The functionality of mediators will only be touched upon and referenced
within this paper. Software maintenance is su�ciently important to warrant our attention for a
while.

1. Introduction

Maintenance of software amounts to about 60 to 85% of total software costs in industry. These costs are due
to �xing bugs, making changes induced by changing needs of customers, by adaptation to externally imposed
changes, and by changes in underlying resources [CALO:94]. Most maintenance needs are beyond control
of the organization needing the maintenance, as new government regulations or corporate reorganizations,
changes due to expanding databases, alterations in remote �les, or updates in system services. Excluded
from this percentage are actual improvements in functionality, i.e., tasks that require redesign of a program.
However, in practice, minor improvements in functionality are regularily needed to keep customers. These
cahnges are di�cult to distinguish from other forms of maintenance. Maintenance is best characterized by
being unscheduled, because maintenance tasks require rapid responses to keep the system alive and acceptable
to the customer. In operational systems, �xing bugs, that is, errors introduced when the programs were written,
is a minor component of maintenance.

Traditional software engineering tools and methods, such as speci�cation languages, veri�cation, and
testing, only address the reduction of bugs, and hence have had little impact on long-term maintenance costs
[Tracz:95]. Due to the longlevity of software, typically 15 years, most software maintenance is due to change,
namely that at the time of delivery, or in subsequent years, the expectations and the environment no longer
are what they were when the program was speci�ed. Spending large e�orts on speci�cations, to the extent that
software delivery is delayed, actually increases maintenance costs, since each delay further obsoletes the design
speci�cations.
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Figure 1. Maintenance is good for you

Why is software so much a�ected by change, apparently more so than hardware? The primary cause
is that we expect software to be 
exible and adaptable, while we expect hardware to be static. Maintenance
of hardware is mainly performed to restore its original capabilities, and perhaps to add capacity in terms of
storage or the number of users being served. Hardware is regularly replaced, preferably with equipment that
is compatible with the existing software. For any system component where change is expected, we choose a
software solution. If we are unsure about the use or eventual con�guration or uitilization level of a system we
maximize the software portion as well. The essence of software is its presumed ability to accomodate change,
so that maintenance is a positive attribute of software, rather than a negative attribute to be avoided. Figure 1
aims to make that point.

Once maintenance is seen as a positive feature of software it becomes clear that we should invest to
make software convenient to maintain, and not make software changes di�cult by insisting on rigid adherence
to speci�cations. However, maintenance must be planned for, so that it does not come as a surprise and a
distraction. In long-lived systems most bugs are actually introduced during maintenance, making the issue of
establishing maintainable architectures and models yet more important.

1.1 Maintenance cost

In large, multi-user systems maintenance costs are especially high because of two factors. First, the number
of change requests increases in proportion to the number of types of users. Secondly, the cost of maintenance
includes substantial e�orts outside of the core application area. A change request to one module requires
interaction with the owners of all other modules and �nally orchestrating a changeover. These costs are
universally much higher than the core cost of the requested change. The product of these two factors leads to
an order squared cost in terms of system size for maintenance, as expanded in Section 3.2

A second order e�ect drives the cost of system maintenance yet higher. Since system changes become
traumatic if they occur too frequently, all incremental requests are batched into periodic updates and per-
formed perhaps twice a year. Composing and integrating the batch will take three months. Batching reduces
responsiveness to the customer: it will take on the average at least a half year to have anything �xed. In
practice responsiveness is much worse. Batching also increases the risk and the cost of failure, since some
apparently independent changes introduced simultaneously may have interactions and these interactions will
a�ect unsuspicious users. If the seriousness of the interaction errors requires a rollback to an earlier global
version of the system, even users not a�ected by the failure will have to rollback their procedures.

1.2 Architectural e�ects

Taking these factors into account, it is not surprising that many data-processing organizations �nd that they
lack the resources to advance the functionality of their systems. They may be bypassed by individual stand-
alone systems, built by the customers themselves to gain the needed functionality. These systems will soon
demand access to resources as corporate databases. Open system architectures respond to these demands
and initiated the trend towards client-server architectures, now in full swing. Given stable and comprehensive
servers, client applications can be rapidly constructed. However, the client-server architecture also fails to
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address the maintenance requirements outlined above. If a new client or a revised client application induces a
need for a change in a server, then all other clients that use this server must be inspected and perhaps altered,
as sketched in Figure 2. The problem has not changed, but might be more di�cult now, since organizationally
many clients are autonomous, and likely remote. In Example 1 we provide a simple problem case, and also its
solution in a mediated architecture.

resource
      reuse

changes are difficult
affect many clients

dataflowdataflow

 change change
requestrequest

Figure 2. Client server model and the path of a client change request.

The mediated architecture uses an intermediate layer to provide isolation of one user application fromother
applications, even though resources are shared [ASK:95]. The use of formal, that is manipulable models, based
on Entity-Relationship (E-R) concepts to create application objects, permits rapid regeneration of linkages to
those resources. Figure 3 sketches modules in the three layers, and their linkages. An application can call on
multiple mediators and each mediator, in turn, can invoke multiple resources, including other mediators.

                       

Applications  . . . .

Mediators . . . .

Data Resources . . .

Figure 3. Modules in a mediated architecture and the scope of an application.

Example 1: A change mandated by scienti�c progress.

In a hospital many subsystems rely on information from the clinical laboratories. In addition to the treating

physician's record, there will be charts to track progress, analysis for the quality of care, watching for

iatrogenic incidents, information for billing, and evaluation of interaction with currently prescribed drugs.

Recently the distinction of low-density and high-density cholesterol has become important. The clinic which

surveys patients for cardiovascular risks needs these two values, instead of total cholesterol, and the server
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in the clinical laboratory is prepared to deliver such data. Without a mediator module every other client

using cholesterol data will have to be changed. A synchronous switch has to be scheduled, and all clients

are warned to have updated application programs ready at the cut-over date.

In a mediated environment the change in the laboratory server is only synchronized with the diagnosis

support mediator and other mediators using laboratory data. That number will always be much smaller

than the number of clients, as assessed in Section 2.4. Those mediators will sum the cholesterol values

obtained from the laboratory and deliver the sum to the clients. As sketched in Figure 4, a new version

of the mediator serving the cardiovascular clinic is created which delivers both values, and the clinic can

switch over at any time. If the changes work reliably for their originators, any other clinic can switch over

when it deems best. Since there is a cost to maintaining many versions of a mediator, there should be some

inducement for all customers to convert, perhaps by increasing the price of obsolecent information over time.

Figure 8 illustrates the concept.

For this particular change, several alternatives exist for its resolution, but these increase the complexity of the
laboratory system and not deal with the case where the diagnosis support mediator also obtains information
from other sources, as the medical record, say, to track the signi�cance of any changes in the patients' cholesterol.
This example should have motivated the maintenance-derived critera for mediation.

Aggre-
   gation

Presen-
tation

Infor-  
  mation

Access,
  Select

Data    
 Source

Compu-
tation

terminl

Appli-
cation

SQL for
A&S

Data
Base

Aggre-
gation

Custmr. 
Workst.

Infor-
mation

SQL, ...
for A&S

Distr.
Sources

Compu-
tatio

Printed
reports

Appli-
cation

I-O
code

Local
Storage

CORBA

Work
station

Infor-
mation

Object
Struct.

Server
Storage

Compu-
tation

Mini-
comptr

Appli-
cation

Select
FTP

File
Storage

                  main-      smart        file         client-    mediated
                  frame   terminal  server     server

Figure 4. Architectural Evolution of Information Systems

2. The Mediated Architecture

A mediated architecture is a departure from several prior architectures, which have implemented variations of
two-layer separations for the last 30 years, as indicated in Figure 4. The boundary has moved up and down,
as the capabilities of the hardware components evolved. Mediation inserts a third layer; its function is best
described starting from a client-server model, as shown in Figure 5. In a client-server model the servers provide
data resources, often derived from databases or perhaps object-bases. The clients autonomously access these
resources, select data, and load them into their workstations for further processing.

The architectural relationship in the client-server model is n : m from clients to resources. This squared
relationship leads to the steep growth curve for maintenance, as recognized in Section 1. Another problem
in the client-server approach is an impedance mismatch between speci�c customer needs and general servers.
That problem, and a solution will be addressed in Section 4. Our penguin solution also helps in managing the
internal maintenance of a mediator, but we �rst focus on the overall mediating architecture of Figure 3.

In a mediated architecture a layer of modules,mediators, is inserted between the client and server [W:92C].
Mediators provide more than just a thick interface; they provide signi�cant functionality, transforming the
data provided by a server to information needed by an application. Such transformations require knowledge, as
knowing where the data are, speci�cations about the data representations, as well as an understanding about
their level of detail versus the users' conceptual expectations [W:92I].
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Figure 5. Mediator Evolution

2.1 Functions in mediation

Making computers understand and bridge the gap from server to customer may seem hard, but the job can
be decomposed and executed in a logical 
ow of data from servers to clients. The resulting tasks select and
access the relevant servers, integrate related data obtained from those servers, summarize, �lter, and structure
the result to match the customer's request [WG:95]. In a client-server architecture these tasks are primarily
performed by client software. The mediator now acts as an information server with respect to the client module.
The client software is still responsible for integrating information from multiple domain mediators and the user
interface [ACHK:93]. Several ancillary tasks may be needed during mediation as well, for instance, processing
to bring data from distinct servers to the same level of abstraction prior to integration, and resolving semantic
mismatches [DeMichiel:89]. Once the job of mediation is decomposed, all of the tasks become manageable. The
needed functions cited have all been demonstrated in other contexts. The contribution of the mediator concept
is essentially the recognition and extraction of these tasks into an architecture that reduces their complexity.
Only simple systems work. Figure 6 illustrates the task assignment within a mediator and Example 2 expands
the diagnostic mediator.

•  DELIVERY

        ▼    ▲        ▼    ▲

• SUMMARIZATION

        ▼    ▲        ▼    ▲

• INTEGRATION

        ▼    ▲        ▼    ▲

• ABSTRACTION

       ▼    ▲       ▼    ▲

•   ACCESS

Figure 6. Task and Flow in a Mediator

2.2 Multi-level mediation

In large systems it is likely that there will be mediators using other mediators as their information sources.
Such con�gurations are feasible, and are already in operation in some instances. However, every additional
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interface carries a performance penalty. Unless the added value provided by mediation is adequate to overcome
that cost, it is wise to be very careful in adding levels within the mediator layer.

The architectural maintenance bene�ts of mediation are largely achieved within a single layer. Only when
these mediators themselves become too large for e�ective maintenance by a coherent group of individuals is a
further partitioning desirable. Committees are great to achieve compromise when there is a lack of coherence,
but they are not e�ective for software maintenance. Coherence is de�ned by having a single ontology, as
described in Section 3. In Section 3.3 we also cite a two-level example to cope with a larger domains: a
lipid-research mediator serving the diagnostic mediator.

2.3 Building mediators

Mediators can be hand-crafted, that is, built using available programming languages, as c++, or can use arti�cial
intelligence techniques, where the operations are presented as rules. Rules can be used to compose the primitive
operations in a mediator, and we make further gains in maintenance. Today most mediators are hand-crafted,
and the gains in maintenance derive solely from the architecture.

The programmer writing a mediator will interact closely with domain experts, to assure that the models
are accurate, that the functionality of the mediator is appropriate, and that the results are obvious to the
client. Tools to build mediators are now being developed [Lehrer:94], so that the task in time can devolve
upon individuals who are primarily domain experts, rather than programming experts. Crucial in mediation
are interfaces which allow their composition. Interfaces from the mediator to the resources can be derived from
client-server standards, as sql, corba, dce, opendoc, and ole. Interfaces supplied by a mediator to the
client need better facilities for multi-tasking, asynchrony, and task-sensitive representation, as well as provision
for meta-information.

Example 2. Functions in the diagnostic mediator:

Information output: Current cholesterol level, trend lines, warning 
ag, ... .

produced by:

Exception 
agging: Provide meta-information to trigger a warning when cholesterol level has increased
more than 5% per month.

Summarization: Compute trend line parameters from past medical record and recent data.
Integration: Combine past medical record data with current observations and standards for patient's in

similar age/gender groups.
Representation change: Convert laboratory �ndings to UGS values.
Abstraction: Convert irregular observations to periodic (monthly) values.
Selection: Extract medical record data from past sites for current patient.
Search: Determine past treatment sites by navigation from current record.

Within the ARPA Knowledge-Sharing Initiative [FCGB:91] a structure has evolved consisting of a Knowl-
edge Query and Manipulation Language (kqml), which de�nes a transport layer [FFMM:94], and a Knowledge
Interchange Formalism (kif) [GK:94], which is a vehicle for transmitting �rst-order-logic rules. kqml speci�es
the operation or performative, the destination type, the vocabulary or the ontology, and the representation.
Kqml operations provide a reference handle, so that multiple transactions can overlap, and full asynchrony is
implied, unless explicit constraints are speci�ed [W:89]. While sql has select as its only operation, kqml
performatives extend, beyond the equivalent (ask, to tell, infer, subscribe, advertise, etc., in an open-
ended syntax. Destination can be indirect, allowing multiple mediators to bid on supplying the information
service. In addition to the kif represenation for rules, representations transmitted in kqml have included
object structures, dynamic equations, text, and tuples [CEFGGMTW:93].

Having a common, representation-independent interface protocol simpli�es system maintenance, since
otherwise a distinct interface is required for every data representation. Most of these interfaces di�er in their
approach to communication management in obvious and in subtle ways. In terms of the ISO networking model,
kqml lives at the highest level and has used transport mechanisms ranging from tcp/IP to email [EIT:94].

The mediator, acting as a server to its clients, does not provide a human-friendly interface. It provides the
requested information and some meta-information, which can be used by the client to understand and display
the information. Mediators, not having internal persistent databases nor extensive graphical user interfaces,
can be kept small, further enhancing their maintainability.
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3. Partitioning by Domains

In Section 2 we focused on the layering and the data-to-information processing 
ow that connects these hor-
izontal layers. We now address the vertical partitioning, based on domains. Vertical or domain-speci�c or
partitioning is crucial to maintenance, otherwise the middle layer will become the bottleneck.

3.1 Domain-speci�city

As indicated earlier, mediators are domain-speci�c. This means that many mediators will inhabit the middle
layer, each focused on one domain. A domain is often determined by existing organizational assignments. A
�nancial mediator will be owned by the chief �nancial o�cer (CFO) of an organization, the diagnostic mediator
by the chief pathologist, the drug mediator by the pharmacist, etc. Guidance to domain expertise may be
obtained from their professional organizations, just as now professional organizations may proscribe minimal
schemas for the collection of data in their �eld [McShane:79]. It is not a major step to move from data formats
to the rules for interpretation. Technically such a move is supported by object-oriented approaches, where
data structures are augmented by programmed, encapsulated methods to assure their consistent interpretation
[Wegner:90].

More formally, a domain is de�ned by having a coherent ontology. An ontology is comprised of the terms
or vocabulary understood in the domain and the relationships among the terms. The relationships de�ne terms
as de�ning sub-or-superclasses, synonyms or antonyms, and attributes that are implied, complementary, or
exclusive [Gruber:91]. An ontology can be viewed as a knowledge-based equivalent of the E-R structure of a
supporting database. Since terms deal with concepts that are unique, rather than being entity designators,
they are not immediately mapped to sets of instances. At the same time, an ontology will have a much larger
set of terms. We review ontologies and a proposed algebra over ontologies in Section 3.4, but deal �rst with
the maintenance issue.

3.2 Partitioned Maintenance

Figure 3 illustrated the mediated architecture. In Figure 7 we indicate how changes are handled in that
architecture. We take the case of having a new or revised application, which demands new services from the
data resources. The existing mediator in that path serves multiple applications. To accomodate the new
application that mediator is revised to obtain and present the new data. If the data resources will no longer
supply the old data, then the old mediator has to be adapted to supply surrogate information. In our cholesterol
case this is simple; high-density and low-density cholesterol data are summed and reported as cholesterol to
the old applications. The models for the two versions di�er little.

New Application

Prior & Revised
       Mediators

                       
                       

Extended
  Data Re-
   sources

New Subsystem

Figure 7. Changes induced by a client request in a mediated architecture.

All the required changes can be made by a domain specialist, in charge of the lipids mediator (seen in
Figure 16). The cost of the change is linear, and the changeover can be scheduled at the convenience of the
the new application alone. Any problems arising in the change are easily undone, only a�ecting the mediators
and the new application. As other applications require speci�city in cholesterol data, they can start using the
new, proven mediator. The old version can be retired when all customers become up-to-date. The cost of the
change is O(3), linear in the number of modules involved in the modernization.
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Compare this cost with the cost of making changes in the traditional federated or client-server architecture,
illustrated in Figure 2. We recognize 7 phases.

1 The application designer has to remind the resource provider to determine which other applications
will be a�ected by the proposed change. In an open systems architecture no records of resource
utilization need to be kept, so it is wise to communicate to all customer applications and await
their responses. Some customers may not be aware that their applications depend on cholesterol
values. For instance, there is an interaction between prednisone administration and cholesterol, but
the typical clinician in an immunology practice will not be concerned with that interaction, since
the patients in that clinic have more pressing concerns than cholesterol levels.

2 Agreements have to be worked out about the change with all identi�ed applications. Some applica-
tions may be induced to take the updated now; others will want to compute a surrogate value. A
mutually satisfactory change-over time has to be negotiated.

3 To validate that the changes will work correctly and not bring down the a�cted existing applications
testing must be performed. For ongoing operations the changes must be testing outside of the
operational setting, using sca�olding code and data. Replicating the environment adequately is
costly and distracting, but it is risky and unacceptable to have failures that a�ect many customers
beyond the requestor.

4 Since the system change will a�ect ongoing operations, it will be scheduled a few months in advance.
In that time-frame other changes will be requested within the overall system. All of these changes
will be batched to occur at the same time.

5 The aggregated revision becomes a major task, requiring meetings of all parties to minimize problems
due to possible interactions. An example is the massive orchestrated change fromMicrosoft Windows
3.1 to Windows 95, wich, when analyzed, is essentially an aggregation of many minor changes with
their underlying e�ects.

6 During the changeover, all involved programmers must be available to participate in the e�ort.
They must deal both with changes in their application and domain, and with the changes induced
by others. They must also communicate with their customers about the e�ects of the changes.

7 Any failure in any of the batched changes will either require a rollback of all changes and a return
to phase 3, or disable some customer applications for some time.

8 Changes which failed, or did not make it into the batch are now candidates for the next revision.
It is unlikley that a new revsion can be scheduled in less than three months. All bene�ts that the
changes are due to bring are delayed by the cyclic nature of batched system revisions.

The costs of traditional maintenance are dominated by the cost of inter-module interactions. These are then
order O(m2), where m is the number of modules. The mediated architecture will have more modules, at
least one for every domain, but the cost of maintenance is O(path length), or O(3) for systems with a single
layer of mediation, and linearly more for more complex mediated systems. For all but small systems mediated
maintenance will be less costly.

3.3 Ontologies and Maintenance

The vertical partitioning, which enables economical maintenance, is based on avoiding the costs incurred when
dealing with problems and people that have di�erent views and objectives. To have software that performs to
expectations, it is obviously important that the people involved with its design and use understand each other.
In a formal sense, this means that they share a domain ontology. Since in large systems there must be a large
degree of specialization, there will be multiple ontologies. Within each specialized domain some autonomy is
needed to deal with evolving concepts.

For instance, referring to Example 1, the detailed understanding of the interaction of cholesterol levels
with diet is still evolving, and any new research �nding will add terms and re�ne the meaning of prior terms.
At the same time, research in cardiology is re�ning knowledge about the e�ect of cholesterol on heart disease.
By keeping the domains distinct it is not necessary that the diagnostic mediator and the lipid research mediator
have to share all of their ontologies. Joint maintenance would require a committee of cardiologists and lipid
researchers and become a tedious process.

The function of a committee is to develop compromises, but reliable software services are not constructed
on top of compromises, but based on dealing correctly with a gamut of details. The argument of our example
becomes even more obvious when we consider broader domains, as �nance, inventory, and the like. Here
committees are even less likely to be constructive. When a committee to de�ne some software has to include
people that di�er in authority or their outlook, the result can be disastrous; just envisage the process of
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designing software by a committee composed of physicians and nurses, or a committee made up of physicians
and lawyers.

Health Care PlannerHealth Care Planner

PatientPatient
Care domainCare domain

InvestmentInvestment
domaindomain

Loan InterestLoan InterestPatient Volume GrowthPatient Volume Growth State SupportState Support

Bond SalesBond SalesService OperationsService OperationsAge ProfileAge Profile

Will the Clinic loose Money?Will the Clinic loose Money?

Figure 8. An application accessing multiple domains

3.4 Domain interoperation

In our systems mediators will have to cooperate. This, in turn, implies an interaction among ontologies. To keep
the interaction minimal and give each domain expert as much autonomy as possible, we de�ne an intersection
operation among domains [W:94N]. This operation is rule-based, and creates a new, shared sub-ontology with
only the terms that are needed to interoperate.

We use a conservative assumption, namely that terms from distinct domains never refer to the same
object-class unless the rules state explicitly that there is an identity or a matching procedure. Such matching

rules form a knowledge-base to be managed by collaborators or their designate from the interacting domains
[W:94F]. Now no restrictions are imposed on the evolution of local terms within a domain. Figure 8 provides
an example of a customer accessing multiple distinct domains.

Terms that are covered by matching rules form a new, second layer abstract ontology. The proposed
knowledge-based ontology algebra also includes Union, Di�erence, and a Match operator. For instance, several
subontologies de�ned by shared intersections can be merged to form a higher abstract layer. No ontological
layer should be too large, i.e., contain too many terms, so that coherence is hard to achieve.

3.5 Operations of the algebra

Given multiple domain-speci�c ontologies and rules that de�ne their interaction we can summarize the function
of the domain algebra as shown in Figure 9. The DKB label on the operations identi�es the knowledge base
that contains the matching rules.

Operation symbol semantics

DKB-Intersection
T
(DKB) create a new subset ontology,

comprised of sharable entries

DKB-Union
S
(DKB) create a new joint ontology,

merge entries,

append a source ontology identifier

DKB-Difference (DKB) create a distinct ontology

remove shared entries

Simple negation is avoided, so that no in�nite ontologies are created.

Figure 9. An Algebra for Managing Domain Ontologies.

The relative autonomy of the local terms provides the scalability essential to large system maintenance.
We have seen how a layered, hierarchical naming structure provided scalability and autonomous growth in the
Internet [Kahn:87]. The Internet has managed growth well. During the last three months of 1994 one new
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computer was added to the Internet every second, without a�ecting more than local participants. However, the
mediated approach is not strictly hierarchical since underlying data resources may be shared among mediators.
In Figure 8 the patient services documented in the medical record provides the basis for some of the �nancial
information as well as data for the medical aspect of the clinic operation. The intersections of some ontologies
is sketched in Figure 10 for another domain set.
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Figure 10. Domain Intersections

3.6 Using the shared sub-ontologies

Once an intersection has been computed it can be used for the integration of information. Lower level data
have to be processed within their domain, say the cost of individual treatments. Once the data are aggregated
to the information level in the mediator, they can be shared by the client.

The intersections provide a basis for interrogating multiple databases which are semantically disjoint,
but where a shared knowledge-base has been established. This process mirrors the approach used in carnot,
where a knowledge base is used to create articulation axioms for joining of data [CHS:91]. However, carnot's
single knowledge base uses the default assumption that everything matches. When carnot uses a large and
broad cyc knowledge base, many irrelevant retrievals can occur, so that in practice, carnot applications limit
the depth of search.

With the conservative assumptions embedded in the DKB-model, the risk is that too little informationwill
be retrieved. By letting domain experts create and maintain the matching rules, we expect that high quality
operations over data from distinct, but overlapping, domains can be maintained at a reasonable cost. To evolve
these systems e�ectively, feedback loops must exist that permit users to suggest new candidate matching rules,
or to modify existing ones. Having small, distributed groups to maintain the partitioned DKB-models will help
ensure responsive maintenance of the domain knowledge.

4. The Structural Model and Object Generation

Mediators should deliver information in a format that matches the customer's task model. Such a service is
then semantically friendly, a deeper aspect of user-friendliness than having graphics, windows, point-and-click
or drag-and drop interaction. Object-oriented systems provide information in a format which is organized
to satisfy a speci�c programmed task; object-oriented approaches are in fact an outgrowth of programming
concepts as abstract data types (ADT) [Liskov:75].
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Servers have a problem satisfying the customers' desire for objects, since they must try to serve a variety
of customers, and di�erent customers need di�erent object con�gurations. For instance, the pharmacist needs
to be able to survey all patients receiving a certain drug, but a physician will want to know about all drugs
one patient is receiving. We denote the relationship from root to dependent data as R * D and show the
con
icting models in Figure 11.

Pharmacist’s View

Physician’s View

Patient Drugs

*

*

Figure 11. Con
icting Customer's Models

4.1 Relationships, relations, and objects

Relational data representations are general, but they demand from the user an understanding of possible
relationships among the entities represented by the relations. An Entity-Relationship (E-R) model applied to
such a database will describe all likely relationships. Most databases will be represented by a network more
complex than a simple hierarchy. As stated above, we believe that a user working on a speci�c task will want an
object-oriented representation of the data in the domains of current interest. There is an impedance mismatch
of satisfying speci�c users' needs versus generality.

Again, appointing a committee to determine which object-con�guration is right is only confusing. Many
of the ongoing e�orts by object-model enthusiasts to force data into a single, correct object structure are either
naive or misguided [W:86]. The demands of di�ering constituencies generate a maintenance nightmare.

The approach we take here is to formalize the E-R model to match a relational infrastructure. We then
can extend the relational algebra to operate on relationship representations as well as on relations that represent
entities. In the structural model the relationships are represented by connections [WE:80]. The formalization of
relationships leads to connections of �ve di�erent types. Connections are characterized by semantics from which
E-R relationship cardinalities can be derived, as indicated in Figure 12. The structural model was described
in an early Entity-Relationship conference. Four of these connections are signi�cant within and among object
classes. Two support inheritance and hence simplify the customer's world.

Connections are concepts at the modeling level, and drive potentially complex computations, maintaining
information system consistency. A signi�cant early application of the structural model was to achieve provably
correct integration of database semantic schemas [EW:79]. This work, however, was again limited to the databse
design phase, as most early E-R research, and could not have the impact of a model which is interpretable
and maintained. Its use in object management enhances its importance and provides a basis for ongoing
validation during maintenance. Having a connection between object classes implies having linkages between
their instances. Such linkages can be represented by the structure within an object, or by references among
objects, as shown in Figure. 13.

Connection Type Symbol Direction

Ownership * from single owner to multiple owned tuples
Part-of * from single assembly to multiple owned parts
Reference � from multiple primary to single foreign tuples
Subset � from single general to single subset tuples
Identity = from single source to single derived tuples

Figure 12. Basic connection semantics.

Relevant details of these semantics are given with the description of their use in object generation below. The
Identity connection is not used in object generation, and our example also ignores the Part-of connection.
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Objects represent views. In Figure 8 we saw that the medical record is used for �nancial and patient
care data. In the view of the �nancial model the details of the service objects will be aggregated by facility
to determine their utilization and revenues. For the patient care view the aggregation of the patient-objects is
by diagnosis, so that projections can be made for the patient-base. At the decision making level, linkages will
have to be made between services rendered in facilities and services appropriate for the patients' illnesses.

Servers today face the tension among relational and object databases. Should a server present objects or
a relational presentation of data? If it presents objects suitable for one category of users, it will lose customers
which have an alternate view. If the server presents a relational model to the customer, it has very general
purpose capabilities, but the users have to build the object hierarchies themselves, perhaps with the guidance
of an E-R diagram. Without tools to convert the knowledge inherent in such a diagram into code, a focus on
relational databases is unfriendly.

4.2 View-objects generation

A concept of view-objects can resolve this issue, by transforming base data into objects according to user
needs [W:86]. Mediation provides an architectural bases to position this transformation in larger systems. The
penguin project [BSKW:91] demonstrated how object-oriented data structures can be automatically generated.
Now only the model has to be maintained. Penguin applies the semantic knowledge embodied in the structural
model, to data stored in a relational database.

drug

patient

pharmacy

insurance

doctor
visit

country

personnel

nurse

hospitaldisease

Legend

 own
 ref
 sub

Figure 13. A structural model of a simple health-care setting

The structural semantics permit not only the creation of objects, but the retention and transformation of
relationships between objects. Although general methods are not supported, methods for retrieval and storage
of objects are created. More general methods applicable to the generated object have to be provided by the
customers. However, it is actually rare for persistent objects to have internal methods for functions other than
for fetch, store, and update of data. Since the fetch, store, and update semantics are inherent in the relational
model, we can guarantee the correctness of their mappings to the objects, while avoiding the complexity needed
to deal with arbitrary methods.

We now de�ne the �ve connection types of the structural model and how the penguin implementation
interprets their semantics in order to generate objects [BW:90]:

1 An ownership connection describes the relationship between a superior class and its members. For
instance, an object class de�nition describes a potentially large set of object instances. The classes
are not necessarily abstract object-oriented programming concepts, but are often real, with actual
modi�able data that can be inherited by their members. For example, under the description of a
speci�c drug class are all the instances of that drug administered to the patients. There will be an
instance record for data associated with the class as well, in which the name of the supplier and the
price are recorded. Penguin proposes that owned elements be incorporated within an object.

Di�erent applications may incorporate the same elements in di�erent models. For the pharmacy the adminis-
tered instances fall within the drug object, while for a patient record the same instances fall within the patient
or a visit object. The con
icts that can arise due to simultaneous access have to be addressed at the execution
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level of the system, but can be formally recognized. Current object database systems, without this algebraic
competence, can allow elements to appear in only one object con�guration, limiting the practical size of objects.

2 Similar in structure are part-of-hierarchies. A physical object is often composed of parts that are of
quite di�erent types, although some attributes essential to the composition may be inherited. For
example, a hospital room contains some beds, chairs, diagnostic equipment, and the like. But beds
and chairs are speci�c instances of the class of furniture and inherit most of their properties from
that class. The attribute that de�nes the composition, namely location, derives from the hospital
room designation. These hierarchies can also be expressed by the ownership connection, and are
treated identically in penguin, since the structural model supports multiple ownerships and hence
multiple inheritance. Further work to clarify the semantic distinctions could be bene�cial if it could
lead to generalizable conceptual di�erences. No part-of connections appear in Figure 13.

Con
icts between class-of and part-of object con�gurations are common. While penguin cannot resolve the
semantic di�erences automatically, it can handle objects created in either fashion and provide update protection
if both con�gurations are in use.

3 A general type of connection is a reference connection; it is used to expand attributes by referencing
foreign objects. For example, the location of a patient visit, perhaps the name of a clinic, references
a building, which in turn is an object of interest to health care planners, and as such carries much
detailed data. But the visit is not owned by the patient, not a part of it, and not a subset of the
clinic. Reference connections are typically employed between independent objects. In Figure 13
several classes reference the country object class. Penguin proposes that references among heavy-
weight objects remain external.

4 Divide-and-conquer is an essential approach in science, and in information systems as well. The
subset connection de�nes such specialized groupings. For example, a speci�c type of antibiotic drug,
as Gentamycin, inherits by default all properties of antibiotics in general. Structurally, we connect
the more general class to the speci�c class by a subset connection. While subsets can easily be
incorporated into objects, constraints due to di�erences in their referencing structure may make it
unwise. For example, both `patients' and `nurses' are subsets of `people', but their roles in a hospital
are quite distinct, so that it would be unwise to create `people' objects and encapsulate all the
di�erences internally. However, many methods can be shared as nationality in Figure 13.

5 The identity connection de�nes relationships among replicated information, as are commonly found
in distributed systems [WQ:87].

Three of the �ve connections types de�ne hierarchical (1 : n) relationships of di�ering semantics. Structures
declared within objects in today's programming languages are restricted to hierarchies. More complex structures
can be implemented by using programmed linkages within objects, but these will make algebraic manipulation
di�cult. Penguin creates hierarchies within objects, and uses external connections to link other objects needed
in an application.

The semantics of all four connections lead to construction rules which are summarized in Figure 12. The
connections are also associated with operational insert and deletion rules [W:83]. The objects constructed
by penguin have structures that satisfy those rules, so that correct operational behavior is encouraged. For
example, elements owned by an object are deleted when the object is deleted, satisfying the semantics of
ownership. Data elements will be retained, however, if they are also part of another structure. In today's
relational databases consistency rules can be de�ned that inhibit errors, but the programmer still has to make
the implied updates explicitly.

Note that the structural model has no connection with an m : n cardinality. Such a relationship is
described by two connections and one relation, since a relational implementation always requires a relation to
de�ne the subset of the m�n possible links. The composition extends to the semantics, giving 42 = 16 di�erent
choices. Only a codasyl-like database system is able to represent the links within its internal structure.

4.3 Relationship to the basic E-R model

Note that the semantics de�ne relative cardinalities. Those cardinalities are presented in E-R Models. The
additional semantics of the structural model convert the static E-R model to a dynamic structure. The symbols
listed in Figure 12 create our conventions for representing E-R models with semantic constraints on database
operations.

A dynamic capability is essential if we wish to achieve associative access, since the transformations required
to achieve optimizationmust maintain the correct semantics. The penguin system constructs objects as needed
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out of relational databases, given the structural model of connections. A penguin query identi�es the root of
the object hierarchy, the pivot, and object templates are generated automatically.

The same relational algebra operations, used to optimize queries, or to convert relations to achieve data-
base integration, or to de�ne user-based views, are also applicable to connections. The algebra used for relations
maps directly to the structural connections. Speci�cations for the join operation can be simpli�ed, since only
one connection needs to be named, rather than the two endpoints. FigureOBs 14 and 15 illustrate the extrac-
tion of an object model. The process starts by matching the root node of the object desired by the customer
to the entities described by the structural model. This becomes the pivot, as applied to the database structure
modeled in Figure 13. The algebraic transformations are applied to the model, so that the actual conversion
is compiled, similar to the compilation of optimized database queries. Methods are created to automatically
instantiate, select, and update object instances. We present the outline of the implemenation here because the
work was published mainly in journals catering to the application areas; details are found in [B:90].
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1. Start at 

personnel
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Figure 14. Applying the pivot and locating the object attributes
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Figure 15. Restructuring and replicating shared leaves.

When connection types are mixed, the semantics become complex, but remain formally manageable
[WE:80]. penguinincludes heuristics ti assess the strength of catenated paths from pivot to leaf nodes, and
prunes the object tree accordingly. The mediator can now utilize the generated templates. When information
about, say, a patient, is requested, all subsidiary data, say, the drug pro�le, identi�ed in the template is
included, as if a programmer had designed an appropriate object and written the code for it.

14



Distinct mediators can support distinct object con�gurations, as required by their domains. For example,
the pharmacist can use a mediator for drugs and retrieve all patients receiving the drug as an object appropriate
for the pharmacy, while the physician can obtain objects that use the patient as the pivot in another mediator.
The con
ict illustrated in Figure 11 has now been dealt with. Such 
exibility rivals the capability of relational
retrieval, but retains the constraints imposed by the semantic model and avoids possibly tricky programming.
Having formal rules also permits checking of semantic consistency before any code generation occurs [KW:81].

The objects retrieved will obey the model, whereas a relational query can create nonsense; for example,
one might join the daily dosage of a drug with the length of a patient's hospital stay. The lack of a documented
connection (in a reasonable structural model) between dosage and length-of-stay makes it impossible to create
such a template automatically. A determined programmer can, of course, retrieve drug and patient objects
separately, and in the privacy of the mediator, compute anything that pleases the user.

4.4 Resolving the view-update Problem

Databases must also be updated. Here the templates must obey the constraints imposed by the structural
model. No drug should be prescribed to a non-existing patient, and no drug class should be removed from
the pharmacy that is still being given to an existing patient. In a relational database, the responsibility for
maintaining correct program operation rests wholly on the programmer, augmented with some combination of
foreign-key constraints, documentation, and commonsense. Updates over objects have one serious complication:
since the requests are stated at a high level of abstraction, their execution can be ambiguous.

For example, reassigning a patient to another physician could mean either (a) instruct the patient to visit
another clinic, or (b) instruct the physician to take on the patient's current clinic. But as shown in [BSKW:91],
the candidate ambiguities can be enumerated when the template is established. The mediator designer can
choose which alternative makes sense. As these systems get more complex, the ambiguities will increase, but
heuristics can rank and prune the number of alternatives to be presented to the manager. In the example
above, choice (b), where the physician changes clinics, causes many more changes than the �rst alternative and
is hence ranked much lower. By resolving ambiguities in the mediator, the template is created, the customer is
relieved from having to deal with update ambiguities.

4.5 Object design and execution times

Automatic interpretation of the model to generate the templates for object instance generation and update
the mediator greatly enhances maintenance. Since this work occurs at design time, the resulting templates can
be compiled for fast execution. Rapid regeneration of mediator functions becomes feasible when the database
models change.

4.6 Status

The penguin technology has found its way into practice. For instance, it has been adopted by Persistence
Software and is now part of the sunsoft Distributed Objects Everywhere (DOE) environment, operating with
oracle, sybase, ingres, and informix database systems [KJA:93]. It has also been used for some academic
and commercial databases [RDCLPS:94].

The approach used also allows update of the underlying databases, typically disabled for relational views,
as described in [BSKW:91]. The compilation takes place under management of an object administrator, typi-
cally the owner of the mediator in which the transformation code will reside. The customer is spared any need
to resolve update problems.

5. Conclusion

We analyzed the factors leading to high software system maintenance cost: need for 
exibility, unwarranted
interaction among users from distinct domains, and the batching of system updates into periodic, traumatic
events. None of these factors are e�ectively addressed by current exhortations in software engineering.

Implicitly we have clari�ed the di�erence between models and speci�cations. While speci�cations are
developed initially, a program only ensues after a long sequence of transformational steps. No formal linkage
from code to speci�cation is provided within that process, although a current software engineering rule states
that any section of code should have a documented audit trail to its origin. Comments giving such backward
references to speci�cations are rarely found in programs, and their insertion delays the production of code.

The con
ict between the generality of relational and E-R approaches versus object speci�city can be
resolved by transformations based on models. A model is intended to remain linked to the code objects, enable
identi�cation of the a�ected code, and aid in its regeneration. For example, penguin keeps the models available
to resolve hard issues, such as object-derived updates. To achieve such synergy requires a formal representation
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of the model and an algebraic capability over its components. Then the partitioning and layering into modules
can be formally supported.

In general, mediation provides new level of scalability for large, distributed information systems. The
economic bene�ts of system construction and maintenance under mediation are currently being analyzed for
some of the early systems. It is unlikely that de�nite proofs will emerge until a few years have passed. Com-
parison will be di�cult, because some of the early adopters of mediation technology are at sites where early
analysis indicated that neither central solutions, designed according to accepted software engineering princi-
ples, nor federated client-server approaches were feasible. In smaller systems, the greater initial cost deters
hard-pressed system builders to adopt mediation, since they are still encouraged to deliver a product, rather
than a maintainable framework.

In time customers will understand the tradeo�, and may place the induced costs of system maintenance
due to alternate architectures as a parameter into the contracts they issue for new systems and applications.
Of course, familiarity with mediation concepts and tools is a prerequisite to their implementation. Application
Program Interfaces (APIs) for KQML are now available for a variety of platforms and programming languages.
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Figure 16. A Mediator Module and its Maintainer

Mediation does not eliminate maintenance, but it partitions the task it and allows its assignment to
domain specialists. Every software designer agrees that modularization is essential for large scale software,
but the rules have remained ad hoc [WKNSBBS:86]. The entity-relationship model provides a basis for such
modeling, but until a better paradigm for software construction is adopted, the tools we have will be inserted in
the manual approaches now in use, and the E-R model will be used as a speci�cation rather than as a dynamic
tool.

Within a module we bene�t from the relational algebra. However, its operations assume the consistency
which is only achievable in a coherent domain. The de�nitions that make objects coherent are also particular
to a speci�c conceptual domain and its ontology. Scalability of software design and maintenance requires that
we can build systems which encompass multiple disciplines and subdisciplines. The domain algebra sketched
in this paper allows the de�ntion of articulation points among domains, so that we can maximize autonomy
and minimize the cost of maintenance, while still providing interoperation.
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