
Comparing Very Large Database Snapshots

Wilburt Juan Labio, Hector Garcia-Molina

Department of Computer Science

Stanford University, Stanford CA 94305

fwilburt, hectorg@cs.stanford.edu

October 31, 1995

Abstract

Detecting and extracting modi�cations from information sources is an integral part of data

warehousing. For unsophisticated sources, in practice it is often necessary to infer modi�cations

by periodically comparing snapshots of data from the source. We call this problem the snap-

shot di�erential problem. We show that this is closely related to outerjoins. In this paper we

extend the traditional join algorithms to perform outerjoins. We then make the outerjoin algo-

rithms more e�cient by using compression techniques. We also examine how text comparison

algorithms can be used to solve the snapshot di�erential problem.

1 Introduction

Warehousing is a technique for retrieval and integration of data from distributed, independent
and possibly heterogeneous information sources. A data warehouse is a repository of integrated
information that is available for queries. As relevant information is available from a source or as
relevant information is modi�ed, the new information is extracted from the source, translated to
the data model, and integrated with the existing data of the data warehouse.

The information sources may range from object oriented databases, relational databases to
legacy systems. Even with the advent of the more popular relational database systems, there is
still a proliferation of legacy systems. Consequently, legacy systems are still very important. One of
the complications in integrating legacy systems into a data warehouse is detecting the modi�cations
made to the system. Legacy systems do not have the capability of continuously monitoring the
data and performing actions when certain modi�cations are made (unlike say Sybase triggers). The
legacy system data are usually exported by taking snapshots of the data periodically to be used
as information sources of the data warehouse. The problem of detecting the modi�cations made
to the legacy system data is reduced to �nding the di�erence between two snapshot �les. We call
this the snapshot di�erential problem. The snapshot di�erential problem also arises when there
are relational or object-oriented databases that have restricted access. For instance, GenBank
is a genome database that may be queried using only one type of form submitted through the

1

SNAPSHOT DIFF
 OUTPUT FILE

UNIX diff
 OUTPUT FILE

K1 B1

K2 B2

K3 B3

K1 B1
K2 B2

K3 B3
delete

line 1
< K1 B1
line 3
> K3 B3
line 2
> K1 B1

 file F file G

Figure 1: Comparison of snapshot di�erential output and UNIX di� output

Internet. For it to become an information source of a data warehouse, either periodic snapshots of
the database must be taken (which are available on-line) or daily updates need to be incorporated.

The snapshot di�erential problem, is not unlike the problem of �nding the di�erence between
two text �les (which is obtained using common utility programs such as the UNIX di�). The �gure
above illustrates some of the similarities and di�erences between the two problems. When the
UNIX di� is run on �les F and G, the output �le indicates which lines have to be deleted (those
pre�xed by <) and inserted (those pre�xed by >) into �le F in order to make it identical to �le G.
If �les F and G are considered to be snapshots, the snapshot di�erential of �les F and G is just
the row < K3; B3 >. The reason for this discrepancy is that the UNIX di� program is sensitive
to the ordering of the lines in the �le while the snapshot di�erential is not. Thus, the snapshot

di�erential problem cannot be solved by a simple application of text �le comparison programs.

The snapshot di�erential problem is also similar to the problem of performing joins between
two relations. When a join is performed between two relations, the tuples of the two relations are
matched. If the matching tuples satisfy the join condition, then the tuples are combined to form
a tuple of the output relation. However, the snapshot di�erential problem is not only concerned
about the matching rows but it is also concerned about the unmatched rows. For example, in
Figure 1, the row < K3; B3 > in �le F does not match with any rows in �le G but it is a part
of the snapshot di�erential output. This implies that the snapshot di�erential problem cannot be
solved by simple application of the join algorithms either.

Even though the snapshot di�erential problem cannot be solved by simply applying the methods
used in text �le comparison and joining relations, the problem is similar enough to these two
problems so that it may be possible to derive snapshot di�erential algorithms from these methods.
Moreover, these derived algorithms may lend themselves to optimizations that were not applicable
to the two problems mentioned. For example, since the two snapshots pertain to the same data
source, the snapshot di�erential problem can be likened to joining a relation with itself which
may have useful implications for snapshot di�erential algorithms. On the other hand, conventional

2

join algorithms were designed to join two di�erent relations (with at least one pair of compatible
�elds). In this paper, we derive snapshot di�erential algorithms that are based on the methods
for comparing �les and joining relations. These derived algorithms are then further optimized by
taking advantage of the speci�c properties of the snapshots.

In the next section, we present the problem formulation, introduce some terminologies, and
elaborate on the di�erences (and similarities) of the three problems mentioned. We present and
categorize algorithms that can solve the snapshot di�erential problem in section 3. We then identify
possible optimizations of the algorithms discussed based on assumptions that can be made on the
two snapshot �les in section 4. In section 5, we identify possible performance metrics and compare
the various algorithms suggested based on these metrics. We investigate the applicability of the
new algorithms to the related problem of performing outer joins in section 6. Lastly, we present
some conclusions and future directions in section 7.

2 Problem Formulation

2.1 Some De�nitions

We assume the snapshots to be �les that have the form fR1; R2; :::Rng where Ri denotes the rows
and each row Ri is of the form < K;B >, where K is the key and B is the rest of the row
representing one or more �elds. Without loss of generality, we refer to B as a single �eld in the rest
of the paper. The problem of �nding the di�erence between two snapshots is given two snapshots,
F1 and F2 (the later snapshot), produce a �le FOUT that also has the form fR1; R2; :::Rng and each
row Ri has one of the following three forms.

1. < Update;Ki; Bj >

2. < Delete;Ki >

3. < Insert;Ki; Bi >

The di�erences of the two snapshots are captured succinctly with these three forms of rows. The
�rst form is produced when two rows, Ri of �le F1 and Rj of �le F2, have matching keys (Ki and
Kj) but have di�erent B �elds. The row Ri of the earlier snapshot has been modi�ed to row Rj.
Note that the two matching rows may be in di�erent positions of their respective �les. The second
form is produced when there exists a row < Ki; Bi > in �le F1 (the earlier snapshot) but there
are no rows with a matching key in �le F2. In other words, this row has been deleted from the
earlier snapshot. Lastly, the third form is produced when there exists a row < Ki; Bi > in �le F2
but there are no rows with matching key in �le F1, which implies that the row has been inserted.
In later sections, we will refer to the �rst form as updates, the second as deletes (or deletions)
and the third as inserts (or insertions). The �rst �eld is only necessary in distinguishing between
the updates and the inserts. It is included for clarity in the case of deletes. These three forms
(without the �rst �eld in case of deletes) represent the minimal information needed to update the

3

data warehouse. That is when a row is deleted from the earlier snapshot, we need to convey to
the data warehouse only the key of the row that has been deleted and nothing more. On the other
hand, if a row is inserted into the new snapshot, we need to convey the whole row to be included in
the data warehouse. In the case of an updated row, we need to convey new value of the modi�ed
�elds of the matching rows and the key of either two rows (since the two keys are identical for a
match).

The exact procedure for sending these modi�cations to the data warehouse is implementation
dependent. One way of sending the information is to produce the �le FOUT in its entirety. After
it is produced, a message is sent to the data warehouse (using TCP/IP say) for each row in FOUT .
Based on the form of the row, either an update, insert or delete message may be sent. Another
reasonable way of sending the modi�cations is to send the whole �le FOUT as one message. However,
the size of the �le may be too large for the network to accommodate and smaller chunks of the �le
may be sent instead. We assume, for the rest of the paper, that one message is sent for each row
in FOUT and that the message may be one of the three types mentioned.

The snapshot di�erential problem, as de�ned above, requires that the minimum number of
di�erences are found. That is, it does not allow an output of say < Delete;Ki >, followed by
< Insert;Ki; Bi >. If an algorithm similar to the text comparison algorithms is used, then it is
possible that these kinds of output are produced. However, the output can be �ltered to produce
an output that conforms to the speci�cation of the snapshot di�erential problem. Thus, when we
discuss some of the algorithms in the next section, we temporarily relax the constraint that the
minimum number of di�erences are found and investigate ways to remedy the situation.

2.2 Similarities with Joins and Outer Joins

The snapshot di�erential problem is similar to the problem of performing a join between two rela-
tions. An example of a join operation is shown below in SQL.

select F1:J , F2:J
from F1, F2
where F1:J = F2:J and F1:C 6= F2:C

The join operation matches tuples from two di�erent relations that satisfy a join condition. In
the example above, the join condition is that the C �elds must match. If a pair of tuples match,
new tuples of possibly di�erent format are produced (based on the matching tuples). The snapshot
di�erential problem involves matching rows from the two snapshots with the same K �eld (as de-
�ned in section 2.1). In fact, �nding the di�erences between the two snapshots involves performing
a conceptually identical operation to the SQL operation above. More speci�cally, the rows from the
two snapshots with matching K �elds but with di�erent B �elds are used to produce the updates.
In order to �nd the deletions and insertions, the rows of one �le that do not match with any rows
from the other �le have to be reported. These rows that do not have matching rows have been
called \dangling" rows.

4

The outer join was de�ned to handle these \dangling" tuples as well. The outer join performs
a corresponding innerjoin and concatenates the keys of the \dangling" tuples of both relations to
the result appended with nulls. In contrast, the snapshot di�erential problem appends the keys of
\dangling" rows in the case of deletes and inserts, and it also appends the modi�ed �elds for inserts.
Apart from this di�erence, the snapshot di�erential problem can be considered to be an outer join.
It then follows that algorithms for the outer join can be used in solving the snapshot di�erential

problem. Clearly, high performance join algorithms can be adapted to outerjoins. Unfortunately,
we have not encountered any discussion of outerjoin algorithms in literature.

On the other hand, there is a plethora of conventional join algorithms in literature. In solving the
snapshot di�erential problem, only the ad hoc join algorithms can be exploited since the \snapshot
di�erential" process can only start at the moment the second snapshot arrives. In other words, the
absence of the second snapshot makes it impossible to build pre-computed access structures across
the two �les (such as join indices). We now proceed to apply the general structure of ad hoc join
algorithms to the snapshot di�erential problem.

All the ad hoc join algorithms in literature can be decomposed into three stages:

1. Partitioning stage

2. Matching stage

3. Merging stage

The �rst stage partitions the data so that less work will be done in subsequent stages. In the case
of a simple nested-loop join, no partitioning is done. The matching stage is concerned with �nding
the tuples that match based on a certain criteria (the join condition). Upon �nding the tuples that
match, the tuples are merged into a certain format in the last stage.

The snapshot di�erential problem can also be broken down into these three stages. The par-
titioning stage can be done to simplify the work to be done in subsequent stages. In fact, the
partitioning techniques that have been used in join algorithms (e.g. sorting, hashing) are also ap-
plicable to the new problem. We will elaborate on this in the next section. The snapshot di�erential
problem has a more di�cult matching stage because not only does the problem require producing
rows that match, but it also requires producing rows from each �le that do not match with any
rows from the other �le. This may seem trivial at �rst, but some of the join algorithms are not able
to detect these \dangling" rows. The matching rows are merged in the merging phase to produce a
row of the form < Update;Ki; Bj >. The \dangling" rows in �le F1 �le are appended to produce a
row of the form < Insert;Ki; Bi >. Lastly, the \dangling" rows in F2 �le are produced as output
(< Delete;Ki > row form). In the next section, we modify speci�c ad hoc join algorithms to solve
the snapshot di�erential problem.

2.3 Similarities with Text Comparison

There are a number of text comparison programs available on di�erent platforms. For example, in
most UNIX platforms, the di�, bdi�, and comm programs compare text �les. In DOS, a similar

5

program named comp can be used. For conciseness, we will use the UNIX di� as a representative
of this class of programs.

The UNIX di� program compares two arbitrary �les. Although di� will be able to detect the
di�erences between the two snapshot �les, it does not solve the snapshot di�erential problem. As
illustrated in Figure 1, the UNIX di� produces three di�erences between the two �les. A solution to
the snapshot di�erential problem only has one di�erence between the two �les. There are a number
of ways that the UNIX di� can be modi�ed to satisfy this requirement and we elaborate on this in
the next section. It is interesting to note that if messages are sent to update the data warehouse (as
described in section 2.1) based on the UNIX di� output, the �nal state of the warehouse will still be
correct. However, unnecessary messages might be costly especially if the network link connecting
the information source and the data warehouse is slow; and there may be a lot of unnecessary
messages if the later snapshot does not maintain any semblance of the order of the rows of the
earlier snapshot.

Another problem that arises when using the UNIX di� to compare two database snapshots
is that the di� program uses lines as the unit of comparison when the unit of comparison of the
snapshot di�erential problem is a row. A row in a snapshot corresponds to a line if and only if
the database dump routine uses the carriage return as the row delimiter. However, the unit of
comparison of the longest common subsequence (LCS) algorithm, upon which the UNIX di� is
based, is arbitrary. Thus, we will assume that the problem just mentioned is not intrinsic and
proceed to analyze the possibility of using di� in the next section.

3 Solutions

We present several solutions to the snapshot di�erential problem in this section. Although the algo-
rithms are presented in turn, it will be evident that the algorithms can be grouped into categories
based on certain characteristics. Thus, the algorithms are categorized at the end of this section.

The discussions of the di�erent algorithms refer back to the de�nitions stated in section 2. In
addition, we denote the size of �le F as B(F) blocks or R(F) rows. We also assume that the key
K is unique for each �le. We will relax this constraint in section 4.

3.1 Nested-Loop Join Algorithm

The nested-loop join algorithm is as follows: for each item of �le F1 (the outer �le), scan the
entire �le F2 (the inner �le) and �nd matches. A number of improvements can be made to this
naive nested-loop join. First of all, if the keys are unique, the scan of �le F2 can be terminated
prematurely once a match is found. Moreover, the entire �le F2 can be scanned once for each block
of F1. Thus, the nested-loop join requires on the average B(F1) + B(F1) � B(F2) IOs to �nd the
matching rows of the two �les. The matching rows satisfying the join condition are produced as
output.

6

In order to solve the snapshot di�erential problem, an algorithm needs to detect the updated
rows of F1, deleted rows of F1 and the inserted rows of F2. The nested-loop join algorithm, as
described above, can only detect the updated rows of F1. In order to detect the other two kinds
of rows, additional structures need to be incorporated in the algorithm. An array AOUTER which
records the rows of outer �le F1 that have not been matched may be de�ned. The size of the array
AOUTER is the number of rows that �ts in one block (R(F1)=B(F1)). Each time a block of �le F1
is read, AOUTER is initialized to indicate none of the rows has been matched. After scanning the
entire �le F2, AOUTER is checked for unmatched rows which represent rows deleted from F1. With
this array, the rows inserted into �le F2 can also be detected. However, this requires performing
another pass of the nested-join algorithm with F2 as the outer �le and F1 as the inner �le (the
matching rows are not produced as output). To avoid performing a second pass, a second array
AINNER that keeps track of the unmatched rows of F2 (the inner �le) has to be de�ned. Unlike
AOUTER, the size of the array AINNER is R(F2). Assuming the arrays AINNER and AOUTER �ts in
memory, the modi�ed nested-loop join algorithms still needs on the average B(F1)+B(F1) �B(F2)
IOs.

3.2 Merge-Join Algorithm

The merge join algorithm requires that the two input �les are sorted on the join attribute (the key
K in our problem de�nition). The two sorted �les are scanned and any matching rows that satisfy
the join condition are produced as output. The merge join algorithm as described incurs on the
average 4 �B(F1) + 4 �B(F2) IOs assuming the sort phase can be done in two passes.

Unlike the nested-loop join algorithm, the merge join algorithm solves the snapshot di�eren-

tial problem without any additional data structures. However, the output-logic of the merge join
algorithm needs to be changed. More speci�cally, if during the execution of the merge phase of
the algorithm, the current rows being scanned are: < Ki; Bi > for F1 and < Kj ; Bj > for F2, the
following output is produced.

1. < Delete;Ki > if Ki < Kj

2. < Insert;Kj; Bj > if Kj < Ki

3. < Update;Ki; Bj > if Kj = Ki and Bi 6= Bj

In the original merge join algorithm, only the third kind of output is produced. With this slight
modi�cation of the output logic, merge join also produces the deletions and the insertions.

In the context of data warehousing, the snapshots arrive periodically. After comparing the
snapshot �les F1 and F2, the latter snapshot needs to be stored. When the third snapshot (F3)
arrives, it will be compared with F2. In other words, there is a stream of snapshots of the database
and the comparison of pairs of snapshots happens continually. The merge join algorithm can
further cut down on its cost since it can save the sorted �le after each comparison. For example,
after comparing F1 and F2, the sorted F2 �le is saved. When the new snapshot F3 arrives, only F3
needs to be sorted. Thus, the modi�ed merge join algorithm only needs B(F1) + 4 �B(F2) IOs.

7

3.3 Hash Join Algorithms

There are numerous hash-based join algorithms with the grace hash join being one of the most
popular. The grace hash join has two phases. In the �rst phase, each �le is read and hashed into
buckets which are written back to disk. In the second phase, the corresponding buckets of the two
�les are read into memory and merged together. Assuming there is enough memory, the number
of buckets can be chosen such that two buckets can �t in memory in the second phase. The grace
hash join algorithm incurs 2 �B(F1) + 2 �B(F2) IOs in the �rst phase and another B(F1) +B(F2)
IOs in the second phase.

Unlike the merge join algorithm, the hash join algorithm as described does not detect the
deleted rows from F1 and the inserted rows in F2. For each bucket in memory in the second phase,
an array needs to be de�ned to keep track of the rows that have not been matched (denoted as
ABUCKET1 and ABUCKET2). After matching the two buckets, the two arrays can identify the rows
that have been deleted from F1 and the rows that have been inserted into F2. After these rows are
produced as output, the arrays ABUCKET1 and ABUCKET2 are initialized (to indicate that no rows
have been matched) for the next pair of buckets. The total size of the two arrays is approximately
R(F1) � B(M)=B(F1) where B(M) is the size of the memory in blocks (the AINNER array in
nested-loop join can be as large as R(F1)). Therefore, the sum of the sizes of the two arrays is
signi�cantly less than the array AINNER used for the nested-loop join algorithm.

The buckets for �le F2 can be saved for the next comparison as well. When the new snapshot
F3 arrives, only F3 needs to be hashed into buckets. Thus, the cost for the hash join is lowered to
B(F1) + 3 �B(F2) IOs.

Another popular hash-based join algorithm is the hybrid hash join. As in the grace hash join
algorithm, each �le is read, hashed into buckets and written back to disk. However, during the
�rst phase, a portion of the memory is reserved for k in-memory hash buckets for the �rst �le.
These k buckets are never written out. When the second �le is hashed, the rows in the second �le
that match with one of the k in-memory buckets can be merged immediately (without writing it
to disk). The equation below determines the maximum value of k given B(M) blocks of memory
and B(F) blocks corresponding to the number of blocks of the larger �le.

N = d
p
B(F)e

k = (B(M)� (N + 1))=((dB(F)e=N)� 1)

The number of buckets, denoted as N , needed to ensure that the �rst phase of the algorithm is
performed in two passes is �rst calculated. The numerator of the equation for k represents the
number of blocks of memory left after allocating one block per bucket and one input bu�er. The
denominator represents the memory requirement for each bucket in memory. The IO cost of the
algorithm is given below.

IOcost = (B(F1)� k �B(F1)=N) +B(F2) + 2 � (B(F2)� k �B(F2)=N)

8

The �rst term is the cost incurred in reading the buckets F1 assuming the k buckets are kept
in-memory. The second term is the cost incurred in reading �le F2 to bucketize it. The last term
is the cost for writing out the buckets and reading it back in for the merging phase.

Furthermore, assuming there are no duplicate keys, the space in the k in-memory buckets can
be reused. For example, given an in-memory bucket that contains the rows with keys that hash to
a value l, the bucket will \empty" as rows in the second �le with matching keys are read in (the
row in the bucket can be deleted based on the assumption of no duplicate keys). The space in the
bucket can then be used to service rows of �le F2 with keys that hash to a value m. Assuming we
have a hash function that satisi�es the condition of uniformity, the rate that rows with a key hash
value of l are read is about the same as rate for rows with a key hash value of m. Thus, in the best
case, an additional k buckets do not have to be written out. The cost of the hybrid hash join is
shown below (note the improved third term).

IOcost = (B(F1)� k �B(F1)=N) + B(F2) + 2 � (B(F2)� 2 � k �B(F2)=N)

3.4 Using SQL

The snapshot di�erential problem can also be solved by writing a relatively simple SQL query. The
SQL query is as follows.

select R1:K, R1:B, R2:B
from R1, R2
where R1:K = R2:K and R1:B 6= R2:B

[
select R1:K
from R1
where not exists (select * from R2 where R2:K = R1:K)

[
select R2:K, R2:B
from R2
where not exists (select * from R1 where R2:K = R1:K)

However, this method is ine�cient for several reasons. First of all, the two snapshot �les need to be
loaded into the database (into relations R1 and R2) which can be very slow for large �les. Secondly,
the join operation does not take advantage of the fact that the relation R2 will be used again in
joining with R3 (the relation obtained from the next snapshot). Lastly, this method performs two
additional select operations which in the worst case can cost B(F1) �B(F2) IOs.

3.5 Using the UNIX di�

The UNIX di� program �nds the longest common subsequence (LCS) of lines of the two �les. It
then takes out the lines that comprise the LCS from both �les since these are lines that are identical

9

Output of "diff F1 F2"
> K1 B1
< K1 B1
< K2 B2
> K3 B3
< K4 B4
> K4 B10

transformer

filter and

F_out

Insert K3 B3

Delete K2

Update K4 B10

Figure 2: Transforming the UNIX di� Output

and occur in the same relative order. The remaining lines are used to produce the list of di�erences
between the two �les. More speci�cally, it produces an output �le specifying how the �rst �le can
be converted into the second �le. For instance, in Figure 1, the output �le indicates that in order
to transform �le F1 into F2, the �rst line must be deleted and the same line must be inserted
into the second line and so on. The output �le can then be used to produce the update messages
to the data warehouse by sending an insert message for each line in the output �le pre�xed by
\ > " and by sending an delete message for lines pre�xed by \ < ". If the di� program is used to
solve the snapshot di�erential problem, the �nal output has to be modi�ed because of two reasons.
First of all, the modi�cations listed in the di� output are not minimal. For instance, in Figure 2,
the di� program suggests deleting < K4; B4 > and inserting < K4; B10 > (the line numbers are
omitted). This requires two messages to be sent to the data warehouse. We call these messages
\delete-insert" pairs. However, a message \Update, K4, B10" can convey the same e�ect in the
warehouse using only one message. Moreover, identical rows which appear in di�erent positions in
F1 and F2 also produce two update messages (\Delete, K1, B1" and \Insert, K1, B1") when no
messages are needed. We call these messages useless \delete-insert" pairs.

If the bottleneck is the network link between the information source and the data warehouse, it
is useful to streamline the output of the di� program by transforming \delete-insert" pairs into a
single update message if possible and �ltering out useless \delete-insert" pairs. On the other hand,
if the network link is not a bottleneck, then the output of di� can be used to produce the necessary
delete and insert messages to keep the data warehouse up to date.

If the UNIX di� detects a lot of di�erences between the two �les, the output �le of the di�

program might be comparable in size to the original input �les. Moreover, if the ordering of the two
�les are entirely di�erent, a large fraction of these di�erences may result in useless \delete-insert"

pairs. This implies that the postprocessing step as discussed above might be costly since it requires
matching identical rows (which may cost B(F1) � B(F2) IOs). If this is the case, it is bene�cial
to use hashing or sorting to process the output �le in an e�cient manner. If sorting is used, the
useless \delete-insert" pairs can then be eliminated by scanning through the sorted output �le.
Assuming we use the multi-way merge sort algorithm to sort the �le and that the algorithm can be
done in two passes (there is enough memory), the cost of �ltering the di� output is 3 � B(FOUT)
(FOUT is the UNIX di� output in this case).

Another downside of using the UNIX di� program is that it cannot handle very large �les. In

10

Algorithm Minimal-Set Incremental Probabilistic
Producing

Nested-Loop Join YES YES NO

Merge Join YES YES NO

Grace Hash Join YES YES NO

Hybrid Hash Join YES YES NO

Using SQL YES YES YES

UNIX di� based NO NO NO

PROBMerge Join YES YES YES

PROBHash Join YES YES YES

Window NO YES NO

Figure 3: Table 1 Properties of Snapshot Di�erential Algorithms.

order to compare very large �les, the UNIX bdi� program is used. The UNIX bdi� splits the �les
into sections and forks a di� process to compare the sections. As a result of this segmenting, the
bdi� produces more �le di�erences than when di� is run. Moreover, there is the overhead of forking
of a process and interprocess communication (which is done through pipes).

The UNIX di� program works best in terms of disk IOs when there are no duplicate rows. Since
there are usually no duplicate rows in databases, the LCS algorithm only requires 2 � (B(F1) +
B(F2))log(B(F1) +B(F2)) IOs. When the output �le of the di� is large, then the cost for �ltering
must also be added bringing the total cost to 2� (B(F1)+B(F2))log(B(F1)+B(F2))+3�B(FOUT)
IOs.

3.6 Categorizing the Algorithms

The algorithms presented exhibit characteristics that can be used as a basis for categorizing them.
One property that a snapshot di�erential algorithm can exhibit is that it produces the minimal
set of di�erences between the two snapshots. The join based algorithms fall under the minimal-set

producing algorithms. The UNIX di� based algorithm produces a correct but a non-minimal set
of di�erences between the two snapshots.

Another property that an algorithm can have is that it always produces the correct answer. All
the algorithms discussed in this section have this property. In the next section, we will present some
algorithms that do not always produce the correct answer. We call these algorithms probabilistic
snapshot di�erential algorithms.

It is interesting to note that the data warehouse can simply be updated by deleting all the data
from the old snapshot and inserting the data from the new snapshot. All the algorithms except the
UNIX di� avoid this method. The UNIX di� essentially deletes the old snapshot and inserts the
new one in the special case when the two snapshots have opposite ordering of rows and the LCS

11

< y
< z
> y
> z

OUTPUT

UNIX diffz

F2F1

x
y
z x

y

Figure 4: Nonincremental scenario for UNIX di�

has a length of one. This is shown in Figure 4. Thus, we call all the algorithms presented, except
the UNIX di�, incremental snapshot di�erential algorithms.

The table above categorizes all the algorithms presented in this paper. The last three algorithms
in the table are optimized algorithms presented presented in the next section.

4 Optimizations and Extensions

In this section, we describe optimizations of the various algorithms presented. The primary op-
timization that is used in the next subsections is compression. Compression can be performed in
varying degrees. For instance, compression may be performed on the rows of a �le by compressing
the whole row (possibly excluding the key �eld) into n bits. A block or a group of blocks can also be
compressed into n bits. There are also numerous ways to perform compression such as computing
the check sum of the data, hashing the data to obtain an integer or simply omitting �elds in a
row that are not important in the comparison process. We ignore the details of the compression
function and simply refer to it as compress(x) in the next subsections.

There are a number of bene�ts from processing compressed data. First of all, the compressed
intermediate �les are smaller. Thus, there will be less IO operations to read in the �le to be
processed. Moreover, if compression is done to a large degree, the entire compressed �le may �t in
memory. Even if the entire compressed �le cannot �t in memory, a join algorithm may still bene�t.
For example, if the hybrid hash join is used (as described in section 3), compression may allow the
algorithm to keep more in-memory hash buckets.

However, compression is not without disadvantages. The compression function, compress(x),
may map two di�erent values of x into the same compressed value which will have repurcusions in
the optimized algorithms. This is discussed in more detail in the next sections. On the other hand,
a loss-less compression function does not have this problem. An example of a loss-less compression
function is using Hu�man encoding when compressing integers. This guarantees that di�erent
integer values are mapped to di�erent compressed values. However, loss-less compression often
results in lower compression factors (the ratio of the original size to the compressed size of the
data).

12

In the next subsection we present an optimized algorithm for the general scenario of the snapshot
di�erential. In subsequent subsections, we describe optimizations of the algorithms to e�ciently
handle various realistic scenarios. It was also assumed in the previous section that the keys of the
�les are unique. We relax this constraint in the last part of this section.

4.1 Using Compression to Optimize the Join Algorithms

We assume that the compressed �le of F1 (denoted as f1) was produced in the previous snapshot
comparison (as in Sections 3.1 to 3.3). The original and compressed rows are shown in Figure 5(b)
and Figure 5(c) respectively. That is, the B �eld is compressed to b and the compressed value is
kept in the row of f1. The compression factor, u, is the ratio of the size of F1 to f1 (B(F1)=B(f1)).
We can now show the optimized join algorithms.

In the case of merge join, the algorithm starts out the same way. That is, we assume that the
compressed �le for the �rst snapshot is sorted (which is �le f1 instead of F1). When �le F2 arrives,
it is sorted incurring 2 �B(F2) IOs. In the merging phase, the �le f1 (incurring B(F1)=u IOs) and
the sorted �le F2 (B(F2) IOs) are both read into memory. If the current rows being scanned are:
< Ki; bi > for f1 and < Kj ; Bj > for F2, the �eld Bj is �rst compressed to bj and the following
output is produced.

1. < Delete;Ki > if Ki < Kj

2. < Insert;Kj; Bj > if Kj < Ki

3. < Update;Ki; Bj > if Kj = Ki and bi 6= bj

In addition, the row < Kj ; bj > is constructed and is eventually written to disk to �le f2 (the
compressed sorted �le of F2). Thus, the total cost incurred is 3 � B(F2) + B(F1)=u + B(F2)=u
IOs. Assuming a compression factor of 10 and that the �les are comparable in size, the IO cost
is 3:2 � B(F) (where B(F) is the size of the �les). This translates to 20 % fewer IO operations.
Note however that the improvement in terms of IO operations cannot go beyond 25 % (when u is
extremely large).

The grace hash join is modi�ed in a similar fashion when compression is used. That is, we
assume that the �rst snapshot has its compressed buckets on disk. When �le F2 arrives, it is
bucketized which incurs 2 � B(F2) IOs. In the merging phase each pair of buckets is examined
in turn and the appropriate output is produced (as in Section 3.3). In addition, the compressed
bucketized �le of �le F2 is produced when examining the buckets of �le F2 during the merging
phase. The total cost incurred is 3 �B(F2) +B(F1)=u+B(F2)=u IOs. Again, this translates to 20
% fewer IO operations using the assumptions made for the merge join.

For the nested loop join, it is easy to see that compression lowers the IO cost to B(F1)=u +
B(F2) � (B(F1)=u) + B(F2)=u (the last term is the cost for producing the compressed �le for �le
F2). Assuming the �les are large and comparable in size, a compression factor of 10 can save as

13

B1 compress(x) b1
K3

K1 B1

B3

 Original Bucket

p3

p1

p fieldb field

Compression Function

Compressed Bucket with a pointer

b1

b3

K1

K3

Compressed Bucket

b1

b3

K1

K3

1 (a) 1 (b)

1(c) 1(d)

Figure 5: Hash Function for Compression And the Compressed Structure

many as 90 % of the IO operations. In the extreme case that the compressed �le f1 �ts in memory,
the IO cost of the algorithm is B(F1)=u+ B(F2) +B(F2)=u as well.

In the case of hybrid hash join, the algorithm still bene�ts even if the entire compressed �le f1
does not �t in memory since compression allows more buckets to be kept in memory. The equations
below show why this is the case.

N = d
p
B(F)e

K = (B(M)� (N + 1))=((dB(F)=ue=N)� 1)

k = (B(M)� (N + 1))=((dB(F)e=N)� 1)

As in Section 3.3, N denotes the number of buckets for the uncompressed �le F2. The second
equation computes the number of buckets that can be kept in memory (denoted as K) for the the
hybrid hash algorithm with compression. The third is for the unoptimized algorithm as described
in Section 3.3. It is evident from above that K > k. As a result, there are more in-memory buckets
which leads to a more economical IO cost as shown below. Compression also improves the IO cost
for reading the �le F1 (�rst term in the equation below) but an additional B(F2)=u operations
needs to be made to produce the compressed �le F2 buckets.

IOcost = (B(F1)�K �B(F1) �N)=u+B(F2) + 2 � (B(F2)�K �B(F2)=N) + B(F2)=u

Compressing the B �eld does not come without a price. The compression function compress(x)
can compute the same value given two di�erent inputs. If the B �eld has p bits and the compressed
value has p bits, then 2n=2p di�erent B values produce the same compressed B values. Thus the

14

probability that a modi�cation to the B �eld will not be detected is ((2p=2n)� 1)=2p. If p is much
larger than n, this simpli�es to 2�n. This analysis does not only apply when compressing a single
�eld. It applies in the general case when a value with p bits is being compressed to n bits. The
optimized algorithms presented above are examples of a probabilistic algorithms since it may not
detect all the modi�cations (the PROBHash join and PROBMerge join algorithms in Table 1).

4.2 Growing Files

In some scenarios, the database snapshots monotonically increase in terms of size. This happens
when the data is a history �le or a log �le. In this scenario, there are no deleted or updated rows in
F1 but there are rows inserted into F2. We call the snapshot �les growing �les for obvious reasons.

The merge join algorithm and the hash join algorithms can take advantage of this scenario.
There is no longer any need to compare the B �elds of matching rows since there are no updated
rows. In the case of the merge join algorithm, instead of producing a sorted �le with all the �elds
of the original �le, it can simply produce a compressed sorted �le (denoted as f) with just the key
�eld K and a �eld containing a pointer to the corresponding record in the original �le. During
the execution of the merge phase of the algorithm, if the current rows scanned are: < Ki; pi >

for f1 and < Kj ; pj > for f2, and Kj < Ki, the pointer pj is used to access F2 in order to obtain
Bj and produce the output < Insert;Kj ; Bj >. If the key and the pointer occupy 1=u of the
total space occupied by a row, the size of the compressed sorted �le, f1, is B(F1)=u blocks. The
optimized algorithm incurs B(F2)+B(F2)=u IOs to read the second snapshot for sorting and write
the sorted �le f2 to disk. The two compressed �les are then read into memory for comparison
which incurs B(F1)=u+B(F2)=u IOs. Assuming I insertions are detected, and that each insertion
requires a random IO, an additional I IOs are needed. The total cost of the optimized algorithm is
B(F1)=u+B(F2)+2 �B(F2)=u+ I IOs. The savings in IO operations is dependent on the number
of insertions I and on the compression factor u. If B(F2) is much larger than I (and assuming
u = 10 and B(F2) = B(F1)), then the optimized algorithm performs 67:5 % less IO operations. A
similar savings can be made for the hash join algorithms as well.

4.3 Stagnant File

In some scenarios, the database snapshot may reach a point where only few changes are made to the
data (most transactions are read only). When this happens, we call the snapshot �les stagnant �les
since there are only few changes between the two snapshots. Unlike the growing �les scenario, an
optimized algorithm for this case needs more information than just the keys during the matching
phase. However, since there are only a few updates, it may be wasteful to keep the whole row
especially if the B �eld is large.

In the case of the grace hash join algorithm, space can be conserved in the \bucketized" �le by
compressing the B �eld. In addition, a pointer (p �eld) to the corresponding record in the original
�le is needed (Figure 5(d)). During the matching phase, if an updated row or an inserted row is
detected, the row needs to be brought into memory using the pointer �eld. Again, we denote the

15

ratio of the original size of the row and the compressed size of the row as u.

This algorithm incurs B(F2) + B(F2)=u IOs to read the second snapshot and to write the
compressed buckets to disk. The \bucketized" �les have to be read into memory for comparison
(B(F1)=u+B(F2)=u IOs). Assuming we detect I insertions and U updates, only B(F1)=u+B(F2)+
2 � B(F2)=u+ I + U IOs are needed to compare the two snapshots F1 and F2. This can result in
as much as 75 % savings (as in Section 4.2).

Note that deletions do not require any extra IO since only the keys of the deleted rows need to
be reported which are already in the bucket structure. A similar savings in IO can be achieved in
the merge join and the hybrid hash algorithms. For all these algorithms, the savings gained from
compressing the rows diminishes as I and U increase (the �le becomes less stagnant). However,
compressing the rows may still be feasible even if the �le is not stagnant, as long as the compression
factor u is large. The disadvantage in using this scheme is that the algorithm is probabilistic. It
does not detect all the updates since it used the compressed values of the B �eld for comparison.

The optimized algorithm just described assumes that there are still insertions and deletions
made to the database. The merge join and hash join can be optimized even further if we assume
that there are few updates and there are no insertions or deletions. In this scenario, there is no
need to keep the keys in the compressed �le since the keys are only used to detect insertions and
deletions between snapshots. The compressed row will just have the b �eld and the p �eld.

We can also take advantage of the fact that accessing a random row requires accessing one
block from the disk. Instead of having each compressed row < K; b; p > represent one original row
< K;B >, a compressed row can represent a whole block. The function compress(x) in Figure 5(a)
is now modi�ed to add all the B �elds of the rows in one block. Again there is the possibility
that two di�erent blocks may \produce" the same value. However, since we are now considering
a whole block, the range of values of the hash function may be larger which makes collisions less
probable. This idea can be extended by arranging the compressed value to represent, not one
block, but k blocks. The main advantage of letting b represent k blocks is smaller intermediate
�les. We derive an expression for the size of a compressed �le F for this generalized form of �le
compression. The number of rows that result is B(F)=k since one compressed row represents k
blocks. Since the number of blocks per compressed row is given by B(F)=(u�R(F)), the number of
blocks for the compressed �le F is B(F)2=(u � k �R(F)). The disadvantage of making b represent
k > 1 blocks, is that k blocks have to be read in when the b values do not match. Thus, the
total IO cost is B(F1)

2=(u � k � R(F1)) + B(F2) + 2 � B(F2)
2=(u � k � R(F2)) + U � k (note that

B(F)=u > B(F)2=u �R(F) since R(F) > B(F)). However, even with this scheme, the maximum
savings in IO is still 75 %.

4.4 Shrinking File

The shrinking �le scenario is similar to the growing �le scenario. Instead of having only insertions
between the two snapshots F1 and F2, there are only deletions in this case. A similar optimized
algorithm can be adopted as in the growing �le scenario. The main di�erence is that only the keys
are kept in the structure used in the matching phase. The pointer is no longer needed because in

16

the event that a delete is detected, only the keys of the deleted row need to be reported to the data
warehouse. This information is contained in the intermediate structure already.

With this optimization B(F1)=u + B(F2) + 2 � B(F2)=u IOs are needed to compare the two
snapshots F1 and F2 for both the merge and hash join algorithms. The analysis is similar to the
previous two scenarios.

4.5 Similar Dumps

The location of the rows in the snapshots is not signi�cant in the snapshot di�erential problem.
However, more e�cient algorithms may be possible if the snapshots maintain \enough" similarity
in terms of the location of the rows. To make the concept of similarity between two �les more
precise, we de�ne the distance of two matching rows (rows wth matching key �elds). If a row
is in the pth block of �le F1 and the matching row is in the qth block of �le F2, the matching
rows have a distance of jp � qj blocks. For rows that do not have a matching row in the other
snapshot, the distance is not de�ned. Note that the relative order of rows within �les is irrelevant
in this de�nition. We can now describe the divergence of two �les in terms of a divergence function
(denoted as D(r; d)) which depends on the distance of matching rows. If two �les have 20 % of
the matching rows with a distance of more than 10 blocks, the two �les are deemed to have a
D(0:20; 10) divergence. Two �les have high divergence if the parameter r is close to 1 and the
parameter d is high. In a similar dumps scenario, the two �les have low divergence.

We now describe an algorithm which takes advantage of �les with low divergence and then
measure its e�ectiveness using the divergence function D(r; d). The algorithm , which we call the
window algorithm, is as follows.

1. Initialize the variable count to 0.

2. Given M blocks of memory available, read M=2 blocks of �le F1 and M=2 blocks of �le F2.

3. Detect all the matching rows that are in memory and produce the updates when a modi�cation
is detected.

4. The rows that have been matched surrender the space that they occupy. The rest of the rows
(the unmatched ones) are reorganized to eliminate fragmentation, freeing as many blocks of
memory as possible. In addition, these unmatched rows are tagged with count. The count is
incremented by one after all the matching rows have been found.

5. Repeat Step 2 until there are no more blocks to be read. However, the amount of memory
available M is now decreased since the unmatched rows occupy some of the blocks. If there is
not enough memory to read in new blocks, we eliminate enough of the unmatched rows, start-
ing with the rows with the smallest tags. We produce the deletions for the rows eliminated
from the portion of memory for �le F1 and insertions for �le F2.

The number of matching rows in Step 3 depends on the divergence of the �le. If the divergence
of the two �les is D(0:0; d), this means that all the matching rows are within d blocks of each other.

17

Thus, in the case where d is equal to M=2 (half the memory size), all of the memory can be freed
up since after matching the rows, we are guaranteed that the unmatched rows are either inserted
or deleted rows. A divergence of D(0:0;M=2) is reasonable if the memory is large. For example,
if the system has 256 MB of memory with 1 KB blocks, then a divergence of D(0:0;M=2) means
that matching rows need to be 131; 072 blocks of each other. Thus in cases where there is large
memory or/and low divergence, the IO cost can be just B(F1) + B(F2). This translates to 50 %
savings in terms of IO operations without compression (it is not probabilistic). If the divergence

of the two snapshot �les are larger than D(0:0;M=2), the window algorithm may produce useless

delete-insert pairs (Section 3.5) which makes the algorithm non-minimal-set producing.

This algorithm can bene�t from compression as well. Instead of reading in the �le F1, a
compressed �le f1 can be read in instead. If the compression factor is u, then we can allocate
M=(2 � u) blocks to �le F1 and M � (2 � u� 1)=(2 � u) blocks to �le F2. If the compression factor is
10, for instance, the blocks allocated to �le F2 is 0:95 �M . The divergence of the two �les required
to produce a cost of B(f1) + B(F2) + B(f2) IOs is D(0:0; 0:95 �M). Thus, not only does the IO

cost decrease, but also the required divergence.

A separate study was made by [GL95] to analyze the performance of the window algorithm for
�les with higher divergence. In the study, they show that the performance of the window algorithm
is comparable to the hybrid hash join and merge join algorithms even with �les of relatively high
divergence.

A more restrictive scenario than the similar dump is the ordered dump scenario, wherein not
only do the �les have low divergence, but the �les also maintain the same relative ordering of rows.
The window algorithm handles this case since it is more restrictive than the similar dump scenario.
However, it is the UNIX di� that bene�ts from this scenario. Since the relative ordering of rows
is maintained, the algorithm does not produce the useless delete-insert pairs that was discussed
in section 3.5. This means that the algorithm does not require expensive post-processing, which
lowers the IO cost to 2 � (B(F1) + B(F2))log(B(F1) + B(F2)).

4.6 Handling Duplicate Keys

Until now, it has been assumed that the key K is unique. The �gure below (Figure 6) shows how
the hash join algorithm can be extended to handle duplicate keys. A similar matching can be used
for the merge join and hybrid hash join algorithms as well. The �gure also illustrates the matching
that produces the minimal number of messages to the data warehouse. The matching phase can
be decomposed into three stages.

1. Match identical rows. These rows are enclosed in an oval in Figure 6.

2. Match two di�erent rows with the same key value. The row in F1 is an updated row (to
become the matched row in F2). These rows are enclosed in a rectangle in Figure 6.

3. After the �rst two stages, there will either be excess rows in F1 or excess rows in F2. The
excess rows in �le F1 are deleted rows. On the other hand, the excess rows in �le F2 are

18

K1 B1

K1 B1*
K1 B1**

K1 B1

K3 B3**

K3 B3*

K1 B1***

MINIMAL MESSAGES: NON MINIMAL MESSAGES:
K1 B1* was deleted
K1 B1 was updated to K1 B1**
K1 B1 was inserted
K1 B1*** was inserted
K3 B3* was updated to K3 B3**

one bucket of F_1

K1 B1* was updated to K1 B1**
K3 B3* was updated to K3 B3**
K1 B1*** was inserted

one bucket of F_2

Figure 6: Handling Duplicate Keys

inserted rows. In Figure 6, < K1; B1��� > is an inserted row.

The rows matched in the �rst stage do not require any messages to be sent to the data warehouse.
The rows matched in the second stage require an update message to be sent to the data warehouse.
The unmatched rows generate either an insert or delete message. It is easy to generate other sets
of messages that are not minimal. One such set is shown in Figure 6 as well. The cost incurred to
handle duplicate keys is additional CPU time. The number of IO operations is not a�ected since
all the matchings are done between a pair of buckets. The merge join algorithm can be extended
in a similar fashion.

4.7 Putting It All Together

We have enumerated several specialized scenarios and the modi�ed algorithms that can take advan-
tage of these scenarios. A single database may produce snapshots that fall under di�erent scenarios.
As a result, a single algorithm may not be suitable for handling all the snapshots. Optimally, we
want to choose the most appropriate algorithm for each pair of snapshot �les to be compared.
We can approximate this by choosing algorithms based on the number of deletions, insertions and
updates between pairs of snapshots that have been compared. It is also useful to capture the diver-
gence of the two �les. Lastly, we also need to keep track of how large the rows are to estimate the
compression factor u. With these statistics, an appropriate algorithm can be chosen for a pair of
snapshots. The choice will be based on the performance of the algorithm in a given scenario which
is the subject of the next section.

19

5 Performance Evaluation

5.1 Performance Metrics

Since a number of the solutions suggested are based on join algorithms, the join algorithms per-
formance metrics (number of disk accesses or the number of pages transferred) can be employed in
comparing the various algorithms. Haas et. al. recently suggested execution time (based on the
number of seeks, number of pages transferred and the rotational latency) as a more accurate metric
in comparing ad hoc joins. This metric might prove useful in the context of data warehousing be-
cause it is the execution time that limits the frequency of the snapshots of the database. The lesser
the execution time of the algorithm is, the more often snapshots of the database might be performed
and consequently, the more accurate the information in the data warehouse will be. However, in
practice, the snapshots of the database will arrive in a weekly basis. Thus, it is reasonable to adopt
a simpler metric, such as the number of IO operations incurred.

Another performance metric which is applicable in data warehousing is the number of messages

that need to be communicated over the network to update the data warehouse. However, this
performance metric may only be useful for the UNIX di� based algorithm since almost all the
algorithms produce a minimal set of messages.

Another performance metric is the probability of error of the algorithm. Some of the algorithms
will not identify all the modi�cations that have been made on the last snapshot. If this is not
tolerable in the data warehouse application, then we need to rule out these algorithms. If the
application can tolerate such errors, then all the algorithms are feasible and the probability of error
as a performance metric is applicable.

Lastly, the size of the intermediate �les can also be used as a metric. For instance, the hash
join and merge join algorithms use intermediate �les that are about the same size as the input �les.
On the other hand, the nested-loop join does not use any intermediate �les.

5.2 Comparison of Algorithms

We �rst compare the algorithms that can handle any scenario (algorithms in Section 3 and 4.1).
We use the number of IO operations and the size of the intermediate �les as performance metrics.
We do not use the number of messages as a performance metric since only the UNIX di� based
algorithm does not produce the minimal set of messages. Moreover, we assume that the output �le
of the UNIX di� is sorted as a postprocessing step (as discussed in section 3.1) to eliminate these
extra messages. We assume that the size of the input bu�er is the same for all the algorithms (i.e.
which means that the number of IO operations is proportional to the number of pages transferred).

As shown in the table above, the compressed version of the join algorithms achieve the best
performance in terms of IO cost. The compressed version of the hybrid hash join (Section 4.1) is
the most economical in terms of IO cost. The advantage of the hybrid hash join over the grace
hash join and merge join algorithms diminishes as the �les get larger since less in-memory buckets

20

Algorithm IO operations Blocks for
Intermediate Files

UNIX di� 2 � (B(F1) +B(F2))log(B(F1) + B(F2)) + 3 �B(FOUT) B(F1) +B(F2)

NL B(F1) +B(F1) �B(F2) 0

M B(F1) + 4 �B(F2) B(F1) +B(F2)

GH B(F1) + 3 �B(F2) B(F1) +B(F2)

HH (GH)� k �B(F1)=N � 2k �B(F2)=N) (GH)� k �B(F1)=N � k �B(F2)=N

Using SQL B(F1) �B(F2) B(F1) +B(F2)

CP NL B(F1)=u+ B(F1) �B(F2)=u+ B(F2)=u 0

CP M 3 �B(F1) +B(F1)=u+B(F2)=u B(F1)=u+B(F2)=u

CP GH 3 �B(F2) +B(F1)=u+B(F2)=u B(F1)=u+B(F2)=u

CP HH (HH) (HH)

HH - Hybrid Hash Join, GH - Grace Hash Join, M - Merge Join, NL - Nested Loop Join
CP - compressed, (HH) - Hybrid Hash Entry , (GH) - Grace Hash Entry

Figure 7: Table 2 Comparison of General Snapshot Di�erential Algorithms.

can be kept. The nested loop join algorithm has the worst performance in terms of IO. However,
it is the most conservative in terms of space requirement. The compressed version of the merge
join and the hash join algorithms require less space for intermediate �les when compared to the
unoptimized versions. The disadvantage of the algorithms that involve compression is that some
modi�cations may not be detected. However, this may be tolerable to some extent in the data
warehouse.

There were several specialized scenarios introduced in the previous section. We now tabulate
the algorithms that works best for each scenario in terms of a speci�c performance metric. Since
some of the algorithms in section 4 fall under the probabilistic snapshot di�erential algorithms,
we include the probability of error as a performance measure. We also denote I as the number of
insertions, U as the number of updates, and D as the number of deletions. Some of the algorithms
also rely on compressing the original row (as discussed in Section 4). We denote u as the ratio of the
uncompressed row with the compressed row. For conciseness, we assume that the two snapshots
are comparable in size.

The hash join and the merge join algorithms perform the best in terms of IO cost for all
the scenarios, except the similar dump scenario. However, these algorithms requires space for
intermediate �les. In addition, these algorithms may not detect some modi�cations for the stagnant
and similar dumps scenarios. The window algorithm works best in terms of IO for the similar dump

scenario. Moreover, it does not require any intermediate �les. Howeverm, with insu�cient memory,
the window algorithm becomes a non-minimal-set producing algorithm.

21

Scenario IO operations Blocks for Probability of Error
Intermediate Files

Growing Files HH, GH, M (B(F) + 3 �B(F)=u+ I) NL M, HH, GH, NL,di�

Stagnant Files HH, GH, M (B(F) + 3 �B(F)=u +D + U) NL NL, di�

Shrinking File HH, GH, M (B(F) + 3 �B(F)=u) NL M, HH, GH, NL, di�

Similar Dump W (2 �B(F)=u+ B(F)) W, NL NL, di�

HH - Hybrid Hash Join, GH - Grace Hash Join, M - Merge Join, NL - Nested Loop Join , W -
Window

Figure 8: Table 3 Comparison of Snapshot Di�erential Algorithms for Special Scenarios.

6 Applicability to Outerjoins

The snapshot di�erential algorithm can be considered to be an outer join (section 2.2). Thus,
the algorithms that were discussed in section 3 can be modi�ed to calculate the outer join of two
relations. For instance we can use the merge join algorithm in section 3.3 to calculate the outer
join of two relations R1 and R2, both with schema (K;B) and with K as the key. More speci�cally,
if during the execution of the merge phase of the algorithm, the current tuples being scanned are:
< Ki; Bi > for relation R1 and < Kj ; Bj > for relation R2, the following output is produced for an
outer join.

1. < Ki; NULL > if Ki < Kj

2. < Kj; NULL > if Kj < Ki

3. Join Output Format if join condition is satis�ed. The Join Output Format is speci�ed in the
select clause in the case of SQL.

A similar modi�cation to the output-logic can be made to the other approaches (hash join, nested
loop join, UNIX di� based) so that the algorithms can be of use in calculating an outer join.

7 Conclusion

In this paper, we have de�ned the snapshot di�erential problem which arises when comparing
database snapshots. This problem is encountered in data warehousing when there is a desire
to incorporate legacy system data or periodic database dumps as information sources. We have
shown that the snapshot di�erential problem is in essence an outer join (and is similar to text
comparison). We have presented several solutions to this problem and compared them using our
proposed metrics. We used the number of IO operations, the number of messages communicated,
the probability of error and the probability of error as performance metrics. Based on these metrics,

22

we conclude that the merge join based and hash join based (both grace and hybrid) algorithms
are all promising. We then used compression to optimize these algorithms and observed that as
much as 25 % improvement in IO cost can be obtained with a mere compression factor of 10 for
the merge and hash join based algorithms. Several realistic scenarios were also identi�ed (growing
�le, stagnant �le, shrinking �le and ordered dump scenarios). The join algorithms were optimized
even further for these scenarios. With a compression factor of 10, the IO cost can be reduced by as
much as 75 %. We also proposed a window algorithm to solve the snapshot di�erential problem for
ordered dump scenario. This algorithm can attain a 75 % improvement in IO cost without requiring
intermediate �les. Morever, even without compression, the window algorithm still achieves a 50
% improvement in IO cost. The disadvantage of using compression is that the algorithms become
probabilistic in the general scenario.

In future work, we will further investigate the e�ects of the input parameters (the number of
modi�cations, the types of modi�cations and the measure of how out of order a �le is) on the merge
join , hash join and LCS based algorithms. Once a concrete understanding of the relationships of
the parameters and the performance of the algorithms is established, good decisions as to which
algorithm to use can be made on-line in a data warehousing environment. The window algorithm
is promising but a clear understanding of the e�ects of the divergence of the snapshots has yet to
be established. We intend to investigate this topic as well.

23

