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Abstract

Many problems in computer vision and pattern recognition involve groups of trans-

formations. In particular, motion estimation, steerable �lter design and invariant fea-

ture detection are often formulated with respect to a particular transformation group.

Traditionally, these problems have been investigated independently. From a theoret-

ical point of view, however, the issues they address are similar. In this paper, we

examine these common issues and propose a theoretical framework within which they

can be discussed in concert. This framework is based on constructing a more natural

representation of the image for a given transformation group. Within this framework,

many existing techniques of motion estimation, steerable �lter design and invariant

feature detection appear as special cases. Furthermore, several new results are direct

consequences of this framework. First, a canonical decomposition of all �lters that can

be steered with respect to any one-parameter group and any multi-parameter Abelian

group is proposed. Filters steerable under various subgroups of the a�ne group are

also tabulated. Second, two approximation techniques are suggested to deal with �l-

ters that cannot be steered exactly. Approximating steerable �lters can also be used

for motion estimation. Third, within this framework, invariant features can easily be

constructed using traditional techniques for computing point invariance.

Categories: Low-Level Processing, Pattern Analysis, Motion Analysis.



1 Introduction

In computer vision, the problems of steerability, motion estimation and invariant feature

detection have usually been investigated independently. One reason for this could be that

the intended practical applications of each are vastly di�erent. From a theoretical point of

view, however, these three problems address similar core issues. In this paper, we examine

these common issues and propose a theoretical framework within which they can be discussed

in concert.

In this framework, we are concern with images undergoing some transformation (trans-

lation, rotation, a�ne etc.). The main idea underlying this framework is to �nd an e�cient

representation of an image with respect to a given group of transformations. The represen-

tation is e�cient in the sense that it is simple (linear and �nite), and that transformations

in the group can both be detected and applied directly to the representation. The repre-

sentation need not be complete, i.e. the image need not be reconstructible from the set of

features. For example, consider the group of all rotations about a given point. A possible

representation of an image which is e�cient with respect to this group is the horizontal and

vertical directional derivatives at that point. This representation is �nite (two dimensional)

and linear (since directional derivative is a linear operator). It is e�cient with respect to

rotations since any directional derivative can be calculated from the horizontal and verti-

cal derivatives, i.e. the representation of a rotated image can be reconstructed from the

representation of the original image.

Such e�cient representations are useful in motion estimation. Because the transformation

is detectable from the representation, one can estimate the motion of the image from this

lower-dimensional representation instead of from the image directly. Practically, one �rst

computes the outputs of a set of �lters from the original and the transformed images, and

then estimates the motion from these two sets of measurements. Likewise, functions which

are invariant under image transformations can be de�ned directly over the representation.

Since the representation is �nite-dimensional, traditional methods for computing invariants

with features like points can be employed. Furthermore, because the dimension of the new

representation is �nite, it is possible to generate all independent image invariants with respect

to the given transformation.

Lie group theory has been used extensively in constructing geometric invariants [18, 21,

12]. It is a useful theory because it relates the possibly nonlinear transformation group to

a linear vector space called the tangent space, which is the in�nitesimal action of the group

about its identity. Using this connection, many theorems about the group itself can be
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proven via simpler proofs in terms of its tangent space. The application of Lie theory to

the design of steerable �lters or to motion estimation has not, however, been as widespread.

The framework proposed in this paper is based on several results from Lie theory. As such,

the families of transformations treated are those that form Lie groups. This, however, is

not too restrictive since many transformations of interest to computer vision are Lie groups.

Examples include: image translation, rotation, scaling and a�ne transformation. These

transformations may either be global, i.e. acting over the entire image, or local, as in the

computation of optical 
ow.

Several others have also used Lie group theory in a similar context. Amari originally

proposed the construction of such e�cient representations for invariant feature detection

via feature normalization [1, 2]. This work applies and extends his idea to the problems

of steerability and motion estimation, and suggests a framework encompassing all three

problems. Furthermore, the treatment of invariance within this framework is more general

than Amari's feature normalization technique. Lenz also recognized the usefulness of �nite-

dimensional function spaces that are closed under some transformation and applied the idea

to several computer vision applications including pattern detection [14].

The rest of the paper is organized as follows. Section 2 provides a brief introduction to

Lie group theory. Following that, Sections 3 and 4 outline the framework and detail several

important theorems. In Section 5, examples concerning one-parameter groups are given along

with a canonical decomposition of e�cient representation spaces for one-parameter groups.

Section 6 describes the framework in the context of multi-parameter groups. Next, Section 7

suggests two approximation techniques that are useful when no e�cient representation exists.

This is followed, in Section 9, by a description of how invariants may be constructed within

the framework.

2 Background on Lie Groups

Lie groups are often encountered as families of transformations acting on a signal. Common

examples in computer vision include: (1) translations, scalings, rotations and a�ne trans-

formations of images, and (2) similar transformations of features (points and lines) in both

2D and 3D. In this paper, we consider, primarily, the families of transformation groups

acting on real-valued, two-dimensional images. We assume that these images are non-zero

only within a bounded region and denote them by s(x; y) : R2 7! R. We describe each

family of transformations by operators fg(�1; : : : ; �k)g where �i 2 R are parameters of the

transformation.
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For example, consider the family of one-dimensional translations of an image in the x-

direction:

ŝ(x̂; ŷ) = gtx(� ) s(x; y) = s(x� �; y)

where � denotes the amount of translation. In words, the operator gtx(� ) acts on the original

image s(x; y) to yield a new translated image ŝ(x̂; ŷ) = s(x� �; y).

A family of transformations fg(�1; : : : ; �k)g parameterized by �1; : : : ; �k over some prede-

�ned range is a Lie group if: (1) it satis�es the group conditions of closure under compo-

sition, associativity, inverse and the existence of an identity, and (2) the maps for inverse

and composition are smooth. Thus, the family of translations forms a Lie group: First,

every translation operator gtx(� ) has an inverse, namely, gtx(�(� )) where �(� ) = �� . Since

�(0) = 0, gtx(0) is the identity operator. Second, composition of two operators can be de-

scribed by a third operator which also belongs to the same family, i.e. gtx(�a)gtx(�b) =

gtx(�(�a; �b)) where �(�a; �b) = �a + �b. In addition, composition is associative, that is to

say, gtx(�a)(gtx(�b)gtx(�c)) = (gtx(�a)gtx(�b)) gtx(�c); as such, �(�a; �(�b; �c)) = �(�(�a; �b); �c).

Finally, both the inverse map, �(� ), and the composition map, �(�a; �b) are smooth. The

dimension of the parameter space of a Lie transformation group may be di�erent from the

dimension of the image space upon which it acts. Here, the family of translations in the

x-direction forms a one-parameter Lie group (� 2 R) while the space upon which it acts is

two-dimensional ((x; y) 2 R2).

Another familiar family of transformations that is also a Lie group is the group of rota-

tions in the plane gr(� ) such that ŝ(x̂; ŷ) = gr(� ) s(x; y) = s(x cos ��y sin �; x sin �+y cos � ).
It is straightforward to check that the necessary conditions, veri�ed in the previous example,

are also satis�ed here. The family of transformations de�ned by gb(� ) s(x; y) = e�s(x; y)

scales the brightness of the image uniformly and also forms a Lie group. However, un-

like translations and rotations in the plane, gb(� ) acts on the image itself and not on the

coordinates of the image.

Lie groups are rich in structure and many properties of the group can be discerned by

studying the properties of in�nitesimal actions of the group. In the following, in�nitesimal

actions of a group are de�ned and elaborated. We consider �rst one-parameter groups and

then extend our explanation to multi-parameter groups.

One-parameter Groups Given a one-parameter transformation group parameterized by

� , the in�nitesimal transformation of an image s(x; y) about the identity (� = 0) is de�ned
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using Leibnitz's chain rule:
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The di�erential operator on the right hand side of the equation is called the (in�nitesimal)

generator of the transformation and is denoted by L, i.e.
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The set of elements G = f�L j � 2 Rg forms a one-dimensional vector space called the

tangent space of the group where L can be thought of as a one-dimensional basis vector.

There is a strong connection between the tangent space and the Lie group from which it

was derived. Namely, each element g(� ) of the group can be generated by an element in the

tangent space, �L 2 G, via the exponential map:1

g(� ) s(x; y) = e�L s(x; y) (2)

where � is the parameter of the group. The notation e�L represents the series expansion

e�L = I + �L + 1
2!
� 2L2 + � � �, which is an in�nite sum of di�erential operators [3]. This is a

rather surprising result since the operator g(� ) can transform the image in highly nonlinear

ways while G is simply a linear vector space.

Recall the group of translations in the x-direction presented earlier. The derivative of

the transformation about the identity is

dŝ

d�

�����
�=0

= � @

@x
ŝ

and hence its generator is Ltx = � @
@x
. Using the exponential map suggested in Equation 2,

we �nd that
gtx(� ) s = e�Ltx s

= (1� � @
@x

+ 1
2!
� 2 @2

@x2
+ � � �) s

= s� � @s
@x

+ 1
2!
� 2 @

2s
@x2

+ � � �
which is exactly the Taylor expansion of s(x � �; y) about � = 0. Further examples of

one-parameter groups and their generators are given in Table 1 of Section 5.

1To be precise, this is only true for group elements su�ciently close to the identity element so that their

Taylor expansions converge, and for elements within the connected component containing the identity. In

this paper, we consider only transformation groups with one connected component and for which convergence

also holds.
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Multi-parameter Groups The situation with multiple-parameter Lie groups is anal-

ogous. The generators of a multi-parameter group are the set of di�erential operators

fLi j i = 1 : : : kg corresponding to derivatives of the transformation at the identity with

respect to each parameter �i in turn, i.e.

dŝ

d�i

�����
�1=���=�k=0

= Li ŝ
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The k generators provide a basis for the k-dimensional tangent space G = f�1L1 + � � � +
�kLkj�1; : : : ; �k 2 Rg.2 As before, there is a correspondence between a k-parameter Lie

group and its k-dimensional tangent space in the form of the exponential map:

g(�1; : : : ; �k) s(x; y) = exp f
kX

i=1

�iLig s(x; y): (3)

Although the exponential map provides a correspondence between every operator in

the Lie group and every element in its tangent space, the parameterization of the group

generated by the exponential map may be di�erent from that of the original group. Hence,

the exponential map generates a group similar to the original group up to a change of

parameterization. For example, consider the two parameterizations of the two-parameter

a�ne group acting solely on the x coordinate:

g1(�1; �2) s(x; y) = s(e�1x� �2; y);

g2(�1; �2) s(x; y) = s(e�1(x� �2); y):

Both yield the same generators:

L1
�1
= L2

�1
= x

@

@x
; L1

�2
= L2

�2
= � @

@x
:

Hence, the exponential map will generate the same group for both. In fact, using Equation 3,

we obtain the group parameterized as follows:

g0(�1; �2) s(x; y) = s(e�1x� �2

�1
(e�1 � 1)):

This is not a problem as we are often interested in the group of transformations and not the

particular parameterization of it. Furthermore, we can easily reparameterized the generated

group using the original parameterization.

2Loosely speaking, the linear independence of the k generators is assured if the k-parameter group from

which it was derived cannot be replaced by another with fewer parameters [3].
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As exponentiating long sums of di�erential operators can become rather cumbersome,

another more useful map, proposed by Lie himself, is the following:

g(�1; : : : ; �k) s(x; y) = (
kY

i=1

e�iLi) s(x; y) = e�1L1 � � � e�kLk s(x; y): (4)

The ordering of the individual exponential maps is arbitrary but that is not to say that

di�erent orderings give rise to the same parameterization of the group. Actually, the choice

of ordering determines the parameterization of the group generated by the composition of

exponential maps. This is easily demonstrated with the previous example:

e�2L2e�1L1 s(x; y) = s(e�1x� �2; y);

e�1L1e�2L2 s(x; y) = s(e�1(x� �2); y):

With multi-parameter groups, if we vary a single parameter �i and keep the others �xed,

we get a one-parameter group of transformations fgi(�i)g that is a subgroup of the original

k-parameter group. Hence, by varying each of the k di�erent parameters separately, we

can construct k di�erent one-parameter subgroups. When every element from one subgroup

commutes with every element from a second subgroup, i.e. gi(�i) gj(�j) = gj(�j) gi(�i)

for all �i; �j, the two subgroups are said to commute with each other. Two subgroups

commute if and only if their Lie bracket vanishes, i.e. [Li; Lj]
:
= LiLj � LjLi = 0 [3]. When

two subgroups commute, exponentiating their respective generators can be done in either

order, i.e. e�iLie�jLj = e�jLje�iLi = e�iLi+�jLj : This is not true for non-commuting subgroups.

A multi-parameter group for which all its one-parameter subgroups commute is called an

Abelian group. The two-parameter group of the previous example is not Abelian since

[L�1; L�2] = �x @
@x

(
@

@x
) +

@

@x
(x

@

@x
) =

@

@x
6= 0:

Hence, as demonstrated earlier, e�1L1e�2L2 6= e�2L2e�1L1 6= e�1L1+�2L2.

On the other hand, for the one-parameter transformation groups listed in Table 1, the

pairs, fgtx ; gtyg; fgtx ; gsyg; fgty ; gsxg; fgsx; gsyg; fgr; gsg, are commutative.

3 Equivariant Feature Spaces

In computer vision, a common method of extracting features from an image is via the inner-

product of the image with some function �(x; y):

f = < �; s >
:
=
Z Z

�(x; y)s(x; y) dxdy
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where s(x; y) denotes the complex conjugate of s(x; y). We assume that our images are

real-valued so the bar may often be omitted. We also assume that our images are non-

zero only over a bounded region and denote the vector space of these images by S. We

refer to �(x; y) as the measuring function and f as the corresponding measured feature. In

order to consider several measuring functions in tandem, we introduce the vectorial function

�(x; y)
:
= (�1(x; y); : : : �n(x; y))

T and de�ne the inner-product between a vectorial measuring

function �(x; y) and an image s(x; y) by

f = < �; s >
:
= (< �1; s >; : : : ; < �n; s >)

T

where f is an n-dimensional feature vector. Assuming that the functions f�ig are linearly

independent, they form a basis for an n-dimensional function space called the measuring

space that is denoted by span(�). The choice of � as basis functions for the measuring space

is not unique as any other �0 = CT�, where C is a non-singular matrix, will also span the

same measuring space. Likewise, the feature space F is the n-dimensional vector space of

measured features f . The inner-product of the signal with the vectorial measuring function

� is a linear mapping from the space of images S to the space of features F . If the dimension

of the feature space is lower than that of the image space, then the mapping is many-to-one,

i.e. many images could yield the same feature vector.

For a given transformation group g(�1; : : : ; �k), the set of images obtained by transforming

s(x; y) with every member of the group is known as the image orbit Og(s), i.e. Og(s) =

fŝ(x̂; ŷ) j ŝ(x̂; ŷ) = g(�1; : : : ; �k) s(x; y)g for all �1; : : : ; �k. When an image is transformed,

the measured features of the new image will, in general, be di�erent from those of the

original. However, if the measuring functions are chosen appropriately (with respect to the

given transformation group), then although the new measured features will still be di�erent,

they can be interpolated exactly from the original features. In this case, the transformation

can be applied directly in the feature space F without the necessity of transforming the

image itself. This paper deals with �nding such e�cient measuring functions. Note, that

if the original feature f is a complete representation of the image s, i.e. it is possible to

reconstruct the image s from f , then transformations can be applied directly in the feature

space regardless of the choice of measuring functions:

h�; g(�1; : : : ; �k)s(x; y)i = h�; g(�1; : : : ; �k)~s(f)i

where ~s(f) is the inverse mapping from feature to image. However, in this paper we are

interested in partial representations where f is of small dimensionality and cannot reconstruct

s(x; y). In the cases where the transformations can be applied in the feature space, it makes

sense to talk about the feature orbit Og(f) of a measured feature within the feature space
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Figure 1: Correspondence between orbits in image space and orbits in feature space. This

is possible only if the feature space is equivariant under the transformation group.

F , such that Og(f) = ff̂ jf̂ = h�; g(�1; : : : ; �k)sig for all �1; : : : ; �k and where f = h�; g(0)si.
Hence, every orbit in the image space, has a corresponding orbit in the feature space. Figure 1

illustrates this relationship between the image space and the feature space. When a measured

feature is a partial representation of the image the mapping from image space to feature space

is many-to-one, many image orbits will map onto a single feature orbit.

Denoting f̂ = h�; g(�1; : : : ; �k) si as the n-dimensional feature vector of the transformed

image, we restate this property more formally as:

De�nition 1 (Equivariant Feature Space) A feature space F is equivariant under a

k-parameter transformation group g(�1; : : : ; �k) if there exists A(�1; : : : ; �k), a matrix of func-

tions in �1; : : : ; �k, known as the interpolation matrix, such that

f̂ = A(�1; : : : ; �k) f

for all �1; : : : ; �k and for every image s. This equation is called the interpolation equation.

The concept of equivariant feature spaces is particularly relevant to computer vision.

Given an equivariant feature space F , several problems, notably, steerability, motion esti-

mation and invariant feature detection, can be expressed in a common framework. Being
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able to deal with these problems in a common manner is particularly important as it allows

results from one area to be readily applied to the other areas.

Steerability. Steerability is a property associated with a �lter when the outputs of trans-

formed replicas of its kernel, can be interpolated exactly from a �xed set of basis �lter

outputs. Formally, a �lter is steerable if h�; g(�1; : : : ; �k) si = P
i ai(�1; : : : ; �k) h i; si where

� is the kernel of the �lter and f ig are the basis �lters. In Freeman and Adelson [9], for

example, the authors described a method of computing the output of a rotated �lter from a

linear combination of the outputs of specially chosen basis �lters. Other authors have also

put forward techniques for designing steerable �lters [10, 9, 23, 20]. Given that the family

of transformations forms a Lie group, it is easy to see that each measuring function �i in �

associated with an equivariant feature space F is steerable via the interpolation equation:

f̂ = A(�1; : : : ; �k) f . Thus, steerability can be viewed as a forward problem within the frame-

work. From a set of measured features f (the outputs of the basis �lters), we compute f̂ for

each transformation g(�1; : : : ; �n) and for any image s.

Motion Estimation. Motion estimation, on the other hand, is an inverse problem within

the framework.3 Given f and f̂ , measurements made from the original and transformed im-

ages respectively, we would like to determine the parameters �1; : : : ; �k of the transformation

g(�1; : : : ; �n). Again, if the family of transformations is a Lie group, an equivariant space

F is useful to this extent as it relates any two sets of measurements in the space, e.g. f

and f̂ , by the interpolation matrix A(�1; : : : ; �k) such that f̂ = A(�1; : : : ; �k) f . With this

relation, one can then solve for the transform parameters from the two sets of measurements.

Besides being forward and inverse problems, there is a small technical di�erence between the

steerability property and motion estimation. In the case of steerability, the transformation

occurs on the �lter while motion estimation computes the transformation that takes place

on the image.

Invariant Feature Detection. An invariant feature or pattern detector indicates the

presence (or absence) of a particular pattern in an image regardless of how the image has

been transformed. For example, an edge detector should be able to detect the presence

of an edge independent of the orientation of the edge in the image. The straightforward

approach to this problem is to directly determine �lter kernels that are invariant to the

3By motion estimation, we do not restrict ourselves only to the detection of in�nitesimal changes as is

usually implied by the term motion; instead, we consider �nite amounts of transformation as well.
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given transformation and then use their outputs to identify the pattern. Alternatively, the

problem can be approached in two stages: (1) construct a large enough equivariant space

F to best characterize the pattern, and (2) determine invariants within this �nite (and

possibly small) dimensional space. Since the feature space is equivariant, measured features

of transformed versions of the pattern can be interpolated, i.e. f̂ = A(�1; : : : ; �k) f . This

equation is a parametric description of a k-dimensional manifold in the feature space F . An

implicit representation of this manifold that is independent of �1; : : : ; �k is clearly invariant

under the transformation. Thus, constructing invariants over the feature space amounts to

implicitizing the interpolation equation.

4 Equivariant Measuring Spaces

In the previous section, the importance and relevance of equivariant feature spaces were

presented. In this section, we develop a framework for constructing measuring spaces whose

corresponding feature spaces are equivariant under a given transformation group. This frame-

work is based on the seminal work of S. Amari [1, 2] who originally proposed it in the context

of invariant feature detection in pattern recognition.

Throughout the rest of the paper, we will assume that the group of transformations acts

on the image. This is true in the case of motion estimation and invariant feature detec-

tion. Before proceeding, we make the following observation: the inner-product between a

transformed image g(�1; : : : ; �k) s(x; y) and some measuring function �(x; y) can be rewritten

as the inner-product between the original image s(x; y) and an appropriately transformed

measuring function �g(�1; : : : ; �k) �(x; y):
4

h�; g(�1; : : : ; �k) si = h�g(�1; : : : ; �k) �; si : (5)

The transformation �g is known as the conjugate of g. It is easy to verify that if g is a Lie

group, then �g is also a Lie group. As such, we denote its generator by �L and refer to it as

the conjugate generator of g. Table 1 lists several common one-parameter groups and their

conjugate generators. With steerability, it is not necessary to introduce the conjugate of a

group as the transformation is applied directly onto the measuring function itself and not

onto the image. The derivation of conjugate generators is explained in Appendix A.

In the previous section, a feature space is de�ned to be equivariant under a given transfor-

mation if any two feature vectors are related by the interpolation equation. In the following

4Again, we restrict ourselves to groups (up to a re-parameterization) that can be generated by the

exponential map.
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Figure 2: Correspondence between orbits in image space and orbits in feature space. This

is possible only if the feature space is equivariant under the transformation group.

theorem, the conditions required for a feature space to be equivariant are given in terms of

its measuring space.

Theorem 1 (Equivariant Measuring Space, Amari '78 [2]) : A feature space F is

equivariant with respect to a transformation group g(�1; : : : ; �k) if and only if its associ-

ated measuring function � is closed under the conjugate transformation �g(�1; : : : ; �k), i.e.

there exists a square matrix A(�1; : : : ; �k) such that

�g(�1; : : : ; �k) � = A(�1; : : : ; �k) �

for all �1; : : : ; �k. In this case, span(�), i.e. the function space spanned by the elements of

�, forms an equivariant measuring space.

Proof 1 : If �g(�1; : : : ; �k) � = A(�1; : : : ; �k) �, then

f̂
:
= h�; g(�1; : : : ; �k) si
:
= h�g(�1; : : : ; �k) �; si
= hA(�1; : : : ; �k) �; si
= A(�1; : : : ; �k) h�; si
= A(�1; : : : ; �k) f :
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The necessity direction of the theorem can be veri�ed in a similar manner. However, this

direction follows from the de�nition of measured features, i.e. from the linearity of their

construction. If non-linear operations are permitted, it may be possible to �nd equivariant

feature space (i.e. features satisfying f̂ = Af) despite the unsuitability of the necessity

condition. We further explore this point later on in this section. 2

The last theorem states a very useful characteristic of an equivariant feature space: that

its associated measuring space is closed under the conjugate transformation. It makes sense

to say that the measuring space span(�) is equivariant because any element in the space

can be written as linear combinations of �i and since each �i is closed under the conjugate

transformation, any linear combination of �i is also closed under the conjugate transforma-

tion. Because we are dealing with Lie transformation groups, the closure of the measuring

space under �g(�1; : : : ; �k) can be reformulated, more simply, in terms of its set of generators

f�L1; : : : ; �Lkg.

Theorem 2 (Interpolation Equation) : The measuring space span(�) is equivariant un-

der the group g(�1; : : : ; �k) if and only if � is closed under the action of each conjugate

generator �Li of g, i.e.

�g(�1; : : : ; �k) � = A(�1; : : : ; �k) � if and only if �Li � = Bi � 8 i = 1; : : : ; k

for some set of n� n matrices fB1; : : : ; Bkg. In particular, the interpolation matrix can be

written as follows:

A(�1; : : : ; �k) = e�kBk � � � e�1B1:

Proof 2 : Let �̂(�1; : : : ; �k) = �g(�1; : : : ; �k) �, the (conjugate) transformed measuring func-

tions. Since �g(�1; : : : ; �k) is a Lie group, it follows from the exponential map in Equation 4

that
�̂(�1; : : : ; �k) = e�1

�L1 � � � e�k �Lk �

= (1 + �1 �L1 + � � �) � � � (1 + �k �Lk + � � �) �
= (1 + �1 �L1 + � � �) � � � (1 + �kBk + � � �) �
= (1 + �1 �L1 + � � �) � � � (1 + �k�1 �Lk�1 + � � �) e�kBk �

= (1 + �1 �L1 + � � �) � � � e�kBk (1 + �k�1 �Lk�1 + � � �) �
= (1 + �1 �L1 + � � �) � � � e�kBk e�k�1Bk�1 �
...

= e�kBk � � � e�1B1 �;

in which the substitution (�Li)
m� = (Bi)

m� is used repeatedly. It can easily be veri�ed

that �Li � = Bi � implies (�Li)
m� = (Bi)

m� via the linearity of the di�erential operator

12



1. Derive the conjugate generators �L1; : : : ; �Lk of the given transfor-

mation group g(�1; : : : ; �k).

2. Verify for each generator �Li that

�Li � = Bi �

where Bi is some n� n matrix.

3. If so, the measuring space span(�) is equivariant and the interpo-

lation function is simply

f̂ = A(�1; : : : ; �k) f

where the interpolation matrix

A(�1; : : : ; �k) = e�kBk � � � e�1B1:

Figure 3: Recipe for verifying that the function space of span(�) is equivariant. If so, the

interpolation matrix A(�1; : : : ; �k) is also derived.

�Li. The order in which the generators �Li are applied is arbitrary. However, as pointed

out in Section 2, the order will determine the parameterization of the generated group.

Another way of proving this direction of the theorem is by solving the di�erential equation,

�Li�
:
= d�̂

d�i

���
�1=���=�k=0

= Bi�; for �̂. Conversely, if �̂ = e�kBk � � � e�1B1 �; taking derivatives

with respect to �i (about �1 = � � � = �k = 0) on both sides of the equation yields the system

of equations �Li � = Bi �.

Since each �i in � is closed under the action of every generator �Li, any linear combination of

�i is also closed. Hence, the function space span(�) is also closed under the action of every

generator �Li. 2

Theorem 2 provides a recipe for verifying that the space spanned by a set of func-

tions f�ig is an equivariant measuring space, and if it is, derives the interpolation matrix

A(�1; : : : ; �k). Figure 3 summarizes the procedure. Unfortunately, the construction of all

possible n-dimensional equivariant measuring spaces is not as methodical in general. For

one-parameter groups, however, the construction is straightforward and will be treated ex-

tensively in the next section.

13



The following are corollaries that can be used to construct more complicated equivariant

spaces from existing ones. Their validity can easily be veri�ed.

Corollary 1 : If � is a vector of n equivariant measuring functions, then P�, where P is

a non-singular n�n matrix, is also a vector of equivariant measuring functions. Hence, two

vectors of measuring functions �1;�2 share the same equivariant space if and only if they

can be related by a non-singular n� n matrix P such that �1 = P�2.

Corollary 2 : If �1 and �2 are vectors of equivariant measuring functions with respect to

the same transformation group, then the space spanned by their direct sum �1��2 (i.e. the

concatenation of the two vectors) is also equivariant.

Corollary 3 : If �1 and �2 are vectors of equivariant measuring functions with respect to

the same transformation group, then the space spanned by the Kronecker product of the two

vectors of functions �1
�2 (i.e. the pairwise products of measuring functions from �1 and

�2) is also equivariant.

The last corollary presents a powerful way to enrich an equivariant measuring space.

For example, assume �1 = (1; x)T spans an equivariant measuring space with respect to

some transformation group. Using Corollary 3 (and assuming �1 = �2 ), it is immediate to

conclude that (1; x; x2; � � �)T also spans an equivariant space. This corollary stems from the

linearity of the equivariant equation: �g�i = Ai�i; i = 1; 2. It follows that

�g(�1�
T
2 ) = A1�1�

T
2A

T
2 : (6)

The entries of matrix �1�
T
2 are the elements of the Kronecker product �1 
 �2. Since

Equation 6 is linear in �1�
T
2 , it is possible to rewrite it as �g�1;2 = A1;2�1;2, where A1;2

is some interpolation matrix and �1;2 is a vector function composed of entries from �1�
T
2 .

Thus, �1;2 spans an equivariant measuring space as well. 2

The linearity of the equivariant equation leads to a similar result with respect to the

feature space:

Corollary 4 : If f1 and f2 are features of two equivariant feature spaces with respect to the

same transformation group, then the feature space formed by f1 
 f2 is also equivariant.

Proof : Similar to corollary 3, the proof follows from the linearity of the interpolation

equation: f̂i = Aifi; i = 1; 2. 2

14



This corollary expands the variety of the equivariant feature spaces even further. It

enables (in some cases) to perform non-linear operations on the image and yet to remain in

an equivariant feature space.

5 Equivariant Spaces for One-Parameter Groups

In the previous section, the conditions that are required for a measuring space to be equivari-

ant under a transformation group were stated. In this section, we attend to the construction

of all possible equivariant spaces with respect to any one-parameter transformation group.

First, we provide examples of several equivariant measuring spaces. After that, we show

that any one-parameter group can be reparameterized to appear as a group of transla-

tions in the new parameterization. Finally, we propose a canonical decomposition of all the

measuring spaces equivariant under the translation group (and correspondingly under any

one-parameter group that has been appropriately reparameterized).

5.1 The Translation Group

Consider the group of one-dimensional image translations in the x-direction: ŝ(x̂; ŷ) =

gtx(� ) s(x; y) = s(x � �; y) whose conjugate generator �Ltx = @
@x
. An n-dimensional mea-

suring space � is equivariant with respect to gtx(� ) if �Ltx � = @
@x

� = B � for a given n� n
matrix B. The general solution to this di�erential equation is

�(x; y) = eBx �(0) (7)

where �(0) is the value of � at x = 0. Actually, the product of �(x; y) with any function

solely in y leaves it equivariant; however, without loss of generality, we refer to �(x; y) only

as �(x). Since �(0) can be arbitrary chosen, any element in the column space of eBx is a

possible solution. We will denote this by �(x) 2 R(eBx) where R refers to the column space

of the matrix eBx. Regardless of the choice of �(0), the interpolation equation is the same,

i.e. f̂ = eB�f ; only the measuring functions associated with the features will be di�erent.

In the following examples, we present di�erent choices for the matrix B and derive the

corresponding measuring functions.

Example 1 : Consider the simplest case where B is a 1 � 1 matrix, i.e. B = [�] where

� is a scalar value (which may be complex). From Equation 7, the space of measuring

functions is: �(x) = ae�x; where a is some scalar value (the value at �(0)), while the
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interpolation equation in the feature space is f̂ = e��f: An alternative, but perhaps more

familiar, way to show the above result is by expanding the de�nitions of f̂ and f . Recall

that f = h�; si = R R
ae�x s(x; y) dxdy. Therefore,

f̂ = h�; ŝi
=

R R
ae�x s(x� �; y) dxdy

=
R R

ae�(u+�) s(u; y) dudy

= e��
R R

ae�u s(u; y) dudy

= e��f:

When � is purely imaginary, the measuring functions are complex exponentials. In phase-

based motion estimation, the parameter � is regarded as the di�erence in phase. Fleet and

Jepson [8] proposed an accurate method of measuring disparity by estimating the di�erence

in phase between two (windowed) complex exponentials.

Example 2 : Now, let

B =

0
@ �1 0

0 �2

1
A :

In this case, the solution to Equation 7 implies that

�(x) 2 R(eBx) = R
2
4
0
@ e�1x 0

0 e�2x

1
A
3
5 and f̂ = e�B f =

0
@ e�1� 0

0 e�2�

1
A f :

Simoncelli et. al. [23] proposed a criterion for shiftability in position that decomposes the

�lter into a set of complex exponentials (via the Fourier decomposition). In this example, it

would correspond to B being a diagonal matrix with unique and purely imaginary �'s.

Example 3 : Let

B =

0
BBB@

0 1 0

0 0 1

0 0 0

1
CCCA :

In this case, the measuring function and interpolation equation are

�(x) 2 R(eBx) = R

2
6664
0
BBB@

1 x 1
2!
x2

0 1 x

0 0 1

1
CCCA
3
7775 and f̂ = e�B f =

0
BBB@

1 � 1
2!
� 2

0 1 �

0 0 1

1
CCCA f

respectively. This example produces the moment �lters which are used in many applications

involving invariant feature detection [11] and motion estimation [29].
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5.2 The Rotation Group

Another commonly encountered one-parameter transformation group is the group of rota-

tions in the plane:

gr(� ) s(x; y) = s(x cos � � y sin �; x sin � + y cos � )

where � represents the angle of rotation. The conjugate generator of the rotation group is:

�Lr = y @
@x
� x @

@y
. It is easy to see that if we represent the image s(x; y) in polar coordinates

(r; �), then rotation becomes similar to translation: gr(� )s(r; �) = s(r; �� � ). In these coor-

dinates, the conjugate generator is �Lr =
@
@�
. Therefore, as before, an n-vector of measuring

functions �(r; �) is equivariant with respect to gr(� ) if it satis�es the equation

�Lr �
:
=
@�

@�

�����
�=0

= B �

where B is an n� n matrix. The general solution to the above equation is simply

�(�) = eB��(0)

where �(0) is the value of �(�) at � = 0. Since �(0) is arbitrarily chosen, �(�) 2 R(eB�).

Example 4 : In this example, we show that a vector of measuring functions is equivariant

with respect to rotation and derive its interpolation matrix. Let �(x; y) be a 2-vector

containing the spatial derivatives of a Gaussian in the x- and y- directions:

�(x; y) =

0
@ @

@x
e(x

2+y2)=2

@
@y
e(x

2+y2)=2

1
A =

0
@ xe(x

2+y2)=2

ye(x
2+y2)=2

1
A =

0
@ r cos(�)er

2=2

r sin(�)er
2=2

1
A :

Applying the generator �Lr =
@
@�

to �, we get

�Lr � =

0
@ �r sin(�)er2=2

r cos(�)er
2=2

1
A =

0
@ 0 �1

1 0

1
A � = B �:

Thus, the elements of �(x; y) span a measuring space whose interpolation function is

f̂ = e�B f =

0
@ cos(� ) � sin(� )

sin(� ) cos(� )

1
A f :

This is an example of the steerable �lters suggested by Freeman and Adelson [9].
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5.3 Canonical Coordinates of One-Parameter Groups

The construction of a set of equivariant measuring functions depends on the existence of a

solution to the system of partial di�erential equations �L � = B �. It was shown that for

translations and planar rotations, solutions exist for any given matrix B. In this section,

we show that solutions exist for any one-parameter transformation group. The simplest

way to show this is via a reparameterization of the current coordinates into some canonical

coordinates where solutions are known to exist. For any one-parameter transformation group

g(� ), there exists a change of coordinates such that the group resembles a translation in the

new parameterization [3]. Hence, given an image s(x; y), one can determine a change of

coordinates s(�(x; y); �(x; y)) such that

g(� ) s(�; �) = s(� � �; �):

Segman et. al. [21] used this reparameterization to construct invariant kernels for pattern

recognition. Ferraro and Caelli [5] also used this method in a similar context and suggested

its relevance to biological vision.

Since the group operation is the same as one-dimensional translation, the equivariant

condition with respect to the canonical coordinates is also the same, i.e.

�L�;� �(�; �)
:
=

@

@�
�(�; �)

�����
�=0

= B �(�; �):

Therefore, its equivariant spaces also resemble the equivariant spaces for translation (up to

a change of coordinates).

Example 5 : In Section 5.2, polar coordinates were used for the group of rotations in the

plane. It is easy to show that polar coordinates are the canonical coordinates for this group.

Recall the change of coordinates from Cartesian to polar:

� = arctan(y=x) = � ; � =
q
x2 + y2 = r:

Rotating a image s(x; y) in Cartesian coordinates is the same as translating the image in

polar coordinates: gr(� ) s(�; �) = s(� � �; �) where � 2 [0; 2�).

Example 6 : Consider next the one-parameter group of scaling in the x direction, i.e.

gsx(� ) s(x; y) = s(e��x; y) where e�� ensures that the scaling constant is always positive. The

canonical coordinates of this transformation group are obtained by the following coordinate

changes:

� = ln(x) ; � = y:
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In this case,

gsx(� ) s(�; �) = s(ln(e��x); �) = s(ln(x) + ln(e��); �) = s(� � �; �)

which is a translation in the new coordinate system. Suppose now that

B =

0
BBB@

0 1 0

0 0 1

0 0 0

1
CCCA and �(�) 2 R(eB�) = R

2
6664
0
BBB@

1 � 1
2!
�2

0 1 �

0 0 1

1
CCCA
3
7775

as in Example 3 of Section 5.1 with measuring space in � coordinates. After a change of

coordinates, the measuring space in x coordinates is

�(x) 2 R

2
6664
0
BBB@

1 lnx 1
2!
(lnx)2

0 1 lnx

0 0 1

1
CCCA
3
7775 :

5.4 Canonical Decomposition of One-Parameter

Equivariant Spaces

For any one-parameter group, the n-vector of equivariant measuring functions � depends on

the apriori choice of the n�n matrixB. However, the same function space, span(�), may be

generated by di�erent B matrices. The following theorem provides an equivalence condition

among the various B matrices that generate the same equivariant measuring space.

Theorem 3 : Let �1;�2 be two n-vectors of equivariant measuring functions (with respect

to the same one-parameter group) and B1; B2 are such that: �L �1 = B1�1 and �L �2 = B2�2,

then

�1 = P �2 i� B1 = PB2P
�1:

for any non-singular n� n matrix P .

Proof 3 : If �1 = P �2, then substituting into �L �2 = B2�2, we get

�L (P�1 �1) = B2P
�1 �1

) P�1B1 �1 = B2P
�1 �1

) B1 �1 = PB2P
�1 �1

) B1 = PB2P
�1:

The proof in the opposite direction follows the same argument. 2
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In words, two vectors of equivariant measuring functions �1;�2, with respect to the same

group, span the same function space if and only if their corresponding matrices B1; B2 are

similar . Hence, it su�ces to examine all matrices B that are unique up to a similarity

transformation. The Jordan decomposition is useful to this end since any two matrices that

are similar share the same Jordan form [24].

With the Jordan decomposition, any n � n matrix B can be rewritten as PJP�1 such

that P is a non-singular n� n matrix and J is a block-diagonal matrix of the form

J = P�1BP =

2
6664
J1

. . .

Jk

3
7775 :

Each block Ji is a triangular matrix with a single eigenvalue �i and one eigenvector:

Ji =

2
66666664

�i 1
. . .

. . .

. . . 1

�i

3
77777775
:

The matrix J is called the Jordan form of B and Ji are its Jordan blocks. A special case

of the Jordan decomposition occurs when the matrix B is normal, i.e. BBH = BHB where

BH is the complex conjugate of the transpose of B. In this case, the Jordan decomposition

yields a diagonal matrix J ; hence, each Ji is simply a 1� 1 matrix containing the eigenvalue

�i.

Let �B;�J be vectors of equivariant measuring functions with respect to the translation

group that have corresponding matrices B; J such that B = PJP�1. From Theorem 3,

then �B = P �J . In other words, the function spaces spanned by �B and �J are identical.

Furthermore,

�J (x) = eJx �J(0) =

2
6664
eJ1x

. . .

eJkx

3
7775 �J(0):

Since eJx is block diagonal, the function space spanned by the �J can be decoupled into a

direct sum of function spaces spanned by each Jordan block:

�J(x) 2 R(eJx) = R(eJ1x)�R(eJ2x)� � � � � R(eJkx):

Each R(eJix) is a solution to �Ltx� = Ji � and thus by itself equivariant under translation.
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Finally, from the identity [24],

eJix =

2
6666664

e�ix xe�ix 1
2!
x2e�ix :

e�ix xe�ix :

: :

e�ix

3
7777775
;

it follows that any equivariant vectorial measuring function �J (x) can be represented by a

direct sum of the equivariant measuring functions �Ji where

�Ji = (e�ix; xe�ix; x2e�ix; � � � ; xn�1e�ix)T :

Note that if the matrix B is real, its eigenvalues appear in conjugate pairs, i.e. if one of

the eigenvalues � is complex, its conjugate �� is also an eigenvalue of B. In this case, the

equivariant spaces will also appear in pairs:

�Ji � � �Ji = (e�ix; xe�ix; x2e�ix; � � � ; xn�1e�ix)T � (e
��ix; xe

��ix; x2e
��ix; � � � ; xn�1e��ix)T :

When � is zero, the equivariant measuring space is spanned by the �rst n moments. Al-

ternatively, when n is one and � is purely imaginary, the space is spanned by the complex

exponentials, which are also the Fourier basis functions. Since any one-parameter transfor-

mation group can be put into its canonical coordinates (where the group operation becomes

a translation in these new coordinates), the decomposition of equivariant measuring spaces

for translation applies directly to all other one-parameter transformation groups (after repa-

rameterization) as well. Table 1 is a summary of several common one-parameter groups and

their equivariant measuring spaces.

Example 7 : The following measuring functions span an equivariant measuring space un-

der the group of translations gtx(� ):

� =

0
@ cos(kx)

sin(kx)

1
A

since

�Ltx � = B � where B =

0
@ 0 �k
k 0

1
A :

The interpolation equation associated with � is:

f̂ = eB�f where eB� =

0
@ cos(k� ) � sin(k� )

sin(k� ) cos(k� )

1
A
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Conjugate Equivariant

Group Operator Generator Generator Measuring Space

Brightness gb(�) s(x; y) = e�s(x; y) Lb = I �Lb = I all the functions

scaling

x-translation gtx(�) s(x; y) = s(x� �; y) Ltx = � @
@x

�Ltx =
@
@x

f p(y)x
pe�xg

for 0 � p � k.

x-scaling gsx(�) s(x; y) = s(e��x; y) Lsx = �x @
@x

�Lsx = I + x @
@x

f p(y)x
�(ln x)pg

for 0 � p � k.

Rotation gr(�) s(x; y) = s(x cos �� Lr = x @
@y
� y @

@x
�Lr = �x @

@y
f p(r)�

pe��g

�y sin �; x sin � + y cos �) = � @
@�

+y @
@x

= @
@�

for 0 � p � k.

Uniform gs(�) s(x; y) = Ls = x @
@x � y @

@y
�Ls = 2I + x @

@x f p(�)r
�(ln r)pg

scaling s(e��x; e��y) = �r @
@r

+y @
@y

= I + r @
@r

for 0 � p � k.

Table 1: Several examples of one parameter groups, their generators, conjugate generators,

and associated equivariant measuring spaces. In the rotation and uniform scaling examples,

(r; �) are the polar coordinates of the image.

A di�erent way to represent span(�) is by using measuring functions generated by the

Jordan form of B:

J = PBP�1 =

0
@ ik 0

0 �ik

1
A where P =

0
@ 1 i

1 �i

1
A

By Theorem 3, it can veri�ed that

�J = P�B =

0
@ eikx

e�ikx

1
A :

where �J are two of the Fourier basis functions. The new interpolation equation in this case

is:

f̂ = eJ�f =

0
@ eik� 0

0 e�ik�

1
A f :

Example 8 : The following functions also span an equivariant measuring space under

gtx(� ):

� =
�
sin3 x; cos3 x; 3 cos2 x sinx; 3 sin2 x cos x

�T
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since

�Ltx� = B� where B =

0
BBBBBB@

0 0 0 1

0 0 �1 0

0 3 0 �2
�3 0 2 0

1
CCCCCCA

A di�erent way to represent span(�) is with the measuring functions determined by the

Jordan form of B:

J = PBP�1 =

0
BBBBBB@

i

�i
3i

�3i

1
CCCCCCA

where P =

0
BBBBBB@

1 �i 1
3
�1

3
i

1 i 1
3

1
3
i

1 �i �1 i

1 i �1 �i

1
CCCCCCA
:

By Theorem 3, we get that:

�J = P�B =
�
eix; e�ix; e3ix; e�3ix

�T
:

The interpolation equation in this case is:

f̂ = eJ�f =

0
BBBBBB@

ei�

e�i�

e3i�

e�3i�

1
CCCCCCA
f :

6 Equivariant Spaces for Multi-Parameter Groups

Unfortunately, there is no systematic way to construct general n-dimensional equivariant

spaces for multi-parameter groups. With one-parameter groups (in their canonical coordi-

nates), solutions to the system of partial di�erential equations exist for arbitrary choices of

B. Unlike one-parameter groups, arbitrary choices of Bi for multi-parameter groups will of-

ten not yield solvable systems of di�erential equations. For Abelian multi-parameter groups,

i.e. groups made up of one-parameter subgroups that commute, however, a categorization

of the equivariant spaces similar to that for one-parameter groups can be carried out. In

the following, the categorization of equivariant spaces for Abelian multi-parameter groups is

presented. After that, two techniques for handling non-Abelian multi-parameter groups are

suggested.
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Abelian Multi-Parameter Groups When the multi-parameter group is Abelian, there

exists a reparameterization of the group so that the group action is equivalent to independent

translations in the new parameterization [3, 21, 5]. Formally, for any two-parameter Abelian

group, there exists a reparameterization of the image s(�(x; y); �(x; y)) so that

g(�1; �2) s(�; �) = s(� � �1; � � �2):

Segman and Zeevi in [21] describes a constructive way of determining this canonical repa-

rameterization. In the new parameterization, the equivariant space for the two-parameter

group is simply the product of the equivariant spaces for each one-parameter translation

group:

span(�(�; �)) = span( �p�qe��+�� ) = span( �pe�� )
 span( �qe�� )

for 0 � p � k and 0 � q � l. Note that multi-parameter groups acting on a two-dimensional

image with more than two parameters are necessarily not Abelian as there are only two

independent translations in an image.

Example 9 : Consider the group of rotation and uniform scaling made up of the two one-

parameter subgroups gr(�1) and gs(�2) from Table 1 in Section 5. The conjugate generators

for these groups are �Lr = �x @
@y
+ y @

@x
and �Ls = 2I +x @

@x
+ y @

@y
respectively. Recall that two

one-parameter groups are Abelian if their generators commute, i.e.

[ �Lr; �Ls] = [�x @
@y
+ y @

@x
; 2I + x @

@x
+ y @

@y
]

= [�x @
@y
;+x @

@x
] + [�x @

@y
;+y @

@y
] + [y @

@x
;+x @

@x
] + [y @

@x
;+y @

@y
]

= (�x2 @2

@y@x
+ x @

@y
+ x2 @2

@x@y
) + (�xy @2

@y2
� x @

@y
+ xy @2

@y2
) +

(xy @2

@x2
+ y @

@x
� xy @2

@x2
) + (y2 @2

@x@y
� y @

@x
� y2 @2

@y@x
)

= 0:

The reparameterization that makes gr(�1) and gs(�2) act like translations on the image is:

�(x; y) = arctan(y=x) = �

�(x; y) = ln(
p
x2 + y2) = ln(r)

Hence, the equivariant spaces for rotation and scaling are:

span( ln(r)pe� ln(r) )
 span( �qe�� ) for 0 � p � k and 0 � q � l :

Non-AbelianMulti-ParameterGroups For multi-parameter groups that are not Abelian,

there are no reparameterizations such that the group behaves like the group of independent

translations in the new parameterization. One way to approach the problem is to start with
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the largest Abelian subgroup of the multi-parameter group for which the equivariant spaces

can be constructed. The rest of the subgroups impose constraints on the equivariant space

by way of the di�erential equations: �Li� = Bi�. Thus, the equivariant measuring space for

the multi-parameter group can be constructed by successively constraining the equivariant

space of the largest Abelian subgroup.

Example 10 : Consider the multi-parameter group made up of translations in the x and

y directions together with the group of rotations, i.e. gtx ; gty and gr respectively. The largest

Abelian subgroup is the two-parameter group of translations in the x and y directions.

The equivariant space for this group is: span(�) = span(xpyqe�x+�y) for 0 � p � k and

0 � q � l. The group of rotations yields the additional constraint that �Lr� = Br� where

�Lr = �x @
@y
+ y @

@x
. By observation, we can rule out the exponentials e�x+�y (i.e. � = � = 0)

since applying �Lr to each term raises the power of the monomial factor by one each time;

repeated application of the conjugate generator will raise the power without bound. Applying

�Lr to the monomial xpyq, however, raises the power in one variable and decreases the power

in the other. Successive applications will result in one of the variables being reduced to zero.

Hence, fxpyqg is an equivariant space under this group where 0 � p + q � m for some m.

Throughout the paper, equivariant measuring spaces are constructed in two steps: (1)

Bi matrices are selected, (2) equivariant spaces are derived using the exponential map.

Alternatively, one could begin by selecting an interpolation matrix and deriving from it

the systems of di�erential equations. The interpolation matrix, parameterized by the group

parameters �1; : : : ; �k, describes a family of matrices that together with matrix multiplication

forms a matrix group [14]. This matrix group is known as the (linear) representation of the

transformation group. In many cases, such representations have been derived [25]. Given

the interpolation matrix A(�1; : : : ; �k), the interpolation equation (in terms of the measuring

function) is:

�g(�1; : : : ; �k) � = A(�1; : : : ; �k) �:

Taking derivatives on both sides with respect to the parameters �1; : : : ; �k at �1 = � � � = �k = 0

results in the following k systems of di�erential equations:

�Li � = Bi � where Bi =
@

@�i
A(�1; : : : ; �k)

�����
�1=���=�k=0

:

Thus, the matricesBi are determined from the interpolation matrixA. Solving these systems

of di�erential equations for � yields a function space that is equivariant under the group.

Subsequently, the corollaries at the end of Section 4 can be used to create larger equivariant

spaces.
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Example 11 : Consider the two-parameter group of translations and scalings in the x-

direction:

g(�1; �2) s(x; y) = e��1 s(e��1x� �2; y):

An interpolation matrix A for this group is the following:

A(�1; �2) =

0
@ e��1 �2

0 1

1
A :

Notice that composition of two transformations g(� 21 ; �
2
2 ) g(�

1
1 ; �

1
2 ) resembles the multiplica-

tion of the two corresponding interpolation matrices A(� 21 ; �
2
2 ) A(�

1
1 ; �

1
2 ):

g(� 21 ; �
2
2 ) g(�

1
1 ; �

1
2 ) = g(� 11 + � 21 ; e

��2
1 � 12 + � 22 )

and

A(� 21 ; �
2
2 ) A(�

1
1 ; �

1
2 ) = A(� 11 + � 21 ; e

��2
1 � 12 + � 22 ):

This is not a mere coincidence; in fact, all interpolation matrices are related to their groups

in a similar way.5 From the interpolation matrix A(�1; �2) the conjugate generators can be

derived:

�L1
:
=

@

@�1
A(�1; �2)

�����
�1=�2=0

=

0
@ 1 0

0 0

1
A = B1

�L2
:
=

@

@�2
A(�1; �2)

�����
�1=�2=0

=

0
@ 1 0

0 0

1
A = B2

Subsequently, equivariant measuring functions are the solutions of the following systems of

di�erential equations:
�L1 � = x @

@x
� = B1 �;

�L2 � = @
@x

� = B2 �:

One solution to these equations is �(x) = (x; 1)T where again each entry of � can be

multiplied by a function solely in y. Using the corollaries at the end of Section 4, larger

equivariant spaces can be constructed. In particular, repeated application of the Kronecker

product of �(x) with itself shows that fxpg for 0 < p < k is a measuring space.

Table 2 is a summary of several common multi-parameter groups and their equivariant

measuring spaces.

5Mathematically speaking, interpolation matrices are matrix representations of their groups, i.e. there is

a mapping � such that �(�g(�1; : : : ; �k)) = A(�1; : : : ; �k) between the transformation group and the matrix

group such that

�(g(�2
1
; : : : ; �2

k
) g(�1

1
; : : : ; �1

k
)) = �(g(�2

1
; : : : ; �2

k
)) �(g(�1

1
; : : : ; �1

k
)):

This mapping is called a homomorphism. If, in addition, the mapping is one-to-one, then it is called an

isomorphism.
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Groups (# parameters) Equivariant Measuring Space

x; y-translation (2) fxpyqe�x+�yg for 0 � p � k and 0 � q � l.

x; y-scaling (2) fx�y� ln(x)p ln(y)qg for 0 � p � k and 0 � q � l.

Rotation f(ln r)p�qe��+�ln(r)g for 0 � p � k and 0 � q � l.

Uniform-scaling (2)

x; y-translation fxpyqg for 0 � p+ q � k.

Rotation (3)

x; y-translation fxpyqg for 0 � p � k and 0 � q � l.

x; y-scaling (4)

x; y-translation fxpyqg for 0 � p+ q � k.

x; y-scaling

Rotation (5)

Table 2: Several examples of multi-parameter groups and their equivariant measuring spaces.

7 Approximating Equivariant Spaces

Often, one may be interested in designing a �lter kernel  with some desired properties. In

order to be able to predict the outputs of  under some given transformation group, the

�lter kernel is decomposed into a set of equivariant measuring functions:  � P
ci�i = cT�.

A transformed version of  can be interpolated then via the interpolation equation: �g =

cTA�. In general, the �lter kernel  has non-zero values only over a bounded region, i.e.

it has a �nite support. However, the equivariant measuring function � composing it can

have in�nite support, especially in the cases where the transformation group is non-compact

(i.e. the parameters of the group are not bounded). For example, all the translations of a

function with compact support cannot be interpolated by a �nite collection of measuring

functions, which themselves have compact support. This property is a serious drawback; the

in�nite support of the measuring functions demands extensive computations for calculating

the inner-product with an image. Furthermore, even if the �lter kernel has a �nite support,

approximating it over an in�nite spatial range requires an in�nite collection of measuring

functions. Fortunately, often one is only interested in a limited range of transformations.

Given so, it is possible to construct a �nite collection of measuring functions having a �-

nite range of support and that are approximately equivariant within the limited range of

transformations. We suggest two possible approximation methods.
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Function Approximation. The �rst method approximates a given compactly-supported

function by a linear combination of the measuring functions but only over a �nite region of

its spatial domain. For example, given a compactly-supported function  (x) and a set of

measuring functions � = (�1; : : : ; �n)
T that are equivariant with respect to the transforma-

tion group,  (x) is �rst approximated by cT � over some interval [a; b] outside of which  

is zero, i.e: ��� (x)� cT �(x)
���2 < " for a � x � b

where " is some small value. The approximation of  (x) over [a; b] is enough for calculating

its inner product with a signal s(x) due to the compactness of its support:

h (x); s(x)i =
Z
1

�1

 (x)s(x)dx =
Z b

a
 (x)s(x)dx �

Z b

a
cT �(x)s(x)dx :

Since the functions f�ig span an equivariant space, �g(�1; : : : ; �k) �(x) = A(�1; : : : ; �k) �(x).

Unfortunately, this does not imply that

h�g (x); s(x)i =
Z
1

�1

(�g (x))s(x)dx �
Z b

a
cT A(�1; : : : ; �k)�(x)s(x)dx :

First, the transformed function �g (x) may have a wider support than [a; b] so that the

integration must be applied over this wider range given by [�ga; �gb]. Second, outside the

interval, the approximation might be poor and this error could be transformed into the

interval [a; b] by the interpolation equation A�.

However, if the transformation �g(�1; : : : ; �k) is limited to a compact range of transforma-

tions f�g(�1; : : : ; �k)j �1 2 R1; � � � ; �k 2 Rkg where Ri is a closed interval over the parameter

space, it is possible to overcome these two problems. This is done by applying the integration

over a wider interval [aint; bint] � [a; b] and approximating  (x) over [aapp; bapp] � [aint; bint].

If the integration interval [aint; bint] is chosen such that it includes the interval [�ga; �gb] under

any permissible transformation (i.e. under the compact range of transformations) then the

�rst problem is eliminated. Moreover, by choosing the approximation interval such that

[�gaapp; �gbapp] includes the integration interval under any permissible transformation, the sec-

ond problem is solved.

The new intervals can easily be found by applying the transformation and its conjugate

directly on [aint; bint] and on [a; b] respectively:

aint = min
�i2Ri

f�g(�1; � � � ; �k)ag ; bint = max
�i2Ri

f�g(�1; � � � ; �k)bg (8)

aapp = min
�i2Ri

fg(�1; � � � ; �k)aintg ; bapp = max
�i2Ri

fg(�1; � � � ; �k)bintg (9)

For example, assume the permissible transformations consist of all the translations gtx(� )

where tx 2 [�d; d] (see Figure 4). In this case, the integration interval will be [aint; bint] =
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aint b intaapp bappa b

d d

approximated function
actual function

Figure 4: A function (solid line) with a compact support [a; b]. The function is approximated

(dotted line) over a wider interval [aapp; bapp] outside of which the approximation might

be poor. The integration of this approximation is performed over the integration interval

[aint; bint]. Note that if the approximated function is x-translated by �d to d units, the

approximation is always precise within the integration interval.

[a�d; b+d] and the approximation interval is [aapp; bapp] = [a�2d; b+2d]. In the case where

the translation parameter is tx 2 [0; d], the integration interval will be [aint; bint] = [a; b+ d]

and the approximation interval [aapp; bapp] = [a � d; b + d]. Note that if the equivariant

measuring functions are cyclic over [aapp; bapp] it is possible to take advantage of the repetitive

behavior of the approximated function cT�. Replicas of the approximated function are tiled

in the spatial domain. In this case, the second problem mentioned above only occurs when

a neighbor replica is transformed into the integration interval. To overcome this problem, it

is enough to approximate the �lter kernel only over the integration interval.

Using the new approximation  (x) � cT�, approximated over [aapp; bapp], the transformed

function �g  (x) is now well approximated over the integration interval [aint; bint] whatever

the transformation as long as it is permissible. Therefore it is possible to approximate the

inner-product h�g ; si within this range:R
1

�1
(�g(�1; : : : ; �k)  (x))s(x) dx =

R bint
aint

(�g(�1; : : : ; �k)  (x))s(x) dx

� cTA(�1; : : : ; �k)
R bint
aint

�(x)s(x) dx

= cTA(�1; : : : ; �k)f

where the �rst equality holds since �g(�1; : : : ; �k)  (x) is zero outside [aint; bint] for all �1; : : : ; �k

within the operating range. This implies that the measuring functions f�ig can be treated

as compactly supported functions whose values are zero outside the integration interval.

Note, that although the function is approximated over [aapp; bapp] it is enough to store the

approximation only over the integration interval.

Figure 5 shows several translations of a Gaussian having s.t.d.=3 (upper row) and their
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corresponding approximations using 10 sets of measuring functions fsin(kx); cos(kx)g (lower
row). The measuring functions are equivariant with respect to x-translation and the trans-

lations of the approximated Gaussian were calculated using the interpolation equation. The

Gaussian has a standard-deviation (s.t.d.) of 3 units and the translations were performed

over a bounded range of parameters (from 0 to 15 units, i.e. up to 5 s.t.d's). The Gaussian is

approximated over an interval such that all translations of the Gaussian are e�ectively zero

outside this interval. In this case, the approximation interval was [0; 60] since we used the

repetitive behavior of the cyclic measuring functions. As demonstrated by the graph the real

translations and the approximated translations are quite similar to each other. However, the

quality of the approximations depends on several factors:

� The number of equivariant measuring functions used to approximate the �lter kernel.

It is obvious that the larger the number of measuring functions used, the better the

approximation. Figure 6 shows the approximation of the same translated Gaussian,

now using only 5 sets of measuring functions. It can be seen that the approximation in

this case is poorer.

� The support of the �lter kernel in the canonical coordinates (where the transformation

resembles a translation). If the support is small, a large number of measuring �lters

is required in order to obtain a reasonable approximation. This stems from the fact

that functions that are equivariant with respect to a non-compact transformation group

have in�nite support (even if we use them as compact support functions). Therefore, a

large number of such measuring functions are necessary in order to compose a narrow

support �lter kernel. This is well knows in the Fourier domain where the support of

the transform is inversely proportional to the function's support. Figure 7 shows the

approximations of a translated Gaussian using the same number of measuring functions

as in Figure 5 (i.e. 10 sets of fsin(kx); cos(kx)g). However, in this case the s.t.d. of

the Gaussian is 1 unit. The degradation in the approximations is apparent.

� The amount of transformation. The measuring functions approximate the �lter kernel

in its original position:  � cT�. Since the measuring functions are equivariant,

�gcT� = cTA�, i.e. the approximation cT� is precisely transformed by the interpolation

equation. Therefore, the function d =  � cT� which is the di�erence between the real

kernel and its approximation, is transformed as well:

�gd = �g � cTA� :

As a result, the behavior of d depends solely on the characteristics of the transforma-

tion. If the conjugate transformation ensures that the energy of a transformed function
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remains unchanged, the quality of the approximation (i.e.
R
(�gd)2dxdy) will be constant.

This is the case for the the transformations listed in Table 1.

The constant quality of the approximation is demonstrated in Figure 8. The two graphs

show the sum of squared-di�erences (s.s.d.) between the original Gaussian and its

approximation versus various translations. The graphs show the s.s.d. for several cases.

In the right graph the s.s.d. is plotted for several Gaussians having di�erent s.t.d.

values. All of them were approximated with 4 harmonics. The left graph plots the

s.s.d. for di�erent numbers of harmonics. In all cases, the calculated s.s.d. is constant

for all permissible transformations. This behavior is demonstrated as well in Figure 10

which shows the s.s.d. of a Gaussian under scaling (see Figure 9 for details). Recall

that the s.s.d. values under scaling transformation e�s(e�x; y) are constant due to the

the coe�cient multiplication which compensates for the changes in the image energy.

Note, however, the di�erences between the graphs of Figure 10 and those of Figure

8. First, the s.s.d. plots starts to increase at high scale factor values. This result

hints that the approximation interval that has been used is too small with respect to

high scale factor values. Expanding it will 
atten the s.s.d. plots. Second, changing

the s.t.d. does not in
uence the approximation quality as it does in the translation

case. The reason for this phenomena is that changing the s.t.d. does not in
uence the

support of the function in the canonical coordinates (lnx). Hence, the di�erences in

the approximation are not signi�cant.

The necessity to bound the range of transformations does not arise if the transformation

group is compact. Rotation is an example of such a group since the rotation parameter is

bounded in [0; 2�). In a similar manner, a rotation of any polar separable function can be

interpolated by approximating its angular component by an equivariant space of sinusoids

in angular coordinates. This was recently proposed by Simoncelli and Farid [22] as a way of

constructing steerable wedge �lters.

Figure 11 reports the error in numerically approximating translates of a Gaussian by a set

of singular vectors using the method suggested by Perona [20]. The total error associated

with this scheme is less than the function approximation technique; singular vectors are

computed so as to minimize the total error
R
(�g � cT�)2dx dy d� . However, the maximum

error introduced for this technique can be higher than the above, especially for cases where a

large range of transformations is permissible. This can be seen by comparing Figure 11 with

Figure 8. Furthermore, in the function approximation method, the interpolation function

can be derived analytically. In Perona's scheme, however, the interpolation function are

computed numerically. This is a critical issue in motion estimation problems. Using an
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analytical interpolation equation, motion parameters can be solved analytically. In the

numerical approach, however, the motion parameters should be found using a search scheme.

The constant quality of the approximated �lter kernel is a big advantage of the function

approximation method. Using it, one can estimate the deviation of the approximation from

the original �lter kernel under any (permissible) transformation. If a higher accuracy is

required, additional measuring functions can be added to the approximation. The disadvan-

tage of this technique is twofold: First, it cannot be applied if an equivariant measuring space

does not exist for the given transformation. Second, it may be necessary to use a large num-

ber of measuring functions in order to get a reasonable approximation. The approximation

technique described in the next subsection tries to overcome these disadvantages.
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Figure 5: Upper row: Several translates of a Gaussian having s.t.d.=3. Lower row: The

translated Gaussians as approximated using 10 sets of fsin(kx); cos(kx)g with compact sup-

port.
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Figure 6: Upper row: Several translates of a Gaussian having s.t.d.=3. Lower row: The

translated Gaussians as approximated using 5 sets of fsin(kx); cos(kx)g with compact sup-

port.
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Figure 7: Upper row: Several translates of a Gaussian having s.t.d.=1. Lower row: The

translated Gaussians as approximated using 10 sets of fsin(kx); cos(kx)g with compact sup-

port.
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Figure 8: Error in approximating the Gaussian with fsin(kx); cos(kx)g. In the left graph

\order" indicates the number of measuring functions used in the approximation. In the right

graph, \sigma" refers to the standard deviation of the Gaussian.
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Figure 9: Upper row: A Gaussian with s:t:d = 3 and its scalings relative to the origin. The

scale factors are (from left to right) e�0:8; e�0:4; 1; e0:4. Lower row: The Gaussian and its

scalings as approximated with 15 sets of fsin(k lnx); cos(k lnx)g with compact support.
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Figure 10: Error in approximating the Gaussian with a set of fsin(k lnx); cos(k lnx)g. In the
left graph \order" indicates the number of measuring functions used in the approximation.

In the right graph, \sigma" refers to the standard deviation of the Gaussian.
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Figure 11: Error in numerically approximating translates of a Gaussian by a set of singular

vectors that correspond to the nth largest singular values of the singular value decomposition.

In the left graph, \order" refers to the number of singular vectors used. In the right graph,

\sigma" represents the standard deviation of the Gaussian.
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Interpolation Approximation. In contrast with the previous method which approxi-

mates the �lter kernel with an equivariant measuring space, the following technique approx-

imates the equivariant space itself. If � is a vector of measuring functions, it is equivariant if

�Li� = Bi�. Approximating the equivariant measuring space means that the above equality

is not precise i.e. �Li� � Bi�. On one hand we aim to minimize the equivariant approxima-

tion error Espace = j�Li��Bi�j2 but on the other hand we would like to minimize the kernel

function approximation Efunc = jcT�� j2. In the previous technique, Espace was zero since

we approximated  with a fully equivariant measuring space. In the following technique

Efunc is zero, however, the equivariance criterion is relaxed. What is the consequence of

approximating equivariant spaces? Since �Li� � Bi� it follows that �gi� � eBi�i�, meaning

that the interpolation equation is now approximated and not precise.

Assume at this point that we are dealing with a one parameter transformation group g(� )

with the conjugate generator �L. We construct a vector of measuring functions as follows:

� = ( ; �L ; �L2 ; : : : ; �Ln�1 )T

Using it, the equivariant equation can be approximated:

�L� � B� where B =

0
BBBBBBB@

0 1
. . .

. . .

. . . 1

0

1
CCCCCCCA

The approximation error stems from the nth equation where the term �Ln�1 is equated to

zero which is not necessarily true. The matrix B is in Jordan form having one n� n block

with a corresponding eigenvalue � = 0. The interpolation equation for � is approximated

using B:

�g� � eB�� where eB� =

0
BBBBBB@

1 � 1
2!
� 2 :

1 � :

: :

1

1
CCCCCCA
;

The �rst equation in this system is the interpolation equation for  : �g(� ) = (eB��)1 where

subscript 1 refers to the �rst entry in the vector. It is easy to see that this equation gives

the nth order Taylor expansion of �g(� ) about � = 0. Therefore, similar to the expansion,

the higher the order (dimension of �) the better the approximation.

The situation with multi-parameter groups is analogous. The vectorial function � is

composed of the following sets of measuring functions:

S0 =  
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S1 = f�LiS0g
...

Sn�1 = f�LiSn�2g

and the associated Bi's are generated accordingly. Care should be taken in the multi-

parameter as well as in the one-parameter groups that the set of generated measuring func-

tions will not include linearly dependent functions.

Figure 12 shows the s.s.d. of a translated Gaussian using several of its derivatives. The

error is extremely small for translations of several units, but increases rapidly for farther

translations. Therefore, this technique is appropriate only for small transformations. In

fact, translations of a kernel function with �nite support cannot be approximated beyond

the range of support of the original function; all the derivatives outside the support vanish,

and any linear combination of these derivatives is zero. Therefore the radius of convergence of

the Taylor expansion for such a function is at most the range of the support. The Gaussians

presented in our examples are subject to the same problem due to their similarity to compact

support functions. As a result, the approximation error increases for smaller s.t.d. as shown

in Figure 12.

The Gaussian and its derivatives have been widely used in computer vision. In motion

estimation, Manmatha and Oliensis [16] suggested a method for extracting the local a�ne

deformations of an image using Gaussians and its derivatives. Recently, Liu et. al. [15] pro-

posed a method of estimating optical 
ow using Hermite polynomials (which are derivatives

of a Gaussian) in three dimensions. Earlier on, the usefulness of Gaussians and its derivatives

in representing local geometry have also been recognized [13, 26, 27].

In the following examples, interpolation equations for the �lter kernel  = cos(y)G(�)

were approximated, where G is a two-dimensional Gaussian. In these examples � = 2:5. The

interpolation equation was calculated for a 5-parameter transformation including: x-scaling,

y-scaling, x-translation, y-translation and rotation. All the generators �Li applied to  yield

a linear sum of terms of the form fxkyl cos(y)G(�); xkylsin(y)G(�)g. Therefore, in these

examples � was composed of such terms up to the 3rd order. All together, 18 terms were

used in the measuring vector. Figures 13-17 show several one parameter transformation

sub-groups. Figure 18 demonstrates interpolations for a two-parameter sub-group.

36



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

translation distance

sq
ua

re
d 

di
ffe

re
nc

es

order=3

order=4

order=5

order=6

approximation by various derivatives

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

translation distance

sq
ua

re
d 

di
ffe

re
nc

es

sigma=3.0

sigma=5.0

sigma=7.0

sigma=9.0

approximation by 4 derivatives for various s.t.d.

Figure 12: Error in approximating the Gaussian with several of its derivatives. In the left

graph \order" indicates the highest derivative used in the approximation. In the right graph

\sigma" refers to the standard deviation of the Gaussian.

Figure 13: The function  = cos(x)G(2:5) and several of its translations as approximated

by the interpolation approximation. The translations are (left to right) 0, 0.75, 1.5, 2.25,

and 3 units in the x direction.

Figure 14: The function  = cos(x)G(2:5) and several of its translations as approximated

by the interpolation approximation. The translations are (left to right) 0, 0.75, 1.5, 2.25,

and 3 units in the y directions.

Figure 15: The function  = cos(x)G(2:5) and several of its scalings as approximated by the

interpolation approximation. The scale factors are (left to right) e�0:3, e�0:15, 1, e0:15, and

e0:3 in the x coordinate.
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Figure 16: The function  = cos(x)G(2:5) and several of its scalings as approximated by the

interpolation approximation. The scale factors are (left to right) e�0:3, e�0:15, 1, e0:15, and

e0:3 in the y coordinate.

Figure 17: The function  = cos(x)G(2:5) and several of its rotations as approximated by the

interpolation approximation. The rotations are (left to right) 0.1, 0.2, 0.3 and 0.4 radians.

Figure 18: The function  = cos(x)G(2:5) and several of its two-parameter transformations

�gr(�1)�gty(�2) . The transformations are rotations of (left to right) -0.2, -0.1, 0, 0.1, 0.2

radians and y-translations of (bottom up) -1.5, -0.75, 0, 0.75, 1.5 units.
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8 Motion Estimation using Equivariance Spaces

In our framework, the steerability problem is expressed as a forward (or interpolation) prob-

lem where measurable features of a transformed image are interpolated from a set of features

measured in the original image. This interpolation is performed using the interpolation equa-

tion f̂ = A(�1; � � � ; �k)f where f and the motion parameters �1; � � � ; �k are known. This forward
problem is easy to solve once the interpolation equation is constructed; it only requires the

assignment of the known parameters into the interpolation equation. Motion estimation,

on the other hand, is regarded as an inverse (or estimation) problem where the motion

parameters are estimated given measured features f and f̂ from the original and the trans-

formed images. The complexity and robustness of the estimation depends on the nature of

the interpolation matrix A(�1; � � � ; �k) and in most cases requires a non-linear minimization

process.

Motion estimation, in this framework, is not restricted to in�nitesimal changes between

images; we consider �nite transformations as well. However, as stated, we are dealing only

with transformations that are Lie groups. In the cases where the entire motion of the image

cannot be modeled by a transformation group, motion estimation is applied to local neigh-

borhoods of the image. The local neighborhood is commonly called the estimation window

within which the motion is assumed to be characterized by a particular transformation group.

For every estimation window in the image, we try to �t motion parameters with respect to

the transformation group.

8.1 The Estimation Window

The size of the estimation window plays an important role in the estimation process. In order

to construct a �lter kernel whose support is appropriate for the estimation window, several

equivariant measuring functions are linearly composed as explained in the previous section.

If the real motion of the image is similar to the given transformation group then the size of

the window can be expanded and a small number of equivariant measuring functions will be

required for constructing the �lter kernel. However, in most cases, the actual motion of the

image is more complex than any transformation group, and the estimation window must be

contracted. Recall, that the smaller the window size, the larger the number of measuring

functions required.

Another decision which one should make is what transformation group to choose as the

motion model. If the group has a large number of degrees of freedom (large number of pa-
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rameters) then complex motions can be approximated by it, and accordingly, the estimation

window can be expanded. However, the more 
exible the transformation group, the more

restricted its equivariant measuring functions. For example, the equivariant measuring func-

tions for the translation+rotation group are the monomials fxpyqg (see Table 2). Composing

a �lter kernel with these functions may required many measuring functions. However, this

group has three degrees of freedom and is more 
exible in approximating complex motions

than the translation group alone.

In Phase-based motion estimation techniques [6, 8, 7] the translations between two im-

ages are estimated by the phase change of two quadrature pairs applied to the two images.

In practice, two equivariant measuring functions having B = diag(�; ��) are used. These

measuring functions have in�nite support. Since the real transformation is more complex

than simple translation, the phase-based approaches bound the support of the measuring

function by a Gaussian envelope (estimation window) with the hope that this will not in
u-

ence the results. However, it is impossible to contract the width of the Gaussian envelope

very much due to what is called the \window problem". The \interpolation equation", in

this case, translates the modulation of the measuring functions but leaves its envelope un-

changed. This, of course, adds error to the true interpolation equation which increases as we

contract the envelope. In our scheme, however, the envelope as well as the modulation are

transformed by the interpolation equation. Therefore, the window problem is not introduced

and the size of the approximation window can be adjusted as required. The price we pay for

contracting the approximation window is that many equivariant measuring functions must

be used to compose the narrow support �lter kernel.

8.2 Solving for the Motion Parameters

Assume that a set of �lter kernels  i; i = 1; � � � ; k are chosen to �nd a one-parameter

transformation between two images. These kernels are approximated by a linear set of

equivariant measuring functions � (possibly having limited supports) as explained in the

previous section:

 i = cTi � :

The �rst step in the motion estimation process is to apply the measuring functions to the

two images obtaining two sets of measured features:

f = h�; s(x; y)i ; f̂ = h�; g(� )s(x; y)i :

Since the measuring functions are equivariant the measured features are related by the

interpolation equation: cTi f̂ = cTi e
B�f i = 1; � � � ; k. Composing these equations for all the
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kernels gives a system of k equations:

C f̂ = CeB�f where C = [c1; c2; � � � ; ck]T : (10)

The motion parameter of the associated estimation window is obtained by solving for � in

this system, . In general, this is a non-linear system and some gradient minimization process

must be used. Assume that we have an initial guess � 0 of the motion parameter. Expanding

eB� about the initial guess gives:

eB� = eB�0 + (� � � 0)BeB�0 +O(� � � 0)2

Substituting the linear terms of this expansion into Equation 10 yields a linear system:

C f̂ � C(eB�0 + (� � � 0)BeB�0)f

De�ning:

a
:
= C(f̂ � eB�0f) ; b

:
= CBeB�0f such that a � b(� � � 0)

the solution for � using standard least-squares minimization gives:

� = � 0 +
bTa

bTb
: (11)

This process is repeated with the current solution serving as the new guess until convergence.

However, the convergence of this process to the correct solution is not guaranteed and it

depends on the quality of the initial guess. The same solution can be applied to multi-

parameter groups as well. The multi-parameter version of Equation 10 is:

C f̂ = C�f (12)

where �
:
= �k

i=1e
Bi�i. If �� is a vector of motion parameters: �� = (�1; � � � ; �k)T and for any

X(�� ) the notation X0 refers to X(� = � 0), the least-squares minimization of Equation 12

gives:

�� = �� 0 + (bTb)�1bTa :

where in this case:

a = C(f̂ ��0f) and b = C[B1�
0f ; � � � ; Bk�

0f ] :
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8.3 Uniqueness of the Solution

In many cases, the motion parameters �1; �2; � � � ; �k can not be estimated uniquely, even

theoretically. This occurs when the interpolation equation f̂ = A(�1; �2; � � � ; �k)f is not

monotonic, i.e. di�erent transformation parameters might give the same value for f̂ . As

mentioned above the interpolation matrix A is a matrix representation of the transformation

group. This means that there is a mapping � between the transformation group and the

matrix group such that

�(�g(�1; �2; � � � ; �k)) = A(�1; �2; � � � ; �k) :

If this mapping is one-to-one (isomorphism), the estimated transformation is unique. If the

mapping is many-to-one (homomorphism), the estimation is not unique and the interpreta-

tion of the multiple solutions is ambiguous. In the case of homomorphism, we must apply

heuristic considerations and choose one solution among many possible. However, the quality

of the heuristic decision will improve if we reduce the ambiguity of the solution.

For example, assume we use two equivariant measuring functions �0 = (sin(k0x); cos(k0x))
T

to �nd the x-translation between two images. Since the B matrix associated with �0 is

B =

0
@ 0 k0

�k0 0

1
A

the interpolation equation relating the measured features is:

f̂ = A(� )f = eB�f where eB� =

0
@ cos(k0� ) sin(k0� )

� sin(k0� ) cos(k0� )

1
A :

The mapping from gtx(� ) to A(� ) is a homomorphism, where the motion parameter � , de�ned

on the real line, is mapped into a compact range: � ! � mod 2�
k0
. Therefore, in this case,

A(� ) = A(� + 2�n
k0
) and the solution for the motion parameter can be found up to modulus

2�
k0
. However, the ambiguity of the solution can be reduced if we choose measuring functions

with lower frequencies �1 = (sin(k1x); cos(k1x))
T where k1 < k0. This indeed will broaden

the distance between two possible solutions, however, the robustness of the solution will

decrease. To see that, recall that around the correct solution: df̂
d�

= B f̂. Using this equation

and assuming a small change in f̂ is denoted by �f̂, we obtain: �f̂ = B f̂�� . This relation

shows that the error in the approximated � for a �xed error in f̂ is inversely proportional to

the norm6 of B. Therefore, if �1 is chosen instead of �0, the ambiguity of the solution will

be reduced, but its sensitivity to noise will be more severe.

6The norm of a matrix B is �max(B
TB) where �max refers to the highest eigen-value.
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To overcome this trade o�, it is possible to include several frequencies in the measuring

functions and solve the entire system simultaneously. For example, in our case we compose

a larger set of measuring functions: � = (�T
0 ;�

T
1 )

T . It is easy to see that the interpolation

matrix for � is a result of a mapping � ! 2�
gcd(k0;k1)

where gcd(k0; k1) stands for the greatest

common divisor of k0 and k1. Of course, gcd(k0; k1) � k0; k1 so the ambiguity of the solution

is reduced without deteriorating the robustness of the solution.

9 Invariants in Equivariant Spaces

Consider an n-dimensional equivariant feature space F and a k-parameter transformation

group such that f̂ = A(�1; : : : ; �k) f . Recall that the orbit of an image Og(s) is de�ned by

Og(s) = fg(�1; : : : ; �k) s j 8 �1; : : : ; �kg which is the set of images obtained by transforming

the original image in all possible ways. Likewise, the orbit of a feature is de�ned by Og(f) =

fA(�1; : : : ; �k) f j 8 �1; : : : ; �kg. For a k-dimensional group and n measuring functions, this

orbit forms a k-dimensional manifold (or surface) in the n-dimensional feature space. Indeed,

there is a whole family of k-dimensional orbits �lling the n-dimensional feature space, one

for each class of images whose members are transformed versions of each other.

Invariant Functions. Two features in the feature space, computed from a pair of images

related by a transformation in the group, lie on the same k-dimensional manifold.7 Hence,

functions of features that are constant over each manifold are invariant over the transforma-

tion, i.e. h(f̂) = h(f) = c for f̂ ; f on the same manifold. In general, determining functions

which are invariant over arbitrary families of manifolds is di�cult. However, the manifolds in

equivariant feature spaces are far from arbitrary. This is because the matrix A(�1; : : : ; �k) is

actually a k-dimensional matrix group, i.e. a group whose elements are matrices and whose

composition and inverse operators are matrix multiplication and inverse respectively. As a

result, we can employ yet another theorem from Lie theory which states that a function is

invariant under a transformation group if and only if applying any in�nitesimal generator

of the group to it results in zero identically [19]. In our case, this implies that a function

h(f̂) = h(e�kBk � � � e�1B1 f) is invariant under g(�1; : : : ; �k) if and only if

�Li h(f̂ ) = Bi f̂ � rh = 0 (13)

7Two completely di�erent images could have features on the same manifold or even the same features.

The likelihood of this depends on how well the measuring space approximates both images. This is not a

problem if we can be certain that the two images will be transformed versions of each other, which is true

in several applications.
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where rh = ( @h
@f1
; : : : ; @h

@fn
)T and 1 � i � k.

Another way to approach the problem of constructing invariants in the feature space

is through implicit representations of the feature orbits. The interpolation function f̂ =

A(�1; : : : ; �k) f can be seen as a parametric description of the feature manifold Og(f) where

�1; : : : ; �k are the parameters. An implicit representation of this manifold gives a description

which is independent of the parameters and thus invariant with respect to the transformation.

The manifoldOg(f), in this case, is represented by a set of functions fpk(f̂ ) = 0g whose variety
coincides with the manifold itself. In particular, pk(f̂) = pk(f) and thus these functions are

invariant under g(�1; : : : ; �k). Actually, any function h(p1(f̂); p2(f̂); � � �) is constant over the
orbit Og(f) and therefore invariant under the transformation group as well.

There are several techniques for implicitizing parametric descriptions. For example, a set

of polynomials can be implicitized by constructing the Groebner bases of their ideal with a

particular ordering [4]. The use of Groebner bases to generate invariants in computer vision

have also been recently suggested by Werman and Shashua [28]. Looking at invariants

as implicit representations of manifolds also allows one to determine the total number of

independent invariants that can be generated. Since Og(f) is a k-dimensional manifold in

an n-dimensional space, n � k implicit equations are required to describe the manifold.

This corresponds to the maximum number of independent invariants that can be generated.

Note, that the space dimension, n, must be bigger or equal than k, the dimension of the

manifold embedded in it. However, if n = k, the invariants h(f̂) that are constant over the

feature manifold Og(f) are constant all over the n-dimensional space, and thus uninteresting.

Therefore, generating interesting invariant for a k-dimensional group requires as least k + 1

measured features.

Example 12 : Consider the measuring space �(x) = (x
2

2!
; x; 1)T that is equivariant under

translation such that �Ltx � = B� where

B =

0
BBB@

0 1 0

0 0 1

0 0 0

1
CCCA and f̂ =

0
BBB@

1 � �2

2!

0 1 �

0 0 1

1
CCCA f = A(� ) f :

By Equation 13, a function h(f̂1; f̂2; f̂3) is invariant under translation if and only if

B f̂ � rh = f̂2
@h

@f̂1
+ f̂3

@h

@f̂2
= 0:

Since we are dealing in a one dimensional manifold in a three dimensional space, two in-

dependent solutions exist. These are the two functions: h1(f̂) = f̂3 and h2(f̂) = f̂1 � 1
2

f̂2
2

f̂3
.
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Actually, any function h?(h1; h2) is invariant with respect to translation. It is straightforward

to verify that h2 is an invariant:

f̂1 � 1
2

f̂2
2

f̂3
= f1 + �f2 +

�2

2!
f3 � 1

2

(f2+�f3)
2

f3

= f1 + �f2 +
�2

2!
f3 � 1

2
(
f2
2

f3
+ � 2f3 + 2�f2)

= f1 � 1
2

f2
2

f3
:

Example 13 : Let �(x) = (cos kx; sin kx)T be a measuring space that is equivariant under

translation such that �Ltx � = B� where

B =

0
@ 0 �k
k 0

1
A :

By Equation 13, a function h(f1; f2) is invariant under translation if and only if

B f̂ � rh = �kf̂2 @h
@f̂1

+ kf̂1
@h

@f̂2
= 0:

Solving, we get h(f̂1; f̂2) = h?(f̂21 + f̂22 ) for any function h?, in particular for the identity

function. Hence, we have veri�ed that the sum of squares of the inner-product of any pair

of the Fourier basis functions with a signal is invariant under translation. Furthermore, all

invariants can be written in terms of f̂21 + f̂22 .

Example 14 : One of the simplest ways to construct an invariant is to construct two

closely related measuring spaces �1;�2 using matrices Bi and �BT
i such that �Li �1 = Bi �1

and �Li �2 = �BT
i �2. Recall that the interpolation matrix for �1;�2 are

A1(�1; : : : ; �k) = e�kBk � � � e�1B1;

A2(�1; : : : ; �k) = e��kB
T
k � � � e��1BT

1

respectively. As a result, the inner-product of the feature vectors f̂1; f̂2 corresponding to

�1;�2 is an invariant:

f̂T1 f̂2 = (A1(�1; : : : ; �k) f)
T A2(�1; : : : ; �k) f

= (e�kBk � � � e�1B1 f)T e��kB
T
k � � � e��1BT

1 f

= fT e�1B
T
1 � � � e�kBT

k e��kB
T
k � � � e��1BT

1 f

= fT f

where the third equality follows from the identity (eA)T = eA
T

. This method is similar to

the technique of generating invariant kernels suggested by Segman et. al. [21].
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Numerous techniques for computing invariants on features like points and derivatives

have been proposed by researchers in the past [18]. In general, many of these techniques can

be readily applied to construct invariants on equivariant feature spaces since these spaces are

�nite-dimensional. The method suggested above is very similar to the one used by Moons

et. al. [17] to construct invariants on points and derivatives. Another simple method of

constructing polynomial invariants was recently proposed by Keren [12] in which instead

of seeking to determine all the possible invariants, the author describes a procedure for

symbolically deriving polynomial invariants of a given order. The method can also be em-

ployed in this context to derive polynomial invariants over feature vectors f (or even over

prolongations, i.e. multiple feature vectors).

Invariant Feature Detection. Invariant feature or pattern detectors are used to identify

speci�c patterns like edges and corners in an image independent of some family of image

transformations. Within the framework, image invariants are computed in two-stages:

1. A set of equivariant measuring functions is chosen so that their inner-products with

the given pattern will yield a characteristic signature that can be used to identify or

discriminate it from other patterns.

2. A su�cient number of independent invariant functions over the feature space are com-

puted so that the characteristic signature can be identi�ed regardless of the pattern

transformation.

Generating invariants in this manner has the advantage that one can construct equivariant

measuring spaces that are rich enough to fully characterize a given pattern. This is done

independent of the invariant functions which are only derived later. Since the dimension

of the feature space is �nite and relatively small, we can easily compute all the invariants

associated with the given equivariant measuring space. Furthermore, traditional point-based

techniques for computing invariance can also be used.

10 Equivariance in Point Coordinates

Throughout this paper measured features are calculated from grey scales values of an image.

In many cases however, the available information in an image is a set of point coordinates

rather than grey-scale values. The presented framework for steerability, motion estimation,

and invariants can easily be generalized to include features measured from point coordinates.
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In order to see the connection between a signal s(x; y) and point coordinates, assume that

each point pi = (xi; yi) is represented by a delta function located at (xi; yi):

�i(x; y) = �(x� xi; y � yi) :

Following this representation, a \signal" is a sum of delta functions representing the entire

set of points:

s(x; y) =
X
i

�i(x; y)

The rest of the treatment is similar to the signal case in all aspects. For example, a measured

feature is calculated as follows:

h�(x; y); s(x; y)i =
Z Z

�(x; y)s(x; y)dxdy =
Z Z

�(x; y)
X
i

�i(x; y)dxdy =
X
i

�(xi; yi) :

Using the point based \signal", it is possible to �nd invariants and steerable functions for a

set of points undergoing some transformation. Moreover, the motion parameters between two

sets of points can be estimated without the necessity of �nding correspondence between the

sets (i.e. mutual matching between points in the �rst image to points in the second image).

Clearly, the correspondence problem is di�cult to solve (having exponential complexity),

and it is an important advantage if it is possible to avoid it.

11 Conclusions

We have presented a common theoretical framework for steerable �lter design, motion esti-

mation and invariant feature detection based on the theory of Lie groups. Within the frame-

work, the notion of steerability is extended to arbitrary transformation groups. Furthermore,

a canonical decomposition of all �nite-dimensional steerable bases for any one-parameter and

any multi-parameter Abelian transformation group was proposed. The completeness of the

canonical decomposition implies that the steerability of any �lter with respect to such groups

depends on whether it can be described in terms of the canonical bases. Filters steerable

under various subgroups (not necessarily Abelian) of the a�ne group were also provided.

Two methods for approximating the steerability of functions over a restricted range of trans-

formations were suggested to deal with �lters that cannot be steered exactly. In all cases,

the interpolation functions are analytic and can easily be derived.

Motion estimation was discussed as dual to the steerability problem. In the presented

framework the so called \window problem" does not arise, therefore, the neighborhood within
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which the motion parameters are calculated can be arbitrarily small. Guidelines for the

robustness and the uniqueness of the estimated solution were detailed.

Using the framework, image invariants are computed in two stages: (1) a �nite-dimensional

equivariant measuring space is constructed, (2) invariants over the corresponding equivariant

feature space are derived. Since invariance is computed over the �nite-dimensional feature

space, point-based techniques for computing invariance can be employed.

Finally, a common framework for steerable �lter design, motion estimation and invariant

feature detection facilitates the transfer of results between the di�erent problems more read-

ily. Indeed, the framework presented in this paper draws from the results of several di�erent

areas. The treatment of motion estimation and invariant feature detection within a common

framework also allows for novel integrations of the two.
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A Conjugate Generators

The conjugate generators of a group G is the set of generators f�Lig of the conjugate group
�G such that the following identity with G holds:

h�; g(�1; : : : ; �k) si = h�g(�1; : : : ; �k) �; si

The operator g is a member of the group G while �g is a member of the conjugate group

�G. The right hand side of the above equation can be derived from the left by a change

of variables which involves inverting the operator g(�1; : : : ; �k). However, since G is a Lie

group, the following theorem shows that the conjugate generators can be obtained directly

from the generators of G.

Theorem 4 (Conjugate Generators) : Let fLig be the generators of the transformation

group G. The di�erential operators f�Lig satisfying

h�;Li si =
D
�Li �; s

E
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are the conjugate generators of the group, i.e. are the generators of the conjugate group �G,

such that

h�; g(�1; : : : ; �k) si = h�g(�1; : : : ; �k) �; si

Proof 4: Since G is a group, we can rewrite the action of g(�1; : : : ; �k) on s(x; y) via the

exponential map:

h�; g(�1; : : : ; �k) si =
D
�; e�1L1 � � � e�kLk s

E
=

D
�; (1 + �1L1 + � � �) e�2L2 � � � e�kLk s

E
=

D
(1 + �1 �L1 + � � �) �; e�2L2 � � � e�kLk s

E
=

D
e�1

�L1 �; e�2L2 � � � e�kLk s
E

...

=
D
e�k

�Lk � � � e�1�L1 �; s
E

where the substitution h�; (Li)
m si =

D
(�Li)

m �; s
E
is used repeatedly. The di�erential opera-

tors f�Lig are the generators of the group e�k �Lk � � � e�1 �L1 which is, by de�nition, the conjugate

group �G. Hence, f�Lig are also the conjugate generators of G. 2

The conjugate generators �Li can be derived from their corresponding generators Li using

the two identities:

1. h�; c si = hc �; si for any function c in the integration variables.

2.
D
�; @

@x
s
E
= �

D
@
@x
�; s

E
and, similarly,

D
�; @

@y
s
E
= �

D
@
@y
�; s

E
.

The �rst identity is obvious from the de�nition of the inner-product. The second identity

can be proven using integration by parts:

D
�; @

@x
s
E

= � R R �(x; y)( @
@x
s(x; y)) dxdy

=
R
�(x; y)s(x; y)j1

�1
dy � R R

( @
@x
�(x; y))s(x; y) dxdy

= � R R ( @
@x
�(x; y))s(x; y) dxdy

= �
D

@
@x
�; s

E

where the third equality holds because the signal s(x; y) is bounded.

The conjugate generators for the transformations listed in Table 1 follow immediately:

1. h�;Ltxsi =
D
�;� @

@x
s
E
=
D

@
@x
�; s

E
and hence �Ltx =

@
@x
.

By the same derivation it follows that �Lty =
@
@y
.

2. h�;Lrsi = �
D
�; y @

@x
s
E
+
D
�; x @

@y
s
E
= �

D
y�; @

@x
s
E
+
D
x�; @

@y
s
E
=
D

@
@x
(y�); s

E
�
D

@
@y
(x�); s

E
and hence �Lr = y @

@x
� x @

@y
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3. h�;Lsxsi = �h�; si �
D
�; x @

@x
s
E
= �h�; si �

D
x�; @

@x
s
E
= �h�; si +

D
@
@x
(x�); s

E
=

�h�; si+
D
(�+ x @

@x
�); s

E
=
D
x @
@x
�; s

E
and hence �Lsx = x @

@x
.

By the same derivation it follows that �Lsy = y@y.
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