The Optimization Complexity of Constraint Satisfaction Problems

Sanjeev Khanna* Madhu Sudan'

Abstract

In 1978, Schaefer [12] considered a subclass of languages in NP and proved a “ dichotomy theorem”
for this class. The subclass considered were problems expressible as “ constraint satisfaction problems”,
and the “dichotomy theorem” showed that every languagein thisclassiseither in B, or is NP-hard. This
result isin sharp contrast to aresult of Ladner [9], which shows that such a dichotomy does not hold for
NP, unless NP=P.

We consider optimization version of the dichotomy question and show an analog of Schaefer’s result
for this case. More specifically, we consider optimization version of “constraint satisfaction problems’
and show that every optimization probleminthisclassiseither solvableexactlyin B, orisMAX SNP-hard,
and hence not approximable to within some constant factor in polynomial time, unless NP=P. This result
does not follow directly from Schaefer’s result. In particular, the set of problems that turn out to be hard
inthis case, is quite different from the set of languages which are shown hard by Schaefer’s result.

*sanj eev@ heory. stanf ord. edu. Department of Computer Science, Stanford University, Stanford, CA 94305. Supported by a
Schlumberger Foundation Fellowship, an OTL grant, and NSF Grant CCR-9357849.
fmadhu@wat son. i bm com I1BM Thomas J. Watson Research Center, PO. Box 218, Yorktown Heights, NY 10598.

1 Introduction

The deepening connection between the existence of probabilistically checkable proofs and optimization problems
along with efforts to unify the syntactic and computational views of approximation, has resulted in a significant
improvement in our understanding of the approximability of optimization problems and in identifying the structure
of canonica hard problems. The recent chain of work has both resolved the approximability of a large number of
important combinatorial problems and has helped identify natural complete problems for the approximation classes.
At thisjuncture it seems reasonable to ask if we can characterize which optimization problems are easy and which
ones hard; and to ask if there are any characteristic features of hard problems that can be isolated.

Of course, no compl ete characterizationispossible: Rice' stheorem alowsoneto disguisean optimization problem
so cleverly that it would be undecidabl e to determineif agiven problemis NP-hard or polynomial timesolvable. Even
if the problem is presented in itssimplest form — it may be the case that the answer need not be “easy" or “NP-hard”
— thisis established by atheorem of Ladner [9].

In the presence of such barriers one is forced to weaken one's goals and focus one's attention onto a restricted
subclass of NPO (optimization problems within NP) in the hope that some features of hard problems can be isolated
from this subclass. Our choice of the appropriate restriction comes from the work of Schaefer [12] who carried out
an anaogous investigation in the case of decision problems. Schaefer considered a restriction of NP that he called
“satisfiability problems’ and successfully characterized every probleminthis(infinite) class asbeing easy (polynomia
time decidable) or hard (NP-hard). Herefersto thisasa* dichotomy theorem”, sinceit partitionsthe class of problems
studied into two polynomial time equivalent classes. A further study along these lines— looking for other dichotomic
classes within NP — was carried out more recently by Feder and Vardi [5]. They suggest severa promising classes
which may show such a dichotomy.

The works of Schaefer and Feder and Vardi motivates our class of optimization problems which we refer to
as “constraint satisfaction problems’. These are problems obtained from Schaefer’s class of decision problemsin
a natural fashion and are a subset of the problems in the class MAX SNP. Recdl that MAX SNP is the class of
optimization problems defined by Papadimitriou and Yannakakis [10] based on syntactic prescriptions. All problems
in this class are known to be approximable to within some constant factor, and the complete problemsin the class are
known to be non-approximablein polynomial time to within some constant factor, unless NP=P [3].

In what followswe describe this class formally and present our main result.

1.1 De€finitionsand Main Result

We start with the definition of a constraint.

Definition 1 [Constraint] A congtraint is a function f : {0,1}* — {0,1}. We say f is satisfied by an assignment
s € {0,1}*if f(s) = 1. Werefer to k asthe arity of the constraint f. A constraint with no satisfying assignmentsis
called unsatisfiable.

Often we apply a congtraint f of arity k to asubset of & variables from alarger set. In such cases we think of f as
aconstraint on the larger set of variables.

Definition 2 [Constraint Application] Givenn booleanvariables X3, ..., X, andaconstraint f of arity &, andindices
i1,...,4 € {1,...,n}, thepair (f, (i1,...,4)) isreferred to as an application of the constraint f to X1, ..., X,.
Anassignment X; = s; fori € {1,...,n} ands; € {0, 1} satisfiestheapplicationif f(s;,,..., s,) = 1.

Definition 3 [Constraint Set] Aconstraintset 7 = {f1,. .., fi} isafinitecollection of constraints.

Definition 4 [Constraint Satisfaction Problem (CSP(F))] Givenaconstraint set F, the constraint satisfaction problem
CSP(F) is defined as follows:

*In the terminology of Feder and Vardi, these should really be referred to as constraint satisfaction problems over a boolean domain. We drop
the suffix in the interest of readability.

INPUT : A collection of m constraint applications of theform {(f;, (¢1(j), - - -, i, (;))) }]=1, On boolean variables
X1, X2, ..., X, where f; € F and k; isthearity of f;.

OBJECTIVE : Find a boolean assignment to X;’s so as to maximize the number of applications of the constraints
f1, ..., fm that are satisfied by the assignment.

Notice that the above definition gives anew optimization problem for every family F. Schaefer’s class of decision
problems SAT(F) can be described interms of the above as: The members of SAT(F) areall theinstances of CSP(F)
whose optimum eguals the number of applied constraints (i.e., al constraints are satisfiable). Schaefer’s dichotomy
theorem essentially shows that the only families F for which SAT(F) isin B, isif al congtraintsin F are either
satisfied by theall zeroes assignment, the all ones assignment or all constraints are linear constraints over GF(2) or al
constraints are Horn clauses.

Our main result asserts that a dichotomy holds for CSP(F) as well. However the characterization of the easy
functions and the hard ones is quite different. (In particular, many more constraint sets 7 are hard now.) In order to
describe our result fully we need some more definitions.

Definition 5 Given a constraint set F, the constraint set 7’ isthe set of constraints f in F which are satisfiable.

It iseasy to seethat for any constraint set F, an instance of CSP(F) can be mapped to an instance of CSP(F”), such
that the objective function value is preserved on each input assignment. Hence our characterizations will essentialy
be characterizations of CSP(F").

Definition 6 [i-validfunction] For i € {0, 1},afunction f of arity k iscalled i-validif it issatisfied by the assignment

i*.

Definition 7 [Minterm] Given a function f on variable x4, . .., zx, a collection of literals z;,, . . ., x4, T, . . ., %5,
iscalled a mintermof f if it satisfiesthe following properties:

1. Anyassignment s = s1, ..., si, which satisfiess;, = --- =s;, = lands;, = --- = s;,, = O satisfies f.
2. Thecollection is minimal with respect to property (1).

Definition 8 [Positive and Negative Minterms] A minterm of f which consists only of unnegated variablesis called a
positive minterm. A minterm which consists only of negated variablesis called a negative minterm.

Definition 9 [2-Monotone Function] A function £ is called 2-monotone if it has at most two minterms such that at
most one of themis positive and at most one is negative.

The main result of this paper is as stated bel ow.

Theorem 1 The problem CSP(F) is always either in P or is MAX SNP-hard. Furthermore, itisin P if and only if
one of the following conditionsistrue:

1. Every f € F'isO-valid.
2. BEvery f € F'is1-valid.

3. BEvery f € 7’ is 2-monotone.

Thistheorem followsfrom Lemmas 1,2,3 and 14. A second result that followseasily as aconsequence of Schaefer’s
result and our notion of approximation preserving reductionsis the following:

Theorem 2 For every constraint set F either SAT(F) is easy to decide, or there exists ¢ = ¢z > 0 such that it is
NP-hard to distinguish satisfiableinstances of SAT(F), frominstances where 1 — ¢ fraction of the constraints are not
satisfiable.

Schaefer’s result characterizes which function families are easy to decide and which ones are hard; the result is
described in the Appendix A for sake of completeness.

Discussion The main feature of Theorem 1 is that the family of constraint sets which lead to hard problems is
significantly larger than in Schaefer’s case. This is not surprising given that problems such as 2SAT and Linear
systems over GF(2) are easy problems for the decision version and the maximization versions are known to be hard,
even to approximate [10, 2]. Nevertheless, the set of problems that are shown to be easy is extremely small. CSP(F)
for F which is O-valid or 1-vaid is redly a trivial problem; leaving only the class of 2-monotone functions as
somewhat interesting. But the class of functions with such properties seems to be really small and we know of no
natural optimization problemswhich have thisproperty. Thus, wefed, that the correct way to interpret Theorem 1isto
think of it as saying that almost every constraint satisfaction problem is hard (of course, we don’t mean that formally),
and that a result showing that an optimization problem can be expressed as a constraint satisfaction problem should
essentially be viewed as hinting at a negative result (while on the surface thiswould actually be a positive result).

Another interesting feature of the above result is that the dichotomy holds for two different properties — the
complexity and the approximability — simultaneously. Easy problems are easy to compute exactly and the hard ones
arehard to even approximate. The middleregime— problemsthat are easy to approxi mate but hard to compute exactly
— areruled out. This may be somewhat surprising initially, but becomes inevitable once the form of approximation
preserving reductions we use here becomes clear. Essentialy all reductions we use are exactly those that might be
used for exact optimization problems. In fact the ease with which these reductions apply isthe reason why Theorem 2
falls out easily from this paper.

The technical aspects of the proof of the dichotomy theorem may be of some independent interest. In order to
prove such a theorem, one needs to find succinct characterizations of what makes a function, say 2-monotone, as well
as asuccinct proof when afunctionis not 2-monotone. We find such a characterization, in Lemma 8, which turns out
to be useful in establishing Theorem 1.

Onetechnical nit-picky point that we face in thisstudy istheroleof constantsand repetitionsin CSP. In particular,
if f € F,should f|y,=0 givenby f|s=o(x2, ..., 2x) = f(0, 22, ..., x}) asobeconsidered amember of the constraint
set? Similarly should f/(z1, #2) = f(z1,..., 21,22, ..., x2) beconsidered amember of the constraint set. Allowing
for these repetitions and constants makes the analysis much easier; however they may change the complexion of the
problems significantly. For instance given a set of linear equalities of the form). x; = O, it istrivial to find an
assignment which satisfies al the equations— namely theall 0’sassignment. However once oneisalowed tofix some
variablesto the constant 1, the problem no longer remains easy. In thispaper initially we assume we can use constants
and repetitions to make our analysis simpler. Later we remove the assumptions — and Theorem 1 and Theorem 2 is
shown without the use of any constantsor repetition. In fact, in the process we remove aminor irritant from Schaefer’s
proof which actually needed to use repetitions.

Other Work It has recently been brought to our attention that Theorem 1 has been independently discovered by
Creignou [4].

Rest of this paper Sections 2 and 3 are devoted to proving Theorem 1. In Section 4 we show how to prove
Theorem 2. Finaly, in Section 5, we show how to eliminate the replication assumption from Schaefer’s proof.
2 Polynomial Time Solvability
From this section onwards we omit the notation 7' and assume we have a constraint F such that 7 = F”.
Lemmal The problem CSP(F) isin Pif each f; € F isO-valid.

Proof: Set each variableto zero; this satisfies all the constraints.]
Lemma2 The problem CSP(F) isin Pif each f; € F is1-valid.

Proof: Set each variableto one; thissatisfies al the constraints. [|

Lemma3 The problem CSP(F) isin Pif each f; isa 2-monotone function.

Proof: We reduce the problem of finding the maximum number of satisfiable constraintsto the problem of finding
the minimum number of unsatisfied constraints. This problem, in turn, reduces to the problem of finding s-¢ min-cut
in directed graphs. 2-monotone constraints have the following possibleforms: () z;,z;,...x;,, (b) Z;; 73,...7;,, and
(© xiy%iy...%5, + Tj; Tj,...T;, Wherep, ¢ > 1.

Construct a directed graph & with two special hodes F and 7" and a vertex x; corresponding to each variablein
the input instance. Now we proceed as followsfor each of the above classes of constraints:

o For acongtraint C' of the form (a), create a new node e and add an edge from each x; to e of cost co and a
unit cost edgefromec to 7.

e For aconstraint C of theform (b), create a new nodee: and add an edge of cost oo from e to each #; and an
edge from F' to e¢ of unit cost.

e Finaly, for acongraint C' of the form (c), we create two nodes e and ez and connect ec to z;,, #;,, . .. and
connect ec to z;,, z;,, . . . as described above and replace the unit cost edges from £ and to 7' by a unit cost
edgefromeq toec.

Using the correspondence between cuts and assignments which places vertices corresponding to true variables on
the 7" side of the cut, we find that the cost of a minimum cut separating 7" from #', equals the minimum number of
constraintsthat can be left unsatisfied.]

3 Proof of MAX SNP-Hardness

In this section we prove that a constraint set which is not entirely 0-valid or entirely 1-valid or entirely 2-monotone
givesa MAX SNP-hard problem. The main MAX SNP-hard problem which we reduce to any of these new onesis
the MAX CUT problem shown to be MAX SNP hard by Papadimitriou and Yannakakis [10]. Initialy we consider
the case where we are essentially allowed to repeat variables and set some variablesto true or false. This provides a
relatively painless proof that if afunctionisnot 2-monotone, then it providesaMAX SNP hard problem. We then use
the availability of functionsthat are not 0-valid or 1-valid to implement constraints which force variables to be 1 and
0 respectively, aswell asto force variablesto be equal. Thiseventually alows usto use the hardness lemma. Wefirst
start with some notation.

3.1 Notation

Given an assignment s to an underlying set of variables, 7 (s) denotesthe set of positionscorresponding to variables set
to zero and O(s) denotesthe set of positionscorresponding to variables set to one. Moreformally, given an assignment
s = $182...8n t0 X1, X5, ..., Xp,, Where s; € {0,1}, wehave Z(s) = {i | s;, = 0tand O(s) = {¢ | s; = 1}. The
notation s[0 — *] denotesthe set of al assignments s’ such that O(s) C O(s’) and similarly, s[1 — «] denotes the set
of al assignments s’ such that Z(s) C Z(s').

Definition 10 [Unary Functions] The functions7'(X) = X and F(X) = X are called unary functions.

Definition 11 [XOR and REP Functions] The function f(X,Y) = X @& VY is called the XOR function and its
complement function, namely X = Y, is called the REP function.

Definition 12 [C'-closed Function] Afunction f iscalled C'-closed (or complementation-closed) if for all assignments
5, f(5) = F(3).

Definition 13 [v-Consistent Set] A set V' of positionsis v-consistent for a constraint f iff every assignment with all
variables occupying the positionsin V' set to value v is a satisfying assignment for f.

3.2 a-Implementationsand MAX SNP-Hard Functions

We next describe the primary form of a reduction which we use to give the hardness results. As pointed out by
Papadimitriou and Yannakakis, in order to get hardness of approximation results, the reductions used need to satisfy
certain approximation preserving features. Here we show how to implement agiven function f using afamily of other
functions F, so as to be useful in approximation preserving reductions.

Definition 14 [«-Implementation] An instance of CSP(F) over a set of variables X = {X1,X5,...,X,} and Y =
{",Y>,...,Y,} is called an a-implementation of a boolean function f(X), where « is a positive integer, iff the
following conditions are satisfied:

(a) no assignment of valuesto X andY can satisfy more than « constraints,

(b) for any assignment of values to X such that f()?) istrue, there exists an assignment of values to Y such that
precisaly o constraintsare satisfied,

(c) for any assignment of values to X such that f ()5) isfalse, no assignment of values to Y can satisfy more than
(o — 1) congtraints, and finally

(d) for any assignment to X which does not satisfy f, there always exists an assignment to Y such that precisely
(o — 1) congtraints are satisfied.

Ve refer tothe set X as the function variables and the set Y as the auxiliary variables.

Thus a function f 1-implements itself. We will say that CSP(F) implements function f if it a;-implements
f for some constant ;. The following lemma shows that the a-implementations of functions compose together.
The criteria for “implementation” given above are somewhat more stringent than used normally. While properties
(1)-(3) are perhaps seen elsewhere, property (4) is somewhat more strict, but turns out to be critical in composing
implementations together.

Lemma4 [Composition Lemma] If CSP(F;) can a;-implement a function f, and CSP(F,) can a,4-implement a
functiong € F;, then CSP({F; \ {4}) U F,) can a-implement the function f for some constant «.

Proof: Let 5 be the number of occurrences of a constraint involving the function ¢ in the CSP(F;) instance
aq-implementing f, then clearly, by replacing each occurrence of ¢ by its avp-implementation, we obtain a CSP({F ¢ \
{g}) U F;) instance which a-implements f for & = a1 + (a2 — 1). [

The MAX SNP-hardness of MAX CUT impliesthat CSP({XOR}) is MAX SNP-hard and hence the below :
Lemmab If CSP(F) can implement the XOR function, then CSP(F) isMAX SNP-hard.
Lemma6 CSP({f, T, F'}) canimplement the XOR functionif f iseither thefunction X + Y or XY or X + Y.

Proof: If f = X + VY, then theingtance { (X, Y'), f(X,Y), F(X), F(Y)} isa3-implementation of X & Y'; if
f = XY, thentheinstance { f(X,Y), f(Y, X)} isa l-implementation of X ¢ Y; and finaly, if f = X + Y/, then
{f(X,Y), f(X,Y), T(X), T(Y)} isa3-implementationof X & Y. |

Lemma?7 CSP({f,T, F'}) canimplement the REP functionif f isthefunction X + Y.

Proof: Theinstance {f(X,Y), f(X,Y), F(X),T(Y)} isa3-implementation of the function REP. [|

3.3 Characterizing 2-Monotone Functions

In order to prove the hardness of a constraint which is not 2-monotone, we require to identify some characteristics of
such congtraints. The following gives a characterization, which turns out to be useful.

Lemma8 [Characterization Lemma] A function f isa 2-monotone function if and only if all the following conditions
are satisfied:

(a) for every satisfying assignment s of f, either s[1 — x] or s[0 — «] isa set of satisfying assignments,

(b) if V1 is1-consistent and V; is 1-consistent for f, then V4 N V5 is 1-consistent, and

(c) if V1 isO-consistent and V5 is 0-consistent for f, then V3 N V4 is O-consistent.

Proof: We usethefact that afunction can be expressed in DNF form asthe sum of itsminterms. For a2-monotone
function thisimpliesthat we can express it as a sum of two terms. Every satisfying assignment must satisfy one of the
two terms and this gives Property (a). Properties (b) and (c) are obtained from the fact that the function has at most
one positive and one negative minterm.

Conversdy, if afunctionisnot 2-monotone, then it either has aminterm which isnot monotone positiveor negative
or it has more than one positive (or negative) minterm. In the former case, the function will violate Property (), and
in the latter one of Properties (b) or ().]

Observe that a 2-monotone function is always either O-valid or 1-valid or both.

3.4 MAX SNP-hardnessof Non 2-M onotone Functions

We now use the characterization from the previous subsection to show that if oneis alowed to “force” constants or
“repetition” of variables, then the presence of non-2-monotone constraint gives hard problems. Rather than using the
ability to force constants and repetitions as a binding requirement, we use them as additional constraintsto be counted
as part of the objective function. Thisishelpful later, when wetry to remove the use of these constraints.

Lemma9 [Hardness Lemma] For any function f which is not 2-monotone, CSP({ f, T, F, REP}) can implement the
function XOR.

The proof of thislemmais non-trivial and appearsin Appendix B due to space limitations.

3.5 Implementing the REP Function

We now start on the goal of removing the use of the unary and replication constraints above. In order to do so we
use the fact that we have available to us functions which are not 0-valid and not 1-valid. It turnsout that the case in
which the same function is not O-valid and not 1-valid and further has the property that its behavior is closed under
complementation (i.e., f(s) = f(s)) issomewhat special. We start by analyzing this case first.

Lemma 10 [Replication Lemma] Let f be a non-trivial function which is C'-closed and is neither 0-valid nor 1-valid.
Then an instance of CSP({ f}) can implement the REP function.

Proof: Let k denotethearity of f and let ko and &, respectively denote the maximum number of 0'sand 1'sin any
satisfying assignment for f; clearly ko = k1. Now let Sx = {X1, Xy, ..., Xor} and Sy = {¥1,Y%, ..., Yo } betwo
digoint sets of 2k variables each. We begin by cresting an instance Z of CSP({f}) as follows. For each satisfying
assignment s, there are (%) (,%*.) constraintsin Z such that every i-variable subset of Sx appearsin place of 0'sin
Sx and every (k —) variable subset of Sy appearsin place of 1'sin the assignment s, where i denotes the number of
O'sins.

Clearly, any solution which assigns identical values to all variables in Sx and the complementary value to al
variablesin Sy, satisfies al the constraintsinZ. Let 7 and O respectively denote the set of variables set to zero and
one respectively. We claim that any solutionwhich satisfies all the constraints must satisfy either 7 = Sx or 7 = Sy

To seethis, assume without loss of generality that |Sx N Z| > k. Thisimpliesthat |Sy NO| > k or elsethereexists
acongtraint in Z with all itsinput variables set to zero and is hence unsatisfied. Thisin turn impliesthat no variable
in Sx can take value one; otherwise, there exists a constraint with k; + 1 of its inputs set to one, and is unsatisfied
therefore. Finally, we can now conclude that no variable in Sy takes value zero; otherwise, there exists a constraint
with ko + 1 of itsinputs set to zero and is unsatisfied therefore. Thus, 7 = Sx. Anaogoudy, we could have started
with the assumption that |Sx N O] > k and established 77 = Sy . Hence an assignment satisfies al the constraintsin
7 iff it satisfies either the condition Z = Sx or the condition Z = Sy.

We now augment theinstanceZ of CSP({ f }) asfollows. Consider aleast hamming weight satisfying assignment s
for f. Without loss of generdity, we assumethat s = 10°1¢. Clearly then, s’ = 0°+11¢ isnot a satisfying assignment.
Since f is C'-closed, we have the following situation :

10

/—L ,_L
00..0 11.1

00..0 11.1
11...1 00...0
11...1 00...0

Consider the constraints f(X,X]_,Xz, ...,Xp,Y]_,Yz, ...,Yq) and f(Y, X1, X5, ...,Xp,Y]_,Yz, ...,Yq). If X =1,
then to satisfy the congtraint f(X, X1, Xo, ..., X, Y1, Y5, ..., Y,), wemust have Z = Sx. Otherwise, wehave X = 0
and then to satisfy the constraint (X, X1, X», ..., X,, Y1, Y, ..., Y;) wemust have Z = Sy. In ether case, the only
way we can al'so satisfy the constraint f, (Y, X1, Xp, ..., X, Y1, Yz, ..., Y,) isby assigning Y an identical value. Thus
these set of constraints «-implements the function X = Y where « is simply the total number of constraints; all
congtraints can be satisfied iff X = Y and otherwise, there exists an assignment to variablesin Sx and Sy such that
precisely o — 1 constraints are satisfied.

o
~

R OPRFr O

0
1
1
0

(‘JJ|03|('JJ
~

3.6 Implementing the Unary Functions

If the function(s) which is (are) not 0-valid and 1-valid is (ar€) not closed under complementation, then they can be
used to get rid of the unary constraints. Thisis shown in the next lemma.

Lemmall [Unary Lemma] Let fo and f; be two non-trivial functions, possibly identical, which are not 0-valid and
1-valid respectively. Thenif neither fo nor f1 isC-closed, an instance of CSP({ fo, f1}) can implement both the unary
functionsT'(.) and F'(.).

Proof: We will only sketch the implementation of function 7'(.); the analysis for the function F(.) isidentical.
Now suppose neither f, is C-closed, v € {0,1}. We begin by considering an instance each of CSP({fo}) and
CSP({f1}), say Zp and 71 respectively. Both of these instances are constructed in a manner identical to the instance
7 4 above. Now we argue that any solutionwhich satisfies al the constraintsin Zp and Z;, must set al variablesin Sx
to O and dl variablesin Sy to 1.

So we have two functions fy and f; such that neither is C-closed. Suppose |Sx N O] > k, then we must have
|Sy N O] > k. To seethis, consider asatisfying assignment s such that fo(s) = O; theremust exist such an assignment
since fp isnot C-closed. Now if |Sy N Z| > k, then clearly at least one constraint corresponding to s is unsatisfied -
the oneinwhich the positionsin O(s) are occupied by thevariablesin (Sy N Z) and the positionsin 7 (s) are occupied
by thevariablesin (Sx N O). Thuswemust have |Sy N O| > k. Butif wehaveboth |Sx N O] > k and |Sy NO| > k,
then thereis at least one unsatisfied constraint in the instance Z; since f1 isnot 1-valid. Thusthiscase cannot arise.

So we now consider the case |Sx N Z| > k. Then for constraintsin Zy to be satisfied, we must once again have
|Sy NO| > k; elsethereisaconstraint with all itsinputs set to zero and ishence unsatisfied. Thiscan now be used to
concludethat Sy N Z = ¢ asfollows. Consider a satisfying assignment with smallest number of ones - this number
is positivesince fp isnot O-valid. If we consider all the constraints corresponding to this assignment with inputsfrom

Sy and Sx N Z only, itis easy to see that there will be at least one unsatisfied constraint if Sy N 2 # ¢. Hence each
variablein Sy isset tooneinthiscase. Finaly, using the constraints on the function f; whichisnot 1-valid, it iseasy
to concludethat infact 7 = Sx .

Now let s = 1071¢ be aleast hamming weight satisfying assignment for fo; p, ¢ may be zero but s contains at least
asingleoneas fp isnot O-valid. Then the constraint fo(X, X1, Xo, ..., X, Y1, Y5, ..., Y,) can be satisfied iff X = 1.
Thus al the constraintsin Zo and Z; are satisfied aong with above congtraint iff X = 1 and otherwise, we can till
satisfy al the constraintsinZo and Z;. Hence thisisindeed an implementation of thefunctionZ'(.). Thefunction F'(.)
can be implemented in an ana ogous manner.

[|

3.7 REPHepsImplement MAX SNP-Hard Functions

Lemma 12 Suppose f isanon-trivial functionwhichisneither O-valid nor 1-valid. Then CSP({ f, REP}) implements
the XOR function.

Proof: Without loss of generdity, assume s = 017 is a satisfying assignment for f. We consider two dis-
joint set of varisbles Sx = {X1,X5,...,X,} and Sy = {¥1,Y>.....Y,}. Consider the CSP({f, REP}) instance
which consists of constraints REP(X1, X;) for ¢ € [2..p], constraints REP(Y7,Y;) for j € [2..¢] and the constraint
f(X1, X, ., X3, Y1, Y2, . YY) Itisnow easy to verify that thisyieldsa (p + ¢ — 1)-implementation of the function

X1 &Y if s = 1707 is a satisfying assignment, and of the function X;Y; otherwise. Now an application of the
Composition Lemmayields the lemma.]

Corollary 1 Suppose f is a non-trivial function which is neither 0-valid nor 1-valid. Then CSP({f, REP}) is
MAX SNP-hard.

Proof: Immediately followsfrom Lemma 5 and Lemma 12 above.]

3.8 Unary FunctionsHelp Implement either REP or MAX SNP-Hard Functions

Lemma 13 Let f bea functionwhich isnot 2-monotone, Then CSP({ f, T, F'}) can implement either the XOR or the
REP function.

Proof: Since f is not 2-monotone and non-trivid, it must be sensitive to at least two variables. Consider the
boolean k-cube with each vertex s labeled by the functionvalue f(s); where k isthearity of function f. Let V; denote
the set of vertices labeled ¢, ¢ € {0, 1}. If |V;| < V1|, we claim that it must be the case that there exists a vertex
in V; which has at least two neighborsin V1_;. Thisisreadily seen using the expansion properties of the k-cube; any
set S of a most 2~ vertices must have expansion factor at least one. Furthermore, the expansion factor is precisdy
one only when the set S induces aboolean (k£ — 1)-cube. But thelater case can't arise since it would imply that f isa
single variable function. Hence there must exist avertex s € V; which has two neighborsin V;_;.

Let s; and s; be these two neighbors of s, differing in the i and the jm bit position respectively. Without loss of
generality, we may assumethat : = 1 and j = 2. Consider now the input instance which has a constraint of the form
F(X1, X2, Y1, Y2, ..., Vi _2) and constraints of the form T'(Y;) for each Y; appearing in O(s) N O(s1) N O(s2) and of
the form F'(Y;) for each Y; appearing in Z(s) N Z(s1) N Z(s2). It isnow easy to verify that this set of constraints
implements one of the functions X1 + Xo, X1 ¢ Xo, X1 + Xp, X1 + X 0r X1 & Xo. The former three implement
X1 ® X, whilethe later two implement the constraint X; = X». [|

The following is a straightforward corollary.

Corollary 2 Let f bea function whichisnot 2-monotone. Then CSP({ f, T, F'}) isSMAX SNP-hard.

Proof: If CSP({f, T, F'}) can implement the REP function, then the corollary follows using the Composition
Lemma, the Hardness Lemma and the Lemmas 5 and 7. Otherwise, it followsfrom Lemma 6.]

Lemmal4 If F isa congtraint set such that there exist (1) fo € F which is not O-valid, (2) f1 € F which is not
l-valid and (3) f> € F whichisnot 2-monotone. The CSP(F) is MAX SNP-hard.

Proof: If either f, or f1 isC-closed then using the Replication Lemma, we can implement the REP function and
using the Composition Lemma along with Lemma 12 alows to conclude that CSP({ fo, f1, f2}) implements XOR
function.

If neither fo nor f1 isC-closed, then using the Unary Lemma, CSP({ fo, f1, f2}) canimplement theunary functions
T(.) and F(.), and then using the Composition Lemma along with Lemma 13, we conclude that CSP({ fo, f1, f2})
implements either the XOR function or the REP function. In the latter case, we can use Lemma 12 to conclude that
CSP({ fo, f1, f2}) can implement the XOR function.

In either of the two situationsabove, we may conclude using Lemma 5 that CSP({ fo, f1, f2}) isMAX SNP-hard.

[]

4 Hardnessat Gap Location 1

It ispossibleto use a notion closaly related to a-implementation to conclude from Schaefer’s dichotomy theorem and
show that in the cases where SAT(F) in NP-hard to decide, it is actualy hard to distinguish satisfiable instances from
instances which are not satisfiable in a constant fraction of the constraints. Thisistermed hardness at gap location 1
by Petrank [11] who highlightsthe usefulness of such hardness resultsin other reductions.

An important characteristic of « implementation of a function f is that if we are given an assignment to the
function variables which does not satisfy f, it can dways be extended to the auxiliary variables such that precisely
(o« — 1) congtraints are satisfied. This is a useful feature in establishing the hardness results for problems such as
MAX 2-SAT which do not have hardness gaps located at 1. However, when dealing with problems with hardness
gaps located at 1, such as MAX 3-SAT, it suffices to use a somewhat different notion of «-implementations, called
weak a-implementations!. A weak «-implementation satisfies the condition (a)-(c) of the a-implementations and
the condition (d) is replaced by the constraint that the CSP(F) instance implementing it has precisely o constraints.
Clearly, weak «-implementations can be composed together and they preserve hardness gaps located at 1.

Itisnot difficult to verify that Schaefer’s proof isin fact based on weak «-implementationsof functions, and hence
onemay directly concludefrom hisproof that hisclass of NP-hard satisfiahility problemsareall infact MAX SNP-hard.
Thisyields Theorem 2.

5 Strengthening Schaefer’s Dichotomy Theorem

Schaefer’s proof of NP-hardnessin hisdichotomy theorem relieson the ability to replicate variableswithinaconstraint
application. We observe that to do so, it suffices to create a weak implementation of the function REP. Since given
aweak implementation, we can replace any p replicated copies of a variable X by p new variables X1, X5, ..., X,
and add constraints of the form REP(X1, X»), REP(X1, X3), ..., RER(X1, X,,). We now show how to creste a wesk
implementation of the REP function; we need adefinition :

Definition 15 [Weakly Positiveand Weakly Negative Functions] Afunctioniscalled weakly positive (weakly negative)
if it may be expressed as a CNF formula such that each clause has at most one negated (unnegated) variable.

Now Lemmas 10 and 11 show that CSP({ fo, f1, f2}), where f, isnot O-valid and f; isnot 1-valid, can be used to
create either aweak implementation of the function REP or aweak implementation of both unary functions7" and 7.
In the latter case, we can show the following lemma.

The name weak «-implementation is slightly misleading because this notion is simultaneously both weaker and stricter than the notion of
a-implementations.

Lemmal5 If f isnot weakly negative then CSP({ f, T, F'}) can weak implement either the function x & y, or the
function = 4+ y. Smilarly, if f is not weakly positive then CSP({f, T, F'}) can weak implement either the function
r &y, or thefunctionz + v.

Proof: We only provethefirst part - the second part follows by symmetry. We know that f has a maxterm S with
at least two positiveliterals. We consider the function f” whichis f existentialy quantified over the variables not in
S. Let 21 and =, bethetwo positiveliteralsin S. Set al other variablesin S to the value which does not make S true.
Then the assignment z; = z, = 0 isanon-satisfying assignment. The assignmentsz; = 0# zyand z1 # 0= x»
must be satisfying assignments ny the definition of maxterm. While the assignment =3 = x> = 1 may go either way.
Depending on thiswe get either thefunctionz & y or = + v.]

Corollary 3 If f, isnot weakly positive and f3 is not weakly negative, then CSP({ f2, f3, T\, I' }) weak implements (at
gap 1) the XOR function.

Since the SAT(F) problems that we need to establish as NP-hard in Schaefer’s theorem satisfy the condition that
there exists fo, f1, f2, f3 € F such that fo isnot 0-vaid and f; isnot 1-valid, f, is not weakly positive and f3 is not
weakly negative, we conclude that we can weak implement the XOR function. This, in turn, can be used to create a
weak implementation of thefunction REP(x, y) by using the constraints {z & =z, y @ =} for some auxiliary variable z.
Thus replication can be eliminated from Schaefer’s proof.

6 Conclusions

Weinitiated astudy of the structure of a subclass of NPO and established an approximation dichotomy theorem for this
class— in the process, giving a simple characterization to distinguish "easy" problemsfrom the"hard" problems. Our
dichotomy theorem strongly used the syntactic structure of problemsin thisclass to identify a sharp division between
the "easy" versus "hard" problems. We feel that it further stresses the role of syntactic prescriptionsin the study of
approximability. Thiswas the fundamental insight on which the class MAX SNP was defined by Papadimitriou and
Yannakakis[10]. Recent work of Khanna, Motwani, Sudan and Vazirani [7] aso stresses thisrelationship, where they
used syntactically defined classes to identify a structured core of hard problems for approximation classes such as
APX, log-APX and poly-APX.

A natural question arising from thiswork isthat of identifying larger classes which exhibit such dichotomieswith
respect to approximability. The syntactic optimization class MAX SNP contains our class of constraint satisfaction
problemsasasubclass. Aninteresting feature of thisclassisthat every problemin thisclassis approximableto within
aconstant factor and there exist problemsin thisclasswhich are MAX SNP-hard. Isit then the case that every problem
inthisclassiseither in P or MAX SNP-hard ? Feder and Vardi [5] recently initiated a systematic investigation to find
the largest subclass of NP which exhibits a dichotomy for the decision version of the problems. Their effortsidentify
a subclass of SNP (the decision class underlying MAX SNP), caled MMSNP - monotone, monadic SNP with no
inequalities. This subclass contains constraint satisfaction problemsover arbitrary domains and hence strictly contains
Schaefer’s class. They provide strong evidence that this class may in fact exhibit a P versus NP-hard dichotomy. We
suspect that it isprobably the case that the optimization anal og of theclass MM SNP exhibitsaPversusMAX SNP-hard
dichotomy.

Inarecent related work, Khanna, Sudan and Williamson [8] have studied the optimi zation complexity of finding an
assignment with maximum number of ones such that it satisfiesevery constraintinagiven SAT(F) problem. Thisclass
contains many natural optimization problems such as MAX CUT and MAX CLIQUE as its members. Surprisingly,
this class exhibits an approximation hierarchy with essentialy five levels. It contains problems which are in P or
MAX SNP-hard or n“-hard and and yet does not have any intermedi ate approximation classes sandwiched in between.

10

Acknowledgments

We would like to thank Tomas Feder for providing us with atimely copy of the full version of [5] and to Christos
Papadimitriou for pointing usto [4]. We would liketo thank David Williamson for numerous discussions.

References

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]
[10]

[11]
[12]

S. ARORA AND S. SAFRA. Probabilistic checking of proofs: A new characterization of NP, Proceedings of the
33rd Symposium on Foundations of Computer Science, |EEE, 1992.

S. ARORA, L. BABAI, J. STERN AND Z. SWEEDYK. The Hardness of Approximate Optimain Lattices, Codes, and
Systems of Linear Equations. Proceedings of the 34th Symposium on Foundations of Computer Science, | EEE,
1993.

S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SzEGEDY. Proof verification and the intractability of
approximation problems. Proceedings of the33rd Symposium on Foundationsof Computer Science, | EEE, 1992.

N. CReIGNOU. A Dichotomy Theorem for Maximum Generalized Satisfiability Problems. To appear in JCSS,
December 1995.

T. FEDER AND M. VARDI. Monotone monadic SNP and constraint satisfaction. Proceedings of the 25th Annual
Symposium on Theory of Computing, ACM, 1993.

U.FEIGE, S. GOLDWASSER, L.LOVASZ, S. SAFRA, AND M. SZEGEDY. A pproximating cliqueisal most NP-compl ete.
Proceedings of the 32nd Symposium on Foundations of Computer Science, |IEEE, 1991.

S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI. On Syntactic versus Computational Views of Approx-
imation. Proceedings of the 35th Symposium on Foundations of Computer Science, |EEE, 1994

S. KHANNA, M. SUDAN, AND D.P. WiLLIAMSON. The Optimization Complexity of Structure Optimization Prob-
lems. In preparation.

R. LADNER. On the structure of polynomial time reducibility. Journal of the ACM, 22:1, pp. 155-171, 1975.

C. PAPADIMITRIOU AND M. YANNAKAKIS. Optimization, approximation and complexity classes. Journal of
Computer and System Sciences, 43, pp. 425-440, 1991.

E. PETRANK. The Hardness of Approximation: Gap L ocation. Computational Complexity, v. 4, 1994.

T. SCHAEFER. The complexity of satisfiability problems Proceedings of the 10th Annual Symposium on Theory
of Computing, ACM, 1978.

Appendix

A Schaefer’s Theorem
We state Schaefer’s dichotomy theorem in this section.

Definition 16 [Affing] A functionissaid to be affine if it may be expressed as a system of linear equations of the form
Zle z; = 0and Zle z; = 1(i.e it evaluates to oneiff the input variables satisfy the given equation system); the
addition operation being modulo 2.

Schaefer’s dichotomy theorem may be stated as follows. Let F be afinite set of boolean functions. Then SAT (F)
isalways either in P or NP-hard. Furthermore, itisin P if and only if one of the following conditionsistrue;

Every f € FisO-vdid.

Every f € Fisl-vadid.

Every f € F isweskly positive.
Every f € F isweakly negative.
Every f € Fisdffine.

© o A~ w N P

Every f € F ishijunctive (i.e. expressible asa CNF formulawith at most 2 literals per clause).

B Proof of Lemma 9 (The Hardness Lemma)

Proof: We prove this by using the Characterization Lemma for 2-monotone functions. Let k denote the arity of f. If
f isnot 2-monotone, it must violate one of thethree conditions(a), (b) and (¢) stated in the Characterization Lemma.

Suppose f violatesthe property (a) above. Then for some satisfying assignment s, there exist two assignments sg
and sy suchthat 7 (s) C Z(so) and O(s) C O(s1), but f(so) = f(s1) = 0. Without loss of generality, we assume that
s =0P19, 59 = 0PT%19~% and s; = OP~%19+°, Thuswe have the following situation :

F0
p—a a b g—>b
~N NN N N
s 00.0 00.0 11.1 11.1 1
so 00..0 00..0 00..0 11.1 0
s; 00..0 11..1 11.1 11.1 0
s, 00..0 11..1 00..0 11..1 _

Observe that both « and b are non-zero. We consider the CSP({ f, T', F, REP}) instance with the following set of
congtraintson variables X, Xo, ..., Xg :

congraints F'(X;) for1 < ¢ < (p — a),

congtraints REP(X,_q41, Xp—ats) fOr2 <i < a,

congtraints REP(X, 11, Xp4i) for2 < i <,

congraints7'(X;) for (p+a+b+1) <i <k, and

the constraint f(X]_, Xo, .oy Xk)

It isnow essy to verify that for & = (k — 1), thisinstance a-implementsthefunction X, _ o416 Xp41 if f(s2) = 1
and X,_,41X, 41, otherwise. The claim now followsimmediately from Lemma 6.

Next suppose f violatesthe property (b) above. Then there exists an unsatisfying assignment s such that s setsall
variablesin V3 NV, to 1, and at least one variablein each of V1 \ (V1 N V2) and V2 \ (V1 N 172) to befalse. Consider
one such unsatisfying assignment s. Without loss of generality, we have the following situation :

Vi

V2
VI\O(s) Vinv, V2\O(s)
—~N— —N— —~N—
s 00.0 11..1 11..1 11..1 00..0 00..011..1
———— S S ST N o
P 9 r s t U v

We consider the CSP({ f, T, F, REP}) instance with the following set of constraintson varigbles X1, X», ..., X}, :
e constrantsREP(X1, X;) for2 <i < p,

e constrants7T'(X;) for (p+ 1) <i<(p+qg+r+s),

o constraints REP(X, g 4rts+1, Xptgtrtsti) fOr2<i <t,

o congrants F(X;)for(p+g+r+s+t+1) <i<(p+qg+r+s+t+u),

o constrants7T'(X;) for (p+qg+r+s+t4+u)<i<(p+q+r+s+t+u+v),andfinaly

o theconstraint f(X1, X2, ..., Xp) wherek = (p+ g+ r+s+t+u+v).

Itis now easy to verify that for o = (k — 1), thisinstance a-implementsthe function X1 + X,y g4r4s+1. Again,
the claim now followsimmediately from Lemma 6.
Finally, the case in which f violatesthe property (c¢) above, can be handled in an anal ogous manner.]

