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Abstract

In 1978, Schaefer [12] considered a subclass of languages in NP and proved a “dichotomy theorem”
for this class. The subclass considered were problems expressible as “constraint satisfaction problems”,
and the “dichotomy theorem” showed that every language in this class is either in P, or is NP-hard. This
result is in sharp contrast to a result of Ladner [9], which shows that such a dichotomy does not hold for
NP, unless NP=P.

We consider optimization version of the dichotomy question and show an analog of Schaefer’s result
for this case. More specifically, we consider optimization version of “constraint satisfaction problems”
and show that every optimization problem in this class is either solvable exactly in P, or is MAX SNP-hard,
and hence not approximable to within some constant factor in polynomial time, unless NP=P. This result
does not follow directly from Schaefer’s result. In particular, the set of problems that turn out to be hard
in this case, is quite different from the set of languages which are shown hard by Schaefer’s result.
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1 Introduction

The deepening connection between the existence of probabilistically checkable proofs and optimization problems
along with efforts to unify the syntactic and computational views of approximation, has resulted in a significant
improvement in our understanding of the approximability of optimization problems and in identifying the structure
of canonical hard problems. The recent chain of work has both resolved the approximability of a large number of
important combinatorial problems and has helped identify natural complete problems for the approximation classes.
At this juncture it seems reasonable to ask if we can characterize which optimization problems are easy and which
ones hard; and to ask if there are any characteristic features of hard problems that can be isolated.

Of course, no complete characterization is possible: Rice’s theorem allows one to disguise an optimization problem
so cleverly that it would be undecidable to determine if a given problem is NP-hard or polynomial time solvable. Even
if the problem is presented in its simplest form — it may be the case that the answer need not be “easy" or “NP-hard”
— this is established by a theorem of Ladner [9].

In the presence of such barriers one is forced to weaken one’s goals and focus one’s attention onto a restricted
subclass of NPO (optimization problems within NP) in the hope that some features of hard problems can be isolated
from this subclass. Our choice of the appropriate restriction comes from the work of Schaefer [12] who carried out
an analogous investigation in the case of decision problems. Schaefer considered a restriction of NP that he called
“satisfiability problems” and successfully characterized every problem in this (infinite) class as being easy (polynomial
time decidable) or hard (NP-hard). He refers to this as a “dichotomy theorem”, since it partitions the class of problems
studied into two polynomial time equivalent classes. A further study along these lines — looking for other dichotomic
classes within NP — was carried out more recently by Feder and Vardi [5]. They suggest several promising classes
which may show such a dichotomy.

The works of Schaefer and Feder and Vardi motivates our class of optimization problems which we refer to
as “constraint satisfaction problems”�. These are problems obtained from Schaefer’s class of decision problems in
a natural fashion and are a subset of the problems in the class MAX SNP. Recall that MAX SNP is the class of
optimization problems defined by Papadimitriou and Yannakakis [10] based on syntactic prescriptions. All problems
in this class are known to be approximable to within some constant factor, and the complete problems in the class are
known to be non-approximable in polynomial time to within some constant factor, unless NP=P [3].

In what follows we describe this class formally and present our main result.

1.1 Definitions and Main Result

We start with the definition of a constraint.

Definition 1 [Constraint] A constraint is a function f : f0; 1gk ! f0; 1g. We say f is satisfied by an assignment
s 2 f0; 1gk if f(s) = 1. We refer to k as the arity of the constraint f . A constraint with no satisfying assignments is
called unsatisfiable.

Often we apply a constraint f of arity k to a subset of k variables from a larger set. In such cases we think of f as
a constraint on the larger set of variables.

Definition 2 [Constraint Application] Givenn boolean variablesX1; : : : ; Xn and a constraintf of arityk, and indices
i1; : : : ; ik 2 f1; : : : ; ng, the pair (f; (i1; : : : ; ik)) is referred to as an application of the constraint f to X1; : : : ; Xn.
An assignment Xi = si for i 2 f1; : : : ; ng and si 2 f0; 1g satisfies the application if f(si1 ; : : : ; sik) = 1.

Definition 3 [Constraint Set] A constraint set F = ff1; : : : ; flg is a finite collection of constraints.

Definition 4 [Constraint Satisfaction Problem (CSP(F))] Given a constraint setF , the constraint satisfaction problem
CSP(F) is defined as follows :

�In the terminology of Feder and Vardi, these should really be referred to as constraint satisfaction problems over a boolean domain. We drop
the suffix in the interest of readability.
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INPUT : A collection of m constraint applications of the form f(fj; (i1(j); : : : ; ikj(j)))g
m
j=1, on boolean variables

X1; X2; :::; Xn where fj 2 F and kj is the arity of fj .
OBJECTIVE : Find a boolean assignment to Xi’s so as to maximize the number of applications of the constraints

f1; : : : ; fm that are satisfied by the assignment.

Notice that the above definition gives a new optimization problem for every family F . Schaefer’s class of decision
problems SAT(F) can be described in terms of the above as: The members of SAT(F) are all the instances of CSP(F)

whose optimum equals the number of applied constraints (i.e., all constraints are satisfiable). Schaefer’s dichotomy
theorem essentially shows that the only families F for which SAT(F) is in P, is if all constraints in F are either
satisfied by the all zeroes assignment, the all ones assignment or all constraints are linear constraints over GF(2) or all
constraints are Horn clauses.

Our main result asserts that a dichotomy holds for CSP(F) as well. However the characterization of the easy
functions and the hard ones is quite different. (In particular, many more constraint sets F are hard now.) In order to
describe our result fully we need some more definitions.

Definition 5 Given a constraint set F , the constraint set F 0 is the set of constraints f in F which are satisfiable.

It is easy to see that for any constraint setF , an instance of CSP(F) can be mapped to an instance of CSP(F 0), such
that the objective function value is preserved on each input assignment. Hence our characterizations will essentially
be characterizations of CSP(F 0).

Definition 6 [i-valid function] For i 2 f0; 1g, a function f of arity k is called i-valid if it is satisfied by the assignment
ik.

Definition 7 [Minterm] Given a function f on variable x1; : : : ; xk, a collection of literals xi1; : : : ; xil; xj1; : : : ; xjm

is called a minterm of f if it satisfies the following properties:

1. Any assignment s = s1; : : : ; sk, which satisfies si1 = � � � = sil = 1 and sj1 = � � � = sjm = 0 satisfies f .

2. The collection is minimal with respect to property (1).

Definition 8 [Positive and Negative Minterms] A minterm of f which consists only of unnegated variables is called a
positive minterm. A minterm which consists only of negated variables is called a negative minterm.

Definition 9 [2-Monotone Function] A function f is called 2-monotone if it has at most two minterms such that at
most one of them is positive and at most one is negative.

The main result of this paper is as stated below.

Theorem 1 The problem CSP(F) is always either in P or is MAX SNP-hard. Furthermore, it is in P if and only if
one of the following conditions is true:

1. Every f 2 F 0 is 0-valid.

2. Every f 2 F 0 is 1-valid.

3. Every f 2 F 0 is 2-monotone.

This theorem follows from Lemmas 1,2,3 and 14. A second result that follows easily as a consequence of Schaefer’s
result and our notion of approximation preserving reductions is the following:

Theorem 2 For every constraint set F either SAT(F) is easy to decide, or there exists � = �F > 0 such that it is
NP-hard to distinguish satisfiable instances of SAT(F), from instances where 1� � fraction of the constraints are not
satisfiable.

Schaefer’s result characterizes which function families are easy to decide and which ones are hard; the result is
described in the Appendix A for sake of completeness.
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Discussion The main feature of Theorem 1 is that the family of constraint sets which lead to hard problems is
significantly larger than in Schaefer’s case. This is not surprising given that problems such as 2SAT and Linear
systems over GF(2) are easy problems for the decision version and the maximization versions are known to be hard,
even to approximate [10, 2]. Nevertheless, the set of problems that are shown to be easy is extremely small. CSP(F)

for F which is 0-valid or 1-valid is really a trivial problem; leaving only the class of 2-monotone functions as
somewhat interesting. But the class of functions with such properties seems to be really small and we know of no
natural optimization problems which have this property. Thus, we feel, that the correct way to interpret Theorem 1 is to
think of it as saying that almost every constraint satisfaction problem is hard (of course, we don’t mean that formally),
and that a result showing that an optimization problem can be expressed as a constraint satisfaction problem should
essentially be viewed as hinting at a negative result (while on the surface this would actually be a positive result).

Another interesting feature of the above result is that the dichotomy holds for two different properties — the
complexity and the approximability — simultaneously. Easy problems are easy to compute exactly and the hard ones
are hard to even approximate. The middle regime — problems that are easy to approximate but hard to compute exactly
— are ruled out. This may be somewhat surprising initially, but becomes inevitable once the form of approximation
preserving reductions we use here becomes clear. Essentially all reductions we use are exactly those that might be
used for exact optimization problems. In fact the ease with which these reductions apply is the reason why Theorem 2
falls out easily from this paper.

The technical aspects of the proof of the dichotomy theorem may be of some independent interest. In order to
prove such a theorem, one needs to find succinct characterizations of what makes a function, say 2-monotone, as well
as a succinct proof when a function is not 2-monotone. We find such a characterization, in Lemma 8, which turns out
to be useful in establishing Theorem 1.

One technical nit-picky point that we face in this study is the role of constants and repetitions in CSP. In particular,
if f 2 F , should f jx1=0 given by f jx1=0(x2; : : : ; xk) = f(0; x2; : : : ; xk) also be considered a member of the constraint
set? Similarly should f 0(x1; x2) = f(x1; : : : ; x1; x2; : : : ; x2) be considered a member of the constraint set. Allowing
for these repetitions and constants makes the analysis much easier; however they may change the complexion of the
problems significantly. For instance given a set of linear equalities of the form

P
i xi = 0, it is trivial to find an

assignment which satisfies all the equations — namely the all 0’s assignment. However once one is allowed to fix some
variables to the constant 1, the problem no longer remains easy. In this paper initially we assume we can use constants
and repetitions to make our analysis simpler. Later we remove the assumptions — and Theorem 1 and Theorem 2 is
shown without the use of any constants or repetition. In fact, in the process we remove a minor irritant from Schaefer’s
proof which actually needed to use repetitions.

Other Work It has recently been brought to our attention that Theorem 1 has been independently discovered by
Creignou [4].

Rest of this paper Sections 2 and 3 are devoted to proving Theorem 1. In Section 4 we show how to prove
Theorem 2. Finally, in Section 5, we show how to eliminate the replication assumption from Schaefer’s proof.

2 Polynomial Time Solvability

From this section onwards we omit the notation F 0 and assume we have a constraint F such that F = F 0.

Lemma 1 The problem CSP(F) is in P if each fi 2 F is 0-valid.

Proof: Set each variable to zero; this satisfies all the constraints.

Lemma 2 The problem CSP(F) is in P if each fi 2 F is 1-valid.

Proof: Set each variable to one; this satisfies all the constraints.
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Lemma 3 The problem CSP(F) is in P if each fi is a 2-monotone function.

Proof: We reduce the problem of finding the maximum number of satisfiable constraints to the problem of finding
the minimum number of unsatisfied constraints. This problem, in turn, reduces to the problem of finding s-t min-cut
in directed graphs. 2-monotone constraints have the following possible forms : (a) xi1xi2:::xip, (b) xj1 xj2:::xjq, and
(c) xi1xi2:::xip + xj1 xj2:::xjq where p; q � 1.

Construct a directed graph G with two special nodes F and T and a vertex xi corresponding to each variable in
the input instance. Now we proceed as follows for each of the above classes of constraints :

� For a constraint C of the form (a), create a new node eC and add an edge from each xi to eC of cost 1 and a
unit cost edge from eC to T .

� For a constraint C of the form (b), create a new node eC and add an edge of cost 1 from eC to each xi and an
edge from F to eC of unit cost.

� Finally, for a constraint C of the form (c), we create two nodes eC and eC and connect eC to xi1; xi2; : : : and
connect eC to xj1; xj2; : : : as described above and replace the unit cost edges from F and to T by a unit cost
edge from eC to eC .

Using the correspondence between cuts and assignments which places vertices corresponding to true variables on
the T side of the cut, we find that the cost of a minimum cut separating T from F , equals the minimum number of
constraints that can be left unsatisfied.

3 Proof of MAX SNP-Hardness

In this section we prove that a constraint set which is not entirely 0-valid or entirely 1-valid or entirely 2-monotone
gives a MAX SNP-hard problem. The main MAX SNP-hard problem which we reduce to any of these new ones is
the MAX CUT problem shown to be MAX SNP hard by Papadimitriou and Yannakakis [10]. Initially we consider
the case where we are essentially allowed to repeat variables and set some variables to true or false. This provides a
relatively painless proof that if a function is not 2-monotone, then it provides a MAX SNP hard problem. We then use
the availability of functions that are not 0-valid or 1-valid to implement constraints which force variables to be 1 and
0 respectively, as well as to force variables to be equal. This eventually allows us to use the hardness lemma. We first
start with some notation.

3.1 Notation

Given an assignment s to an underlying set of variables,Z(s) denotes the set of positions corresponding to variables set
to zero andO(s) denotes the set of positions corresponding to variables set to one. More formally, given an assignment
s = s1s2:::sn to X1; X2; :::; Xn, where si 2 f0; 1g, we have Z(s) = fi j si = 0g and O(s) = fi j si = 1g. The
notation s[0 ! �] denotes the set of all assignments s0 such that O(s) � O(s0) and similarly, s[1 ! �] denotes the set
of all assignments s0 such that Z(s) � Z(s0).

Definition 10 [Unary Functions] The functions T (X) = X and F (X) = X̄ are called unary functions.

Definition 11 [XOR and REP Functions] The function f(X;Y ) = X � Y is called the XOR function and its
complement function, namely X = Y , is called the REP function.

Definition 12 [C-closed Function] A function f is calledC-closed (or complementation-closed) if for all assignments
s, f(s) = f(s̄).

Definition 13 [v-Consistent Set] A set V of positions is v-consistent for a constraint f iff every assignment with all
variables occupying the positions in V set to value v is a satisfying assignment for f .
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3.2 �-Implementations and MAX SNP-Hard Functions

We next describe the primary form of a reduction which we use to give the hardness results. As pointed out by
Papadimitriou and Yannakakis, in order to get hardness of approximation results, the reductions used need to satisfy
certain approximation preserving features. Here we show how to implement a given function f using a family of other
functionsF , so as to be useful in approximation preserving reductions.

Definition 14 [�-Implementation] An instance of CSP(F) over a set of variables ~X = fX1; X2; :::; Xpg and ~Y =

fY1; Y2; :::; Yqg is called an �-implementation of a boolean function f( ~X), where � is a positive integer, iff the
following conditions are satisfied:

(a) no assignment of values to ~X and ~Y can satisfy more than � constraints,

(b) for any assignment of values to ~X such that f( ~X) is true, there exists an assignment of values to ~Y such that
precisely � constraints are satisfied,

(c) for any assignment of values to ~X such that f( ~X ) is false, no assignment of values to ~Y can satisfy more than
(�� 1) constraints, and finally

(d) for any assignment to ~X which does not satisfy f , there always exists an assignment to ~Y such that precisely
(�� 1) constraints are satisfied.

We refer to the set ~X as the function variables and the set ~Y as the auxiliary variables.

Thus a function f 1-implements itself. We will say that CSP(F) implements function f if it �f -implements
f for some constant �f . The following lemma shows that the �-implementations of functions compose together.
The criteria for “implementation” given above are somewhat more stringent than used normally. While properties
(1)-(3) are perhaps seen elsewhere, property (4) is somewhat more strict, but turns out to be critical in composing
implementations together.

Lemma 4 [Composition Lemma] If CSP(Ff ) can �f -implement a function f , and CSP(Fg) can �g-implement a
function g 2 Ff , then CSP(fFf n fgg) [ Fg) can �-implement the function f for some constant �.

Proof: Let � be the number of occurrences of a constraint involving the function g in the CSP(Ff ) instance
�1-implementing f , then clearly, by replacing each occurrence of g by its �2-implementation, we obtain a CSP(fFf n

fgg) [ Ff ) instance which �-implements f for � = �1 + �(�2 � 1).

The MAX SNP-hardness of MAX CUT implies that CSP(fXORg) is MAX SNP-hard and hence the below :

Lemma 5 If CSP(F) can implement the XOR function, then CSP(F) is MAX SNP-hard.

Lemma 6 CSP(ff; T; Fg) can implement the XOR function if f is either the functionX + Y or XȲ or X̄ + Ȳ .

Proof: If f = X + Y , then the instance ff(X;Y ); f(X;Y ); F (X); F (Y )g is a 3-implementation of X � Y ; if
f = XȲ , then the instance ff(X;Y ); f(Y;X)g is a 1-implementation of X � Y ; and finally, if f = X̄ + Ȳ , then
ff(X;Y ); f(X;Y ); T (X); T (Y )g is a 3-implementation of X � Y .

Lemma 7 CSP(ff; T; Fg) can implement the REP function if f is the function X̄ + Y .

Proof: The instance ff(X;Y ); f(X;Y ); F (X); T (Y )g is a 3-implementation of the function REP.
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3.3 Characterizing 2-Monotone Functions

In order to prove the hardness of a constraint which is not 2-monotone, we require to identify some characteristics of
such constraints. The following gives a characterization, which turns out to be useful.

Lemma 8 [Characterization Lemma] A function f is a 2-monotone function if and only if all the following conditions
are satisfied:

(a) for every satisfying assignment s of f , either s[1 ! �] or s[0 ! �] is a set of satisfying assignments,
(b) if V1 is 1-consistent and V2 is 1-consistent for f , then V1 \ V2 is 1-consistent, and
(c) if V1 is 0-consistent and V2 is 0-consistent for f , then V1 \ V2 is 0-consistent.

Proof: We use the fact that a function can be expressed in DNF form as the sum of its minterms. For a 2-monotone
function this implies that we can express it as a sum of two terms. Every satisfying assignment must satisfy one of the
two terms and this gives Property (a). Properties (b) and (c) are obtained from the fact that the function has at most
one positive and one negative minterm.

Conversely, if a function is not 2-monotone, then it either has a minterm which is not monotone positive or negative
or it has more than one positive (or negative) minterm. In the former case, the function will violate Property (a), and
in the latter one of Properties (b) or (c).

Observe that a 2-monotone function is always either 0-valid or 1-valid or both.

3.4 MAX SNP-hardness of Non 2-Monotone Functions

We now use the characterization from the previous subsection to show that if one is allowed to “force” constants or
“repetition” of variables, then the presence of non-2-monotone constraint gives hard problems. Rather than using the
ability to force constants and repetitions as a binding requirement, we use them as additional constraints to be counted
as part of the objective function. This is helpful later, when we try to remove the use of these constraints.

Lemma 9 [Hardness Lemma] For any function f which is not 2-monotone, CSP(ff; T; F;REPg) can implement the
function XOR.

The proof of this lemma is non-trivial and appears in Appendix B due to space limitations.

3.5 Implementing the REP Function

We now start on the goal of removing the use of the unary and replication constraints above. In order to do so we
use the fact that we have available to us functions which are not 0-valid and not 1-valid. It turns out that the case in
which the same function is not 0-valid and not 1-valid and further has the property that its behavior is closed under
complementation (i.e., f(s) = f(s̄)) is somewhat special. We start by analyzing this case first.

Lemma 10 [Replication Lemma] Let f be a non-trivial function which is C-closed and is neither 0-valid nor 1-valid.
Then an instance of CSP(ffg) can implement the REP function.

Proof: Let k denote the arity of f and let k0 and k1 respectively denote the maximum number of 0’s and 1’s in any
satisfying assignment for f ; clearly k0 = k1. Now let SX = fX1; X2; :::; X2kg and SY = fY1; Y2; :::; Y2kg be two
disjoint sets of 2k variables each. We begin by creating an instance I of CSP(ffg) as follows. For each satisfying
assignment s, there are

�2k
i

�� 2k
k�i

�
constraints in I such that every i-variable subset of SX appears in place of 0’s in

SX and every (k� i) variable subset of SY appears in place of 1’s in the assignment s, where i denotes the number of
0’s in s.

Clearly, any solution which assigns identical values to all variables in SX and the complementary value to all
variables in SY , satisfies all the constraints in I. Let Z and O respectively denote the set of variables set to zero and
one respectively. We claim that any solution which satisfies all the constraints must satisfy eitherZ = SX or Z = SY .
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To see this, assume without loss of generality that jSX \Zj � k. This implies that jSY \Oj � k or else there exists
a constraint in I with all its input variables set to zero and is hence unsatisfied. This in turn implies that no variable
in SX can take value one; otherwise, there exists a constraint with k1 + 1 of its inputs set to one, and is unsatisfied
therefore. Finally, we can now conclude that no variable in SY takes value zero; otherwise, there exists a constraint
with k0 + 1 of its inputs set to zero and is unsatisfied therefore. Thus, Z = SX . Analogously, we could have started
with the assumption that jSX \Oj � k and established Z = SY . Hence an assignment satisfies all the constraints in
I iff it satisfies either the conditionZ = SX or the condition Z = SY .

We now augment the instance I of CSP(ffg) as follows. Consider a least hamming weight satisfying assignment s
for f . Without loss of generality, we assume that s = 10p1q. Clearly then, s0 = 0p+11q is not a satisfying assignment.
Since f is C-closed, we have the following situation :

f()

s0 0

p
z }| {
00:::0

q
z }| {
11:::1 0

s 1 00:::0 11:::1 1
s̄ 0 11:::1 00:::0 1
s̄0 1 11:::1 00:::0 0

Consider the constraints f(X;X1; X2; :::; Xp; Y1; Y2; :::; Yq) and f(Y;X1; X2; :::; Xp; Y1; Y2; :::; Yq). If X = 1,
then to satisfy the constraint f(X;X1; X2; :::; Xp; Y1; Y2; :::; Yq), we must have Z = SX . Otherwise, we have X = 0
and then to satisfy the constraint f(X;X1; X2; :::; Xp; Y1; Y2; :::; Yq) we must have Z = SY . In either case, the only
way we can also satisfy the constraint fv(Y;X1; X2; :::; Xp; Y1; Y2; :::; Yq) is by assigning Y an identical value. Thus
these set of constraints �-implements the function X = Y where � is simply the total number of constraints; all
constraints can be satisfied iff X = Y and otherwise, there exists an assignment to variables in SX and SY such that
precisely �� 1 constraints are satisfied.

3.6 Implementing the Unary Functions

If the function(s) which is (are) not 0-valid and 1-valid is (are) not closed under complementation, then they can be
used to get rid of the unary constraints. This is shown in the next lemma.

Lemma 11 [Unary Lemma] Let f0 and f1 be two non-trivial functions, possibly identical, which are not 0-valid and
1-valid respectively. Then if neither f0 nor f1 is C-closed, an instance of CSP(ff0; f1g) can implement both the unary
functions T (:) and F (:).

Proof: We will only sketch the implementation of function T (:); the analysis for the function F (:) is identical.
Now suppose neither fv is C-closed, v 2 f0; 1g. We begin by considering an instance each of CSP(ff0g) and
CSP(ff1g), say I0 and I1 respectively. Both of these instances are constructed in a manner identical to the instance
IA above. Now we argue that any solution which satisfies all the constraints in I0 and I1, must set all variables in SX
to 0 and all variables in SY to 1.

So we have two functions f0 and f1 such that neither is C-closed. Suppose jSX \ Oj � k, then we must have
jSY \Oj � k. To see this, consider a satisfying assignment s such that f0(s̄) = 0; there must exist such an assignment
since f0 is not C-closed. Now if jSY \ Zj � k, then clearly at least one constraint corresponding to s is unsatisfied -
the one in which the positions inO(s) are occupied by the variables in (SY \Z) and the positions inZ(s) are occupied
by the variables in (SX \O). Thus we must have jSY \Oj � k. But if we have both jSX \Oj � k and jSY \Oj � k,
then there is at least one unsatisfied constraint in the instance I1 since f1 is not 1-valid. Thus this case cannot arise.

So we now consider the case jSX \ Zj � k. Then for constraints in I0 to be satisfied, we must once again have
jSY \Oj � k; else there is a constraint with all its inputs set to zero and is hence unsatisfied. This can now be used to
conclude that SY \ Z = � as follows. Consider a satisfying assignment with smallest number of ones - this number
is positive since f0 is not 0-valid. If we consider all the constraints corresponding to this assignment with inputs from
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SY and SX \ Z only, it is easy to see that there will be at least one unsatisfied constraint if SY \ Z 6= �. Hence each
variable in SY is set to one in this case. Finally, using the constraints on the function f1 which is not 1-valid, it is easy
to conclude that in fact Z = SX .

Now let s = 10p1q be a least hamming weight satisfying assignment for f0; p; q may be zero but s contains at least
a single one as f0 is not 0-valid. Then the constraint f0(X;X1; X2; :::; Xp; Y1; Y2; :::; Yq) can be satisfied iff X = 1.
Thus all the constraints in I0 and I1 are satisfied along with above constraint iff X = 1 and otherwise, we can still
satisfy all the constraints in I0 and I1. Hence this is indeed an implementation of the functionT (:). The function F (:)

can be implemented in an analogous manner.

3.7 REP Helps Implement MAX SNP-Hard Functions

Lemma 12 Suppose f is a non-trivial function which is neither 0-valid nor 1-valid. Then CSP(ff;REPg) implements
the XOR function.

Proof: Without loss of generality, assume s = 0p1q is a satisfying assignment for f . We consider two dis-
joint set of variables SX = fX1; X2; :::; Xpg and SY = fY1; Y2::::; Yqg. Consider the CSP(ff;REPg) instance
which consists of constraints REP(X1; Xi) for i 2 [2::p], constraints REP(Y1; Yj) for j 2 [2::q] and the constraint
f(X1; X2; :::; Xp; Y1; Y2; :::; Yq). It is now easy to verify that this yields a (p+ q� 1)-implementation of the function
X1 � Y1 if s̄ = 1p0q is a satisfying assignment, and of the function X̄1Y1 otherwise. Now an application of the
Composition Lemma yields the lemma.

Corollary 1 Suppose f is a non-trivial function which is neither 0-valid nor 1-valid. Then CSP(ff;REPg) is
MAX SNP-hard.

Proof: Immediately follows from Lemma 5 and Lemma 12 above.

3.8 Unary Functions Help Implement either REP or MAX SNP-Hard Functions

Lemma 13 Let f be a function which is not 2-monotone. Then CSP(ff; T; Fg) can implement either the XOR or the
REP function.

Proof: Since f is not 2-monotone and non-trivial, it must be sensitive to at least two variables. Consider the
boolean k-cube with each vertex s labeled by the function value f(s); where k is the arity of function f . Let Vi denote
the set of vertices labeled i, i 2 f0; 1g. If jVij � jV1�ij, we claim that it must be the case that there exists a vertex
in Vi which has at least two neighbors in V1�i. This is readily seen using the expansion properties of the k-cube; any
set S of at most 2k�1 vertices must have expansion factor at least one. Furthermore, the expansion factor is precisely
one only when the set S induces a boolean (k � 1)-cube. But the later case can’t arise since it would imply that f is a
single variable function. Hence there must exist a vertex s 2 Vi which has two neighbors in V1�i.

Let si and sj be these two neighbors of s, differing in the i
th

and the j
th

bit position respectively. Without loss of
generality, we may assume that i = 1 and j = 2. Consider now the input instance which has a constraint of the form
f(X1; X2; Y1; Y2; :::; Yk�2) and constraints of the form T (Yi) for each Yi appearing in O(s) \ O(s1) \ O(s2) and of
the form F (Yi) for each Yi appearing in Z(s) \ Z(s1) \ Z(s2). It is now easy to verify that this set of constraints
implements one of the functions X1 +X2, X1 �X2, X̄1 + X̄2, X̄1 +X2 or X1 �X2. The former three implement
X1 �X2 while the later two implement the constraint X1 = X2.

The following is a straightforward corollary.

Corollary 2 Let f be a function which is not 2-monotone. Then CSP(ff; T; Fg) is MAX SNP-hard.

Proof: If CSP(ff; T; Fg) can implement the REP function, then the corollary follows using the Composition
Lemma, the Hardness Lemma and the Lemmas 5 and 7. Otherwise, it follows from Lemma 6.
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Lemma 14 If F is a constraint set such that there exist (1) f0 2 F which is not 0-valid, (2) f1 2 F which is not
1-valid and (3) f2 2 F which is not 2-monotone. The CSP(F) is MAX SNP-hard.

Proof: If either f0 or f1 is C-closed then using the Replication Lemma, we can implement the REP function and
using the Composition Lemma along with Lemma 12 allows to conclude that CSP(ff0; f1; f2g) implements XOR
function.

If neither f0 nor f1 isC-closed, then using the Unary Lemma, CSP(ff0; f1; f2g) can implement the unary functions
T (:) and F (:), and then using the Composition Lemma along with Lemma 13, we conclude that CSP(ff0; f1; f2g)

implements either the XOR function or the REP function. In the latter case, we can use Lemma 12 to conclude that
CSP(ff0; f1; f2g) can implement the XOR function.

In either of the two situations above, we may conclude using Lemma 5 that CSP(ff0; f1; f2g) is MAX SNP-hard.

4 Hardness at Gap Location 1

It is possible to use a notion closely related to �-implementation to conclude from Schaefer’s dichotomy theorem and
show that in the cases where SAT(F) in NP-hard to decide, it is actually hard to distinguish satisfiable instances from
instances which are not satisfiable in a constant fraction of the constraints. This is termed hardness at gap location 1
by Petrank [11] who highlights the usefulness of such hardness results in other reductions.

An important characteristic of � implementation of a function f is that if we are given an assignment to the
function variables which does not satisfy f , it can always be extended to the auxiliary variables such that precisely
(� � 1) constraints are satisfied. This is a useful feature in establishing the hardness results for problems such as
MAX 2-SAT which do not have hardness gaps located at 1. However, when dealing with problems with hardness
gaps located at 1, such as MAX 3-SAT, it suffices to use a somewhat different notion of �-implementations, called
weak �-implementationsy. A weak �-implementation satisfies the condition (a)-(c) of the �-implementations and
the condition (d) is replaced by the constraint that the CSP(F) instance implementing it has precisely � constraints.
Clearly, weak �-implementations can be composed together and they preserve hardness gaps located at 1.

It is not difficult to verify that Schaefer’s proof is in fact based on weak �-implementations of functions, and hence
one may directly conclude from his proof that his class of NP-hard satisfiabilityproblems are all in fact MAX SNP-hard.
This yields Theorem 2.

5 Strengthening Schaefer’s Dichotomy Theorem

Schaefer’s proof of NP-hardness in his dichotomy theorem relies on the ability to replicate variables within a constraint
application. We observe that to do so, it suffices to create a weak implementation of the function REP. Since given
a weak implementation, we can replace any p replicated copies of a variable X by p new variables X1; X2; :::; Xp

and add constraints of the form REP(X1; X2);REP(X1; X3); :::;REP(X1; Xp). We now show how to create a weak
implementation of the REP function; we need a definition :

Definition 15 [Weakly Positive and Weakly Negative Functions] A function is called weakly positive (weakly negative)
if it may be expressed as a CNF formula such that each clause has at most one negated (unnegated) variable.

Now Lemmas 10 and 11 show that CSP(ff0; f1; f2g), where f0 is not 0-valid and f1 is not 1-valid, can be used to
create either a weak implementation of the function REP or a weak implementation of both unary functions T and F .
In the latter case, we can show the following lemma.

yThe name weak �-implementation is slightly misleading because this notion is simultaneously both weaker and stricter than the notion of
�-implementations.
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Lemma 15 If f is not weakly negative then CSP(ff; T; Fg) can weak implement either the function x � y, or the
function x + y. Similarly, if f is not weakly positive then CSP(ff; T; Fg) can weak implement either the function
x� y, or the function x̄+ ȳ.

Proof: We only prove the first part - the second part follows by symmetry. We know that f has a maxterm S with
at least two positive literals. We consider the function f 0 which is f existentially quantified over the variables not in
S. Let x1 and x2 be the two positive literals in S. Set all other variables in S to the value which does not make S true.
Then the assignment x1 = x2 = 0 is a non-satisfying assignment. The assignments x1 = 0 6= x2 and x1 6= 0 = x2

must be satisfying assignments ny the definition of maxterm. While the assignment x1 = x2 = 1 may go either way.
Depending on this we get either the function x� y or x+ y.

Corollary 3 If f2 is not weakly positive and f3 is not weakly negative, then CSP(ff2; f3; T; Fg) weak implements (at
gap 1) the XOR function.

Since the SAT(F) problems that we need to establish as NP-hard in Schaefer’s theorem satisfy the condition that
there exists f0; f1; f2; f3 2 F such that f0 is not 0-valid and f1 is not 1-valid, f2 is not weakly positive and f3 is not
weakly negative, we conclude that we can weak implement the XOR function. This, in turn, can be used to create a
weak implementation of the function REP(x; y) by using the constraints fx� z; y � zg for some auxiliary variable z.
Thus replication can be eliminated from Schaefer’s proof.

6 Conclusions

We initiated a study of the structure of a subclass of NPO and established an approximation dichotomy theorem for this
class — in the process, giving a simple characterization to distinguish "easy" problems from the "hard" problems. Our
dichotomy theorem strongly used the syntactic structure of problems in this class to identify a sharp division between
the "easy" versus "hard" problems. We feel that it further stresses the role of syntactic prescriptions in the study of
approximability. This was the fundamental insight on which the class MAX SNP was defined by Papadimitriou and
Yannakakis [10]. Recent work of Khanna, Motwani, Sudan and Vazirani [7] also stresses this relationship, where they
used syntactically defined classes to identify a structured core of hard problems for approximation classes such as
APX, log-APX and poly-APX.

A natural question arising from this work is that of identifying larger classes which exhibit such dichotomies with
respect to approximability. The syntactic optimization class MAX SNP contains our class of constraint satisfaction
problems as a subclass. An interesting feature of this class is that every problem in this class is approximable to within
a constant factor and there exist problems in this class which are MAX SNP-hard. Is it then the case that every problem
in this class is either in P or MAX SNP-hard ? Feder and Vardi [5] recently initiated a systematic investigation to find
the largest subclass of NP which exhibits a dichotomy for the decision version of the problems. Their efforts identify
a subclass of SNP (the decision class underlying MAX SNP), called MMSNP - monotone, monadic SNP with no
inequalities. This subclass contains constraint satisfaction problems over arbitrary domains and hence strictly contains
Schaefer’s class. They provide strong evidence that this class may in fact exhibit a P versus NP-hard dichotomy. We
suspect that it is probably the case that the optimizationanalog of the class MMSNP exhibits a P versus MAX SNP-hard
dichotomy.

In a recent related work, Khanna, Sudan and Williamson [8] have studied the optimization complexity of finding an
assignment with maximum number of ones such that it satisfies every constraint in a given SAT(F) problem. This class
contains many natural optimization problems such as MAX CUT and MAX CLIQUE as its members. Surprisingly,
this class exhibits an approximation hierarchy with essentially five levels. It contains problems which are in P or
MAX SNP-hard or n�-hard and and yet does not have any intermediate approximation classes sandwiched in between.
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Appendix

A Schaefer’s Theorem

We state Schaefer’s dichotomy theorem in this section.

Definition 16 [Affine] A function is said to be affine if it may be expressed as a system of linear equations of the formPk

i=1 xi = 0 and
Pk

i=1 xi = 1 (i.e. it evaluates to one iff the input variables satisfy the given equation system); the
addition operation being modulo 2.

Schaefer’s dichotomy theorem may be stated as follows. Let F be a finite set of boolean functions. Then SAT(F)
is always either in P or NP-hard. Furthermore, it is in P if and only if one of the following conditions is true:

1. Every f 2 F is 0-valid.

2. Every f 2 F is 1-valid.

3. Every f 2 F is weakly positive.

4. Every f 2 F is weakly negative.

5. Every f 2 F is affine.

6. Every f 2 F is bijunctive (i.e. expressible as a CNF formula with at most 2 literals per clause).

B Proof of Lemma 9 (The Hardness Lemma)

Proof: We prove this by using the Characterization Lemma for 2-monotone functions. Let k denote the arity of f . If
f is not 2-monotone, it must violate one of the three conditions (a); (b) and (c) stated in the Characterization Lemma.

Suppose f violates the property (a) above. Then for some satisfying assignment s, there exist two assignments s0

and s1 such that Z(s) � Z(s0) and O(s) � O(s1), but f(s0) = f(s1) = 0. Without loss of generality, we assume that
s = 0p1q, s0 = 0p+a1q�a and s1 = 0p�b1q+b. Thus we have the following situation :

f()

s

p�a
z }| {
00:::0

a
z }| {
00:::0

b
z }| {
11:::1

q�b
z }| {
11:::1 1

s0 00:::0 00:::0 00:::0 11:::1 0
s1 00:::0 11:::1 11:::1 11:::1 0
s2 00:::0 11:::1 00:::0 11:::1

Observe that both a and b are non-zero. We consider the CSP(ff; T; F;REPg) instance with the following set of
constraints on variables X1; X2; :::; Xk :

� constraints F (Xi) for 1 � i � (p� a),

� constraints REP(Xp�a+1; Xp�a+i) for 2 � i � a,

� constraints REP(Xp+1; Xp+i) for 2 � i � b,

� constraints T (Xi) for (p+ a + b+ 1) � i � k, and

� the constraint f(X1; X2; :::; Xk).

It is now easy to verify that for � = (k�1), this instance �-implements the functionXp�a+1�Xp+1 if f(s2) = 1
and Xp�a+1Xp+1, otherwise. The claim now follows immediately from Lemma 6.

Next suppose f violates the property (b) above. Then there exists an unsatisfying assignment s such that s sets all
variables in V1 \ V2 to 1, and at least one variable in each of V1 n (V1 \ V2) and V2 n (V1 \ V2) to be false. Consider
one such unsatisfying assignment s. Without loss of generality, we have the following situation :
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V1z }| {

s

V1nO(s)
z }| {
00:::0| {z }

p

11:::1| {z }
q

V2z }| {
V1\V2z }| {
11:::1| {z }

r

11:::1| {z }
s

V2nO(s)
z }| {
00:::0| {z }

t

00:::0| {z }
u

11:::1| {z }
v

We consider the CSP(ff; T; F;REPg) instance with the following set of constraints on variables X1; X2; :::; Xk :

� constraints REP(X1; Xi) for 2 � i � p,

� constraints T (Xi) for (p+ 1) � i � (p + q + r + s),

� constraints REP(Xp+q+r+s+1 ; Xp+q+r+s+i) for 2 � i � t,

� constraints F (Xi) for (p+ q + r + s + t + 1) � i � (p+ q + r + s + t + u),

� constraints T (Xi) for (p+ q + r + s + t+ u) � i � (p+ q + r + s+ t+ u+ v), and finally

� the constraint f(X1; X2; :::; Xk) where k = (p+ q + r + s + t+ u+ v).

It is now easy to verify that for � = (k � 1), this instance �-implements the function X1 +Xp+q+r+s+1 . Again,
the claim now follows immediately from Lemma 6.

Finally, the case in which f violates the property (c) above, can be handled in an analogous manner.
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