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Abstract. This paper, which is partly tutorial in nature, summarizes
some basic research goals in the study and development of typed object-

oriented programming languages. These include both immediate repairs

to problems with existing languages and the long-term development of
more 
exible and expressive, yet type-safe, approaches to program orga-

nization and design. The technical part of the paper is a summary and

comparison of three object models from the literature. We conclude by
discussing approaches to selected research problems, including changes

in the type of a method from super class to sub class and the use of types

that give information about the implementations as well as the interfaces
of objects. Such implementation types seem essential for adequate typing

of binary operations on objects, for example.

1 Introduction

A number of largely \theoretical" research e�orts over the last �ve to ten years

have developed and analyzed type systems for model object-oriented languages.

This might seem strange to the object-oriented practitioner. Since the �rst

object-oriented language, Simula [BDMN73], and the most widely-used language

with object-oriented features, C++ [Str86, ES90], are both typed, it is natural

to ask why new or di�erent type systems are needed. One problem is that his-

torically signi�cant type systems, such as the Simula type system and the one

developed by Borning and Ingalls for Smalltalk [BI82], have had signi�cant type

insecurities. This means that a well-typed program could, when executed, send

a message to an object that has no method for responding to the message { a

situation that the type system was intended to prevent. The second and less

clear-cut problem is that there remain a large body of object-oriented program-

mers who consider the restrictions imposed by existing type systems too severe

to allow true object-oriented programming. This is hard to �nd documented in

the literature, but it seems to be a relatively common view of Smalltalk pro-

grammers toward C++ , for example. Finally, we hope that by identifying the
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essential features of object-oriented languages and studying their relationships,

we will be able to design better programming languages in the future.

A basic insecurity in the original type system for Simula was the incorrect

treatment of assignable locations and data structures. This can be illustrated

using arrays. If A is a subclass of B, then an array of type A could be used in

place of an array of type B. This makes sense if we are only reading values from

the array. But if we are assigning to the array, then this allows a B object to

be assigned to an array location designated to contain an A object, a breach of

the type system that can easily be shown to result in a method not understood

error at run-time. (Thanks to Alan Borning and Pavel Curtis for sending Simula

programs demonstrating this bug; see [Cur90].) This problem is discussed in

more detail in [Coo89b], where a much more subtle Ei�el bug is also described.

Some goals for future type systems can be described using an analogy, pre-

sented in the table below.

Conventional Object-oriented

Lisp Smalltalk

ML ??

C C++

In the left column are three \conventional" languages. These are Lisp, which is an

essentially pure untyped language for writing higher-order functional and imper-

ative programs. At the bottom of the column is C, which is more widely used and

more e�cient, but su�ers certain drawbacks of \machine-dependence" that any

C programmer should be painfully aware of. In the middle is ML[Mil85, MTH90,

MT91, Ulm94], which represents a typed alternative to Lisp, allowing many (but

not all) Lisp-style programs to be statically typed. In comparison with C, ML

o�ers a much richer set of type constructions and superior type security. How-

ever, it su�ers some loss of e�ciency because of garbage collection and the data

representation used to support polymorphism. An approximate object-oriented

analog of Lisp is Smalltalk, which is a pure, untyped language that is widely

used, but sometimes considered too ine�cient for certain tasks. To continue this

inexact analogy, we can say that the C of object-oriented programming is C++ .

The most promising research area in object-oriented programming seems to be to

explore the middle-ground between Smalltalk and C++ . A speci�c research goal

that may help focus the readers attention is to �nd an object-oriented analog of

ML: a statically-typed, object-oriented language allowing the most common or

most important Smalltalk idioms with greater 
exibility than C++ .

The same basic understanding that would be critical to the design of an

\object-oriented ML" could also lead to improvements in existing typed lan-

guages, a type system for Smalltalk, or higher-level system design tools. Such

tools could facilitate both modular design and static error detection in programs

written in existing and future languages. (The reason that types are critical to

modular system design is that the interfaces to system components are expressed

using types.) Given the importance of both error detection and systematic pro-

gram design, as well as the increasing use of object-oriented languages and ideas,

object-oriented type systems seem an important and practical research direction.
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This paper is a mildly revised and expanded version of a document intended

to provide background and reference material for the second author's invited

Sendai lecture, contemporaneous with the 1994 TACS conference [FM94]. Al-

though some references were updated in 1995, it was not feasible to account for

research completed after early 1994.

The main goal of the paper is to make the motivating problems clear to

specialists and non-specialists, so that those with an interest in research in this

area might �nd it possible to choose problems and non-specialists might develop

an appreciation for this research area. The contents, by section, are:

2 Brief overview of object-oriented concepts.

3 Example comparing object-oriented approach with type-case statements.

4 Type-theoretic preliminaries.

5 Introduction to three theoretical object models.

6 Recursive record model.

7 Existential types model.

8 An axiomatic model with object-based inheritance.

9 Summary comparison chart

10 Open problems and directions for future research

A general reference on type systems and objects is the collection [GM94].

2 What is Object-Oriented Programming?

\Object orientation" is both a language feature and a design methodology. The

design methodology seems to have evolved from the simulation approach of Sim-

ula. A brief outline of this methodology is given in the following list, based on

[Boo91], one of many current books on object-oriented design.

Methodology:

1. Identify the objects at a given level of abstraction.

2. Identify the semantics (intended behavior) of these objects.

3. Identify the relationships among the objects.

4. Implement these objects.

This methodology is an iterative process based on associating objects with

components or concepts in a system. One reason the process is iterative is that

one object is typically implemented using a number of \sub-objects," just as in

top-down programming, a procedure is typically implemented by a number of

�ner-grained procedures. A di�erence is that both functionality and data repre-

sentation may be re�ned in the design process. In the early examples illustrating

top-down programming (see [Dij72]), the data structures were very simple and

remained invariant under re�nements of the program. This is not typical of more

complex systems.

An important characteristic of objects is that they provide a uniform interface

to all components of a system. In particular, an object can be as small as a single
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integer or as large as a �le system or an output device. Regardless of its size,

all interactions with an object occur via message send. This use of objects to

hide implementation details and provide a \black box" capability is useful for

the same reasons that data and procedural abstraction are useful.

There are two main 
avors of object-oriented languages: class-based and

object-based. In class-based languages, the implementation of an object is spec-

i�ed by its class. In such languages, objects are created by instantiating their

classes. In object-based languages, objects are de�ned directly from other ob-

jects by adding new methods via method addition and replacing old methods

via method override. Some important features of object-oriented languages are

encapsulation, dynamic lookup, subtyping, and inheritance. These features are

explained in the following subsections.

2.1 Encapsulation

Objects are used in most object-oriented programming languages to provide an

encapsulation barrier. Typically, an object contains some private data that can

be accessed only by its methods. Such encapsulation helps insure that programs

can be written in a modular fashion and that the implementation of an object

can be changed without forcing changes in the rest of the system. These bene�ts

are the same as those realized by abstract data types (ADT's). However, objects

have additional bene�ts not provided by ADT's when we wish to use related

data abstractions in similar ways. We illustrate this point with the following

example involving queues.

A typical language construct for de�ning an abstract data type is the ML

abstype declaration, which we use in Appendix A to de�ne queues. In this

example, a queue is represented by a list. However, only the functions given in

the declaration may access the list. This allows the invariant that list elements

appear in �rst-in/�rst-out order to be maintained, regardless of how queues are

used in any client program.

A drawback of the kind of abstract data types used in ML and other languages

such as CLU [LSAS77, L+ 81] and Ada [US 80] becomes apparent when we

consider a program that uses both queues and priority queues. For example,

suppose that we are simulating a system with several \wait queues", such as

a bank or hospital. In a teller line or hospital billing department, customers

are served on a �rst-come, �rst-served basis. However, in a hospital emergency

room, patients are treated in an order that takes into account the severity of

their injuries or ailments. Some aspects of this kind of \wait queue" are modeled

by the abstract data type of priority queues, shown in Appendix A.

Note that the signature of priority queues is the same as for ordinary queues:

both have the same number of operations, and each operation has the same type,

except for the di�erence between the type names pqueue and queue. However,

if we declare both queues and priority queues in the same scope, the second dec-

larations of is empty, add, first, rest, and length will hide the �rst. This

will require us to rename them, say as q is empty, q add, q first, q rest,

q length and pq is empty, pq add, pq first, pq rest, pq length.
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In a hospital simulation program, for example, we might like to treat priority

queues and ordinary queues uniformly. For example, we might wish to count

the total number of people waiting in any line in the hospital. To do this, we

would like to have a list of all the queues (both priority and ordinary) in the

hospital and go down the list asking each queue for its length. But if the length

operation is di�erent for queues and priority queues, we have to decide whether

to call q length or pq length, even though the correct operation is uniquely

determined by the data. This shortcoming of ordinary abstract data types is

eliminated by dynamic method lookup for objects.

2.2 Dynamic Lookup

In any programming language with objects, there is some syntax for invoking

an operation associated with an object. In Smalltalk this is called \sending a

message to an object," while the C++ terminology is to \call a member function

of the object." To give a neutral syntax, we write

receiver(operation

for invoking operation on the object receiver . There are two main views for

what this means (operationally):

1. Consider objects as tables that associate a method (function body) with

each message (operation or function name).

2. Consider a message name as an identi�er of some kind of \overloaded" func-

tion that is not \part" of the object.

In the �rst view, an object is a collection of methods (member functions) and

data. When an object is sent a message at run-time, the appropriate method

(function body) is invoked. As a result, sending the same message to di�erent

objects may result in the execution of di�erent code. This is called dynamic

lookup, or, variously, dynamic binding, dynamic dispatch, or runtime dispatch.

In the second view, a message is the name of a kind of \overloaded func-

tion," where overloading is resolved at run-time, instead of compile-time. The

important characteristic is that sending the same message to di�erent objects

may result in execution of di�erent code. In this view, it is possible to take more

than the �rst argument into account. For example, if we write

receiver(operation(arguments)

for invoking an operation with a list of arguments, then the actual code invoked

may depend on the receiver alone (as in the �rst view above), or on the re-

ceiver and one or more arguments. When the selection of code depends only on

the receiver, it is called single dispatch; when it also depends on one or more

arguments, it is called multiple dispatch.

Multiple dispatch is used in Common Lisp [Ste84]. A theoretical study of

multiple dispatch appears in [CGL92].
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Although multiple dispatch is in some ways more general, there seems to be

some loss of encapsulation. Speci�cally, in order to de�ne a function on di�erent

kinds of arguments, the function must typically have access to the internal data

of each function argument. The main problem seems to be that while a function

or method belongs to a single object or class of objects in a single dispatch

language, a function or method does not obviously belong to any particular

object or class in the multiple dispatch approach. It is not clear that the loss

of encapsulation is inherent to multiple dispatch, but current multiple dispatch

systems do not seem to o�er any reasonable encapsulation of private or local

data for objects. Recent work addressing these issues appears in [?].

2.3 Objects and closures

An interesting and historically signi�cant explanation of Simula objects is that

they are simply activation records of procedures that are left on the \stack" after

the procedure terminates [BDMN73]. More precisely, when a procedure is called,

an activation record is allocated that contains space for the local variables of the

procedure and pointers to locally-declared functions. In an ordinary Algol-like

language with block structure, this record is popped o� the run-time stack when

the procedure returns. However, it is possible to instead return a pointer to the

activation record, and abandon stack storage management. (In this case, the

activation record should be deallocated when there are no active pointers to it.)

The result is precisely a Simula object, as explained in [BDMN73]. Since a closure

is a function (or other value) together with its environment (activation record),

objects and closures are essentially the same thing. An interesting example in

this regard is the T object system [RA82, AR88].

Based on this analysis, one might wonder why we are not concerned with

\closure-oriented programming." More precisely, we might ask what object-

oriented languages provide that languages with closures, such as Lisp, Scheme

or ML, do not. The answer is that object-oriented languages provide subtyping

and inheritance, which are not directly supported in either Lisp or ML. Another

way of looking at the di�erence is that if there is only one class of objects in a

program, the class could be replaced by a function that returns closures. The

di�erences between closures and objects emerge only when a second class is de-

�ned from the �rst using inheritance, and/or objects of a second class are used

in place of the �rst via subtyping.

In passing, we note that while Simula had subtyping and inheritance in the

late 1960's, encapsulation was a later addition. More precisely, all of the local

declarations that constitute an object were accessible through the \dot nota-

tion." This accessibility meant Simula could not guarantee desired invariants of

its objects. For example, it could not insure that a list of elements in a queue

object were kept in �rst-in/�rst-out order, since malicious programs could have

directly accessed and changed the queue's local state.
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2.4 Object types

There are two forms of type we might give to objects. The �rst is a type that

simply gives interface information. The second is an interface plus some im-

plementation constraints. In the �rst case, the elements of the type will be all

objects that have the given interface. In the second case, it will only be those

elements that also have a certain representation. Since the �rst is more basic,

we begin by discussing interface types. The following example uses the syntax of

Rapide, an experimental language designed for prototyping software and mixed

software/hardware systems [BL90a, MMM91, KLM94, KLMM94].

type Point is interface

x_val : Int;

y_val : Int;

distance : Point -> Int;

end interface;

Objects of type Point must have two integer methods, called x val and

y val, and a function method called distance. A function computing the dis-

tance between two points requires only one argument, since the function belongs

to a particular point and therefore may compute the distance between the point

passed as an actual parameter and the particular point to which the function

belongs. In other words, the intended use of the distance method of a point

object p is to compute the distance between p and another point object q, by a

call of the form p(distance(q). Of course, since the interface gives only sig-

nature information, the distance method is not forced to compute the distance

between two points. If we wish to specify that distancemust compute distance,

then a more expressive form of speci�cation must be added to the interface.

One signi�cant feature of this interface is that the type name Point appears

in the interface itself. The simplest explanation is that Point is a recursively-

de�ned type or, equivalently, a �xed-point of some function from types to types.

In formalizing a calculus of objects and their types, we therefore introduce func-

tions from types to types of a special form, which we call object interfaces. In

particular, we use the syntax fjm1 : A1; : : : ; mk : Akjg for the interface type speci-

fying methods m1; : : : ; mk of types A1; : : : ; Ak , respectively. Using this notation,

we may write a function from types to interface types in the form

�t :Type:fjm1 : A1; : : : ; mk : Akjg

We will often omit the speci�cation :Type , with the understanding that lower

case letters r; s; t , possibly with subscripts, primes, etc., designate types.

Although it is tempting to consider Point as the least �xed-point of the type

function
�t:fjx val : Int; y val : Int; distance : t! Intjg

we will take a more \abstract" approach in this paper. One reason is that this

approach allows us to compare three theoretical models in a uniform way. Specif-

ically, we assume some type functional

Object : (Type)Type))Type
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and write
Point = Object(�t:fjx val : Int; y val : Int;

distance : t! Intjg)

We will often use Object as a binding operator and write Objectt A for

Object(�t:A). This convention gives us the syntax

Objectt fjm1 : A1; : : : ; mk : Akjg

for an object interface. Objects that satisfy this interface will have methods

m1; : : : ; mk with types A1; : : : ; Ak , respectively.

An alternate form of object type is an interface with some additional guar-

antees about the form of the implementation. We will see that this is important

for objects with binary operations, for example. For these types, subtyping must

take into account both interface subtyping and compatibility of implementations.

Since the implementation of an object is intended to be hidden, the second form

of type should not give any explicit information about the implementation. In-

stead, it appears that \implementation types" are properly treated as a form of

partially-abstract types. This is a current research topic, with some of the basic

ideas explained in [CW85, KLM94, PT93] using bounded existential types. We

will return to this in the �nal sections of the paper.

2.5 Inheritance

Perhaps the most common confusion surrounding object-oriented programming

is the di�erence between subtyping and inheritance. Inheritance is an implemen-

tation technique. For every object or class of objects de�ned using inheritance,

there is an equivalent de�nition that does not use inheritance, obtained by ex-

panding the de�nition so that inherited code is duplicated. The importance of

inheritance is that it saves the e�ort of duplicating code, and that when one

class is implemented by inheriting from another, changes to one a�ect the other.

This has a signi�cant and sometimes debated impact on maintenance and mod-

i�cation. One reason why subtyping and inheritance are confused is that some

class mechanisms combine the two. A typical example is C++ , where A will be

recognized by the compiler as a subtype of B only if A is de�ned as a subclass

of B. However, this is an elective design decision; there seems to be no inherent

reason for linking subtyping and inheritance in this way. Some interesting and

relevant examples may be found in [Sny86, Coo92].

Using a neutral notation, we can illustrate inheritance of the form that ap-

pears in most object-oriented languages by a simple example. The two classes

below de�ne objects with private data v and public methods f and g . The class

B is de�ned by reusing the declarations of A , but rede�ning the function g .

class A =

private

val v = ...

public
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fun f(x) = ... g(...) ...

fun g(y) = ... f(...) ...

end;

class B = extend A with

public

fun g(y) = ...

end;

The simplest, but not most e�cient, implementation of inheritance is to incor-

porate the relationship between classes explicitly in the run-time representation

of objects. For the example classes A and B above, this is shown in Figure 1.

This �gure shows data structures representing (i) the A class, with pointers

to the A template and method dictionary, (ii) the A template, which gives the

names of data associated with each A object, (iii) the A method dictionary,

which gives the names of methods associated with each A object, (iv) the B

class, with pointers to the B template, B method dictionary and base class A

(v) the B template, (vi) the B method dictionary, and (vii) a B object b . Each

class template shows the names and order of data for object of that class, while

the method dictionary contains names and pointers to code for methods.

We can see how this works by tracing how the expression b(f() is evaluated

at run-time. The sequence of events is:

1) The method dictionary for B objects is found by looking in the B class.

2) The B method dictionary is searched for method name f .

3) Since f is not there, the method dictionary for base class A is searched.

4) The function f is found in the A method dictionary.

5) When the body of f refers to g, the search for the g method begins again

with the b object, guaranteeing that the g function de�ned for class B is

used.

This implementation may be optimized in several ways. The �rst is to cache

recently-found methods. Another possibility is to expand the method tables of

derived classes to include the method tables of their base classes. This expansion

eliminates the upward search through the method dictionaries of more than one

class. Since the dictionaries contain only pointers to functions, this duplication

does not involve a prohibitive space overhead.

A more signi�cant optimization may be made in typed languages such as

C++ , where the set of possible messages to each object can be determined

statically. If the method dictionaries, or vtables in C++ terminology, can be

constructed so that all objects of a given type have all their methods in the

same relative position in the vtable, then the o�set of a method within the

vtable can be computed at compile-time. This optimization, which is possible in

C++ , reduces the cost of method lookup to a simple indirection without search,

followed by ordinary function call. For more information, see [ES90, Section

10.7c].
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Fig. 1. Smalltalk-style representation of B object inheriting from class A.

2.6 Subtyping

The basic principle associated with subtyping is substitutivity: if A is a subtype of

B, then any expression of type A may be used without type error in any context

that requires an expression of type B. We will write \A <: B" to indicate that A

is a subtype of B.

The primary advantage of subtyping is uniform operation over various types

of data. For example, subtyping makes it possible to have heterogeneous data

structures containing objects that belong to di�erent subtypes of some type.

Consider as an example a queue containing various bank accounts to be bal-

anced. These accounts could be savings accounts, checking accounts, investment

accounts, etc., but each is a subtype of bank account so balancing is done in the

same way for each. This uniform treatment is generally not possible in strongly

typed languages without subtyping.

Another advantage of subtyping in an object-oriented language is to allow
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functionality to be added with minimal modi�cation to the system. If objects

of a type B have some behavior which roughly approximates a desired behavior,

then we may want to replace objects of type B with objects of another type A

that better approximates the desired behavior. In many cases, the type A will be

a subtype of B. By designing the language so that substitutivity is allowed, one

may add functionality in this way without any other modi�cation to the original

program.

If the type of an object is its interface, then subtyping for object types is

\compatibility" or \conformance" of interfaces. More speci�cally, if one interface

provides all of the components of another, with compatible types, then every

object of the �rst type should be substitutable for the other. This restriction

gives us subtyping of the form:

Objectt fjx : Real; y : Real; c : Colorjg <: Objectt fjx : Real; y : Realjg

We call this form of subtyping \width" subtyping. In addition, it is generally

possible to restrict the type of one or more components to a subtype. This gives

us subtyping of the following form, which we call \depth" subtyping:

Objectt fjx : Int; y : Intjg <: Objectt fjx : Real; y : Realjg

if we assume that Int <: Real .

Combining these two, we have

Objectt fjx : Int; y : Int; c : Colorjg <: Objectt fjx : Real; y : Realjg

The situation is more subtle with object types of the form Objectt fjm1 :

A1; : : : ; mk : Akjg , where t appears in A1; : : : ; Ak . This issue is discussed in Sec-

tions 6 through 8.

2.7 Method Specialization

It is relatively common for one or more methods of an object to take objects of

the same type as parameters or return objects of the same type as results. For

example, consider points with the following interface.

type Point is interface

x : Int

move : Int -> Point

eq : Point -> Bool

end interface;

(For simplicity, we drop the y coordinate and work with one-dimensional points.)

The move method of a point p returns a point. Similarly, the eq method takes

as a parameter an object of point type.

When colored points are de�ned in terms of points, it is desirable that the

types of the methods be specialized to return or use colored points instead of

points. Otherwise, we e�ectively lose type information about the object we are
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dealing with whenever we send the move method, and we are restricted to using

only point methods when comparing colored points for equality. If it is possible

to inherit a move method de�ned for points in such a way that the resulting

method on colored points has type Int!Colored Point , then we say that

method specialization occurs. This form of method specialization is called \my-

type" specialization because the type that changes is the type of the object that

contains the methods [Bru92, Bru93].

It is also meaningful to specialize types other than the type of the object

itself when de�ning a derived class.

Method specialization is generally not provided in existing typed object-

oriented languages, but it is common to take advantage of method specialization

(in e�ect) in untyped object-oriented languages. Therefore, if we are to devise

typed languages that support useful untyped programming idioms, we should

devise type systems that support method specialization.

3 Example

In this section, we give an extended example, which is a portion of a program

manipulating several kinds of geometric shapes. There are two versions of this

program, one with classes and the other without. Without classes, we use records

(or struct's) to represent each shape. For each operation on shapes, we have

a function that tests the type of shape passed as an argument and branches

accordingly. We illustrate this using a C program, with each shape represented

as a struct (analogous to Pascal or ML record). We will refer to this program,

which appears in Appendix B as the \typecase" version, since each function is

implemented by a case analysis on the types of shapes. For brevity, the only

shapes are circles and rectangles.

We can see the advantage of object-oriented programming by rewriting the

program so that each object has the shape-speci�c operations as methods. This

version of the program appears in Appendix C.

Some observations:

{ We can see the di�erence between the two program organizations in the fol-

lowing matrix. For each function, center, move, rotate and print, there

is code for each kind of geometric shape, in this case circle and rectangle.

Hence we get eight di�erent pieces of code.

class function

center move rotate print

circle c center c move c rotate c print

rectangle r center r move r rotate r print

In the \typecase" version, these are arranged by column, while in the class-

based program, they are arranged by row. Each arrangement could be con-

sidered to have some advantages when it comes to program maintenance

and modi�cation. In the object-oriented approach, adding a new shape is
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straightforward. The code detailing how the new shape should respond to

the existing operations all goes in one place: the class de�nition. Adding

a new operation is more complicated, since the appropriate code must be

added to each class de�nition, which could be spread throughout the sys-

tem. In the \typecase" version, the reverse situation is true. Adding a new

operation is relatively easy, but adding a new shape is di�cult.

{ There is a loss of encapsulation in the typecase version, since the data manip-

ulated by rotate, print and other functions has to be publicly accessible.

In contrast, the object-oriented solution encapsulates the data together with

the functions.

{ The \typecase" version cannot be statically type checked in C. It could be in

a language where there was a built-in \typecase" statement which tested the

type of an object instead of a data �eld that might or not give the correct

type. An example is the Simula inspect statement.

class A;

A class B; /* B is a subclass of A */

ref (A) a;

inspect a

when B do /* some operation on subclass B */

otherwise /* operations from superclass a */

(See also Pascal variant records or ML datatypes, both a form of disjoint or

tagged unions.)

This approach would require that every object be tagged with type, which

is about the same amount of space overhead as making each into an object.

(At least in comparison with the C++ optimization, where the overhead

of treating something as an object is approximately one extra pointer per

datum.)

{ In the typecase version, \subtyping" is used in an ad hoc manner. We coded

circle and rectangle so that they have a shared �eld in their �rst location.

This is a hack to implement a tagged union that could be avoided in a

language providing disjoint (as opposed to C unchecked) unions.

{ The complexity of the two programs is roughly the same. In the \typecase"

version, there is the space cost of an extra data �eld (the type tag) and the

time cost, in each function, of branching according to type. In the \object"

version, there is a hidden class or vtbl pointer in each object, requiring

essentially the same space as a type tag. In the optimized C++ approach,

there is one extra indirection in determining which method to invoke, which

corresponds to the case analysis in the \typecase" version. A Smalltalk-like

implementation would be less e�cient in general, but for methods that are

found immediately in the subclass method dictionary (or via caching), the

run-time e�ciency may be comparable.
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4 Type-theoretic framework

The calculi used to explain and model objects are generally fragments of higher-

order polymorphic lambda calculus, extended with subtyping and a few extra

constructs. Some type binding operator is needed to represent object interface

types. In the recursive record model, this is ordinary type recursion, while the

existential model uses existential type quanti�cation. Although several forms

of records may be reduced to higher-order polymorphism, as demonstrated in

[Car94], it is generally simpler to work with a basic calculus that has records

with some form of record extension operation. In this section, we review by

simple example many of the basic type-theoretic concepts that play a role in the

study of objects. Some good references are [CW85] and the appendix of [PT94]).

Due to space constraints, we will simply list the basic constructs by example or

illustrative rules.

4.1 Subtyping

Cartesian Products For products, we have coordinate-wise subtyping.

(� <:)
A1 <: B1; : : : ; Ak <: Bk

A1� : : :�Ak <: B1� : : :�Bk

Records There are two sources of record subtyping, which we refer to as \width"

(making the record wider) and \depth" (subtyping by component). The second

one corresponds to the cartesian product rule above. These two may be combined

to obtain the third rule below.

(width) f`1 :A1; : : : ; `k :Ak; : : : `n :Ang <: f`1 :A1; : : : ; `k :Akg

(depth)
A1 <: B1; : : : ; Ak <: Bk

f`1 :A1; : : : ; `k :Akg <: f`1 :B1; : : : ; `k :Bkg

(both)
A1 <: B1; : : : ; Ak <: Bk

f`1 :A1; : : : ; `k :Ak; : : : ; `n :Ang <: f`1 :B1; : : : ; `k :Bkg

Functions Since object methods are typically functions, function subtyping en-

ters into object subtyping. The relevant typing rule is the following:

A <: B; C <: D

B!C <: A!D

Note that if we speak of the subtype relation as a partial- (or quasi-) order,

this rule says that the function type constructor ! is monotonic in its second

argument, but anti-monotonic in its �rst argument. The anti-monotonicity is the

source of many complications in typing algorithms and semantic constructions.
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4.2 Recursive types

Recursive types are de�ned by the � binding operator. In particular, the type

that satis�es the recursive type equation t = F [t] is denoted by �t:F [t] . The

equational rule for recursive types is:

�t:A = [�t:A=t]A

where the notation [�t:A=t]A denotes substituting expression �t:A for all free

occurrences of t in A , renaming bound variables as necessary to avoid capture.

Note that this rule permits recursive types to be wound and unwound implicitly.

(Such implicit winding is not always permitted, c.g. [AC94]) The subtyping rule

for recursive types is given as follows:

s <: t . A <: B

�s:A <: �t:B

which says that �s:A <: �t:B if we may show that A <: B under the assumption

that s <: t . For a more detailed discussion, see [AC91].

4.3 Polymorphism

Parametric polymorphism To write functions that work for elements of any

type, we can use type abstraction, as provided in higher-order lambda calculus.

For example, the following function

id : : = �t : T :�x : t: x : 8t: t! t

can be thought of as the identity function on all types, since when it is applied

to any type A , it returns the identity function on A .

Subtype polymorphism Although parametric polymorphism is quite useful,

it can only be used to write functions that work for any type. In object-oriented

programming, we are interested in writing functions that work for any subtype

of the type for which they were originally intended. One way to provide this


exibility is through the following rule, which permits us to promote the type of

an element to any of its supertypes:

(subsum)
p : A; A <: B

p : B

This process is called subsumption. Using this rule, we can apply a function

f written for elements of type A to elements of type B , if A <: B :

f : A!C; x : B; B <: A

f(x) : C

Note that the static type of f(x) does not depend on the type of x , with

this mechanism, even though the actual run-time value of f(x) may.



16 November 20, 1995

Bounded universal quanti�cation To write functions that work for any sub-

type of a particular type and that can specialize the result type depending on the

their argument types, we consider bounded universal quanti�cation. The basic

rule is

(8 bd )
p : 8t <: A:B; C <: A

p[C] : [C=t]B

Here a side condition requires that A does not contain t free. (Contrast this

condition with the rule for F-bounded universal quanti�cation, given below).

The subtyping rule for bounded universal quanti�cation has the consequence:

f : 8t <: A: t! t; x : B; B <: A

f [B](x) : B

Here f is de�ned to work on any subtype of A , and the return type of f is

specialized to B when it is used on elements of B . Unfortunately, as explained

in [BL90b], the only element of type 8t <: A: t! t is the identity function.

One recent approach to solving this problem, that di�ers from the one discussed

below, appears in [HP95].

F -Bounded universal quanti�cation To get more than identity functions,

we need to be able to provide a more general bound. In particular, we will

consider all types t that are subtypes of some type F [t] , where F is a type

functional. F is used to specify the interface of objects for which the function is

supposed to work. The basic rule is

(8 F � bd)
p : 8t <: F [t]: B; C <: F [C]

p [C] : [C=t]B

which has the consequence

equal : 8t <: fjeq : t!Booljg: t� t!Bool;

x : Object t fjeq : t! Bool; inc : Unit! t; : : : jg

equal [Object t fjeq : t! Bool; inc : Unit! t; : : : jg](x; x) : Bool

assuming

Object t fjeq : t!Bool; inc : Unit! t; : : : jg

<: fjeq :Object t fjeq : t!Bool; inc : Unit! t; : : : jg! Booljg

In this example, the type function

�t:fjeq : t! Booljg

plays the role of F in the typing rule given above. This typing derivation holds

in the recursive record model, for example, where Object t is � t .
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Higher-Orderbounded universal quanti�cation Another approach to pro-

viding the 
exibility of F-Bounded universal quanti�cation that requires slightly

weaker assumptions uses higher-order bounded universal quanti�cation. The ba-

sic rule is

(8 ho � bd )
p : 8g <: F:B; G <: F : Type)Type

p [G] : [G=g]B

In this rule, the notation <: represents a subtyping relationship between type

functions. This relationship is de�ned by extending the subtyping relation on

types pointwise to type functions. This typing rule has the consequence

equal : 8g <: �t:fjeq : t! Booljg: (Objectt g t)�(Object t g t)! Bool;

x : Object t fjeq : t!Bool; inc : Unit! t; : : : jg

equal [�t:fjeq : t! Bool; inc : Unit! t; : : : jg](x; x) : Bool

assuming

�t:fjeq : t! Bool; inc : Unit! t; : : : jg <: �t:fjeq : t!Booljg

Here again, the type function

�t:fjeq : t!Booljg

plays the role of type functional F in the typing rule above. Note that this F is

the same as the one used above to type the equal expression using F-Bounded

universal quanti�cation. However, this typing holds more generally than the one

given above because the assumption

�t:fjeq : t! Bool; inc : Unit! t; : : : jg <: �t:fjeq : t!Booljg

does not require any recursion-like properties of Object.

4.4 Existential quanti�cation and data abstraction

While space considerations prohibit a full discussion of data abstraction and its

applications, we will describe a general form of data type declaration that may

be incorporated into any language with type variables, including the basic object

models compared in this paper. For further information, the reader is referred

to [LSAS77, MP88, Mor73, Rey83, Set89].

The declaration form

abstype t with x1 : �1; : : : ; xk : �k is h� ;M1; : : : ;Mki in N

declares an abstract type t with \operations" x1; : : : ; xk and implementation

h� ;M1; : : : ;Mki . The scope of this declaration is N . For example, the expression
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abstype stream with

s : stream ,

�rst : stream! nat ,

rest : stream! stream

is

h�;M1;M2;M3i

in

N

declares an abstract data type stream with distinguished element s : stream

and functions �rst and rest for operating on streams. Within the scope N of

the declaration, the stream s and operations �rst and rest may be used to

compute natural numbers or other results. However, the type of N may not

be stream, since this type is local to the expression. In computational terms,

the elements of the abstract type stream are represented by values of the type

� given in the implementation. Operations s; �rst and rest are implemented

by expressions M1;M2 and M3 . Since the value of s must be a stream, the

expression M1 must have type � , the type of values used to represent streams.

Similarly, we must have M2 : �! nat and M3 : �! � . Using cartesian products,

we may put any abstract data type declaration in the form abstype t with x :

� is h�;M i in N . For example, the stream declaration may be put in this

form by combining the three operations s , �rst and rest into a single operation

of type stream�(stream! nat)�(stream! stream). There is no loss in doing

so, since we may recover s , �rst and rest using projection functions.

Some useful 
exibility is gained by considering abstract data type decla-

rations and data type implementations separately. An implementation for the

abstract type stream mentioned above consists of a type � , used to represent

stream's, together with expressions for the speci�ed stream s and the stream

operations �rst and rest. If we want to describe implementations of streams in

general, we might say that in any implementation, \there exists a type t with el-

ements of types t , t!nat , and t! t ." This description would give just enough

information about an arbitrary implementation to determine that an abstype

declaration makes sense, without giving any information about how streams

are represented. This �ts the general goals of data abstraction, as discussed in

[Mor73], for example.

We may add abstract data type implementations and abstype declarations

to a language with type variables as follows. The �rst step is to extend the syntax

of type expressions

� : : = : : : j 9t:�

to include existential types of the form 9t:� .

Intuitively, each element of an existential type 9t:� consists of a type � and

an element of [�=t]� . Using products to combine s , �rst , and rest , an imple-

mentation of stream would have type 9t:[t�(t!nat )�(t! t)] , for example.

Existential types were part of Girard's System F [Gir71, Gir72] (but not

linked to abstract data types).
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When we write abstract data type implementations apart from the decla-

rations that use them, it is necessary to include some type information which

might at �rst appear redundant. We will write an implementation in the form

ht = �;M : �i , where t = � binds t in the remainder of the expression. The

reader may think of ht = �;M : �i as a \pair" h�;M i in which access to the

representation type � has been restricted. The bound type variable t and the

type expression � serve to disambiguate the type of the expression. The type of

a well-formed expression ht = �;M : �i is 9t:� , according to the following rule.

(9 Intro)
e1 : [�=t]�

ht = �; e1 : �i : 9t:�

Since a type � is not uniquely determined by the form of a substitution instance

[�=t]� , the type of a simpler implementation form h�;M i would not be deter-

mined uniquely. The following rule for abstype declarations allows us to bind

names to the type and value components of a data type implementation.

(9 Elim)
x : � . e2 : �; e1 : 9t:�

(abstype t with x : � is e1 in e2) : �
t not free in �

Informally, this rule binds type variable t and ordinary variable x to the type

and value part of the implementation e1 , with scope e2 .

Bounded existential quanti�cation For each of the various forms of bounded

universal quanti�cation discussed in Section 4.1, there is a corresponding form

for existential quanti�cation. These ideas are used in the existential-type model

of object-oriented programming to encode binary methods. These techniques are

beyond the scope of this paper.

5 Theoretical object models

In the next three sections, we summarize three object models from the literature.

{ A record model. This is an insightful encoding of objects as recursively-

de�ned records. However, the treatment of inheritance is relatively com-

plex, requiring some form of record concatenation. This model is largely due

to Cook [Coo89a, CHC90], drawing on earlier work by Cardelli and others

[Car88, CW85].

{ An existential-type model. This is an encoding that treats objects as elements

of existential type. The advantages are that this encoding makes the hiding

of private \instance variables" or \members" explicit and renders type recur-

sion non-essential. It also seems possible to model \protected" members, to

use C++ terminology, which does not seem directly possible in other mod-

els. A disadvantage is the relatively complex treatment of binary methods.

The model is due to Pierce and Turner [PT94, PT93], drawing on the earlier

formulation of abstract data types using existential types [MP88]. (Some

comments suggesting a similar approach appear in the concluding section of

[Bru93].)
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{ An axiomatic model of objects. Unlike the other approaches, this is a direct

model, giving explicit typing rules for operations on objects, instead of an

encoding (or \compilation") into a typed calculus without objects. An in-

teresting trade-o� that appears is that object-based inheritance, as found in

Self [US91, CU89] (see also [Lie86, Ste87]), seems to preclude subtyping. The

calculus described here is from [Mit90, FHM94]; in a variant due to Abadi

and Cardelli [Aba94, AC94], restrictions on the object operations yield a

natural form of subtyping.

All of the models presented here are functional. Adding memory and side-

e�ects seems to be orthogonal to object features, at least as far as has been

investigated [AC95a, Bru93, Pie93].

In the recursive record and existential type models, inheritance is class-based,

while the third model uses an object-based form of inheritance. The main dif-

ference is that in object-based forms, method override and method addition are

operations on objects. In class-based languages, the set of methods is �xed at

the time an object is created. A more recent \hybrid" model is developed in

[Aba94, AC94], where run-time override is allowed, but run-time method addi-

tion is not. A relatively technical comparison between the �rst and third ap-

proaches appears in [Bru92]. The recursive record and existential models cannot

model runtime method addition because the new methods cannot be added inside

the recursion or inside the existential. Subtyping consequences of object-based

inheritance are discussed in Section 8.7.

6 The recursive record model

We will use the term \record model" to refer to the representation of objects by

records that was developed byWilliamCook and others [Coo87, Coo89a, CHC90]

using concepts pioneered by Luca Cardelli [Car88, CW85]. The main idea is to

represent an object by a record of access functions or methods. If we use a

lambda calculus with records, then this approach provides a functional model

of class-based, object-oriented languages. Some important points are that this is

an encoding; it is not a direct presentation of typing rules or logical principles

for objects. Furthermore, to account for inheritance in a type-correct way, we

need a typed, polymorphic lambda calculus with type recursion and some form

of extensible records. As presented in the literature, the approach requires lazy

evaluation for the �xed points to work correctly. However, this does not seem

to be a fundamental limitation; a variant should work properly under eager

evaluation.

6.1 The Objects

Objects are modeled as recursively-de�ned records. The components of the

record represent the methods of the object. Since each method may need to

access the other methods of the object, there is a special variable available to
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the methods that represents the object itself. This variable is frequently called

self to reinforce the intuition that it refers to the object itself. The mutual re-

cursion of object methods is the motivation for using recursively-de�ned records.

Objects are formed by taking the �xed point of an object-de�nition function,

which is a function of the following form:

object definition
def
= �self:fm1 = e1; : : : ; mn = eng

The record labels m1 : : :mn are the names of the methods of the desired

object, and the expressions e1 : : :en are the method implementations. The ab-

stracted variable self is the variable that the methods refer to in order to

access the other methods of the object. The object described by this de�nition

is created by taking its �xed point:

object
def
= Y(object definition)

If we want to create a one-dimensional point object with x , move, and eq

methods, the object-de�nition function could be:

point definition
def
= �self:f x = 3;

move = �dx:f: : :self:x+ dx : : :g;

eq = �other:(equal other:x self:x) g

We don't yet have enough machinery to write the move method. (See Section

6.5 below.) Point objects are created by taking the �xed point of this function:

pt
def
= Y(point definition)

6.2 Message Send

Message send in this model is very straightforward: it is simply record �eld

selection. The self variable is already bound to the object via the �xed-point

operation.

6.3 Object Types

Since objects are recursively-de�ned records, object types are record types. These

are typically recursively-de�ned types since an argument or return value of a

method may be an object of the same type. In an object-de�nition function, if

the type of the abstracted variable self is assumed to be t , then the type of

each method can be written in terms of t . This correspondence can be written

as a type function F from the type of the abstracted variable to the type of the

resultant method record:

F[t] = fjm1 : �1; : : : ; mn : �njg

where �i is the type of the ith method, mi , and t may appear in �i . Such

a function can be thought of as an object interface, since it speci�es the types
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of the object's methods. Occurrences of t in the method types will refer to the

type of the object itself after the �xed point is taken. In particular, if the type

of an object-de�nition function f corresponds to such an F , then the type of

objects created from f is �t:F[t] .

The type function that corresponds to the point definition example above

is:

P[t] = fjx : Int; move : Int!t; eq : t!Booljg

and the type of pt is �t:P[t] . Written out, this type is �t:fjx : Int; move :

Int!t; eq : t!Booljg .

Although appealing in its simplicity, this typing is inadequate when we try

to add inheritance. Intuitively, the problem is that the methods we de�ne for

the current object should be useful in future extensions to it. This possibility

means that we do not know the exact type of the object for which we are de�ning

methods. To address this lack of precise knowledge, we add a type parameter

to each object-de�nition function. This parameter represents the type of object

that the method de�nitions are being used in. In typing the methods for the

current object, we do need to know something about the type of object we are

creating. In particular, we need to know that the self variable contains at least

the methods we are de�ning, and that these methods have the appropriate types.

To this end, we use F-bounded quanti�cation to restrict the types that can be

passed as the type of the current object. The F's that we use are the familiar type

functions from above. Thus the generalized form of object-de�nition function is

now:

�t <: F[t]: �self : t:fm1 = e1; : : : ; mn = eng

where F is as above. This expression has type:

8t <: F[t]:t! F[t]

The object-de�nition function for points, with this re�ned typing, is:

point definition
def
= �t <: P[t]: �self : t:

fx = 3;

move = �dx : Int:f:::self:x+ dx:::g;

eq = �other : t:(equal other:x self:x) g

which has type

8t � P[t]: t! P[t];

assuming that the implementation of move has the appropriate type.

To create objects, we now need to supply the type of object we are creating.

Keeping with our earlier notational convention, let ObjectF = �t:F[t] for any

F : Type)Type . Then the expression

pt
def
= Y(point definition[ObjectP])

creates a point object pt with type Point
def
=ObjectP .
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6.4 Inheritance

Inheritance is modeled via a simple form of record concatenation. Basically, in

the object-de�nition function for the derived class, the record of methods from

the base class is concatenated with the record of methods to be added. This

concatenation is achieved via the with record combination operator, which is

typed using the following introduction rule:

e1 : fjm1 : �1; : : : ; mj : �j; mj+1 : �1; : : :mk : �k�jjg

e2 : fjmj+1 : �j+1; : : : ; mn : �njg

e1 with e2 : fjm1 : �1; : : : ; mn : �njg
(n � k)

If the two records e1 and e2 have common �elds, the con
ict is resolved by

taking the value and type from e2 . Since objects are recursive records, this

concatenation operator seems to present a problem. If we change the type of

some method m in e1 via concatenation, the methods of e1 that depended

on the type of m could now break. As we will see, the records that need to be

concatenated for this encoding of inheritance to work do not have this problem.

(This is our observation, not one discussed in [CHC90].) There is a corresponding

record type concatenation operator +, de�ned analogously.

Using the with operator, we can de�ne an object-de�nition function for a

colored point from point definition as follows:

cpoint definition
def
= �t <: C[t]: �self : t:point definition[t](self) with

fmyColor = blue;

eq = �other : t:

(equal self:myColor other:myColor

and equal self:x other:x)

g

where

C[t]
def
= fjx : Int; move : Int!t; eq : t!Bool; myColor : Colorjg

The type of colored points is:

CPoint
def
= ObjectC

= �t:fjx : Int; move : Int! t; eq : t! Bool; myColor : Color jg

To guarantee that the type application point definition[t] is well typed,

we need C[t] <: P[t] . This requirement prevents us from rede�ning the type of

the x method to anything other than a subtype of Int . This is exactly what

we need to guarantee that the addition in the move method de�ned for points

works correctly when it is used in colored points. There is a slight bug in [CHC90]

related to whether or not C[t] <: P[t] . See Section 6.8 for a discussion of this

problem.



24 November 20, 1995

6.5 Inheritance with Classes

Each of these object-de�nition functions can create only a single object. This

lack of generality is a problem.We cannot write the move method above, because

we cannot create a point in a di�erent location. To remedy this problem, we need

the notion of a \class." Intuitively, a class is a function that creates an object-

de�nition function from instantiation parameters. A class for points would take

an x-coordinate as a parameter and return a point object-de�nition function

that creates points at that location. A complication arises, however, from the

fact that objects de�ned from a class may need to use that class to create new

instances of the class. For example, point objects need to be able to create new

point objects to implement the move method. This requirement means that

classes, like objects, are recursive. A class is converted into an object-de�nition

function by applying it to its instantiation parameters and then taking a �xed

point.

A point class could be de�ned as follows:

point class
def
= �t <: P[t]: �myclass : Int!(t! t): �init x : Int: �self : t:

f x = init x;

move = �dx : Int:Y(myclass(self:x+ dx));

eq = �other : t:(equal other:x self:x) g

The following expression creates a point at location 2:

pt
def
= Y(Y(point class[ObjectP])(2))

We can de�ne a color point class function from point class in a manner sim-

ilar to above. The only di�culty arises from the fact that colored points have

an additional instantiation parameter: their color. To use the point class def-

inition, we need to supply conversions between the two types of instantiation

parameters:

cpoint class
def
= �t <: C[t]: �myclass : Int�Color!(t! t):

�hinit x; init colori : Int� Color: �self : t:

inherited methods with

f myColor = init color;

eq = �other : t:

(equal other:x self:x and

equal other:myColorself:myColor) g

where

inherited methods
def
=

point class[t](�init x : Int: myclasshinit x; self:myColori) init x self

The expression

cpt
def
= Y(Y(cpoint class[ObjectC])(h2; bluei))
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creates a blue color point at location 2.

Note that this system's notion of a class is very di�erent from its notion of

an object type. This di�ers from existing typed object-oriented languages, which

have uni�ed the two concepts.

6.6 Dynamic Lookup

We get dynamic method lookup in this system because each object carries its

methods with it, and because each method refers to the other methods of the

object via an indirection through the self variable. Since this variable is only

bound when an object is created, each method uses the last version of the object's

other methods. Earlier de�nitions in the record of methods are eliminated via

the record concatenation operator with.

6.7 Encapsulation

This model provides minimal support for encapsulation. It insures that a method

is an integral part of the object that contains it: a method cannot be extracted

from its object and used on some other object, for example. However, there is no

mechanism for encapsulating local state or making certain methods accessible

only to derived classes. Some work would be required to add such forms of

protection, particularly if we wanted to model various levels of encapsulation,

such as C++ 's notions of public, protected and private object members.

6.8 Subtyping

In the recursive record model, subtyping and inheritance are completely separate.

The inheritance hierarchy is de�ned by the programmer as classes are written.

The subtype relation is inferred from types according to subtyping rules. The

only non-standard rule in this system is the one for record subtyping, which

prevents a record type from being a subtype of a record with fewer methods. In

the terminology of Section 4.1, we have subtyping in \depth" but not in \width."

The reason is that only \depth" preserves the list of methods, which is needed for

the soundness of the record combination operator with. It is overly restrictive,

however, because it prevents the encoding above of points and colored points.

Consider that we required C[t] <: P[t] to de�ne colored points from points.

This relation between C[t] and P[t] does not hold under the restrictive record

subtyping rule given above because C[t] has extra �elds. A more precise record

combination operator is probably required to allow the general record subtyping

inference rule and to �x the above bug.

The record subtyping rule does permit the specialization of record �eld types.

In contrast, such subtyping is unsound in the presence of method override, as is

discussed in Section 8.7.
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6.9 Method Specialization

Although not discussed in [CHC90], this model allows even more method spe-

cialization than the \mytype" specialization described in Section 2.7. Since the

only restriction on the record of methods for the derived class is that its type be

a subtype of the type of the base method record, the types of individual record

components can be specialized to subtypes. For example, a method that returns

an integer in the base class can be specialized to a method that returns a positive

integer in the derived class.

6.10 Binary Methods

Binary methods are those that take as a parameter an object of the same type as

their containing object. When a class that de�nes binary methods is inherited

from, objects created from the resulting class de�nition are not subtypes of

objects created from the original class. This is because the \mytype" parameter

appears contravariantly. In the example above, the type of colored points is not

a subtype of the type of points because of the eq method. This means that

colored points cannot be passed to functions that expect points. However, there

is still a great deal of similarity between points and colored points. We can write

F-bounded functions that take as a �rst parameter the type of the object for

which they are expected to work. If such a function is de�ned for all types that

are subtypes of P[t], then the function will work for colored points if we pass

as the �rst parameter ObjectC because C[t] <: P[t] . This mechanism prevents

colored points and points from being used interchangeably, but allows signi�cant

code reuse. Recent work in this direction appears in [BSv95, AC95b]

7 The Existential Model

This approach provides a functional model of class-based object-oriented lan-

guages based on an encoding into F!

� , an explicitly typed, polymorphic lambda

calculus with subtyping. This summary is based on [PT94]. See also [PT93].

7.1 Objects and their types

In this system, objects are modeled as elements of existential type. For example,

the type of our point object would be as follows:

Point
def
= 9Rep: fjstate : Rep;

methods : fjgetX : Rep!Int;

move : Rep!Int!Rep;

eq : Rep!??!Bool

jgjg

Each object has an internal state component and a record of methods that

operate on that state. The type of the internal state is hidden by the existen-

tial quanti�er, so external functions cannot operate on it. This hiding provides
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an encapsulation barrier that models the encapsulation found in many existing

object-oriented languages. The types of an object's methods are written in terms

of the type of the hidden state. The reasons for the question marks (??) in the

type for the eq-method will be discussed later. Interface speci�cation functions

are type operators that map the internal representation type of an object to a

record of method types. It is useful to write the type of an object in terms of

such speci�cation functions, for reasons that we will see later. The speci�cation

function for the example above is:

PointM
def
= �Rep:fj getX : Rep!Int;

move : Rep!Int!Rep;

eq : Rep!??!Bool

jg :Type)Type

The kind Type)Type indicates that PointM is a function from types to types.

Note that the PointM function is very similar to the F-bound P that we saw for

points in the previous section. Their roles are roughly analogous.

Using the PointM function, we can write the type of the point object above

as:

Point
def
= 9Rep: fjstate : Rep; methods : PointM [Rep]jg

Since every object type has this form, we can get a general object type construc-

tor by abstracting away the PointM function:

Object
def
= �M :Type)Type: 9Rep: fjstate : Rep; methods : M [Rep]jg

This use of Object �ts the general pattern of the Object type functional

discussed in Section 2.4. Objects are created via the existential introduction

rule. They have the form hR; ri : T . The R is a witness type for the existential;

it provides the type of the object's state component in r , the implementation

of the object. The annotation T is the external type of the object. For example,

an object with type Point might be implemented as follows:

p1
def
= hfjx : Intjg;

fstate = fx = 3g;

methods = fgetX = �s : fjx : Intjg:(s:x);

move = �s : fjx : Intjg: �i : Int:fx = s:x+ ig;

eq = �s : fjx : Intjg:(??)

ggi : Point;

In this example, fjx : Intjg is the type of the internal state component of p1 .

This point is initially positioned at location 3, and the methods record de�nes

the getX, move, and eq methods. The implementation of binary methods in

this model is beyond the scope of this paper, so the de�nition of the eq method

is omitted here. The problem is discussed in Section 7.8.
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Unlike existing languages that unify the concepts of object implementation

(i.e., class) and object type, this system allows multiple object implementations

of the same object type. Another implementation for points might be:

p2
def
= hfjx : Int; other : Intjg;

fstate = fx = 3; other = 20g;

methods = fgetX = �s : fjx : Int; other : Intjg:(s:x);

move = �s : fjx : Int; other : Intjg:

�i : Int:fx = s:x+ i; other = s:otherg;

eq = �s : fjx : Int; other : Intjg:(??)

ggi : Point;

7.2 Message Send

Sending messages is more complicated in this system than in the recursive record

model. Here, message send is modeled by polymorphic functions that take an

object as a parameter, open it, apply the appropriate methods from its methods

component, and then repackage it. Such functions are polymorphic to insure that

they will work on all objects derived from the one for which they were originally

intended. The form of polymorphism used is higher order bounded universal

quanti�cation, which is often interchangeable with the F-bounded polymorphism

used in the recursive record model. Here, the bound is the interface speci�cation

function that we originally used to give the object's type. As an example, the

following function is used to send the message move to points and any objects

derived from points:

Point0move
def
= �M <: PointM: �p : Object M:

open p as hRep; ri in

�dx : Int:hRep;

fstate = r:methods:move (r:state) dx;

methods = r:methodsg

i : Object M

end;

The type of Point0move is:

Point0move : 8t <: PointM:Object M! Int!ObjectM

When applied to the type Point and a point p , this function �rst opens p

by binding Rep to p 's representation type and r to p 's implementation of a

point. It then returns a function that takes a displacement as a parameter. This

function creates a new point object in the new location by repackaging the old

Rep type with the modi�ed state and the methods of the original point. The

expression:

Point0move [Object PointM] p1 2

returns a point exactly like p1 except at location 5.
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Since the interface speci�cation function for our colored points,

CPointM
def
= �Rep:fj getX : Rep!Int;

getCol : Rep!Color

move : Rep!Int!Rep;

eq : Rep!??!Bool

jg :Type)Type

is a higher-order subtype of PointM, the message sending function Point0move

will work on colored points as well as points. In particular, the function

Point0move[Object CPointM] : Object CPointM! Int! Object CPointM

sends messages to colored points.

7.3 Classes and Inheritance

In this system, classes are functions that can either be instantiated to create

objects or extended to create new classes. Class extension is how inheritance is

modeled in the existential system. As in the recursive record model, classes and

types are distinct notions. The objects created from a particular class all have

the same type, but not all objects of a particular type must have been created

from the same class. A class �xes the representation to be used by the objects

it de�nes. However, future classes can modify this representation, so each of

the methods de�ned in a class must be polymorphic in the �nal representation

type. We also need to be able to convert between the �nal representation type

and the representation type used in the current class. To this end, each class

requires a get function to convert from the �nal representation to the current

one and a put function to map the current representation to the �nal one.

Because the current representation may contain less information than the �nal

one, the put function requires an additional parameter that provides a default

�nal representation to supply any missing information.

Another consideration in the encoding of classes is that the methods of an

object may refer to the object's other methods. Since these methods may be

rede�ned in later classes, such methods must be accessed via an indirection to

guarantee that their latest de�nitions are used. To encode this dynamic lookup

behavior, methods refer to other methods through a self parameter, which must

be supplied to the class function when creating an object. This self parameter

contains the methods de�ned in the object being instantiated.

As an example, the pointClass function de�ned below may be instantiated

to create our familiar point objects. It �xes the representation type for its points
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to be PointR.

PointR
def
= fjx : Intjg

pointClass
def
= �FinalR: �get : FinalR!PointR:

�put : FinalR!PointR!FinalR: �self : PointM [FinalR]:

fgetX = �s : FinalR:((get s):x);

move = �s : FinalR: �i : Int:put sfx = (self:getX+ i)g;

eq = �s : FinalR:(??)g

Note that the move function uses the self parameter to access the object's

getX method. The de�nition of eq is subtle; see Section 7.8.

The following expression creates a point object from the pointClass func-

tion:

p
def
= hPointR;

fstate = fx = 3g;

methods = rec [PointM PointR]

pointClass PointR

(�s : PointR:s)

�s : PointR: �s0 : PointR: s0g

i : Object PointM

The representation used in the class function is packaged with an initial value for

the state and the methods for the object. These methods are obtained by taking

the appropriate �xed point (via rec)of the pointClass function applied to the

�nal representation type (which is just PointR in this case) and get and put

functions. Because the �nal representation type is the same as the representation

type used in the pointClass function, the get function is just the identity and

the put function simply returns its second argument.

It is relatively straightforward in F!

� to create a derived class function from a

base class function and the incremental changes. However, the details are beyond

the scope of this paper.

7.4 Dynamic Lookup

We get dynamic method lookup in this system because each object carries its

methods with it, and because each method refers to the other methods of the

object via an indirection through the self variable. Since this variable is only

bound to the appropriate record of methods when an object is created, each

method uses the last version of the object's other methods.

7.5 Encapsulation

Because the basic mechanism of this system is existentials, it provides rich pos-

sibilities for modeling encapsulation. In the encoding presented here, access to

instance variables is limited to the methods of an object and the methods of de-

rived objects. This degree of access models protected instance variables in C++.
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In a slightly di�erent encoding of classes and inheritance, it is possible to model

C++ private instance variables as well.

7.6 Subtyping

As in the recursive record model, the subtype and inheritance relations are sep-

arated. The inheritance hierarchy is de�ned by the programmer as classes are

written, and the subtype relation is inferred from types according to subtyping

rules. Unlike the recursive record model, we have subtyping in both width and

depth (as de�ned by inference rules in Section 4.1).

7.7 Method Specialization

Although not discussed in [PT94], this encoding supports \mytype" method

specialization because the message sending functions are polymorphic in the

interface speci�cation type operator. In particular, the move method for points

will return a colored point if the code is invoked from a colored point instead

of from a point. The model does not seem to directly support specializing other

types appearing in the interface speci�cation. If it were possible to extract �eld

types from a type of the form Object M , such specializations would be possible.

7.8 Binary Methods

Because of its notions of encapsulation and the fact that its types do not �x im-

plementation details, this model has di�culty modeling binary methods, such as

the eq method whose body we omitted above. In single-dispatch object-oriented

languages, the �rst parameter to a \binary" method is used to select which ob-

ject's code is going to be executed. The second object is then sent as a parameter

to the selected method. To implement such methods e�ciently, the �rst object

usually requires access to the representation of the second. Because di�erent ob-

jects of the same type can have completely independent internal representations

in this system, object types do not provide enough information to allow such op-

erations to be written. [PT93] presents a generalization of this encoding based

on partially abstract types that permits the encoding of binary methods.

8 An axiomatic approach

To demonstrate a third alternative, we brie
y summarize our own system [Mit90,

FHM94]. This is an axiomatic model of a language that supports object-based

inheritance. In this system, objects are derived from other objects by adding

new methods via method addition or replacing old methods with new ones via

method override. This eliminates the need for a separate \class" construct for

creating objects that share a common set of methods.

There are two parts to this system, an untyped language for de�ning objects

and functions, and a type system for assigning types to terms.
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8.1 The Objects

The untyped object calculus is the result of adding four new object-related syn-

tactic forms to untyped lambda calculus:

fg the empty object

e(m send message m to object e

fe1  + m=e2g extend object e1 with new method m having body e2
fe1 m=e2g replace e1's method body for m by e2

We consider fe1  + m=e2g meaningful only if e1 denotes an object that does

not have an m method, and fe1 m=e2g meaningful only if e1 denotes an

object that already has an m method. These conditions will be enforced by the

type system. If a method is new, then no other method in the object could have

referred to it, so it may have any type. On the other hand, if a method is being

replaced, then we must be careful not to violate any typing assumptions in other

methods that refer to it.

To simplify notation, we write fm1 = e1; : : : ; mk = ekg for f: : :ffg  + m1 =

e1g : : :  + mk = ekg , where m1; : : : ; mk are distinct method names. While we

used h: : :i to designate objects in [FHM94], we use f: : :g here for consistency

with the other systems. Note, however, that here f: : :g indicates some form of

object, not a record.

In this system, we may encode our one-dimensional points as follows:

p
def
= f x = �self:3;

move = �self: �dx:fself x = �s:(self( x) + dxg;

eq = �self: �other: equal(self(x)(other( x)

g

8.2 Message Send

Sending a message mi to an object containing such a method is modeled by

extracting the corresponding method body ei from the object and applying it

to the object itself:

fm1 = e1; : : : ; mk = ekg(mi
eval
�! ei fm1 = e1; : : : ; mk = ekg

For example, sending the message move with a displacement of 2 to p , we get:

p(move2 = (�self: �dx:f : : : g) p 2

= fp x = �s:(p(x) + 2g

= fp x = �s:3+ 2g

= fp x = �self:5g

Using a sound rule for object equality,

ffm1=e1; : : : ; mk=ekg mi=e
0
ig = fm1=e1; : : : ; mi=e

0
i; : : : ; mk=ekg
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we may reach the conclusion

p(move2 = f x = �self:5;

move = �self: �dx:f: : :g

eq = �self: �other: equal (self(x)(other( x)

g

showing that the result of sending a move message with an integer parameter,

is an object identical to p , but with an updated x-coordinate.

8.3 Inheritance

In this system, the inheritance mechanism is very simple, although its typing is

somewhat complex. To de�ne colored points from points, we simply need to add

a color method to our point object p and then rede�ne the eq method to test

the color �elds for equality as well as the x-coordinates.

cp
def
= ffp + myColor = �self:blueg

 eq = �self: �other:

(equal (self( x) (other( x) and

equal (self(myColor)(other(myColor))g

If we send the move message to cp with the same parameter, we may calcu-

late the resulting object in exactly the same way as before:

cp(move2 = (�self: �dx:f : : : g) cp 2

= fcp x = �s:(cp(x) + 2g

= : : :

= fcp x = �self: 5g

with the �nal conclusion that

cp(move2 = f x = �self:5;

move = �self: �dx:f: : :g;

eq = �self: �other:

equal (self( x)(other(x) and

equal (self( myColor)(other( myColor);

myColor = �self: blue

g

The important feature of this computation is that the color of the resulting

colored point is the same as the original one. While move was de�ned originally

for points, the method body performs the correct computation when the method

is inherited by an object with additional methods. This gives us the \mytype"

method specialization discussed in Section 2.7.
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8.4 Object Types

In the original presentation of this system, the type of an object was called a

class type. We use Object here instead, to maintain uniformity with the rest of

this paper. The type

Objectt fjm1 : �1; : : : ; mk : �kjg

is a type t with the property that any element x of this type is an object such

that for 1 � i � k , the result of x(mi is a value of type �i . A signi�cant aspect

of this type is that the bound type variable t may appear in the types �1; : : : ; �k .

Thus, when we say x(mi will have type �i , we mean type �i with any free oc-

currences of t in �i referring to the type Objectt fjm1 : �1; : : : ; mk : �kjg itself.

Thus, Objectt fj : : : jg is a special form of recursively-de�ned type.

The typing rule for message send has the form

e :Objectt fj : : : m : � jg

e(m : [Objectt fj : : : m : � jg=t]�

where the substitution for t in � re
ects the recursive nature of object types.

This rule may be used to give the point p with x , move and eq methods type

Objectt fj x : Int; move : Int!t; eq : t!Booljg

since p(x returns an integer, p( move n has the same type as p , and when

eq is passed an object with the same type as p , it returns a boolean.

A subtle but very important aspect of the type system is that when an object

is extended with an additional method, the syntactic type of each method does

not change. For example, when we extended p with a color to obtain cp , we

obtain an object with type

Objectt fj x : Int; move : Int!t; eq : t! Bool; myColor : Colorjg

The important change to notice here is that although the syntactic type of move

is still Int!t , the meaning of the variable t has changed. Instead of referring

to the type of p as it did originally, it now refers to the type of cp . This is

the \mytype" method specialization discussed in Section 2.7. For this kind of

reinterpretation of type variables to be sound, the typing rule for object extension

must insure that every possible type for a new method will be correct. This is

done through a form of implicit higher-order polymorphism.

8.5 Dynamic Lookup

We get dynamic method lookup in this system because each object carries its

methods with it, and because each method refers to the other methods of the

object via an indirection through the self variable. Since this variable is bound

to its object when messages are sent to the object, methods are guaranteed to

get the latest version of the other methods.
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8.6 Encapsulation

As in the recursive record model, this model provides minimal encapuslation.

Methods cannot be extracted from their objects, but no support is provided for

encapsulating local state or limiting access to existing methods when an object

is extended. Some work would be required to add such protection, particularly

if we wanted to model various levels of encapsulation, such as those provided by

C++.

8.7 Subtyping

In languages that support pure object-based inheritance, no subtyping is possi-

ble. We did not realize this in writing [FHM94]. Consider the intuitive de�nition

of a subtype: A is a subtype of B if we may use an object of type A in any context

expecting an object of type B . If objects of type A are to be used as B 's, then

A-objects must have all of the methods of B-objects. Because method addition is

a legal operation on objects in object-based languages, objects with extra meth-

ods cannot be used in some contexts where an object with fewer methods may.

As an example, a colored point object cannot be used in a context that will add

color, but a point object can. For A to be a subtype of B then, A 's must contain

exactly the same methods as B 's. It is not even possible to specialize the types of

methods that appear in both A 's and B 's, since deep record/object subtyping is

unsound when method override is a legal operation on objects. This observation

is made in [AC94]. The following example, discussed in [AC94], illustrates the

problem.

Consider the object types A and B :

B
def
= Objectt fjx : Int; y : Realjg

A
def
= Objectt fjx : PosInt; y : Realjg

If we allow deep record/object subtyping, A <: B since PosInt <: Int . Now

consider an object a de�ned as follows:

a
def
= fx = 1; y = �self: ln(self(x)g

We can see that a has type A . By the subsumption rule, we may consider a to

have type B . With this typing, the expression fa x = �1g is legal. But then

sending the message y to a produces a run-time type error.

Because of this complete elimination of subtyping for pure object-based lan-

guages, the system described in [AC94] does not permit object extension as a

run-time operation, instead supporting width subtyping on object types. The

paper [FM95] addresses this lack of subtyping by introducing a \sealing" mech-

anism that converts extensible objects into non-extensible ones. Subtyping in

both width and depth is supported for these non-extensible objects.



36 November 20, 1995

8.8 Method Specialization

As discussed above, this model supports \mytype" method specialization for

the type of the containing object. It does not permit the types of methods to be

specialized to subtypes.

8.9 Binary Methods

Since this system does not support subtyping, binary methods can only be ap-

plied to objects of the same type. Furthermore, since all object behavior in this

system is captured by interfaces, two objects of the same type are interchange-

able. There is no hidden state that could be di�erent in two implementations of

the same object type. Hence there is no problem de�ning binary methods in this

system.

9 Summary table for three approaches

rec. record exis. type ax. object

object type �t: F t 9 t fjrep : t; ops : Ftjg Object t F t

object rep. rec. record hR; ri : 9t : : : fm1 = e1; : : : ;mk = ekg

message send �eld selection `function ( operation

deleg./class class class delegation

inheritance record concat. higher-order poly  + ; operations

dyn. lookup yes yes yes

encapsulation no protected or protected, no protected or

private members private private members

subtyping depth, not width depth, width not possible

method spec. mytype and mytype, others mytype only

other types may be possible

binary methods direct via partially direct

abstract types

The third column here refers to the model given in [FHM94]. In the related

model of [AC94], subtyping is made possible by prohibiting the use of  + on

objects. In [FM95], subtyping is made possible by restricting the use of  +

and  . With subtyping, a limited form of encapsulation may be achieved by

promoting an object to a supertype that lists fewer methods. However, once we

have changed the static type of an object in this way, we cannot override an

existing method with a new one that refers to the hidden methods.

10 Open Problems

There are several general problems whose solutions could lead to improvements

in practical languages. In addition, the basic problems that are usually addressed
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by theoretical analysis are largely open. For example, it would be useful to devise

understandable proof principles that could be used formally or informally to

reason about objects. A speci�c challenge is to prove equations between objects.

This is at least as hard as proving the equivalence of data representations, as

shown by a very simple argument: given two implementations of stacks, for

example, we can de�ne two objects that are equivalent to each other i� the two

implementations of stacks are equivalent.

We list some of the salient language design issues below, discussing a few in

more detail in the remainder of this section.

{ Method specialization. We have discussed method specialization and shown

how some of the theoretical models allow it. The only implemented typed

language to support a form of mytype seems to be Ei�el [Mey92]. How-

ever, as shown in [Coo89b], the original Ei�el approach is unsound. It would

be possible to allow covariant uses of mytype, or something equivalent, in

C++ , and to some extent this can already be accomplished using templates.

For contravariant occurrences, it seems necessary to separate subtyping and

inheritance. The language design trade-o�s here remain to be investigated,

particularly if some form of \implementation" types are used.

{ Multiple dispatch. There are some cases in which it would be useful to incor-

porate multiple dispatch into single-dispatch languages, without sacri�cing

encapsulation. One motivating example is discussed below.

{ Mixin problem. This problem is discussed below.

{ Class preconditions. In C++ templates, a class may be parameterized by a

class name. However, there is no way to impose the precondition that the

actual class parameter must have certain operations. A solution is to use

F -bounded or higher-order bounded quanti�cation. However, this has not

been incorporated into implemented object-oriented languages other than

the experimental language Rapide [BL90a, MMM91, KLM94]. It would be a

useful empirical study to determine whether forms of bounded quanti�cation

are su�cient in practice.

{ Modeling of \implementation types". While most of the implemented lan-

guages use a form of \implementation" types, theoretical models tend to

use \interface" types. It would be useful to develop a theoretical model of

some form of implementation types, verify that it allows useful typing of

binary operations, and explore whether the separation of subtyping from

inheritance can be carried out cleanly with implementation types. We have

started to explore these issues, but have not completed our study.

{ View problem. A general problem with object-oriented programs is that the

names of methods are critical to the use of objects. If we want to print ev-

ery object in a queue, for example, this is easy if every object has a print

method called print, but di�cult if the names are print, display, show

and draw. One approach to this problem is to use C++ member pointers,

which do not seem to be widely implemented. It is worthwhile to incor-

porate something along these lines into a theoretical model and to develop

programming strategies for writing library routines that would be applicable
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to objects with varying method names.

Method specialization In some cases, method specialization seems to be a

typing problem: it is clear how a \specialized" method should behave, and it is

simply a typing problem to determine how to express this functionality properly.

However, this is not always the case. Consider a class of points with equality. If

we de�ne a subclass of colored points and wish this to be a subtype, how should

we de�ne equality? There are four cases to consider, listed in the table below. A

reasonable approach would be to compare x,y coordinates whenever one point

has no color, and x,y, and color when both are colored points.

equality point colored point

point x,y x,y

colored point x,y x,y,color

It seems that we need to be able to give four cases separately. The class-

based program organization does not seem to support this, without using the

\typecase" approach it is intended to replace. Multiple-dispatch approaches,

such as the Common Lisp Object System (CLOS) work well in this case, as does

the \dynamic overloading" model of [CGL92]. But these have drawbacks with

respect to encapsulation. Similar situations arise for other binary operations,

such as addition on numeric objects.

Mixin problem The term \mixin" comes from the Lisp Machine Flavors sys-

tem, which took the name from a menu option o�ered at a local ice cream store.

The main idea of a \mixin" is a class that is useful only for inheritance. More

speci�cally, a class whose methods assume the existence of other methods that

they do not de�ne is a mixin. An illustrative example is a scroll-bar mixin,

which can be combined via multiple inheritance with any window class to give a

scrollable window class. The typing problem associated with this can be solved

via parameterization, as described (for interfaces only) in [KLM94, KLMM94].

The C++ program in Appendix D shows how the problem may be solved using

templates.

Implementation types The general problem with typing binary operations in

a system with only interface types is described in [MMM91, KLM94, KLMM94].

Brie
y, the problem is that if a type gives only the interface to objects, then a

single interface can have two implementations using completely di�erent repre-

sentations for objects. For example, we could have two \set" classes, one using

linked lists and the other bit vectors (boolean arrays). In this case, it is di�cult

to de�ne set union in a type-safe way, since it is necessary to access the internal

representations of both sets involved, and these may be di�erent. The approach

proposed in [MMM91], which resembles the C++ friend concept, seems prob-

lematic in an interface-type context. An approach using implementation types is
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illustrated in Appendix E using C++ protected members. However, this pro-

gram fails to pass the C++ type checker. We can see no reason why the type

checker could not be modi�ed to accept this program. Some progress with formal-

izing forms of \implementation types" is reported in [PT93, KLM94, KLMM94].

Acknowledgements: Thanks to Brian Freyburger and Steve Fisher for several

insightful discussions of C++ , to Andy Hung for the drawing in Section 2.5 and

to Luca Cardelli for comments on a draft of this paper.
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A Queue and Priority Queue

exception Empty;

abstype queue = Q of int list

with

fun mk_Queue() = Q(nil)

and is_empty(Q(l)) = l=nil

and add(x,Q(l)) = Q(l @ [x])

and first (Q(nil)) = raise Empty

| first (Q(x::l)) = x

and rest (Q(nil)) = raise Empty

| rest (Q(x::l)) = Q(l)

and length (Q(nil)) = 0

| length (Q(x::l))= 1 + length (Q(l))

end;



November 20, 1995 43

abstype pqueue = Q of int list

with

fun mk_PQueue() = Q(nil)

and is_empty(Q(l)) = l=nil

and add(x,Q(l)) =

let fun insert(x,nil) = [x:int]

| insert(x,y::l) = if x<y then x::y::l else y::insert(x,l)

in Q(insert(x,l)) end

and first (Q(nil)) = raise Empty

| first (Q(x::l)) = x

and rest (Q(nil)) = raise Empty

| rest (Q(x::l)) = Q(l)

and length (Q(nil)) = 0

| length (Q(x::l))= 1 + length (Q(l))

end;

B Shape program: Typecase version

#include <stdio.h>

#include <stdlib.h>

/*

* We use the following enumeration type to ``tag'' shapes.

* The first field of each shape struct stores what particular

* kind of shape it is.

*/

enum ShapeTag {Circle, Rectangle};

/*

* The following struct Pt and functions newPt and copyPt are

* used in the implementations of the Circle and Rectangle

* shapes below.

*/

struct Pt {

float x;

float y;

};

struct Pt* newPt(float xval, float yval) {

struct Pt* p = (struct Pt *)malloc(sizeof(struct Pt));

p->x = xval;

p->y = yval;

return p;

};

struct Pt* copyPt(struct Pt* p) {

struct Pt* q = (struct Pt *)malloc(sizeof(struct Pt));
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q->x = p->x;

q->y = p->y;

return q;

};

/*

* The Shape struct provides a flag that is used to get some static

* type checking in the operation functions (center, move, rotate,

* and print) below.

*/

struct Shape {

enum ShapeTag tag;

};

/*

* The following Circle struct is our representation of a circle.

* The first field is a type tag to indicate that this struct

* represents a circle. The second field stores the circle's

* center point and the third field holds its radius.

*/

struct Circle {

enum ShapeTag tag;

struct Pt* center;

float radius;

};

/*

* The function newCircle creates a Circle struct from a given

* center point and radius. It sets the type tag to ``Circle.''

*/

struct Circle* newCircle(struct Pt* cp, float r) {

struct Circle* c = (struct Circle*)malloc(sizeof(struct Circle));

c->center=copyPt(cp);

c->radius=r;

c->tag=Circle;

return c;

};

/*

* The function deleteCircle frees resources used by a Circle.

*/

void deleteCircle(struct Circle* c) {

free (c->center);

free (c);

};
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/*

* The following Rectangle struct is our representation of a rectangle.

* The first field is a type tag to indicate that this struct

* represents a rectangle. The next two fields store the rectangles

* top-left and bottom-right corner points.

*/

struct Rectangle {

enum ShapeTag tag;

struct Pt* topleft;

struct Pt* botright;

};

/*

* The function newRectangle creates a rectangle in the location

* specified by parameters tl and br. It sets the type tag to

* ``Rectangle.''

*/

struct Rectangle* newRectangle(struct Pt* tl, struct Pt* br) {

struct Rectangle* r = (struct Rectangle*)malloc(sizeof(struct Rectangle));

r->topleft=copyPt(tl);

r->botright=copyPt(br);

r->tag=Rectangle;

return r;

};

/*

* The function deleteRectangle frees resources used by a Rectangle.

*/

void deleteRectangle(struct Rectangle* r) {

free (r->topleft);

free (r->botright);

free (r);

};

/*

* The center function returns the center point of whatever shape

* it is passed. Because the computation depends on whether the

* shape is a Circle or a Rectangle, the function consists of a

* switch statement that branches according to the type tag stored

* in the shape s. If the tag is Circle, for instance, we know

* the parameter is really a circle struct and hence that it has

* a ``center'' component which we can return. Note that we need

* to insert a typecast to instruct the compiler that we have a

* circle and not just a shape. Note also that this program

* organization assumes that the type tags in the struct are

* set correctly. If some programmer incorrectly modifies a type tag
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* field, the program will no longer work and the problem cannot

* be detected at compile time because of the typecasts.

*/

struct Pt* center (struct Shape* s) {

switch (s->tag) {

case Circle: {

struct Circle* c = (struct Circle*) s;

return copyPt(c->center);

};

case Rectangle: {

struct Rectangle* r = (struct Rectangle*) s;

return newPt((r->botright->x - r->topleft->x)/2,

(r->botright->x - r->topleft->x)/2);

};

};

};

/*

* The move function receives a Shape parameter s and moves it

* dx units in the x-direction and dy units in the y-direction.

* Because the code to move a Shape depends on the kind of shape,

* this function inspects the Shape's type tag field within a switch

* statement. Within the individual cases, typecasts are used to

* convert the generic shape parameter to a Circle or Rectangle as

* appropriate.

*/

void move (struct Shape* s,float dx, float dy) {

switch (s->tag) {

case Circle: {

struct Circle* c = (struct Circle*) s;

c->center->x += dx;

c->center->y += dy;

};

break;

case Rectangle: {

struct Rectangle* r = (struct Rectangle*) s;

r->topleft->x += dx;

r->topleft->y += dy;

r->botright->x += dx;

r->botright->y += dy;

};

};

};

/*

* The rotate function rotates the shape s ninety degrees. Like

* the center and move functions, this code uses a switch statement

* that checks the type of shape being manipulated.
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*/

void rotate (struct Shape* s) {

switch (s->tag) {

case Circle:

/* Rotating a circle is not a very interesting operation! */

break;

case Rectangle: {

struct Rectangle* r = (struct Rectangle*)s;

float d = ((r->botright->x - r->topleft->x) -

(r->topleft->y - r->botright->y))/2.0;

r->topleft->x += d;

r->topleft->y += d;

r->botright->x -= d;

r->botright->y -= d;

};

break;

};

};

/*

* The print function outputs a description of its Shape parameter.

* This function again selects its processing based on the type tag

* stored in the Shape struct.

*/

void print (struct Shape* s) {

switch (s->tag) {

case Circle: {

struct Circle* c = (struct Circle*) s;

printf("circle at %.1f %.1f radius %.1f \n",

c->center->x, c->center->y, c->radius);

};

break;

case Rectangle: {

struct Rectangle* r = (struct Rectangle*) s;

printf("rectangle at %.1f %.1f %.1f %.1f \n",

r->topleft->x, r->topleft->y,

r->botright->x, r->botright->y);

};

break;

};

};

/*

* The body of this program just tests some of the above functions.

*/

void main() {

struct Pt* origin = newPt(0,0);

struct Pt* p1 = newPt(0,2);
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struct Pt* p2 = newPt(4,6);

struct Shape* s1 = (struct Shape*)newCircle(origin,2);

struct Shape* s2 = (struct Shape*)newRectangle(p1,p2);

print(s1);

print(s2);

rotate(s1);

rotate(s2);

move(s1,1,1);

move(s2,1,1);

print(s1);

print(s2);

deleteCircle((struct Circle*)s1);

deleteRectangle((struct Rectangle*)s2);

free(origin);

free(p1);

free(p2);

};
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C Shape program: Object-oriented version

#include <stdio.h>

// (The following is a running C++ program, but it does not represent

// an ideal C++ implementation. The code has been kept simple so

// that it can be understood by readers who are not well-versed in C++).

// The following class Pt is used by the shape objects below. Since

// Pt is a class in this version of the program, the ``newPt'' and

// ``copyPt'' functions may be implemented as class member functions.

// For readability, we have in-lined the function definitions and

// named both of these functions ``Pt''; these overloaded functions

// are differentiated by the types of their arguments.

class Pt {

public:

Pt(float xval, float yval) {

x = xval;

y=yval;

};

Pt(Pt* p) {

x = p->x;

y = p->y;

};

float x;

float y;

};

// Class shape is an example of a ``pure abstract base class,''

// which means that it exists solely to provide an interface to

// classes derived from it. Since it provides no implementations

// for the methods center, move, rotate, and print, no ``shape''

// objects can be created. Instead, we use this class as a base

// class. Our circle and rectangle shapes will be derived from

// it. This class is useful because it allows us to write

// functions that expect ``shape'' objects as arguments. Since

// our circles and rectangles are subtypes of shape, we may pass

// them to such functions in a type-safe way.

class Shape {

public:

virtual Pt* center()=0;

virtual void move(float dx, float dy)=0;

virtual void rotate()=0;

virtual void print()=0;

};
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// Class Circle consolidates the center, move, rotate, and print

// functions for circles. It also contains the object constructor

// ``Circle,'' corresponding to the function ``newCircle'' and the

// object destructor ``~Circle, corresponding to the function

// ``deleteCircle'' from the typecase version. Note that the

// compiler guarantees that the Circle's methods are only called on

// objects of type Circle. The programmer does not need to keep an

// explicit tag field in the object.

class Circle : public Shape {

public:

Circle(Pt* cn, float r) {

center_ = new Pt(cn);

radius_ = r;

};

virtual ~Circle() {

delete center_;

};

virtual Pt* center() {

return new Pt(center_);

};

void move(float dx, float dy) {

center_->x += dx;

center_->y += dy;

};

void rotate() {

/* Rotating a circle is not a very interesting operation! */

};

void print() {

printf("circle at %.1f %.1f radius %.1f \n",

center_->x, center_->y, radius_);

};

private:

Pt* center_;

float radius_;

};

// Class Rectangle consolidates the center, move, rotate, and print

// functions for rectangles. It also contains the object constructor

// ``Rectangle,'' corresponding to the function ``newRectangle'' and the

// object destructor ``~Rectangle, corresponding to the function

// ``deleteRectangle'' from the typecase version. Note that the

// compiler guarantees that the Rectangle's methods are only called on
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// objects of type Rectangle. The programmer does not need to keep an

// explicit tag field in the object.

class Rectangle : public Shape {

public:

Rectangle(Pt* tl, Pt* br) {

topleft_ = new Pt(tl);

botright_ = new Pt(br);

};

virtual ~Rectangle() {

delete topleft_;

delete botright_;

};

Pt* center() {

return new Pt((botright_->x - topleft_->x)/2,

(botright_->x - topleft_->x)/2);

};

void move(float dx,float dy) {

topleft_->x += dx;

topleft_->y += dy;

botright_->x += dx;

botright_->y += dy;

};

void rotate() {

float d = ((botright_->x - topleft_->x) -

(topleft_->y - botright_->y))/2.0;

topleft_->x += d;

topleft_->y += d;

botright_->x -= d;

botright_->y -= d;

};

void print () {

printf("rectangle coordinates %.1f %.1f %.1f %.1f \n",

topleft_->x, topleft_->y,

botright_->x, botright_->y);

};

private:

Pt* topleft_;

Pt* botright_;

};

/*

* The body of this program just tests some of the above functions.

*/
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void main() {

Pt* origin = new Pt(0,0);

Pt* p1 = new Pt(0,2);

Pt* p2 = new Pt(4,6);

Shape* s1 = new Circle(origin, 2 );

Shape* s2 = new Rectangle(p1, p2);

s1->print();

s2->print();

s1->rotate();

s2->rotate();

s1->move(1,1);

s2->move(1,1);

s1->print();

s2->print();

delete s1;

delete s2;

delete origin;

delete p1;

delete p2;

}

D Specializing comparison operations via templates

template <class T> class compare

{

public:

virtual int operator==(const T&) const =0;

virtual int operator< (const T&) const =0;

int operator !=(const T& x) const {return !operator ==(x);}

int operator >=(const T& x) const {return !operator < (x);}

int operator <=(const T& x) const {return operator ==(x) ||

operator <(x); }

int operator > (const T& x) const {return !operator <=(x);}

};

class Int : public compare<Int>

{

int val;

public:

Int(int n) {val=n;};
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int is_zero() const {if (val==0) return 1; else return 0;}

void incr() {val++;};

void decr() {val--;};

virtual int operator== (const Int& x) const

{if (val == x.val) return 1; else return 0;}

virtual int operator< (const Int& x) const

{if (val < x.val) return 1; else return 0;}

};

E Multiple implementations of sets with union

struct node {

node* next;

int data;

};

/*-------------------- virtual base class --------------------------*/

class set {

protected:

virtual node* commonrep()=0;

public:

virtual int ismember(int)=0;

virtual void insert(int)=0;

virtual void merge(set*)=0;

virtual void print()=0;

};

/*------------------- two derived classes --------------------------*/

class linkedset : public set {

node* rep;

protected:

virtual node* commonrep();

public:

linkedset();

virtual int ismember(int key);

virtual void insert(int k);

virtual void merge(set* s);

virtual void print();

};

class arrayset : public set {

int member[100];

protected:

node* commonrep();

public:

arrayset();

virtual int ismember(int key);

virtual void insert(int k);

virtual void merge(set* s);

virtual void print();
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};

/*--------------- member functions for set union ---------------------*/

void arrayset::merge(set* s){ /* actual parameter could be */

node* add = s->commonrep(); /* arrayset or linkedset */

node* n;

for (n=add;n=n->next;n=0) {

int k=n->data;

member[k]=1;

}

}

This article was processed using the LaTEX macro package with LLNCS style


