
Classes = Objects + Data Abstraction

Kathleen Fisher� and John C. Mitchelly

Computer Science Department, Stanford University, Stanford, CA 94305

fkfisher,mitchellg@cs.stanford.edu

January 11, 1996

Abstract

We describe a type-theoretic foundation for object systems that include \interface types" and
\implementation types," in the process accounting for access controls such as C++ private,

protected and public levels of visibility. Our approach begins with a basic object calculus
that provides a notion of object, method lookup, and object extension (an object-based form
of inheritance). In this calculus, the type of an object gives an interface, as a set of methods
(public member functions) and their types, but does not imply any implementation properties
such as the presence or layout of any hidden internal data. We extend the core object calculus
with a higher-order form of data abstraction mechanism that allows us to declare supertypes
of an abstract type and a list of methods guaranteed not to be present. This results in a

exible framework for studying and improving practical programming languages where the type
of an object gives certain implementation guarantees, such as would be needed to statically
determine the o�set of a function in a method lookup table or safely implement binary operations
without exposing the internal representation of objects. We prove type soundness for the entire
language using operational semantics and an analysis of typing derivations. Two insights that
are immediate consequences of our analysis are the identi�cation of an anomaly associated with
C++ private virtual functions and a principled, type-theoretic explanation (for the �rst time,
as far as we know) of the link between subtyping and inheritance in C++, Ei�el and related
languages.

1 Introduction

In theoretical studies of object systems, such as [AC94b, Bru93, FHM94, PT94] and the earlier

papers appearing in [GM94], types are viewed as interfaces to objects. This means that the type

of an object lists the operations on the object, generally as method names and return types, but

does not restrict its implementation. As a result, objects of the same type may have arbitrarily

di�erent internal representations. In contrast, the type of an object in common practical object-

oriented languages such as Ei�el [Mey92] and C++ [Str86, ES90] may impose some implementation

constraints. In particular, although the \private" internal data of an object is not accessible

outside the member functions of the class, all objects of the same class must have all of the private

internal data listed in the class declaration. In this paper, we present a type-theoretic framework

that incorporates both forms of type. We explain the basic principles by extending a core object

calculus with a standard higher-order data abstraction mechanism as in [MP88, CW85]. We also

�Supported in part by a Fannie and John Hertz Foundation Fellowship and NSF Grant CCR-9303099.
ySupported in part by NSF Grant CCR-9303099 and the TRW Foundation.

1

discuss a special-purpose syntax that is closer to common practice and that eliminates a few minor

syntactic inconveniences in our speci�c use of standard abstract data type declarations.

From a programming point of view, \interface" types are often more
exible than types that

constrain the implementation of objects. With this form of type, we could de�ne a single type

of matrix objects, for example, then represent dense matrices with one form of object and sparse

matrices with another. If the type only gives the interface of an object, then both matrix represen-

tations could have the same type and therefore be used interchangeably in any program. This kind

of
exibility is particularly useful when we write library operations on matrices without assuming

any particular implementation. Such library functions may be written using a standard interface

type, without concern for how matrices might be implemented in later (or earlier) development of

a software system.

Types that restrict the implementations of objects are also important. If we know that all

point objects inherit a speci�c representation of x and y coordinates, for example, then a program

may be optimized to take advantage of this static guarantee. The usual implementations of C++,

for example, use type information to statically calculate the o�set of member data relative to the

starting address of the object. (A similar calculation is used to �nd the o�set of virtual member

functions in the v-table at compile time; see [ES90, Section 10.7c].) Such optimizations are not

possible in an untyped language such as Smalltalk [GR83] and would not be possible in a typed

language where objects of a single type could have arbitrarily dissimilar implementations.

A second, more methodological reason that programmers may be interested in implementation

types is that there are greater guarantees of behavioral similarity across subtype hierarchies. More

speci�cally, traditional type systems generally give useful information about the signature (or do-

main and range) of operations. This is a very weak form of speci�cation and, in many programming

situations, it is desirable to have more detailed guarantees. While behavioral speci�cations are dif-

�cult to manipulate e�ectively, we have a crude but useful approximation when types �x part of

the implementation of an object. To return to points, for example, if we know that all subtypes of

point share a common implementation of a basic function like move , then the type system, in e�ect,

guarantees a behavioral property of points. (This may be achieved in our framework if move is

private or if we add the straightforward capability of restricting rede�nition of protected or public

methods.)

A more subtle reason to use types that restrict the implementations of objects has to do with

the implementation of binary operations. In an object-oriented context, a binary operation on type

A is realized as a member function that requires another A object as a parameter. In a language

where all objects of type A share some common representation, it is possible for an A member

function to safely access part of the private internal representation of another A object. A simple

example of this arises with set objects that have only a membership test and a union operation

in their public interfaces. With interface types, some objects of type set might be represented

internally using bit-vectors, while others might use linked lists. In this case, there is no type-safe

way to implement union, since no single operation will access both a bit-vector and a linked list

correctly. With only interface types, it is necessary to extend the public interface of both kinds of

sets to make this operation possible. In contrast, if the type of an object conveys implementation

information, then a less
exible but type-safe implementation of set union is possible. In this case,

all set objects would have one representation and a union operation could be implemented by taking

advantage of this uniformity.

This paper presents a provably sound type system, based on accepted type-theoretic principles,

that allows us to write both \interface types" and \implementation types". The system is relatively

simple in outline, since it may be viewed as a straightforward combination of basic constructs that

2

have been studied previously. However, there are a number of details involving subtype assertions

about abstract types, extensions to abstract types, covariance and contravariance of methods, and

the absence of methods that make the exact details of the system relatively subtle. In summary, the

paper has three main points: (i) the general view that classes correspond to abstract data types, (ii)

a precise formulation of a higher-order abstract type mechanism and a
exible underlying object

calculus that together make it possible to establish a correspondence between C++-style classes and

abstract data types whose representations are objects, (iii) a proof of type soundness for the type

system that arises from this analysis. While there is a folkloric belief that C++ and Ei�el classes

provide a form of data abstraction, we believe that this is the �rst technical account suggesting a

precise correspondence between class constructs and a standard non-object-oriented form of data

abstraction.

Our presentation of classes as abstract data types requires a number of operations on objects.

Speci�cally, the underlying object calculus without data abstraction must provide a basic form of

object that allow us to invoke methods of an object, extend objects with new methods, and replace

existing methods. Moreover, in order to capture the form of subtyping present in typed object-

oriented languages, we must have at least the usual form of subtyping between object types. This

much was already provided by our previous object calculus, presented in [FHM94, FM95]; similar

primitives are also provided in alternative approaches such as [AC94b, AC94a].

In adding a data abstraction mechanism, we must incorporate subtype speci�cations, negative

information (absence of methods), and variance information in abstract type declarations. This is

so that abstract types are extensible in essentially the same way as their underlying representations.

Therefore, we extend our basic calculus from [FHM94, FM95] with more detailed static information

about type variables and (since most operations are done on functions from types to so-called

rows) row variables. While the intuitive decomposition of classes into data abstraction and object

primitives is essentially straightforward, the need to maintain detailed information about subtyping

properties and extensibility of abstract types leads to certain technical complications and subtleties

that had to be overcome in developing this analysis.

A detail for readers of [FHM94] is that the \class" types of that paper were interface types,

not classes in the sense of a form of object type that includes implementation information. We

therefore renamed them \pro" (for prototype) types in [FM95] and continue that terminology here.

2 Overview by Example

2.1 Protection levels

Each class in an object-oriented program has two kinds of external clients: sections of the program

that use objects created from the class and classes that derive new classes from the original. Since

the methods of a class may refer to each other, the class also has an internal \client," namely

itself. We therefore associate three interfaces with each class. Using C++ terminology, these may

be distinguished as follows:

Private methods are only accessible within the implementation of the class,

Protected methods are only accessible in the implementation of the class and derived classes,

Publicmethods may be accessible, through objects of the class, in any module of the program.

One goal of this paper is to show how we can associate a di�erent type with each interface and

use essentially standard type-theoretic constructs to restrict visibility in each part of a program

3

appropriately. In doing so, we pay particular attention to the fact that although the private or

protected methods may not be accessible in certain contexts, it is important for the type system

to guarantee their existence.

2.2 Point and color point classes

Using C++-like syntax, we might declare classes of points and colored points as shown below. For

simplicity, we use only one-dimensional points.

class Point

private x : int;

protected setX : int -> Point;

public getX : int;

mv : int -> Point;

newPoint : int -> Point;

end;

class ColorPoint : Point

private c : color;

protected setC : color -> ColorPoint;

public getC : color;

newColorPoint : color -> int -> ColorPoint

end;

Intuitively, the set methods are used to assign to private x-coordinate or color data, and get

methods are used to read the values of the data. The move method mv changes the x-coordinate of a

point or colored point. These classes re
ect a common idiom of C++ programming, where the basic

data �elds are kept private so that the class implementor may change the internal representation

without invalidating client code. Protected methods make it possible for derived classes to change

the values of private data, without providing the same capability outside of derived classes.

In C++ and in the pseudo-code above, each class contains a special function called a constructor

for the class. Here the constructor is distinguished by the syntactic form newClassname . Since all

objects of a class are created by calling a class constructor, it is important to be able to call the

constructor function before any objects have been created. Therefore, unlike the other functions

listed in the class declarations, the class constructor is not a method; it does not belong to objects

of the class. Constructors are included in class declarations primarily as a syntactic convenience.

2.3 Interface type expressions

In translating the pseudo-code above into a more precise form, we write a type expression for

each interface of each class, resulting in six distinct but related types. In hopes that this practice

will provide useful mnemonics, we follow a systematic naming convention where, for class A , we

call the type expressions for the public, protected, and private interfaces Apub; Aprot , and Apriv ,

respectively.

Although each interface is essentially a list of methods names and their types, it is necessary

to use a type function instead of a type for each interface. The reason is that the type associated

with the objects instantiated from a given class is recursively de�ned; this type is a �xed-point of

a type function. Point-wise subtyping between such type functions is the critical relation between

interfaces for type-checking inheritance.

4

For Point , this methodology gives us the following type functions, using the form hh : : : ii for
object interface types:

Pointpub
def
= �t hhgetX : int; mv : int! tii

Pointprot
def
= �t hhsetX : int!t; getX : int; mv : int!tii

Pointpriv
def
= �t hhx : int; setX : int! t; getX : int; mv : int!tii

These interface functions are formed from the class declaration for Point by replacing occurrences

of Point by a type variable t and lambda-abstracting to obtain a type function. We will use row

variables to range over such type functions, (which map types to �nite lists of method/type pairs).

The analogous interfaces for ColorPoint are written using a free row variable p , which will be

bound to the abstract type-function for points in the scope where the ColorPoint interfaces will

appear:

ColorPointpub
def
= �t hhp t j getC : Colorii

ColorPointprot
def
= �t hhp t j setC : Color!t; getC : Colorii

ColorPointpriv
def
= �t hhp t j c : Color; setC : Color!t; getC : Colorii

Since the supertyping bounds on identi�er p will give all of the relevant (protected or public)

Point methods, there is no need to list the methods inherited from Point . Consequently these

ColorPoint interfaces list exactly the same methods as our pseudo-code ColorPoint class. Since

the variable p will be \existentially bound" in an abstract data type declaration, the occurrence

of p in each expression will guarantee that all the private methods of Point objects are present in

every ColorPoint object, without exposing any other information about private Point methods.

So-called \kind" information in the declaration of p will guarantee that methods named c; setC;

and getC are not present, making it type-safe to extend p objects with these new methods.

2.4 Implementations

A class implementation speci�es an object layout and set of method bodies (code for the methods of

the objects). In our approach, the object layout will be given by a type expression and the method

bodies will be part of the constructor function. Following general principles of data abstraction,

the method bodies may rely on aspects of the representation that are hidden from other parts of

the program.

We use a subtype-bounded form of data abstraction based on existential types [MP88, CW85].

Using this formalism, the implementation of points will be given by a pair with subtype-bounded

existential type of the form

fjp <: (: : :) :: � = Ppriv; ConsImppjg

consisting of the private interface Ppriv for points and a constructor function ConsImpp that might

use an initial value for the x-coordinate, for example, to return a new point object. (Our framework

allows any number of constructor functions, or other \non-virtual" operations to be provided here.

However, for simplicity, we discuss only the special case of one constructor per class.) For the

moment, we leave the supertype bound, indicated by the ellipsis (: : :) above, unspeci�ed since we

later discuss two separate approaches, a minimal one in which we give the protected interface here

(later restricting the program view to the public interface) and a more special-purpose approach in

which both the protected and public interfaces are speci�ed in the class implementation. The \kind"

5

Abstype p <:w Pprot :: T
+ ! (fc; getC; setCg; ;)

with newPoint : Int!prou p u

is fjp <:w Pprot :: (T
+ ! (fc; getC; setCg; ;)) = Ppriv; Imppjg

in

Abstype cp <:w CPprot :: T
+ ! (;; ;)

with newColorPoint : Int!Color!pro u cp u

is fjcp <:w CPprot :: (T
+ ! (;; ;)) = CPpriv; Impcpjg

in

Abstype p <:w Ppub :: T
+ ! (;; ;)

with newPoint : Int!obj t p t

is fjp <:w Ppub :: (T
+ ! (;; ;)) = p; newPointjg

in

Abstype cp <:w CPpub :: T
+ ! (;; ;)

with newColorPoint : Int!Color!obj t cp t

is fjcp <:w Ppub :: (T
+ ! (;; ;)) = cp; newColorPointjg

in

hProgrami

Figure 1: Nested abstract data types for points and colored point classes.

� will indicate that we are declaring an abstract type function, list methods that are guaranteed

not to be present in the implementation of points, and describe the variance of point objects. The

variance information is needed to infer subtyping relationships for object types that contain row

variable p .

The implementation of ColorPoint similarly has the form

fjcp <: (: : :) :: �0 = CPpriv; ConsImpcpjg

where the constructor ConsImpcp , �rst invokes the Point class constructor newPoint , then extends

the resulting prototype with the new methods c; setc; and getc . De�nitions of the Point and

ColorPoint class constructors are given in Section 3.4.

2.5 Class hierarchies as nested abstract types

Our basic view of classes and implementation types is that the class-based pseudo-code in Section 2.2

may be regarded as sugar for the sequence of nested abstract data type (Abstype) declarations

given in Figure 1. Since it is syntactically awkward to use two declarations per class, one giving the

protected interface and the other the public interface, we discuss alternate syntactic presentations

in Section 3.5.

In order, the four abstract type declarations give the protected view of Point, the protected

view of ColorPoint, the public view of Point, and the public view of ColorPoint. The nesting

structure allows the implementation of ColorPoint to refer to the protected view of Point and

allows the program to refer to public views of both classes.

6

The two inner declarations hide the protected view of a class by redeclaring the same type name

and constructor and exposing the public view (with a di�erent type, as discussed below). Since the

implementation of the public view, in each case, is exactly the same as the implementation of the

protected view, hiding the protected methods is the only function of the two inner declarations.

We admit that reusing bound variables is a bit of a \hack," but this is a relatively minor issue that

can be solved by departing from the simple block-structured scoping mechanism we use here.

One distinction between the protected and public views is that the constructors for the protected

view return an object with a pro type while the public view constructors return objects with obj

types. These two types from our underlying object calculus allow di�erent sets of operations on

objects. Speci�cally, new methods may be added to an object with a pro type and existing methods

can be overridden. If an object has an obj type, on the other hand, the only operation is to invoke

a method of the object. Since we have di�erent sets of operations, there are di�erent subtyping

rules: the subtyping relation is relatively rich between obj types, while the only supertypes of a

pro type are object types. Intuitively, this means that the methods of an object may be modi�ed

or extended when it is used as a prototype, but not once it is \promoted" to a member of an obj

type. While the distinction between these two kinds of types is convenient for our purposes here, it

was originally devised as a mechanism for obtaining nontrivial subtyping in the presence of object

inheritance primitives (object extension and method rede�nition).

3 Object calculus and type system

3.1 The calculus

The expressions of our core calculus are untyped lambda terms, including variable x , application

e1e2 and lambda abstraction �x:e , extended with four object forms:
hi the empty prototype or object

e(m send message m to prototype or object e

he1 + m=e2i extend prototype e1 with new method m having body e2

he1 m=e2i replace prototype e1's method body for m by e2
These expressions are the same as in [FHM94, FM95]. However, the type system used in the

present paper is more detailed. We extend this core calculus with two encapsulation primitives:

Abstype r <:w R : : � with x : � is e1 in e2

fjr <:w R : : � = R0; ejg

The �rst is used to provide limited access to implementation e1 in client e2 . Type expression

r <:w R : : � and assumption x : � provide the interface for this access. The type system will

require expression e1 to have the form fjr <:w R : : � = R0; ejg , which is the implementation of

the abstraction. The components of these expressions will be explained in more detail after we

introduce the type system.

3.2 Operational semantics

The operational semantics include � -reduction for evaluating function applications and a (() rule

for evaluating message sends:

he1 � m=e2i(m
eval

�! e2 he1 � m=e2i

7

where � may be either + or . We also need various bookkeeping rules to access methods

de�ned within e1 . These bookkeeping rules appear in Appendix A; they are explained in full in

[FHM94]. The reduction rule (Abstype) for abstract data type declarations is:

Abstype r <:w R : : � with x : � is fjr <:w R : : � = R0; e1jg in e2
eval

�! [R0=r; e1=x]e2

3.3 Static Type System

The type expressions, given in Appendix B, include type variables, function types, pro types, obj

types, and existential types. To reduce the complexity of the type system, these types are divided

into two categories. The unquanti�ed, monotypes are indicated using metavariables �; � 0; �1; : : :.

The quanti�ed types, indicated using metavariables �; �0; �1; : : :, may contain existential quanti�ers.

A row is a �nite list of method name, type pairs. Row expressions appear as subexpressions

of type expressions, with rows and types distinguished by kinds. Intuitively, the elements of kind

(f~mg; V) are the rows that do not include the method names in f~mg and whose the free type

variables appear with variance indicated in variance set V . We keep track of the absence of

methods in order to guarantee that methods are not multiply de�ned. The variance information,

which tells whether a variable appears monotonically, antimonotonically, or neither, is necessary

for subtyping judgements involving types of the form pro t R or obj t R since R may contain

row variables. Type functions, which arise as row expressions with kind T a ! (f~mg; V), are used

to infer a form of higher-order polymorphism for method bodies and to provide type interfaces to

encapsulated implementations. The annotation a indicates the variance of the abstracted variable.

To avoid unnecessary repetition in our presentation, we use the meta-variable probj for either

obj or pro. Intuitively, the elements of type probj t hhm1 : �1; : : : ; mk : �kii are objects e such that

for 1 � i � k , the result of e(mi is a value of type �i . However, since the bound type variable t

may appear free in �i , the type of e(mi is actually the result of replacing each free occurrence of

t in �i by probj t hhm1 : �1; : : : ; mk : �kii . Because of this substitution, probj t hh: : :ii is e�ectively

a special form of recursively-de�ned type.

The typing rule for sending a message to an object is

(probj()

�` e : probj t R

�; t : ft+g`R <:w hhm : �ii

�` e(m : [probj t R=t]�

where the substitution for t in � re
ects the recursive nature of pro and obj types. This rule di�ers

from the ones given in [FHM94, FM95] by requiring only that we may derive �; t : ft+g `R <:w hhm : �ii

instead of the more stringent requirement that R � hhR0jm : �ii . This relaxation permits us to type

message sends to objects whose types may be partially abstract (i.e., types containing row vari-

ables). Another thing to notice about this rule is the subscript w on the subtyping judgment. This

symbol indicates that only width subtyping was used to reach this conclusion. Our system supports

both width and depth subtyping on object types; however, for soundness of certain operations, it

is essential to keep track of exactly where depth subtyping occurs.

The rule for method override is as follows:

(pro over)

�` e1 : prou R

�; u : fu+g`R <:w hhm : �ii

�; Ir ` e2 : [prou ru=t](t! �)

�` he1 m=e2i : prou R

8

where Ir = r <:w �t:R : :T 0 ! (;; Invar(V�)).

The primary di�erence between this rule and the one given in [FHM94, FM95] is again the relaxation

of the requirement that R be of the form hhR0 jm : �ii , which permits us to override methods in

objects with partially abstract types.

The distinction between pro and obj types is that the former allows rede�nition or extension of

methods, while the latter gives subtyping instead. An inessential artifact of our calculus is that we

may use the same untyped terms for prototypes and objects. We might like to use this coincidence

to advantage by using the following rule (along with subsumption) to convert prototypes to objects:

(seal-unsound)
�`obj u R : T

�`prou R <: obj u R

where the hypothesis �`obj u R : T ensures that obju R is well formed. Unfortunately, this

rule is problematic when the variable u appears contravariantly in R . Hence we need a more

complicated rule that we combine with the rule for obj subtyping since they both have the same

form:

(<: obj)

�; t : ft+g`R1 <:B R2

�; t : ft+g `R2 : : (M ; V)

V ar(t; V) 2 f?;+g

�`probj t R1 <: obj t R2

Because R1 and R2 in this rule might contain row variables, we cannot use their syntactic form

to determine whether the critical type variable appears covariantly (monotonically). Therefore, we

appeal to the kind of R2 , which contains so-called variance (monotonicity or antimonotonicity)

information. The auxiliary function V ar(t; V) gives the variance of type variable of t in variance

set V . If V ar(t; V) is ?, then t does not appear in R2 , and hence is vacuously covariant. If

V ar(t; V) is +, then t appears covariantly. In either case, the consequent of the rule follows from

the premises. Since the subscript B on the subtype relation is unconstrained, this rule gives us

subtyping in both width and depth for obj types . This rule also has the somewhat unfortunate

property that we cannot convert prototypes to obj type if there are methods that are contravariant

in the bound type variable. However, this appears to be a fundamental trade-o� and limitation.

The rule for forming a class implementation: is the standard rule for existential introduction,

extended to address kinding and supertyping constraints.

(9 <: intro)

�`R1 : : �

�`R1 <:w R

�` e : [R1=r]�

�`fjr <:w R : : � = R1; ejg : 9(r <:w R : : �)�

The rule for existential types is standard as well. The full type system appears in Appendix C.

3.4 Examples

The Point class constructor Impp from Section 2.4 may be written as follows:

�initX h x = �self initX;

setX = �self �newX hself x = �self0 newXi;
getX = �self (self(x);

mv = �self �dx (self(setX(dx+ self(getX))i

9

The ColorPoint constructor Impcp �rst invokes the Point class constructor newPoint , (which

is implemented by the above Impp function) then extends the resulting prototype with the new

methods c; setc; and getc :

�iX �iC hhhhnewPoint(iX) + c = �self iCi
 + getC = �self (self(c)i

 + setC = �self �newC hself c = �self0 newCiii

By �rst calling the constructor for the Point class, the ColorPoint class permits the parent

Point class to build the parts of the ColorPoint objects inherited from Point , including the

private components that the ColorPoint class cannot access.

3.5 An explicit class construct

Although the pattern of nested abstract data type declarations discussed in Section 2.5 gives us

some useful insight into classes, this is an \encoding" of a relatively complex construct into a

pattern of use of two simpler ones; it not a class construct that could be used as the basis for

programming language design. In this brief section, we discuss an alternate \foundational object

calculus" with classes taken as basic instead of derived from abstract data type declarations. While

additional redesign is possible, we con�ne ourselves to replacing patterns of abstype by a single

class construct; we do not consider modi�cations of the underlying core object calculus. As a

simplifying syntactic assumption, we continue to work with block-structured syntax, instead of a

more complicated module formalism with visibility controlled by explicit uses declarations.

A simple construct that may be used in place of standard abstype is a class declaration of the

form

Class p <: P_prot <: P_pub :: kind_p with newP(pars_p) is <P_priv, Imp_p>

and q <: Q_prot <: Q_pub :: kind_q with newQ(pars_q) is <Q_priv, Imp_q>

and ...

and r <: R_prot <: R_pub :: kind_r with newR(pars_r) is <R_priv, Imp_r>

in

Program

end

We can derive direct typing rules for this construct using the translation into nested abstype 's.

The idea is that classes q : : :r may declare subtypes of p . Therefore, this declaration binds

p and newP in the subsequent class declaration clauses and in Program . However, the subtyping

information about p and type of newP will be di�erent in the two scopes. Speci�cally, the clauses

giving possible subtypes of p are type-checked using the assumptions p <: P prot :: kind p and

newP : pars p! prou p u , while the program is type-checked using the assumptions p <: P pub ::

kind p and newP : pars p ! obju p u . This makes it possible for the implementation of derived

classes q : : :r to access the protected methods of p and extend the implementation of p objects by

adding new methods or rede�ning existing ones. Each of the subsequent class declaration clauses

are treated similarly so that, for example, the declaration of r has analogous access to the protected

methods of q . As in the pattern of abstype declarations given in Section 2.5, the client program

does not have these capabilities.

Although we have explained this construct under the assumption that q : : :r are subtypes of

p , they are more properly viewed as derived classes that may or may not result in subtypes. In

particular, since there is no restriction on the syntactic form of Q pub , for example, this could be

10

an expression giving obju q u <: obj u p u , or it might not. If it is not, then we have the analog

of C++ private base classes where inheritance does not produce a subtype.

4 Overview of soundness proof

The soundness proof, using the operational semantics discussed in Section 3.2, has two parts. The

�rst shows that evaluation preserves type; this property is traditionally called subject reduction.

The second part established that no typable expression evaluates to error . In the second part,

we use a speci�c evaluation strategy, described in [FHM94], to carry out the argument. The two

parts together guarantee that we never obtain a \message-not-understood" errors from any typable

expression.

While the details are di�erent, the proof follows the same outline as [FHM94, FM95]. A sketch

of the proof appears in Appendix D.

Theorem 4.1 (Subject Reduction) If �` e : � is derivable, and e
eval

�! e0 , then �` e0 : � is

also derivable.

Theorem 4.2 (Type Soundness) If the judgement � ` e : � is derivable, then eval(e) 6= error ,

where the function eval is as in [FHM94], extended with rules for (Class) reduction.

5 Analysis

Here we brie
y note several implications of our approach.

5.1 Representation independence for classes

One advantage of our decomposition of classes into object operations and standard data abstraction

is that a number of properties developed in the analysis of traditional data abstraction without

objects may be applied to object-oriented languages. For example, the results in [Rey83, MM85,

Mit86, Mit91] give various su�cient conditions on interchangeability of implementations. Put

brie
y, we may replace one implementation of a class with another, in any program, as long as the

protect and public interfaces of the new implementation conform to the old ones and the observable

behaviors correspond.

5.2 Subtyping and inheritance

A basic issue in the literature on object-oriented programming is the relation between subtyping

and inheritance. An early and in
uential paper, [Sny86], argues that the way these two ideas are

often linked (as in Ei�el and C++) is inconvenient and unfounded. We believe that the arguments

in [Sny86, Coo92] and related papers are essentially correct for interface types: subtyping between

interface types has nothing to do with the way objects are implemented. However, the analysis in

the present paper shows that for implementation types, inheritance may be necessary (although

not always su�cient) to produce a subtype. In short, if a type t is abstract, in the sense that all or

part of its implementation is hidden, then the only safe way to de�ne a subtype of t is by extending

the hidden implementation.

11

5.3 \Private virtual" functions

There are some interesting problems associated with C++ private virtual functions. In our

representation of classes, these show up immediately in the need to include \negative information"

in the interface of an abstract type. This is necessary if if we want to be able to extend the

representation, since otherwise we might try to add a new method that replaces an existing method,

invalidating another method that depends on the presence of the one that is replaced. (See [FM94],

for example, for further discussion.) However, this form of negative information is not used in

C++ class interfaces or header �les. Therefore, we have an anomalous situation in which private

virtual functions, which are not supposed to be visible to derived classes, can be unintentionally

overridden because in addition to being \private," they are also declared \virtual," which means

they are allowed to be rede�ned in derived classes.

6 Conclusion

In this paper, we describe a type-theoretic model of various levels of encapsulation and visibility in

object-oriented systems. More speci�cally, we show that classes, of the form found in C++, Ei�el

and related languages, may be regarded as the combination of two orthogonal language features:

a form of objects without encapsulation and a standard form of data abstraction mechanism (al-

beit higher-order and including subtype constraints). This intuitive view explains the correlation

between subtyping and inheritance and answers some of the criticism found in papers such as

[Sny86, Coo92]; other advantages of our approach are outlined in Section 5.

Several other features of C++-like object systems can be modeled in our framework. In partic-

ular, we can account for friend functions, non-virtual functions and inheritance with private base

classes (i.e., inheritance that does not result in a subtype) using the concepts presented here.

There are a number of promising directions for further work. One direction is to examine

further features of C++, with the goal of identifying anomalies or simplifying the language. An

interesting topic in this vein is the incorporation of \abstract" classes. An issue related to both

improving C++-like systems and the general problem of name spaces for method names might

be to develop a binding mechanism so that method names remain local to their intended scope.

This could resolve the problem with C++ private virtual functions and also simplify our type

system by eliminating the need for negative kind information in abstract type declarations. With

an eye toward future language design, we also hope to re�ne the special syntax described brie
y in

Section 3.5 and consider the reformulation of our block-structured constructs using modules and

dot notation [CL90, HL94]

References

[AC94a] M. Abadi and L. Cardelli. A theory of primitive objects: second-order systems. In Proc. European

Symposium on Programming, pages 1{24. Springer-Verlag, 1994.

[AC94b] M. Abadi and L. Cardelli. A theory of primitive objects: untyped and �rst-order systems. In Proc.

Theor. Aspects of Computer Software, pages 296{320. Springer-Verlag LNCS 789, 1994.

[Bru93] K. Bruce. Safe type checking in a statically-typed object-oriented programming language. In Proc

20th ACM Symp. Principles of Programming Languages, pages 285{298, 1993.

[CL90] Luca Cardelli and Xavier Leroy. Abstract types and the dot notation. Technical Report 56, DEC
Systems Research Center, Palo Alto, CA, March 1990.

12

[Coo92] W.R. Cook. Interfaces and speci�cations for the Smalltalk-80 collection classes. In ACM Conf.

Object-oriented Programming: Systems, Languages and Applications, pages 1{15, 1992.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. Com-

puting Surveys, 17(4):471{522, 1985.

[ES90] M. Ellis and B. Stroustrop. The Annotated C++ Reference Manual. Addison-Wesley, 1990.

[FHM94] K. Fisher, F. Honsell, and J.C. Mitchell. A lambda calculus of objects and method specialization.
Nordic J. Computing (formerly BIT), 1:3{37, 1994. Preliminary version appeared in Proc. IEEE

Symp. on Logic in Computer Science, 1993, 26{38.

[FM94] K. Fisher and J.C. Mitchell. Notes on typed object-oriented programming. In Proc. Theoretical

Aspects of Computer Software, pages 844{885. Springer LNCS 789, 1994.

[FM95] K. Fisher and J. Mitchell. A delegation-based object calculus with subtyping. In Fundamentals of

Computation Theory (FCT'95). Springer LNCS, 1995. To appear.

[GM94] C.A. Gunter and J.C. Mitchell, editors. Theoretical aspects of object-oriented programming. MIT
Press, Cambridge, MA, 1994.

[GR83] A. Goldberg and D. Robson. Smalltalk{80: The language and its implementation. Addison Wesley,
1983.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Proc. 21-st ACM Symp. on Principles of Programming Languages, 1994.

[Mey92] B. Meyer. Ei�el: The Language. Prentice-Hall, 1992.

[Mit86] J.C. Mitchell. Representation independence and data abstraction. In Proc. 13th ACM Symp. on

Principles of Programming Languages, pages 263{276, January 1986.

[Mit91] J.C. Mitchell. On the equivalence of data representations. In V. Lifschitz, editor, Arti�cial In-
telligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages
305{330. Academic Press, 1991.

[MM85] J.C. Mitchell and A.R. Meyer. Second-order logical relations. In Logics of Programs, pages 225{236,
Berlin, June 1985. Springer-Verlag LNCS 193.

[MP88] J.C. Mitchell and G.D. Plotkin. Abstract types have existential types. ACM Trans. on Program-

ming Languages and Systems, 10(3):470{502, 1988. Preliminary version appeared in Proc. 12th

ACM Symp. on Principles of Programming Languages, 1985.

[PT94] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-oriented
programming. Journal of Functional Programming, 4(2):207{248, 1994.

[Rey83] J.C. Reynolds. Types, abstraction, and parametric polymorphism. In Information Processing '83,
pages 513{523. North-Holland, Amsterdam, 1983.

[Sny86] A. Snyder. Encapsulation and inheritance in object-oriented programming languages. In Proc.

ACM Symp. on Object-Oriented Programming Systems, Languages, and Applications, pages 38{46,
October 1986.

[Str86] B. Stroustrop. The C++ Programming Language. Addison-Wesley, 1986.

13

A Syntax and operational semantics of expressions

Expressions
e : : = x j c j �x: e j e1e2 j

hi j e(m j he1 m = e2i j he1 + m = e2i j

fjr <:w R1 : :� = R2; ejg j

Abstype r <:w R : :� with x : � is e1 in e2

Operational Semantics:

(switch ext ov) hhe1 m2=e2i + m3=e3i
book
�! hhe1 + m3=e3i m2=e2i

(perm ov ov) hhe1 m2=e2i m3=e3i
book
�! hhe1 m3=e3i m2=e2i

(add ov) he1 + m2=e2i
book
�! hhe1 + m2=e2i m2=e2i

(cancel ov ov) hhe1 m3=e2i m3=e3i
book
�! he1 m3=e3i

(�) (�x: e1)e2
eval
�! [e2=x]e1

(() he1 � m=e2i(m
eval
�! e2he1 � m=e2i

where � may either + or .

(Abstype) Abstype r <:w R : :� with x : �
eval
�! [R0=r; e1=x]e2

is fjr <:w R : :� = R0; e1jg in e2

B Type System

Types
� : : = � j 9(r <:w R : :�)�
� : : = t j �1! �2 jpro t R jobj t R

Rows
R : : = r j hhii j hhR j m : � ii j �t:R j R�

Kinds
kind : : = V j�

V : : = f~tbg, b : : = + j � j o
� : : = T a ! � j �, a : : = b j ?

� : : = (M ; V)
M : : = f~mg

Contexts
� : : = � j� ; x : � j� ; t : V j� ; r <:w R : :�

The judgement forms are:

�` � well-formed context
�` e : � term has type
�`� : V well-formed type with variance V
�`R1 <:B R2 row R1 subtype of R2

B gives width vs. depth
�` �1 <: �2 type �1 subtype of �2
�`R : :� row has kind

The subtyping annotations are:

14

Width vs. Depth

B : : = w j d jw; d jB1+B2 Indicate record subtyping forms.
\+" is the union of B1 and B2 .

Operations on Variance Sets:

V1 � V2 = set di�erence

fta11 ; : : : ; tann g = fta11 ; : : : ; tann g, where ai inverts the sign of ai.

D(V1; : : : ; Vn) = ft j ta 2 Vi for some a,ig

V ar(t; V) =

�
a if ta 2 V
? otherwise

V nt = V � ftV ar(t;V)g

GV ar(t; V1; : : : ; Vn) = lubfV ar(t; V1); : : : ; V ar(t; Vn)g

Merge(V1; : : : ; Vn) = ftGVar(t;V1;:::;Vn) j t 2 D(V1; : : : ; Vn)g

Invar(V) = fto j t 2 D(V)g

V� = fta j ta 2 dom(�)g

where lub is taken with respect to the ordering: + � o; � � o; ? � �; ? � +.

Variance Substitutions

[V2=t]V1 =

8>><
>>:

Merge(V 0

1 ; V2) if V1 = V 0

1 ; t
+

Merge(V 0

1 ; V2) if V1 = V 0

1 ; t
�

Merge(V 0

1 ; Invar(V2)) if V1 = V 0

1 ; t
o

V1 if t 62 D(V1)

Ordering on kinds:

V1 � V2 i� 8t; V ar(t; V2) � V ar(t; V1)
(M1; V1) � (M2; V2) i� M1 �M2 and V1 � V2
T a ! �1 � T b ! �2 i� b � a and �1 � �2

C Typing rules

C.1 Context Rules

(start)
�` �

(type var)

�` �
t 62 dom(�)

�; t : ft+g` �

15

(row var)

�`R1 : :S1 ! (M1; V1)

S0 ! (M0; V0) � S1 ! (M1; V1)

D(V0) � dom(�)

r 62 dom(�)

�; (r <:w R1 : :S0 ! (M0; V0))` �

(exp var)

�` � : V
x 62 dom(�)

�; x : � ` �

(weakening)

�1; �2 `A
�1; a; �2 ` �

�1; a; �2 `A

where a : : = x : � j t : V j r <:w R : :�

C.2 Rules for type expressions

(type proj)

�` �
t : ft+g 2 �

�` t : ft
+
g

(type arrow)

�` �1 : V1
�` �2 : V2

�` �1! �2 : Merge(V1; V2)

(pro)
�; t : ft+g `R : : (M ; V)

�`pro t R : Invar(V n t)

(cov object)

�; t : ft+g `R : : (M ; V)
V ar(t; V) 2 f+; ?g

�`obj t R : V n t

(non cov object)

�; t : ft+g `R : : (M ; V)
V ar(t; V) 2 fo;�g

�`obj t R : Invar(V n t)

(exist)

�; r <:w R : :�` � : V1
� = S ! (M ; V2)

�`9(r <:w R : :�)� : Merge(V1; V2)

16

C.3 Rules for rows

(row proj)

�` �
r <:w R : :� 2 dom(�)

�` r : :�

(empty row)
�` �

�` hhii : : (M ; ;)

(row label)

�`R : :Si ! (M ; V)
N �M i 2 f0; 1g

�`R : :Si ! (N ; V)

(row fn abs)
�; t : ft+g `R : : (M ; V)

�`�t:R : :TV ar(t;V)
! (M ; V nt)

(row fn app cov)

�`R : :T+ ! (M ; V1)
�` � : V2

�`R� : : (M ; Merge(V1; V2))

(row fn app contra)

�`R : :T� ! (M ; V1)
�` � : V2

�`R� : : (M ; Merge(V1; V2))

(row fn app inv)

�`R : :T o ! (M ; V1)
�` � : V2

�`R� : : (M ; Merge(V1; Invar(V2)))

(row fn app vac)

�`R : :T ? ! (M ; V1)
�` � : V2

�`R� : : (M ; V1)

(row ext)

�`R : : (f~m;mg; V1)
�` � : V2

�` hhR jm : � ii : : (f~mg; Merge(V1; V2))

17

C.4 Subtyping rules for types

(<: type refl)
�` � : V

�` � <: �

(<:!)

�` � 01 <: �1

�` �2 <: �
0

2

�` �1! �2 <: �
0

1! � 02

(<: obj)

�; t : ft+g `R1 <:B R2

�; t : ft+g `R2 : : (M ; V)
V ar(t; V) 2 f?;+g

�`probj t R1 <: obj t R2

(<: trans)

�` �1 <: �2
�` �2 <: �3
�` �1 <: �3

C.5 Subtyping Rules for rows

(<: row refl)
�`R : :�

�`R <:B R

(row proj bound)

�` �
r <:w R : :� 2 �

�` r <:w R

(<: �)

�; t : ft+g `R1 <:B R2

�; t : ft+g`R2 : : �

�`�t:R1 <:B �t:R2

(<: app cong)

�`R1 <:B R2

�`R2 : :T a ! �

�` � : V

�`R1� <:B R2�

(<: app cov)

�`R1 <:B R2

�`R2 : :T+ ! �

�` �1 <: �2
�`R1�1 <:B+d R2�2

18

(<: app contra)

�`R1 <:B R2

�`R2 : :T� ! �

�` �2 <: �1
�`R1�1 <:B+d R2�2

(<: app vac)

�`R1 <:B R2

�`R2 : :T ? ! �

�` �1 : V1 �` �2 : V2
�`R1�1 <:B R2�2

(<: cong)

�`R1 <:B R2 �` � : V
�` hhRi jm : � ii : : �i i 2 f1; 2g

�` hhR1 jm : � ii <:B hhR2 jm : � ii

(<: d)

�`R1 <:B R2 �` �1 <: �2
�` hhRi jm : �iii : : �i i 2 f1; 2g

�` hhR1 jm : �1ii <:B+d hhR2 jm : �2ii

(<: w)

�`R1 <:B R2

�` hhR1 jm : � ii : : �

�` hhR1 jm : � ii <:B+w R2

(<: trans)

�`R1 <:B R2

�`R2 <:B0 R3

�`R1 <:B+B0 R3

Type and Row Equality Type or row expressions that di�er only in names of bound variables are consid-
ered identical. Additional equations between types and rows arise as a result of � -reduction, written !� ,
or � -conversion, written $� .

(row �)
�`R : :�; R!� R0

�`R
0 : :�

(type �)
�` � : V ; � !� �

0

�` �
0 : V

(type eq)
�` e : � ; � $� � 0; �` �

0 : V

�` e : � 0

(<: � right)
�`R1 <:B (�t:R2)�2
�`R1 <:B [�2=t]R2

(<: � left)
�` (�t:R1)�1 <:B R2

�` [�=t]R1 <:B R2

19

C.6 Rules for assigning types to terms

(exp proj)

�` �
x : � 2 �

�` x : �

(subsumption)
�` e : �1; �` �1 <: �2

�` e : �2

(exp abs)
� ; x : �1 ` e : �2
�` �x: e : �1! �2

(exp app)
�` e1 : �1! �2 �` e2 : �1

�` e1 e2 : �2

(empty pro)
�` �

�` hi : pro t hhii

(pro ext)

�` e1 : pro t R

�; t : ft+g`R : : (fmg; V)

�; Ir ` e2 : [pro t rt=t](t! �) r 62 V (�)

�` he1 + m=e2i : pro t hhR jm : � ii

where Ir = r <:w �t:hhR jm : � ii : :T 0 ! (;; Invar(V�)).

(pro over)

�` e1 : pro t R

�; t : ft+g`R <:w hhm : � ii

�; Ir ` e2 : [pro t rt=t](t!�)

�` he1 m=e2i : pro t R

where Ir = r <:w �t:R : :T 0! (;; Invar(V�)).

(probj()

�` e : probj t R

�; t : ft+g`R <:w hhm : � ii

�` e(m : [probjt R=t]�

(9 <: intro)

�`R1 : :�

�`R1 <:w R

�` e : [R1=r]�

�` fjr <:w R : :� = R1; ejg : 9(r <:w R : :�)�

(9 <: elim)

�` e1 : 9(r <:w R : :�)�
�; r <:w R : :�; x : � ` e2 : �

�`� : V

�`Abstype r <:w R : :� with x : � is e1 in e2 : �

20

D Overview of soundness proof

We prove the soundness of our type system with respect to the operational semantics given in Section 3.2.
We �rst prove that evaluation preserves type; this property is traditionally called subject reduction. We then
show that no typable expression evaluates to error using the evaluation rules given in [FHM94], extended
in a straightforward manner to account for the new encapsulation primitives. This fact guarantees that we
have no message-not-understood errors for expressions with pro types.

The proof begins with two lemmas about substitution for row and type variables. We then prove a
normal form lemma that allows us to restrict our attention to derivations of a certain form, simplifying
later proofs. Lemmas D.5 and D.6 give us subject reduction for the bookkeeping rules and � -reduction,
respectively. Lemmas D.7, D.8, and D.9 imply subject reduction for (()-reduction, while Lemmas D.1 and
D.6 give us subject reduction for (Class)-reduction.

In the remainder of this section, we use meta-variable U to refer to either a row or type expression,
meta-variable
 to refer to arbitrary kinds, and meta-judgement �`U :�
 to indicate either \row has kind

" or \type is well-formed."

The �rst two lemmas are substitution lemmas that are used to specialize pro types to contain additional
methods and to prove (Class) reduction sound.

Lemma D.1 (Row Substitution)

If �; r <:w R0 : :�; �0 `A; �`R <:B R0; and �`R : :�;

then �; [R=r]�0`A0;

where

� if A � �; then A0 � �

� if A � U :�
; then A0 � [R=r]U :�

� if A � U1 <:B U2; then A0

� [R=r]U1 <:B [R=r]U2

� if A � e : �; then A0 � [R=r]e : [R=r]�

Lemma D.2 (Type Substitution) If �; t : T; �0 `A and �` � : V then

� if A � �; then �; [� : V=t] �0` �

� if A � U :�
; then �; [� : V=t] �0 ` [�=t]U :�

� if A � U1 <:B U2; then �; [� : V=t] �0` [�=t]U1 <:B [�=t]U2

The type and row equality rules introduce many non-essential judgement derivations, which unnecessar-
ily complicate derivation analysis. We therefore restrict our attention to `N -derivations, which we de�ne
as those derivations in which the only appearance of a type or row equality rule is as (� <: right) immedi-
ately following an occurrence of a subtyping application rule (<: app �) where the left-hand row function
expression is a row variable, or as (type eq) immediately before an occurrence of (9 <: intro). The �nf of
a type or row expression is its normal form with respect to � -reduction. The �nf of a term expression e

is just e . Since we are only interested in types and rows in �nf , the following lemma shows we can �nd a
`N -derivation for any judgement of interest.

Lemma D.3 (Normal Form for Derivations) If �`A is derivable, then so is �nf(�) `N �nf(A) .

The proof of this lemma is by induction on the derivation of �`A . Occurrences of equality rules may
be eliminated in the `N -derivation because two row or type expressions related via � -reduction must have
the same �nf . The cases for the row application rules (row fn app �) follows from the somewhat surprising
fact that if we may derive that a normal-form row function �t:R0 applied to a normal-form type � is well-
formed, then we may show that [�=t]R0 is well-formed without using the (row �) typing rule. The cases for
(<: app �) are similar.

21

From this point on, we will only concern ourselves with contexts and type or row expressions that are
in �nf . This limitation is not severe, since any term that has a type has a type in �nf . Future analyses
of derivations will consider only `N -derivations, since its restriction on equality rules greatly simpli�es the
proofs.

The following lemma is used to show that the (switch ext ov) reduction rule preserves types.

Lemma D.4 If �; p <:w �t:R : :T ! (Mp; V);�
0

`A and �; r <:w �t:hhR jm : � ii : :T ! (Mr ; V)`A are

both derivable, r 62 dom(�0) and Mp �Mr , then �; r <:w �t:hhR jm : � ii : :T ! (Mr ; V); [r=p]�
0

` [r=p]A is

also derivable, where A is any judgement not involving strictly � -types.

The proof of this lemma is very sensitive to the form of the (pro ext) proof rule.

The next four lemmas show that the various components of the
eval
�! relation preserve expression types.

Lemma D.5 is the �rst of these, showing that the (
book
�!) relation has the necessary property.

Lemma D.5 If �` e : � is derivable, and e
book
�! e0 , then �` e0 : � is derivable.

The proof of Lemma D.5 consists of two parts: the �rst shows that a derivation from �` e : � can only
depend on the form of � , not on the form of e . More formally, if �`C[e] : � is derived from �0 ` e : � and
�0 ` e0 : � is also derivable, then so is �`C[e0] : � . This fact is easily seen by an inspection of the typing

rules. The second part shows that if �` e : � is derivable, and e
book
�! e0 by e matching the left-hand side of

one of the (
book
�!) axioms, then �` e0 : � is also derivable. This fact follows from a case analysis of the four

(
book
�!) axioms. Lemma D.4 is essential for the (switch ext ov) case.

The fact that (�)-reduction preserves expression types is an immediate consequence of the following
lemma:

Lemma D.6 (Expression Substitution) If �; x : �1;�
0

` e2 : �2 and �` e1 : �1 are both derivable, then

so is �;�0 ` [e1=x]e2 : �2 .

Lemma D.6 is proved by induction on the derivation of �; x : �1;�
0

` e2 : �2 .
The next three lemmas together imply that (()-reduction preserves type. The �rst is the key lemma in

showing subject reduction for messages sent to expressions with pro type. The second, which guarantees
that the variance annotations properly track variance, is essentially for showing the soundness of sealing obj
types to pro types. The third implies subject reduction for expressions with obj type.

Lemma D.7 (Method Bodies are Type Correct) If �`N he1 �m = e2i : pro t R is derivable in such

a way that the last rule in the derivation is not (type eq) , then there exists a unique type � such that

�; t : ft+g `N R <:w hhm : � ii and �`N e2 : [pro t R=t](t! �) are both derivable. Furthermore, if �=
then �`N e1 : pro t R is also derivable.

Lemma D.8 If �; t : ft+g; �� `N U1 <:B U2 , �`N U2 :�
2 , �`N �1 <: �2 , and �`N �i : Vi for i 2 f1; 2g
are all derivable, then

� if V ar(t;
) =? then

�; �� `N [�i=t]U1 <:B [�j=t]U2

� if V ar(t;
) = + then

�; �� `N [�1=t]U1 <:w;d [�2=t]U2

� if V ar(t;
) = � then

�; �� `N [�2=t]U1 <:w;d [�1=t]U2

where �� is a context listing only type variables.

22

Lemma D.9 (Object Types Come From Pro Types) If �`N he1 �m = e2i : obj t R is derivable,

then there exists a type pro t R0 such that

�`N he1 �m = e2i : pro t R0

�`N pro t R0 <: obj t R

are both derivable.

Theorem D.10 (Subject Reduction) If �` e : � is derivable, and e
eval
�! e0 , then �` e0 : � is also deriv-

able.

The proof is similar in outline to that of Lemma D.5; it reduces to showing that each of the basic

evaluation steps preserves the type of the expression being reduced. The (
book
�!) case follows from Lemma

D.5, the (�) case from Lemma D.6, the (() case from Lemmas D.7, D.8, and D.9, and the (Class) case
from Lemmas D.1 and D.6.

Theorem D.11 (Type Soundness) If the judgement � ` e : � is derivable, then eval(e) 6= error , where

the function eval is as in [FHM94], extended with rules for (Class) reduction.

23

