
A Computational Group-Theoretic Approach

to Steerable Functions

Patrick C. Teo Yacov Hel-Or

Department of Computer Science NASA Ames Research Center

Stanford University, Stanford, CA 94305 Mo�ett Field, CA 94035-1000

teo@white.Stanford.EDU toky@vision.arc.nasa.gov

Abstract

We present a computational, group-theoretic approach to steerable functions. The

approach is group-theoretic in that the treatment involves continuous transformation

groups for which elementary Lie group theory may be applied. The approach is com-

putational in that the theory is constructive and leads directly to a procedural imple-

mentation. For functions that are steerable with n basis functions under a k-parameter

group, the procedure is e�cient in that at most nk + 1 iterations of the procedure are

needed to compute all the basis functions. Furthermore, the procedure is guaranteed

to return the minimum number of basis functions. If the function is not steerable, a

numerical implementation of the procedure could be used to compute basis functions

that approximately steer the function over a range of parameters. Examples of both

applications are described.

1

1 Introduction

Steerable functions have been widely used in image processing [3, 13, 12, 11], computer

vision [5, 8, 16, 7, 2, 15], and recently, even in computer graphics [4, 10]. Simply put,

a function is steerable under some transformation when all transformed versions of the

function can be expressed as a linear combination of a �xed, �nite set of basis functions,

the weights of the linear combination depending solely on the transform parameters.

The importance of steerable functions stems from the property of superposition

of linear systems. Hence, any linear operation applied to a transformed version of a

steerable function can be expressed as a linear combination of the operation applied

separately to the basis functions. The main advantage of this property is that the linear

operations can be applied to the basis function once and o�-line. In image processing,

steerable functions have been used as �lter kernels. Because convolution is a linear

operation, the �lter output of a transformed version of the �lter kernel is obtained by

linearly combining the �lter outputs of its associated basis �lters.

Freeman and Adelson presented functions steerable with respect to rotation using

derivatives of a Gaussian as the basis set [3]. An extension of this technique to trans-

lation and scaling was shown by Simoncelli et al. [13]. Indeed, steerable �lters are the

most popular application of steerable functions; thus, the examples in this paper will

pertain mainly to steerable �lters.

Many of the commonly encountered families of transformations on images form

continuous groups. Examples of these continuous groups include: image translation,

rotation and scaling. For these families of transformations, Lie group-theoretic tools

have been used to analyze the property of steerability and to categorize the classes

of functions which are steerable under di�erent transformation groups. In spite of

this, given an arbitrary function, there are several ways of computing a set of basis

functions to steer an arbitrary function. For example, Perona [11] suggests sampling

the space of transform parameters by constructing replicas of the common kernel, each

of which is transformed according to a particular choice of parameters. The n-largest

principal components of this set are then used to steer the given �lter. Alternatively,

Simoncelli et. al. [12], Michaelis et. al.[9] and Hel-Or et. al.[6] �rst approximates the

function to be steered by a set of steerable functions, and then steers the approximated

function by analytically steering the set of steerable functions.

Perona's method is optimal in the sense that it computes the best set of basis

functions that minimize a least-squares error criterion. However, for groups involv-

ing even a modest number of parameters, brute force sampling of the space can make

the method computationally ine�cient. The approximation method employed by Si-

moncelli, Michaelis, Hel-Or and their co-authors does not su�er from this problem.

2

While the scheme avoids explicit enumeration, it has some disadvantages. First, it

requires that the steerable function spaces be identi�ed in advance. Second, a fair

approximation of a compactly supported function on these spaces may require a large

number of basis functions as these basis functions are typically not compactly sup-

ported. Hel-Or et. al. [6] proposes a solution to this problem by limiting the domain

of approximation for functions that are to be steered only over a restricted range of

parameters.

In this paper, we present a computational, group-theoretic approach to steerable

functions. The approach is group-theoretic in that the treatment involves continuous

transformation groups for which elementary Lie group theory may be applied. The

approach is computational in that the theory is constructive and leads directly to

a procedural implementation. We describe a procedure to compute a set of basis

functions to steer an arbitrary function. If the function is steerable with n basis

functions under a k-parameter group, then the procedure is guaranteed to terminate

in at most nk + 1 iterations. We also present results from applying this technique

to: (1) analytically computing a set of basis functions to steer an arbitrary polynomial

under any subgroup of the two-dimensional a�ne group, and (2) numerically computing

a set of basis functions to approximately steer any given function (from a sampled

version of it).

The rest of the paper is organized as follows. Before presenting the approach, a

brief review of Lie transformation groups is given in Section 2. Following that, the

approach is described in detail; �rst, in Section 3 for one-parameter transformation

groups, and then, in Section 4 for multiple-parameter groups. The application of the

approach to steering polynomials and to a numerical implementation are given next in

Section 5. The paper is concluded in Section 6 with some discussion.

2 Background on Lie Groups

Lie groups are often encountered as families of transformations acting on a function.

In this paper, we consider, primarily, the families of transformation groups acting on

real-valued, two-dimensional functions. We assume that these functions are non-zero

only within a bounded region and denote them by f(x; y) : R2 7! R. We describe

each family of transformations by operators fg(�)g, where � = (�1; � � � ; �k) 2 Rk are

parameters of the transformation. For example, consider the family of one-dimensional

translations of a function in the x-direction:

f̂(x̂; ŷ) = gtx(�) f(x; y) = f(x� �; y)

3

where � denotes the amount of translation. In words, the operator gtx(�) acts on the

original function f(x; y) to yield a new translated function f̂(x̂; ŷ) = f(x� �; y).

A family of transformations fg(�)g parameterized by � over some prede�ned range

is a Lie group if: (1) it satis�es the group conditions of closure under composition,

associativity, inverse and the existence of an identity, and (2) the maps for inverse and

composition are smooth. Thus, the family of translations forms a Lie group: First,

every translation operator gtx(�) has an inverse, namely, gtx(�(�)) where �(�) = �� .

Since �(0) = 0, gtx(0) is also the identity operator. Second, composition of two op-

erators can be described by a third operator which also belongs to the same family;

i.e. gtx(�a)gtx(�b) = gtx(�(�a; �b)) where �(�a; �b) = �a + �b. In addition, composition

is associative, that is to say, gtx(�a)(gtx(�b)gtx(�c)) = (gtx(�a)gtx(�b)) gtx(�c); as such,

�(�a; �(�b; �c)) = �(�(�a; �b); �c). Finally, both the inverse map, �(�), and the com-

position map, �(�a; �b) are smooth. The dimension of the parameter space of a Lie

transformation group may be di�erent from the dimension of the function space upon

which it acts. Here, the family of translations in the x-direction forms a one-parameter

Lie group (� 2 R) while the space upon which it acts is two-dimensional ((x; y) 2 R2).

Another familiar family of transformations that is also a Lie group is the group of ro-

tations in the plane gr(�) such that f̂(x̂; ŷ) = gr(�) f(x; y) = f(x cos ��y sin �; x sin �+

y cos �). It is straightforward to check that the necessary conditions, veri�ed in the

previous example, are also satis�ed here. The family of transformations de�ned by

gb(�) f(x; y) = e�f(x; y) scales the amplitude of the function uniformly and also forms

a Lie group. However, unlike translations and rotations in the plane, gb(�) acts on the

function itself and not on the coordinates of the function. In this paper, we will deal

exclusively with Lie transformation groups; i.e. Lie groups that operate solely on the

coordinates of the image.

Lie groups are rich in structure and many properties of the group can be discerned

by studying the properties of in�nitesimal actions of the group. In the following,

in�nitesimal actions of a group are de�ned and elaborated. We consider �rst one-

parameter groups and then extend our explanation to multi-parameter groups.

One-parameter Groups Given a one-parameter transformation group parame-

terized by � , the in�nitesimal transformation of an function f(x; y) about the identity

(� = 0) is de�ned using Leibnitz's chain rule:

d

d�
(g(�) f)

����
�=0

=
df̂

d�

�����
�=0

=

�
@x

@�

@

@x
+

@y

@�

@

@y
+

@

@�

�����
�=0

f̂ :

4

The di�erential operator on the right hand side of the equation is called the (in�nites-

imal) generator of the transformation and is denoted by L; i.e.

L =

�
@x

@�

@

@x
+

@y

@�

@

@y
+

@

@�

�����
�=0

(1)

The set of elements G = f�L j � 2 Rg forms a one-dimensional vector space called

the tangent space of the group where L can be thought of as a one-dimensional basis

vector. There is a strong connection between the tangent space and the Lie group from

which it was derived. Namely, each element g(�) of the group can be generated by an

element in the tangent space, �L 2 G, via the exponential map:1

g(�) f(x; y) = e�L f(x; y) : (2)

The notation e�L represents the series expansion e�L = I + �L+ 1
2!
�2L2+ � � �, which is

an in�nite sum of di�erential operators [1]. This is a rather surprising result since the

operator g(�) can transform the function in highly nonlinear ways while G is simply a

linear vector space.

Recall the group of translations in the x-direction presented earlier. The derivative

of the transformation about the identity is

d

d�
(gtx(�)f)

����
�=0

=
@(x� �)

@�

����
�=0

@

@x
f = �

@

@x
f

and hence its generator is Ltx = � @
@x
. Using the exponential map suggested in Equa-

tion 2, we �nd that

gtx(�) f = e�Ltx f

= (1� � @
@x

+ 1
2!
�2 @2

@x2
� � � �) f

= f � � @f
@x

+ 1
2!
�2 @

2f

@x2
� � � �

which is exactly the Taylor expansion of f(x� �; y) about � = 0. Further examples of

one-parameter groups and their generators are given in Table 1.

Multi-parameter Groups The situation with multiple-parameter Lie groups is

analogous. The generators of a multi-parameter group are the set of di�erential opera-

tors fLi j i = 1 : : :kg corresponding to derivatives of the transformation at the identity

1To be precise, this is only true for group elements su�ciently close to the identity element so that their

Taylor expansions converge, and for elements within the connected component containing the identity. In

this paper, we consider only transformation groups with one connected component and for which convergence

also holds.

5

Group Operator Generator

x-translation gtx(�) f(x; y) = f(x� �; y) Ltx = � @
@x

x-scaling gsx(�) f(x; y) = f(e��x; y) Lsx = �x @
@x

x-projective gpx(�) f(x; y) = f(x=(1 + �x); y) Lpx = �x2 @
@x

y-translation gty(�) f(x; y) = f(x; y � �) Lty = � @
@y

y-scaling gsy(�) f(x; y) = f(x; e��y) Lsy = �y @
@y

y-projective gpy(�) f(x; y) = f(x; y=(1+ �y)) Lpy = �y2 @
@y

Rotation gr(�) f(x; y) = f(x cos � � y sin �;

x sin � + y cos �) = f(r; �� �) Lr = x @
@y
� y @

@x
= � @

@�

Uniform scaling gs(�) f(x; y) = f(e��x; e��y) = f(e�r; �) Ls = �x @
@x

� y @
@y

= � @
@r

Table 1: Several examples of continuous transformation groups and their generators. Multi-

parameter groups can be constructed by combining several of these groups.

with respect to each parameter �i in turn; i.e.

df̂

d�i

�����
�=0

= Li f̂

where

Li =

�
@x

@�i

@

@x
+

@y

@�i

@

@y
+

@

@�i

�����
�=0

:

The k generators provide a basis for the k-dimensional tangent space G = f�1L1+ � � �+

�kLkj� 2 Rkg.2 As before, there is a correspondence between a k-parameter Lie group

and its k-dimensional tangent space in the form of the exponential map:

g(�) f(x; y) = (
kY

i=1

e�iLi) f(x; y) = e�1L1 � � �e�kLk f(x; y): (3)

Although the exponential map provides a correspondence between every operator in

the Lie group and every element in its tangent space, the parameterization of the group

generated by the exponential map may be di�erent from that of the original group. The

order of the individual exponentials e�iLi in Equation 3 is arbitrary such that di�erent

orderings give rise to di�erent group parameterizations. Hence, the exponential map

generates a group similar to the original group up to a change of parameterization. For

example, consider the two parameterizations of the two-parameter a�ne group acting

2Loosely speaking, the linear independence of the k generators is assured if the k-parameter group from

which it was derived cannot be replaced by another with fewer parameters [1].

6

solely on the x coordinate:

g1(�1; �2) f(x; y) = f(e�1x� �2; y);

g2(�1; �2) f(x; y) = f(e�1(x� �2); y):

Both yield the same generators:

L�1 = x
@

@x
; L�2 = �

@

@x
;

thus, both have the same exponential map. However, this is not a problem as we are

often interested in the group of transformations and not the particular parameterization

of it. Furthermore, we can easily reparameterize the generated group using the original

parameterization.

With multi-parameter groups, if we vary a single parameter �i and keep the others

�xed, we get a one-parameter group of transformations fgi(�i)g that is a subgroup of

the original k-parameter group. Hence, by varying each of the k di�erent parame-

ters separately, we can construct k di�erent one-parameter subgroups. When every

element from one subgroup commutes with every element from a second subgroup,

i.e. gi(�i) gj(�j) = gj(�j) gi(�i) for all �i; �j, the two subgroups are said to commute

with each other. Two subgroups commute if and only if their Lie bracket vanishes; i.e.

[Li; Lj]
:
= LiLj�LjLi = 0 [1]. When two subgroups commute, exponentiating their re-

spective generators can be done in either order; i.e. e�iLie�jLj = e�jLje�iLi = e�iLi+�jLj :

This is not true for non-commuting subgroups. A multi-parameter group for which all

its one-parameter subgroups commute is called an Abelian group. The two-parameter

group of the previous example is not Abelian since

[L�1 ; L�2] = �x
@

@x
(
@

@x
) +

@

@x
(x

@

@x
) =

@

@x
6= 0:

Hence, as demonstrated earlier, e�1L1e�2L2 6= e�2L2e�1L1 6= e�1L1+�2L2 .

On the other hand, for the one-parameter transformation groups listed in Table 1,

the pairs, fgtx ; gtyg; fgtx; gsyg; fgty; gsxg; fgsx; gsyg; fgr; gsg, are commutative.

3 Generator Chains

In this section, we describe our approach to steerable functions in the context of one-

parameter transformation groups; the treatment of multi-parameter transformation

groups is deferred to the next section. We begin by formalizing the notion of a steerable

function with the following de�nition.

7

De�nition 1 (Steerability) : A function f(x; y) : R2 7! R is steerable under a

Lie transformation group G if any transformation g(�) 2 G applied to f can be written

as a linear combination of a �xed, �nite set of basis functions f�i(x; y)g:

g(�) f(x; y) =
nX

i=1

�i(�) �i(x; y) = �
T (�)�(x; y)

where �T = (�1; � � � ; �n) and �(x; y) = (�1; � � � ; �n)
T .

The functions �i are known as the steering functions of f associated with the basis

f�ig and depend solely on the transformation parameters. Without loss of generality,

we assume that n is the minimum number of basis functions required and these basis

functions are linearly independent.

The set of basis functions required to steer a given function is not unique; any

(non-singular) linear transformation of the set of basis functions could also be used.

Furthermore, if n is the minimum number of basis functions required to steer a function

f , then any steerable basis of f will require only n basis functions as well. If a particular

steerable basis contains m > n basis functions, then m � n of them are necessarily

linearly dependent on the rest.

Theorem 1 (minimality of basis functions) : Let � = (�1; � � � ; �n)
T be the min-

imum set of independent basis functions required to steer a function f under a Lie

transformation group G. Then, any other steerable basis
 = (!1; � � � ; !m)
T of f with

respect to G has exactly n linearly independent functions.

Proof 1:

Assume that m is the minimum number of linearly independent functions in
 to

steer f . Therefore, it is possible to �nd m transformed replicas of f that are linearly

independent (otherwise m is not minimal):

0
BBB@

g(�1)f
...

g(�m)f

1
CCCA =

2
6664
�T (� 1)

...

�T (�m)

3
7775
 :

= B

where �T (�) is composed of the steering functions associated with
 and �1 : : :�m are

particular choices of steering parameters. Since them transformed replicas are linearly

independent, B is a non-singular matrix. These m transformed replicas of f can also

8

be constructed using the n basis functions of �:

0
BBB@

g(�1)f
...

g(�m)f

1
CCCA =

2
6664
�T (� 1)

...

�T (�m)

3
7775� :

= A� = B
 :

Since B is invertible it is possible to express
 as a linear combination of �:

 = B�1A�:

Now, if
 includes m > n functions, it is obvious from the above equation that m� n

of them are linearly dependent. This contradicts the minimality assumption of m. On

the other hand, if m < n, then n is not minimal. Thus, it must be true that m = n

and all the n functions in
 are linearly independent. 2

In the following, we describe a method of constructing a basis for a given steerable

function f under a transformation G. From Theorem 1, this basis can be related to

any other steerable basis of f via a linear transformation.

Associated with each one-parameter transformation group G is its generator L.

As shown in Section 2, the generator L is a di�erential operator corresponding to an

in�nitesimal transformation about the identity. Applying L to a function f results

in a new function Lf ; likewise, applying L a second time to the previous result yields

another function which we denote by L2f = L(Lf). Alternatively, we could also regard

L2 (or Lj , j � 0) as a new di�erential operator that is applied to f . The set of all such

di�erential operators is collected into a sequence in the following de�nition.

De�nition 2 (Generator Chain) : A generator chain C(L) is an ordered sequence

of di�erential operators corresponding to repeated applications of the given generator

L; i.e.,

C(L) = (I; L; L2; L3; : : :)

where I corresponds to zero applications of the generator.

The result of applying C(L) to a function f is de�ned to be the ordered sequence

of functions:

C(L) f = (f; Lf; L2f; L3f; : : :):

Using the exponential map given in Equation 2, the series formed by summing all the

functions in the sequence is exactly the same as transforming f by an element g(�) 2 G:

g(�) f = exp(�L) f =
1X
i=0

� i

i!

�
Lif

�
: (4)

9

Thus, the set of functions C(L) f provides a basis with which f can be steered. From

Theorem 1 it follows that this basis is redundant if only n functions are required to

steer f ; only n of the functions in C(L) f are linearly independent. It turns out that

these n functions are necessarily the �rst n functions of the chain. The minimality of

the generator chain is formalized in the following theorem.

Theorem 2 (Minimality of Generator Chain) : Let f be a steerable function un-

der a one-parameter Lie transformation group G such that transformations of f by any

element g 2 G can be written as a linear combination of (no less than) n basis functions.

Let L denote the generator of G. The application of the generator chain C(L) to f re-

sults in an ordered sequence of functions such that the elements i > n of the sequence,

corresponding to L(i�1)f , are linearly dependent on the �rst n elements. Furthermore,

the �rst n functions of the sequence are linearly independent.

Proof 2 : Let the (m+ 1)th function in the sequence be the �rst linearly dependent

function. That is, Lmf can be written as a linear combination of the �rst m linearly

independent functions. As a result, all subsequent functions in the sequence Ljf where

j > m are necessarily linearly dependent on the �rst m functions as well. This can

be proven by induction where j = m+ 1 is the base case. Let Lmf =
Pm

i=1 aiL
(i�1)f .

Then,

Lm+1f = L(Lmf)

= L(
Pm

i=1 aiL
(i�1)f)

=
Pm

i=1 aiL
if

= amL
mf +

Pm�1
i=1 aiL

if

= am(
Pm

i=1 aiL
(i�1)f) +

Pm�1
i=1 aiL

if

= ama1f +
Pm�1

i=1 (amai+1 + ai)L
if:

Thus, Lm+1f can also be expressed as a linear combination of the �rst m functions.

The proof of the inductive case is similar. As a result, Equation 4 implies that transfor-

mations of f can be written as a linear combination of the �rst m functions in C(L) f .

Because f is steerable with n basis functions, it follows from Theorem 1 that m must

equal n. 2

This theorem suggests the following procedure to compute a set of basis functions to

steer an arbitrary function f . The generator L is applied to f repeatedly and each time,

the linear dependence of the new function upon the previously computed functions is

checked. If it is linearly dependent, then the set of all functions computed prior to this

one is su�cient to steer f . It the function f is steerable with n basis functions, then

the procedure will terminate after n + 1 iterations. Figure 1 describes the procedure

in pseudo-code. The procedure is applied to the following two examples.

10

/* Compute the basis functions needed to steer f */

/* under a one-parameter group. */

next f = f ;

basis set = fg;
while (next f not linearly dependent on basis set) f

basis set = basis set [fnext fg
next f = L next f;

g
return(basis set);

Figure 1: Procedure for computing the basis functions to steer an arbitrary function f under
a one-parameter group.

Example 1 : Let f(x; y) = �2x e�(x
2+y2) and G be the group of rotations in

the plane: gr(�) f(x; y) = f(x cos � � y sin �; x sin� + y cos �). The generator of G is

L = x @
@y

� y @
@x
, and

L0f = �2x e�(x
2+y2) = f; L1f = 2y e�(x

2+y2);

and L2f = 2x e�(x
2+y2) = �f . Therefore, f is steerable under G with two basis

functions; i.e., the derivative of a Gaussian in any direction can be expressed as a

linear combination of two functions.

Example 2 : Let f(�) = (cos �+1)2 and G be the group of rotations: gr(�) f(�) =

f(� � �). The generator of G is L = � @
@�
, and

L0f = (cos � + 1)2;

L1f = 2(cos � + 1) sin � = sin 2� + 2 sin �;

L2f = �2 cos 2� � 2 cos �;

L3f = �4 sin 2� � 2 sin �;

L4f = 8 cos 2� + 2 cos�;

and L5f = 16 sin 2� + 2 sin � = �4L1f � 5L3f . Therefore, f is steerable under G with

the �ve basis functions, fL0f; : : : ; L4fg. The particular choice of basis functions is not

unique; in this example, the function f is also steerable with the following �ve basis

functions, f1; sin �; cos �; sin 2�; cos 2�g.

11

4 Generator Trees

In this section, we consider multi-parameter transformation groups. Let the set of dif-

ferential operators, fL1; : : : ; Lkg, be the k generators of the k-parameter transformation

group G. In the context of multi-parameter transformation groups, the generator chain

is no longer a chain since more than one generator may be applied; instead, we have a

tree of di�erential operators. Nodes in the tree correspond to all possible compositions

of the generators.

De�nition 3 (Generator Tree) : A generator tree T (L1; : : : ; Lk) is a k-ary tree of

di�erential operators corresponding to repeated applications of the generators L1; : : : ; Lk.

Each node of the tree has k children, which correspond to applying each of the Lk dif-

ferent generators. Level l of the tree contains kl nodes, each of which represents the

di�erent permutations of applying L1; : : : ; Lk repeatedly for a total of l times.

For example,

T (L1; : : : ; Lk) =

�
��	

A
AAU

@
@@R

�
���

�
��	

A
AAU
@
@@R

�
���

�
��	

A
AAU
@
@@R

�
���

I

L1 : : : LkL2

: : :L1L1 L2L1 LkL1

: : :L1LkL1 LkLkL1

Similar to generator chains, applying T (L1; : : : ; Lk) to a function f results in a k-ary

tree where each node corresponds to the function obtained by applying the generators

to f . Furthermore, using the exponential map given in Equation 3, transforming f by

an element g(�1; : : : ; �k) 2 G can be calculated by a linear combination of functions in

the tree T (L1; : : : ; Lk) f :

g(�1; : : : ; �k) f = e�1L1 � � �e�kLk f =

kY

i=1

1X
l=0

� li
l!
Ll
i

!
f (5)

Thus, the set of functions obtained by applying T (L1; : : : ; Lk) to a function f provides

a basis with which to steer f . Similar to the case with generator chains, this basis is

redundant if only n functions are required to steer f . It turns out that the n functions

needed to steer f necessarily form a subtree of T (L1; : : : ; Lk) f with the same root.

This property generalizes the minimality property of generator chains associated with

one-parameter groups.

12

Theorem 3 (Minimality of Generator Tree) : Let f be a steerable function un-

der a k-parameter Lie transformation group G such that transformations of f by any

element g 2 G can be written as a linear combination of (no less than) n basis func-

tions. Let L1; : : : ; Lk denote the generators of G. The application of the generator

tree T (L1; : : : ; Lk) to f results in a k-ary tree of functions such that there exists a

subtree T 0(L1; : : : ; Lk) f (with the same root) satisfying the following two conditions:

(1) all functions within the subtree are linearly independent of one another, and (2) all

functions in the original tree but not in the subtree are linearly dependent on functions

within the subtree.

Proof 3 : Let T 0(L1; : : : ; Lk) f be a subtree of T (L1; : : : ; Lk) f (with the same root)

such that: (1) all the functions within the subtree are linearly independent, and (2) all

the functions that are immediate children of the subtree (as part of the original tree)

are linearly dependent on the functions within the subtree. Then, all the descendents of

the immediate children are also linearly dependent on the functions within the subtree.

This can be proven in a way similar to that for generator chains in Theorem 2. The

induction, in this case, is on subtrees. Also, from Theorem 1 it follows that the total

number of linearly independent functions in the original tree is necessarily n since f is

steerable. As a result of the former property, the size of the subtree must be n as well.

2

Unlike the situation with generator chains, this minimal subtree is not unique. That

is, there may be two subtrees of the same size (and with the same root as the original

tree) that could be used to steer f . However, since f is steerable, the functions in these

two trees necessarily span the same space.

This theorem also suggests a procedure for computing the basis functions needed

to steer an arbitrary function f . Each of the generators fL1; : : : ; Lkg is applied to f

repeatedly. Each new function is then checked to determine if it is linearly dependent

on all the previously computed functions. If it is linearly dependent, then one need

not further apply any generators to this function for according to the theorem, doing

so will only produce functions that are linearly dependent as well. If the function f is

steerable with n basis functions under a k-parameter group, then the procedure will

terminate after testing at most nk + 1 functions. The proof of this claim is given

in Appendix A. Figure 2 describes the procedure in pseudo-code. The procedure is

applied to the following two examples.

13

/* Compute the basis functions needed to steer f */

/* under a k-parameter group. */

next set = f f g;
basis set = f f g;
while (next set is not empty) f

next set
0 = fg;

for each (next f 2 next set) f
for each (L 2 fL1; : : : ; Lkg) f

next f
0 = L next f;

if (next f
0 not linearly dependent on basis set) f

next set
0 = next set

0 [fnext f
0g;

basis set = basis set [fnext f
0g;

g
g

next set = next set
0;

g
g
return(basis set);

Figure 2: Procedure for computing the basis functions to steer an arbitrary function f under
a k-parameter group.

Example 3 : Let f(x) = x2 and G be the group of one-dimensional scaling and

translations: g(�1; �2) f(x) = f(e��1x � �2). The generators of G are L�1 = �x @
@x

and

L�2 = � @
@x
:

T (L�1 ; L�2) f =

@
@@R

@
@@R

x2

2

�2x

.

Since L�1f = �2x2 = �2f , the entire left subtree is linearly dependent. Now,

L�2f = �2x and L�2L�2f = 2 are linearly independent but L�1L�2f = 2x = �L�2f ,

L�2L�2L�2f = 0, and L�1L�2L�2 = 0. Therefore, f is steerable under G with three basis

functions.

14

Example 4 : Let f(x; y) = sin x sin y and G be the group of translation along the x

and y dimensions: g(�1; �2) f(x) = f(x��1; y��2). The generators of G are L�1 = � @
@x

and L�2 = � @
@y
:

T (L�1; L�2) f =
�
��	

@
@@R

@
@@R

sin x sin y

� cosx sin y � sin x cos y

cosx cos y

.

Since translation in the x and y dimensions are commutative, their generators commute

as well; i.e., L�1L�2 = L�2L�1 . Thus, the left child of the node with � sin x cos y is

automatically pruned since it will be the same as the right child of the node with

cosx cos y. Therefore, f is steerable under G with four basis functions.

5 Simulations

In this section, we present two applications of the theory described in the previous

section. The �rst application is an implementation of the procedure in Figure 2 for

steering polynomials. The second application is a numerical implementation of the

same procedure for approximately steering any sampled function.

5.1 Steering Polynomials

The procedure in Figure 2 was implemented in MATLAB to automatically determine

the basis functions needed to steer an arbitrary two-dimensional polynomial under any

subgroup of the group of two-dimensional a�ne transforms. In [6], the authors show

that such polynomials can be steered, with a �nite number of basis functions, under

any subgroup of the group of two-dimensional a�ne transforms. Thus, the procedure

is guaranteed to terminate after a �nite number of iterations.

In the procedure, the linear independence of a polynomial with respect to the

current basis set needs to be determine. This is done by representing each polynomial

in terms of the basis of monomials f1; x; y; x2; xy; y2; : : :g. Speci�cally, let the matrix

B be an m � n matrix of coe�cients and m be the n � 1 vector of monomials such

that Bm yields an m� 1 vector corresponding to the m basis polynomials. Similarly,

expressing the new polynomial in the monomial basis results in a 1 � n vector b of

coe�cients. Since the monomials are linearly independent, the new polynomial is

linearly dependent on the basis set if and only if b is in the row space of B. The

generators for each one-parameter subgroup (e.g. x-translation, y-translation, etc.)

15

are implemented as operations on the coe�cients of the polynomial representation.

This is possible since applying any generator to a polynomial always results in another

polynomial.

The same cubic polynomial x3+3x2y+3xy2+y3 (mpoly2) is used in all the examples.

The basis functions needed to steer the function under di�erent multi-parameter groups

are computed.

1. In this example, basis functions to steer the polynomial under the group of uni-

form scaling and rotation are computed. The generators are Ls = �x @
@x

� y @
@y

and Lr = x @
@y
� y @

@x
respectively.

poly2 mat = steer poly2(mypoly2, 'lscale', 'lrot')

x3 + 3x2y + 3xy2 + y3;

3x3 + 3x2y � 3xy2 � 3y3;

3x3 � 15x2y � 15xy2 + 3y3;

�15x3 � 39x2y + 39xy2 + 15y3:

2. In this example, basis functions to steer the polynomial under the group of trans-

lations in the x and y directions are computed. The generators are Lx = � @
@x

and Ly = � @
@y

respectively.

poly2 mat = steer poly2(mypoly2, 'ltransx', 'ltransy')

x3 + 3x2y + 3xy2 + y3;

�3x2 � 6xy � 3y2;

6x+ 6y;

�6:

3. In this example, basis functions to steer the polynomial under the group of trans-

lations in the x and y directions and rotation are computed. The generators are

Lx = � @
@x
, Ly = � @

@y
, and Lr = x @

@y
� y @

@x
respectively.

poly2 mat = steer poly2(mypoly2, 'ltransx', 'ltransy', 'lrot')

�15x3 � 39x2y + 39xy2 + 15y3;

3x3 � 15x2y � 15xy2 + 3y3;

3x3 + 3x2y � 3xy2 � 3y3;

x3 + 3x2y + 3xy2 + y3;

�3x2 � 6xy � 3y2;

16

�6x2 + 6y2;

6x+ 6y;

6x� 6y;

24xy;

�6:

Clearly, the basis comprising of all the monomials in x; y up to powers of three, a

total of ten, is su�cient to steer the cubic polynomial. However, as can be seen in the

examples above, fewer than ten are actually needed in some situations. The procedure

selectively retains only those necessary by removing those that are linearly dependent

(with respect to the generators of the group).

5.2 Numerical Simulations

A numerical version of the procedure in Figure 2 was also implemented. The pro-

gram automatically computes a set of basis functions that can be used to steer a given

two-dimensional function. The derivatives in the generators were approximated using

numerical derivatives. The linear dependence of a function on the current set of basis

functions is veri�ed by projecting the function onto an orthogonalized version of the

basis set and measuring the relative magnitude of the residual. The set of orthogo-

nal basis functions can be e�ciently computed by using the Gram-Schmidt technique

iteratively.

Since the procedure is not guaranteed to terminate for arbitrary functions as an

in�nite number of basis functions might be required, the check for linear dependence

was replaced by a numerical condition that the residual between the function and its

projection is below some threshold. Furthermore, the maximum depth of the generator

tree was also used as a termination criteria since higher-order numerical derivatives are

less accurate. As a result, the steering of the given function with the basis set is only

accurate to within some range of transform parameters as we shall see.

Figure 3 shows images of four basis functions that could be used to steer (under

rotation) the function (12x � 8x3) exp[�(x2 + y2)], which is the third derivative of a

Gaussian. The leftmost image is the function that was used as input to the procedure;

i.e., the function to be steered. The spatial extent of each image ranges from �5 to 5

units both horizontally and vertically. Figure 4 shows images of four orthogonal basis

functions that could also be used to steer the function. These basis functions were

computed by the Gram-Schmidt component of the procedure.

Unlike the third derivative of a Gaussian, the function sin(x) exp[�(x2+y2)] cannot

be perfectly steered under rotation. Figure 5 shows images of the four basis functions

17

returned by the procedure. The maximum tree-depth was set at 6 and the maximum

relative squared error of the residual was 5%. The relative squared error of using these

basis functions to steer the function under any rotation was always less than 0:1%.

Figure 6 shows images of four orthogonal basis functions that could also be used to

steer the function.

Figure 7 shows images of 22 basis functions that could be used to steer the function

(4x2�2) exp[�(x2+y2)] under any x; y translation and rotation. Figure 8 shows images

of the orthogonalized basis functions. Again, the steering is only approximate since

the function cannot be steered with a �nite number of basis functions. The maximum

tree-depth of the procedure was set at 3 and the maximum relative squared error of the

residual was 10%. Figure 9 plots the relative squared errors of steering the function

using this basis for a range of translations. The approximation is very good about

the origin (zero translation) and worsens when the translations are large. Figure 10

plots the relative squared errors of steering a translated version of the function over all

rotation angles. The errors in steering the untranslated function are negligible since

the second derivative of a Gaussian can be perfectly steered with three basis functions

under orientation.

6 Discussion

The proposed method for computing basis functions to steer a given function essen-

tially computes the Taylor expansion of the function with respect to the transform

parameters. The expansion is evaluated at the origin of the transform parameters.

Several simpli�cations arise because the transform is a Lie transformation group. The

principal one being that the Taylor expansion can be written solely in terms of the �rst

order derivatives, namely, the generators. Equation 4 of Section 3 and Equation 5 of

Section 4 describe the Taylor expansion in terms of the generator(s) for one-parameter

and multi-parameter groups respectively. Since higher order derivatives can be deter-

mined from these generators, properties involving the higher order derivatives can be

proven. These properties are precisely those that were used to show the minimality of

generator chains and generator trees. Furthermore, these higher order derivatives can

also be computed by repeated applications of the generators.

As a result of this close connection with Taylor expansions, the errors incurred in

approximately steering a function increases with the deviation of the transform param-

eters from the origin. This happens when the function to be steered cannot be steered

by a �nite number of basis functions. This can be seen from the numerical implementa-

tion of the procedure in Section 5. This may be acceptable for some applications where

only a limited range of steering is required. For example, Manmatha [8] uses a similar

18

Figure 3: Basis functions that steer (12x � 8x3) exp[�(x2 + y2)], the third derivative of a

Gaussian, under rotation. The leftmost image is the third derivative of a Gaussian that was

used as input to the procedure.

Figure 4: Orthogonal basis functions that steer (12x�8x3) exp[�(x2+y2)], the third deriva-
tive of a Gaussian, under rotation. The leftmost image is the third derivative of a Gaussian
that was used as input to the procedure.

Figure 5: Basis functions that steer sin(x) exp[�(x2 + y2)] under rotation. The leftmost

image is the function that was used as input to the procedure.

Figure 6: Orthogonal basis functions that steer sin(x) exp[�(x2 + y2)] under rotation. The

leftmost image is the function that was used as input to the procedure.

19

Figure 7: Basis functions that steer (4x2 � 2) exp[�(x2 + y2)] under x; y� translation and

rotation. The image at the top left is the function that was used as input to the procedure.

20

Figure 8: Orthogonal basis functions that steer (4x2� 2) exp[�(x2+ y2)] under x; y� trans-
lation and rotation. The image at the top left is the function that was used as input to the
procedure.

21

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

dx

re
la

tiv
e

sq
ua

re
d

er
ro

r
(%

)

x−translation errors

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3
y−translation errors

dy

re
la

tiv
e

sq
ua

re
d

er
ro

r
(%

)

(a) (b)

Figure 9: Relative squared errors of the steered approximations to the actual functions over

a range of translations. Graph (a) plots the errors for translations along the x-dimension.
Graph (b) plots the errors for translations along the y-dimension.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

dtheta

re
la

tiv
e

sq
ua

re
d

er
ro

r
(%

)

rotation errors

Figure 10: Relative squared errors of the steered approximations to the actual functions over

the entire range of rotation angles. The actual function has been translated by 0.5 units in
both the x and y dimensions; i.e., (4(x � 0:5)2 � 2) exp[�((x � 0:5)2 + (y � 0:5)2)]. The
percentage errors for an untranslated function are negligible.

22

approach to estimate the a�ne transformation of points, lines and image intensities.

However, if the function needs to be steered over a larger range of parameters, then

either more basis functions could be computed by increasing the maximum tree-depth

or by applying the Taylor expansion about another location other than the origin. The

basis functions computed by this method, in fact, minimizes the approximation error

about the particular transform parameter. Instead, if the criterion is to minimize the

average error over a range of transform parameters, then fewer basis functions are re-

quired. In [14], the authors propose a method of computing the basis functions that

minimizes this approximation error.

If the function to be steered is obtained from a space of functions that is steerable,

then the function can be steered with a �nite number of basis functions. Consequently,

an analytic version of the procedure could be applied to determine the smallest basis

set required. The example for polynomials is illustrated in Section 5. As shown in that

section, while each monomial could be used as a basis function to steer the given poly-

nomial, often fewer basis functions are su�cient because of various linear dependencies.

A similar algorithm could also be implemented for sinusoids over translation/rotation

or spherical harmonics over 3D rotation.

In summary, we have presented a computational, group-theoretic approach to com-

puting the basis functions of steerable functions. If the function is steerable with n basis

functions under a k-parameter group, the procedure is e�cient in that at most nk + 1

iterations of the procedure are needed to compute all the basis functions. Further-

more, the procedure is guaranteed to return the minimum number of basis functions.

If the function is not steerable, a numerical implementation of the procedure could be

used to compute basis functions that approximately steer the function over a range of

parameters.

References

[1] A. Cohen. An introduction to the Lie theory of one-parameter groups; with appli-

cations to the solution of di�erential equations. D. C. Heath & Co., Boston; New

York, 1911.

[2] D. Fleet. Computation of component image velocity from local phase information.

International Journal of Computer Vision, 5(1):77{104, 1990.

[3] W. Freeman and E. Adelson. The design and use of steerable �lters. IEEE Trans.

Pattern Analysis and Machine Intelligence, 13(9):891{906, 1991.

[4] C. Gotsman. Constant-time �ltering by singular value decomposition. Computer

Graphics Forum, 13(2):153{163, 1994.

23

[5] G. Granlund and H. Knutsson. Signal processing for computer vision. Kluwer

Academic Publishers, Boston, 1995.

[6] Y. Hel-Or and P. Teo. A common framework for steerability, motion estimation

and invariant feature detection. Technical Report STAN-CS-TN-96-28, Stanford

University, 1996.

[7] H. Liu, T. Hong, M. Herman, and R. Chellappa. A reliable optical
ow algo-

rithm using 3-d hermite polynomials. Technical Report CS-TR-3291, University

of Maryland, 1994.

[8] R. Manmatha. A framework for recovering a�ne transforms using points, lines or

image brightnesses. In Proc. IEEE Conf. Computer Vision and Pattern Recogni-

tion, pages 141{146, Seattle, WA, 1994.

[9] M. Michaelis and G. Sommer. A Lie group-approach to steerable �lters. Pattern

Recognition Letters, 16(11):1165{1174, November 1995.

[10] J Nimero�, E Simoncelli, and J Dorsey. E�cient re-rendering of naturally illumi-

nated environments. In 5th Eurographics Workshop on Rendering, 1994.

[11] P. Perona. Deformable kernels for early vision. IEEE Trans. Pattern Analysis and

Machine Intelligence, 17(5):488{499, 1995.

[12] E. Simoncelli and H. Farid. Steerable wedge �lters. In Proc. Int. Conf. on Com-

puter Vision, pages 189{194, Boston, MA, 1995.

[13] E. Simoncelli, W. Freeman, E. Adelson, and D. Heeger. Shiftable multiscale trans-

forms. IEEE Trans. Information Theory, 38(2):587{607, 1992.

[14] P. Teo and Y. Hel-Or. Design of multi-parameter steerable functions using cascade

basis reduction. Technical Report STAN-CS-TN-96-32, Stanford University, 1996.

[15] J. Weng. Image matching using the windowed fourier phase. Int. J. Computer

Vision, 11(3):211{236, 1993.

[16] Y. Xiong and S. Shafer. Moment and hypergeometric �lters for high precision

computation of focus, stereo and optical
ow. Technical Report CMU-RI-TR-94-

28, Carnegie Mellon University, 1994.

24

Appendix:

A Number of Iterations

Claim 1 : The procedure given in Figure 2 of Section 4 tests the linear dependence of

a function on the basis set at most nk+1 times for a function that is steerable with n

basis functions under a k-parameter group.

Before proving this claim, we proof the following useful lemma.

Lemma 1 : A k-ary tree with n nodes (internal nodes as well as leaves) has exactly

n(k � 1) + 1 immediate children.

Proof of Lemma 1: A k-ary tree with one node has k immediate children. Each

addition of a new node increases the number of immediate children by k � 1. Thus,

adding n� 1 nodes results in a total number of (n� 1)(k� 1)+ k = nk+ 1 immediate

children in the tree.

Proof of Claim 1 : The number of times the linear dependence test is invoked is equal

to the sum of the number of basis functions required and the number of immediate

children in the resultant k-ary generator tree. Therefore, the total number of times the

test is applied is n+ n(k � 1) + 1 = nk + 1. 2

25

