
Fast Estimation of Diameter and Shortest Paths

(without Matrix Multiplication)�

Donald Aingworthy Chandra Chekuriz Piotr Indykx Rajeev Motwani{

Abstract

In the recent past, there has been considerable progress in devising algorithms for the all-

pairs shortest paths problem running in time signi�cantly smaller than the obvious time bound

of O(n3). Unfortunately, all the new algorithms are based on fast matrix multiplication algo-

rithms that are notoriously impractical. Our work is motivated by the goal of devising purely

combinatorial algorithms that match these improved running times. Our results come close to

achieving this goal, in that we present algorithms with a small additive error in the length of

the paths obtained. Our algorithms are easy to implement, have the desired property of being

combinatorial in nature, and the hidden constants in the running time bound are fairly small.

Our main result is an algorithm which solves the all-pairs shortest paths problem in un-

weighted, undirected graphs with an additive error of 2 in time O(n2:5
p
logn). This algorithm

returns actual paths and not just the distances. In addition, we give more e�cient algorithms

with running time O(n1:5
p
k logn+ n

2 log2 n) for the case where we are only required to deter-

mine shortest paths between k speci�ed pairs of vertices rather than all pairs of vertices. The

starting point for all our results is an O(m
p
n logn) algorithm for distinguishing between graphs

of diameter 2 and 4, and this is later extended to obtaining a ratio 2=3 approximation to the

diameter in time O(m
p
n logn + n

2 logn). Unlike in the case of all-pairs shortest paths, our

results for approximate diameter computation can be extended to the case of directed graphs

with arbitrary positive real weights on the edges.

�A preliminary version of this paper appeared in the Proceedings of the Seventh Annual ACM-SIAM Symposium

on Discrete Algorithms, pp. 547{553, Atlanta, GA, January 1996.
yDepartment of Computer Science, Stanford University. Email: donald@cs.stanford.edu. Supported by an NSF

Graduate Fellowship and NSF Grant CCR-9357849.
zDepartment of Computer Science, Stanford University. Email: chekuri@cs.stanford.edu. Supported by an OTL

grant and NSF Grant CCR-9357849.
xDepartment of Computer Science, Stanford University. Email: indyk@cs.stanford.edu. Supported by an OTL

grant and NSF Grant CCR-9357849.
{Department of Computer Science, Stanford University. Email: rajeev@cs.stanford.edu. Supported by an Alfred

P. Sloan Research Fellowship, an IBM Faculty Development Award, an OTL grant, and NSF Young Investigator

Award CCR-9357849, with matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox Cor-

poration.

1 Introduction

Consider the problem of computing all-pairs shortest paths (APSP) in an unweighted, undirected

graph G with n vertices andm edges. The recent work of Alon, Galil, and Margalit [AGM91], Alon,

Galil, Margalit, and Naor [AGMN92], and Seidel [Sei92] has led to dramatic progress in devising

fast algorithms for this problem. These algorithm are based on formulating the problem in terms

of matrices with small integer entries and using fast matrix multiplications. They achieve a time

bound of ~O(n!)1 where ! denotes the exponent in the running time of the matrix multiplication

algorithm used. The current best matrix multiplication algorithm is due to Coppersmith and

Winograd [CW90] and has ! = 2:376. In contrast, the naive algorithm for APSP performs breadth-

�rst searches from each vertex, and requires time �(nm).

Given the fundamental nature of this problem, it is important to consider the desirability of

implementing the algorithms in practice. Unfortunately, fast matrix multiplication algorithms

are far from being practical and su�er from large hidden constants in the running time bound.

Consequently, we adopt the view of treating these results primarily as indicators of the existence of

e�cient algorithms and consider the question of devising a purely combinatorial algorithm for APSP

that runs in time O(n3��). The (admittedly vague) term \combinatorial algorithm" is intended

to contrast with the more algebraic
avor of algorithms based on fast matrix multiplication. To

understand this distinction, the reader may �nd it instructive to try and interpret the \algebraic"

algorithms in purely graph-theoretic terms even with the use of the simpler matrix multiplication

algorithm of Strassen [Str69]. Previously, the best known combinatorial algorithm is due to Feder

and Motwani [FM91] that runs in time O(n3= logn), yielding only a marginal improvement over

the naive algorithm.

We take a step in the direction of realizing the goals outlined above by presenting an algorithm

which solves the APSP problem with an additive error of 2 in time O(n2:5
p
logn). This algorithm

returns actual paths and not just the distances. Note that the running time is better than the
~O(n2:81) time bound of the more practical matrix multiplication algorithm of Strassen [Str69].

Further, as explained below, we also give slightly more e�cient algorithms (for sparse graphs) for

approximating the diameter. Our algorithms are easy to implement, have the desired property of

being combinatorial in nature, and the hidden constants in the running time bound are fairly small.

Our additive approximations are presented only for the case of unweighted, undirected graphs, but

they can be easily generalized to the case of undirected graphs with small integer edge weights. In

addition, we give more e�cient algorithms with running time O(n1:5
p
k logn + n2 log2 n) for the

case where we are only required to determine shortest paths between k speci�ed pairs of vertices

rather than all pairs of vertices.

A crucial step in the development of our result was the shift of focus to the problem of computing

the diameter of a graph. This is the maximum over all pairs of vertices of the shortest path distance

between the vertices. The diameter can be determined by computing all-pairs shortest path (APSP)

1The notation ~O(f(n)) denotes O(f(n) polylog (n)).

1

distances in the graph, and it appears that this is the only known way to solve the diameter problem.

In fact, Fan Chung [Chu87] had earlier posed the question of whether there is an O(n3��) algorithm

for �nding the diameter without resorting to fast matrix multiplication. The situation with regard

to combinatorial algorithms for diameter is only marginally better than in the case of APSP. Basch,

Khanna, and Motwani [BKM95] presented a combinatorial algorithm that veri�es whether a graph

has diameter 2 in time O
�
n3= log2 n

�
. A slight adaptation of this algorithm yields a boolean matrix

multiplication algorithm which runs in the same time bound, thereby allowing us to verify that the

diameter of a graph is d, for any constant d, in O
�
n3= log2 n

�
time.

Consider the problem of devising a fast algorithm for approximating the diameter. It is easy

to estimate the diameter within a ratio 1=2 in O(m) time: perform a breadth-�rst search (BFS)

from any vertex v and let d be the depth of the BFS tree obtained; clearly, the diameter of G

lies between d and 2d. No better approximation algorithm was known for this problem; in fact, it

was not even known how to distinguish between graphs of diameter 2 and 4. Our �rst result is an

O(m
p
n log n) algorithm for distinguishing between graphs of diameter 2 and 4, and this is later

extended to obtaining a ratio 2=3 approximation to the diameter in time O(m
p
n log n+ n2 logn).

It should be noted that, unlike in the case of all-pairs shortest paths, our results for approximate

diameter computation can be extended to the case of directed graphs with arbitrary positive real

weights on the edges.

The problem of computing approximate shortest paths has been considered earlier in the liter-

ature, but purely from the point of view of multiplicative errors in the approximation. Awerbuch,

Berger, Cowen, and Peleg [ABCP93] and Cohen [Coh93] have presented e�cient algorithms for

computing t-stretch paths for t � 4, where a path is said to have stretch t if its length is at most t

times the length of the shortest path between its end-points. Cohen [Coh94] gave an algorithm that

approximates paths from s sources to all other nodes in a weighted graph in time O((m+sn)n�) for

any � > 0. This algorithm outputs paths of length (1+O(1= polylog n))d(u; v)+O(wmaxpolylogn),

where d(u; v) denotes the distance between vertices u and v, and wmax is the largest edge weight

in the graph. Her algorithm may be specialized to the unweighted case to compute paths of length

(1 + �)d(u; v) + c for any � > 0 within the same time, where the constant c depends on � and �.

The rest of this paper is organized as follows. We begin in Section 2 by presenting some

de�nitions and an algorithm for a version of the dominating set problem that underlies all our

algorithms. In Section 3, we describe the algorithms for distinguishing between graphs of diameter

2 and 4, and the extension to obtaining a ratio 2=3 approximation to the diameter. As we remarked

earlier, these results can be applied to directed, weighted graphs. Then, in Section 4, we apply the

ideas developed in estimating the diameter to obtain the promised algorithm for an additive-error

approximation for APSP. These ideas are extended in Section 5 to obtain a more e�cient algorithm

for additive-error approximations to the k-pairs shortest paths problem. Finally, in Section 6 we

present an empirical study of the performance of our algorithm for APSP.

2

2 Preliminaries and a Basic Algorithm

We present some notation and a result concerning dominating sets in graphs that underlies all our

algorithms. Initially, all de�nitions are with respect to some undirected, unweighted, connected

graph G(V;E) with n vertices and m edges. Later, we will point out the extension to directed and

weighted graphs.

De�nition 1 The distance d(u; v) between two vertices u and v is the length of the shortest path

between them.

De�nition 2 The diameter � of a graph G is de�ned to be maxu;v2G d(u; v).

De�nition 3 The k-neighborhood Nk(v) of a vertex v is the set of all vertices other than v that

are at distance at most k from v, i.e.,

Nk(v) = fu 2 V j 0 < d(v; u)� kg:

The degree of a vertex v is denoted by dv = jN1(v)j. Finally, we will use the notation N(v) =

N1(v) [fvg to denote the set of vertices at distance at most 1 from v.

It is important to keep in mind that the set N(v) contains not just the neighbors of v, but also

includes v itself.

De�nition 4 For any vertex v 2 V , we denote by b(v) the depth of a breadth-�rst search (BFS)

tree in G rooted at the vertex v.

Throughout this paper, we will working with a parameter s to be chosen later that will serve

as the threshold for classifying vertices as being of low degree or high degree. This threshold is

implicit in the following de�nition.

De�nition 5 Let L(V) = fu 2 V j du < sg and H(V) = V n L(V) = fu 2 V j du � sg.

The following is a generalization of the standard notion of a dominating set.

De�nition 6 Given a set A � V , a set D � V is a dominating set for A if and only if for each

vertex v 2 A, N(v)\ B 6= ; That is, for each vertex in A nB, one of its neighbors is in B.

The following theorem underlies all our algorithms.

Theorem 1 There exists a dominating set for H(V) of size O(s�1n log n) and such a dominating

set can be found in O(m+ ns) time.

Remark 1 It is easy to see that choosing a set of �(s�1n logn) vertices uniformly at random gives

the desired dominating set for H(V) with high probability. This construction in the proof of this

theorem is in e�ect a derandomization of this randomized algorithm.

3

Proof: Suppose, to begin with, that H(V) = V ; then, we are interested in the standard

dominating set for the graph G. The problem of computing a minimum dominating set for G can

be reformulated as a set cover problem, as follows: for every vertex v create a set Sv = N(v). This

gives an instance of the set cover problem S = fSv j v 2 V g, where the goal is to �nd a minimum

cardinality collection of sets whose union is V . Given any set cover solution C � S, the set of

vertices corresponding to the subsets in C forms a dominating set for G of the same size as C. This
is because each vertex v occurs in one of the sets Sw 2 C, and thus is either in the dominating set

itself or has a neighbor therein. Similarly, any dominating set for G corresponds to a set cover for

S of the same cardinality.

The greedy set cover algorithm repeatedly chooses the set that covers the most uncovered

elements, and it is known to provide a set cover of size within a factor logn of the optimal fractional

solution [Joh74, Lov75]. Since every vertex has degree at least s and therefore the corresponding

set Sv has cardinality at least s, assigning a weight of 1=s to every set in S gives a fractional set

cover of total weight (fractional size) equal to s�1n. Thus, the optimal fractional set cover size is

O(n=s), and the greedy set cover algorithm must then deliver a solution of size O(s�1n logn). This

gives a dominating set for G of the same size. If we implement the greedy set cover algorithm by

keeping the sets in buckets sorted by the number of uncovered vertices, the algorithm can be shown

to run in time O(m).

Consider now the case where H(V) 6= V . Construct a graph G0 = (V 0; E0), adding a set of

dummy vertices X = fxi j 1 � i � sg, as follows: de�ne V 0 = V [X and E0 = E [f(xi; xj) j 1 �
i < j � sg [f(u; xi) j u 2 L(V)g. Every vertex in this new graph has degree s or higher, so by the

preceding argument we can construct a dominating set for G0 of size O(s�1(n + s) log (n+ s)) =

O(s�1n logn). Since none of the new vertices in X are connected to the vertices in H(V), the

restriction of this dominating set to V will give a dominating set for H(V) of size O(s�1n logn).

Finally, the running time is increased by the addition of the new vertices and edges, but since the

total number of edges added is at most ns + s2 = O(ns), we get the desired time bound. 2

2.1 Extension to Directed Graphs

We brie
y indicate the extension of the preceding de�nitions, notation, and observations to directed

graphs. Given a directed graphG(V;E), we will denote by

G the graph obtained fromG by reversing

the direction of all the edges of G. We assume the directed graph G is strongly connected.

We use ! and to overline quantities de�ned with respect to G and

G respectively. We will

use the term degree to refer to the out-degree of a vertex, and for v 2 V we will denote its degree

by
!

dv . The de�nitions of distance, diameter, neighborhoods, BFS-tree and dominating set given

earlier extend naturally to directed graphs as described below. We give the de�nitions only for G,

and de�nitions for

G can be obtained similarly.

De�nition 7 For any two vertices u; v 2 V , we de�ne d(u; v) as the length of the shortest path

from u to v. If such a path does not exist, then we assume d(u; v) =1.

4

Note that d(u; v) is not symmetric in general.

De�nition 8 The diameter � of a graph G is de�ned to be maxu;v2G d(u; v).

De�nition 9 Let
!

Nk(v) = fu 2 V j 0 < d(v; u) � kg: Further,
!

N(v) =
!

N1(v)[fvg denotes the set

of vertices at distance at most 1 from v.

De�nition 10
�!

BFS is a BFS tree in G using only out-going edges. For any vertex v 2 V , we

denote by
!

b(v) the depth of a
�!

BFS tree in G rooted at the vertex v.

We de�ne
!

H(V),
!

L(V), and dominating set for directed graphs with respect to out-going edges

incident at the vertices.

De�nition 11 For some s, let
!

L(V) = fu 2 V j
!

du < sg and
!

H(V) = V n
!

L(V) = fu 2 V j
!

du � sg.

De�nition 12 Given a set A � V , a set D � V is an out-dominating set for A if and only if for

each vertex v 2 A,
!

N(v)\D 6= ;.

The following is an easy consequence of Theorem 1.

Corollary 1 Given a directed graph G(V;E), there exists an out-dominating set for
!

H(V) of size

O(s�1 logn) and such a dominating set can be found in O(m+ ns) time.

3 Estimating the Diameter

In this section we will develop an algorithm to �nd an estimator E such that 2

3
� � E � �. We

�rst present an algorithm for distinguishing between graphs of diameter 2 and 4. It is then shown

that this algorithm generalizes to the promised approximation algorithm.

3.1 Distinguishing Diameter 2 from 4

The basic idea behind the algorithm is rooted in the following lemma whose proof is straight-

forward.

Lemma 1 Suppose that G has a pair of vertices a and b with d(a; b) � 4. Then, any
�!

BFS tree

rooted at a vertex v 2
!

N(a) and any
 �

BFS tree rooted at a vertex v 2

N(b) will have depth at least

3.

The algorithm shown in Figure 1, called Algorithm 2-vs-4, computes BFS trees from a small set

of vertices that is guaranteed to contain such a vertex, and so one of these BFS trees will certify

that the diameter is more than 2.

We are assuming here that the sets
!

L(V) andD(V) are provided as a part of the input; otherwise,

they can be computed in O(m+ ns) time.

5

Algorithm 2-vs-4

1. if
!

L(V) 6= ; then

(a) choose v 2
!

L(V)

(b) compute a
�!

BFS tree from v and a
 �

BFS tree from each of the vertices in
!

N(v)

2. else

(a) compute an out-dominating set D for
!

H(V) = V

(b) compute a
�!

BFS tree from each of the vertices in D

3. endif

4. if all BFS trees have depth 2 then return 2
else return 4.

Figure 1: Algorithm 2-vs-4

Theorem 2 Algorithm 2-vs-4 distinguishes graphs of diameter 2 and 4, and it has running time

O(ms�1n logn +ms).

Proof: It is clear that the algorithm outputs 2 for graphs of diameter 2 since in such graphs

no BFS tree can have depth exceeding 2. Assume then that G has diameter 4 and �x any pair

of vertices a; b 2 V such that d(a; b) � 4. We will show that the algorithm performs a properly

directed BFS from a vertex v 2
!

N(a)[

N(b). Since, by Lemma 1, the depth of the BFS tree rooted

at v is at least 3, the algorithm will output 4.

We consider the two cases that can arise in the algorithm.

Case 1: [
!

L(V) 6= ;]
If b belongs to

!

N(v), then there is nothing to prove. If
!

b(v) > 2, then again we have nothing

to prove. Therefore, the only case that remains is when
!

b(v) = 2 and d(v; b) = 2 (see Figure 2).

These assumptions imply that
!

N(v)\

N(b) 6= ;, and Lemma 1 completes the proof. The size of
!

N(v)

is at most s, therefore the time to compute the BFS trees is bounded by O(ms).

Case 2: [
!

L(V) = ;]
Since D is an out-dominating set for V , it follows immediately that D \

!

N(a) 6= ;, establishing
the proof of correctness. From Theorem 1, we have jDj = O(s�1n logn) and this implies a bound

of O(ms�1n logn) on the cost of computing the BFS trees in this case. 2

Choosing s =
p
n logn, we obtain the following corollary.

Corollary 2 Graphs of diameter 2 and 4 can be distinguished in O(m
p
n logn) time.

6

 v

b

x 1

x belongs to N(v) and N(b)

N (v) has less than s nodes

Figure 2: Case 1 in Algorithm 2-vs-4.

3.2 Approximating the Diameter

The ideas used in Algorithm 2-vs-4 can be generalized to estimate the diameter in the directed

case: �x any two vertices a and b for which d(a; b) = �, where � is the diameter of the graph.

Suppose we can a �nd a vertex v in
!

N�=3(a) or v
0 in

N�=3(b), then it is clear that
!

b(v) � 2

3
� or

b(v0) � 2
3
�, and we can use

!

b(v) or

b(v0) as our estimator. As before, we will �nd a small set of

vertices which is guaranteed to have a vertex in
!

N�=3(a)[

N�=3(b). Then, we can compute the BFS

tree from each of these vertices and use the maximum of the depths of these trees as our estimator

E. The reason for choosing the fraction 1=3 will become apparent in the analysis of the algorithm.

In what follows, it will simplify notation to assume that �=3 is an integer; in general though, our

analysis needs to be modi�ed to use b�=3c. Also, we assume that � � 3, and it is easy to see that

the case � � 2 is easy to handle separately.

A key tool in the rest of our algorithms will be the notion of a partial-BFS de�ned in terms of

a parameter k.

De�nition 13 A k-partial-BFS tree is obtained by performing a BFS up to the the point where

exactly k vertices (not including the root) have been visited.

Lemma 2 A k-partial-BFS tree can be computed in time O(k2).

Proof: The number of edges examined for each vertex visited is bounded by k since the k-

partial-BFS process is terminated when k distinct vertices have been examined. This implies that

the total number of edges examined is O(k2), and that dominates the running time. 2

Note that a k-partial-BFS tree contains the k vertices closest to the root, but that this set is

not uniquely de�ned due to the need to break ties, which is done arbitrarily. Typically, k will be

clear from the context and we will not specify it explicitly.

De�nition 14 Let
�!

PBFS k(v) be the set of vertices visited by a k-partial-
�!

BFS from v. Denote

by
�!

pb(v) the depth of the tree constructed in this fashion. Further,
 �

PBFS and
 �

pb(v) are de�ned

similarly.

Consider now the formal description of the approximation algorithm for diameter, Algorithm

Approx-Diameter, as shown in Figure 3.

7

Algorithm Approx-Diameter

1. compute an s-partial-
�!

BFS tree from each vertex in V

2. let w be the vertex with the maximum depth (
�!

pb(w)) partial-
�!

BFS tree

3. compute a
�!

BFS tree from w and a
 �

BFS tree from each vertex in
�!

PBFS s(w)

4. compute a new graph bG from G by adding all edges of the form (v; u) where u 2
�!

PBFS s(v)

5. compute an out-dominating set D in bG
6. compute a

�!

BFS tree from each vertex in D

7. return estimator E equal to the maximum depth of all BFS trees from Steps 3 and 6.

Figure 3: Algorithm Approx-Diameter

The following lemmas constitute the analysis of this algorithm.

Lemma 3 The dominating set D found in Step 5 is of size O(s�1n logn).

Proof: In bG, each vertex v 2 V is adjacent to all vertices in
�!

PBFS s(v) with respect to the

graph G. Since j
�!

PBFS s(v)j = s for every vertex v, the out-degree of each vertex in bG is at least

s. From Theorem 1, it follows that we can �nd a dominating set of size O(s�1n logn). 2

Lemma 4 If j
!

N�=3(v)j � s for all v 2 V , then D \ (
!

N�=3(v)[fvg) 6= ; for each vertex v 2 V .

Proof: Consider any particular vertex v 2 V . If v is in D, then there is nothing to prove.

Otherwise, since D is a dominating set in bG, there is a vertex u 2 D such that (v; u) is an edge

in bG. If (v; u) is in G, then again we are done since u 2
!

N(v) �
!

N�=3(v). The other possibility is

that u is not a neighbor of v in G, but then it must be the case that u 2
�!

PBFS s(v). The condition

j
!

N�=3(v)j � s implies that
�!

PBFS s(v) �
!

N�=3(v), which in turn implies that u 2
!

N�=3(v), and

hence u 2 D \
!

N�=3(v). 2

The reader should notice the similarity between the preceding lemma and Case 2 in Theorem 2.

Lemma 4 follows from the more general set cover ideas used in the proof of Theorem 1 and as such

it holds even if we replace �=3 by some other fraction of �. The more crucial lemma is given

below.

Lemma 5 Let S be the set of vertices v such that j
!

N�=3(v)j < s. If S 6= ; then the vertex w found

in Step 2 belongs to S. In addition if
!

b(w) < 2
3
�, then for every vertex v,

�!

PBFS s(w)\

N�=3(v) 6= ;:

8

Proof: It can be veri�ed that for any vertex u 2 S,
�!

pb(u) > �=3; conversely, for any vertex v

in V nS,
�!

pb(v) � �=3. From this we can conclude that if S is nonempty, then the vertex of largest

depth belongs to S.

Also, for each vertex u 2 S, we must have
!

N�=3(u) �
�!

PBFS s(u). If
!

b(w) < 2
3
� then every

vertex is within a distance 2

3
� from w. From this and the fact that

!

N�=3(w) �
�!

PBFS s(w), it

follows that
�!

PBFS s(w) \

N�=3(v) 6= ;. 2

The proof of the above lemma makes clear the reason why our estimate is only within 2
3
of

the diameter. Essentially, we need to ensure that the �=k neighborhood of w intersects the �=k

neighborhood of every other vertex. This can happen only if
!

b(w) is su�ciently small. If it is

not small enough, we want
!

b(w) itself to be a good estimator. Balancing these conditions gives us

k = 3 and the ratio 2=3.

Theorem 3 Algorithm Approx-Diameter gives an estimate E such that 2

3
� � E � � in time

O(ms+ms�1n logn+ns2). Choosing s =
p
n logn gives a running time of O(m

p
n logn+n2 logn).

Proof: The analysis is partitioned into two cases. Let a and b be two vertices such that

d(a; b) = �.

Case 1: [For all vertices v, j
!

N�=3(v)j � s.]

If either a or b is in D, we are done. Otherwise from the proof of Lemma 4, the set D has a

vertex v 2
!

N�=3(a). Since in Step 6 we compute
�!

BFS trees from each vertex in D, one of these is

v and
!

b(v) is the desired estimator.

Case 2: [There exists a vertex v 2 V such that j
!

N�=3(v)j < s.]

Let w be the vertex in Step 2. If
!

b(w) � 2
3
�,
!

b(w) is our estimator and we are done. Otherwise

from Lemma 5,
�!

PBFS s(w) has a vertex v 2

N�=3(b). Since in Step 3 we compute
 �

BFS trees from

each vertex in
�!

PBFS s(w), one of these is v and

b(v) is the desired estimator.

The running time is easy to analyze. Each partial-BFS in Step 1 takes at most O(s2) time by

Lemma 2; thus, the total time spent on Step 1 is O(ns2). Step 2 can be implemented in O(n) time.

In Step 3, we compute BFS trees from s vertices, which requires a total of O(ms) time. The time

required in Step 4 is dominated by the time required to compute the partial-BFS trees in Step 1.

Theorem 1 implies that Step 5 requires only O(n2 + ns) time (note that the graph bG could have

many more edges than m). By Lemma 3, Step 6 takes O(ms�1n logn) time. Finally, the cost of

Step 7 is dominated by the cost of computing the various BFS trees in Steps 3 and 6. The running

time is dominated by the cost of Steps 1, 3, and 6, and adding the bounds for these gives the desired

result. 2

3.3 Extension to Weighted Graphs

The algorithm for estimating the diameter extends to the case of weighted graphs as well, pro-

vided all edge weights are positive. This requires some minor modi�cations to Algorithm Approx-

Diameter that are listed below.

9

� The BFS is replaced by Dijkstra's algorithm [CLR90] for shortest paths, and the depth of the

tree now refers to the distance to the farthest vertex found so far.

� In forming the new graph bG in Step 4 we need to remove all the original edges of G before

we add the new edges. Note that bG is an unweighted graph.

The last modi�cation is necessary because in a weighted graph it is not necessarily the case

that a neighbor of a vertex v belongs to N�=3(v). The running time remains the same because the

time required by Dijkstra's algorithm (implemented with Fibonacci heaps [CLR90]) is O(m) when

m =
(n logn).

We obtain the following theorem.

Theorem 4 Given a directed graph with positive edge weights, there is an algorithm that gives an

estimate E such that 2

3
� � E � � in time O(m

p
n logn+ n2 logn).

4 Estimating All-Pairs Shortest Paths

We now turn to the problem of approximate APSP computations. We restrict ourselves to undi-

rected and unweighted graphs for the rest of the paper, although it should be noted that there is

an obvious extension of the results below to the case of undirected graphs with edge weights that

are small integers.

It is possible to determine not only the diameter, but the all-pairs shortest path distances to

within an additive error of 2. The basic idea is that a dominating set, since it contains a neighbor

of every vertex in the graph, must contain a vertex that is within distance 1 of any shortest path.

Since we can only �nd a small dominating set for vertices in H(V), we have to treat L(V) vertices

di�erently, but their low degree allows us to manage with only a partial-BFS, which we can combine

with the information we have gleaned from the dominating set.

We give a detailed description of the approximate APSP algorithm, Algorithm Approx-APSP,

in Figure 4. In Figure 5 we illustrates the main ideas behind this algorithm.

Theorem 5 In Algorithm Approx-APSP, for all vertices u; v 2 V , the distances returned in bd
satisfy the inequality

0 � bd(u; v)� d(u; v) � 2:

Further, the algorithm can be modi�ed to produce paths of length bd rather than merely returning the

approximate distances. This algorithm runs in time O(n2s + n3s�1 logn); choosing s =
p
n logn

gives a running time of O(n2:5
p
logn).

Proof: We �rst show that the algorithm can be easily modi�ed to return actual paths rather

than only the distances. To achieve this, in Steps 3 and 4 we can associate with each updated entry

in the matrix the path from the BFS tree used for the update. In Step 5, we merely concatenate

the two paths from Step 3 the sum of whose lengths determine the minimum value of bd.

10

Algorithm Approx-APSP

Comment: De�ne G[L(V)] to be the subgraph of G induced by L(V).

1. initialize all entries in the distance matrix bd to 1

2. compute a dominating set D for H(V) of size s�1n log n

3. compute a BFS tree from each vertex v 2 D, and update bd with the shortest path lengths
for v so obtained

4. compute a BFS tree in G[L(V)] for each vertex v 2 L(V), and update bd with the shortest
path lengths for v so obtained

5. for all u; v 2 V nD do

bd(u; v) minf bd(u; v);min
w2D
f bd(w; u) + bd(w; v)gg

6. return bd as the APSP matrix, and its largest entry as the diameter.

Figure 4: Algorithm Approx-APSP

For a vertex u, it is clear that the shortest path distance to any vertex v 2 V that is returned

cannot be smaller than the correct values, since they correspond to actual paths. To see that they

di�er by no more than 2, we need to consider three cases:

Case 1: [u 2 D]

In this case, the BFS tree from v is computed in Step 3 and so clearly the distances returned

are correct.

Case 2: [u 2 H(V) nD]

By the de�nition of D, it must be the case that u has a neighbor w in D. Clearly, the distances

from u and w to any other vertex cannot di�er by more than 1, and the distances from w are

always correct as per Case 1. The assignment in Step 6 guarantees bd(u; v) � bd(w; v) + bd(w; u) =
d(w; v) + 1 � d(u; v) + 2.

Case 3: [u 2 L(V)]
Fix any shortest path from u to v. Suppose that the path from u to v is entirely contained in

L(V); then, bd(u; v) is set correctly in Step 4. Otherwise, the path must contain a vertex w 2 H(V).

If w is contained in D, then the correct distance is computed as per Case 1. Finally, if w 2 H(V)nD,

then D contains a neighbor x of w. Clearly, in Step 6, one of the possibilities considered will involve

a path from u to x and a path from x to v. Since the distances involving x are correctly computed

in Step 3, this means that bd(u; v) � d(x; u) + d(x; v)� d(w; u) + d(w; v)+ 2 = d(u; v) + 2.

Finally, we analyze the running time of this algorithm. Step 1 requires only O(n2) time, and

11

The actual shortest path

The path computed in step 5

HI LO

D

u

v

The BFS for a node in LO (step 4)

The BFS for a node in D (Step 3)A graph with HI, LO, D labeled

Figure 5: Illustration of Algorithm Approx-APSP.

Theorem 1 implies that we can perform Step 2 in the stated time bound. Step 3 requiresms�1n logn

for computing the BFS trees. Step 4 may compute as many as
(n) BFS trees, but G[L(V)] only

has O(ns) edges and so this requires only O(n2s) time. Finally, Step 5 takes all n2 vertex pairs,

and compares them against the s�1n logn vertices in D. This implies the desired time bound. 2

Although the error in this algorithm is 2, it can be improved for the special case of distinguishing

diameter 2 from 4 based on the following two observations.

Fact 1 If u 2 H(V) is at distance � from some vertex v, then bd(u; v) � �+ 1.

Proof: Consider w, the vertex that dominates u. If the algorithm were to have set bd(u; v) >
� + 1 then Step 5 of the algorithm would imply bd(w; v) > �. Since bd is exact for vertices in D,

this is not possible. 2

Fact 2 If the algorithm reports for some u 2 L(V) that b(u) > 2, we can verify this in time O(ns)

per vertex.

Thus, by performing a veri�cation for each of the L(V) vertices that report distance over

2, we can improve Algorithm Approx-APSP so that it always performs as well as the diameter

approximation algorithms of the previous section. The �rst fact also appears to be useful in

bringing the diameter error down to 1, but unfortunately, the vertices in L(V) cannot be handled

as easily for larger diameters.

5 Estimating k-Pairs Shortest Paths

In this section we consider the problem where we only seek to determine the distances between a

given set of distinguished pairs of vertices denoted by P . We show that the Algorithm Approx-APSP

12

can be generalized to handle this problem with the same error bounds. The generalized algorithm,

called Approx-kPSP, works in time O(n1:5
p
k logn + n2 log2 n), where k is the cardinality of the

set P . When P contains all pairs of vertices, the behavior of Approx-kPSP is identical to that of

Approx-APSP. However, for small k, the algorithm is signi�cantly faster than Approx-APSP.

The main idea behind the speed-up is the observation that the choice of s =
p
n logn is not

optimal when we do not need to �nd the distances between all pairs. Step 5 of Approx-APSP

(the concatenation of paths) requires at most O(kns�1 logn) time (instead of O(n3s�1 logn)), so

the total time taken is O(mns�1 logn + n2s + kns�1 log n). Now, the �rst term of the sum is not

necessarily dominated by the last one. We have two cases: if k � m, the last term dominates the

�rst but we get the desired running time that depends on k when we balance the second and third

terms; conversely, when k < m, we observe that the �rst term dominates the last. Note that the

�rst term is the cost of performing BFS from all the dominating set vertices.

The intuition for the improvement comes from the following example: suppose that all vertices

have degree d. Then we could take s = d, so m = O(nd) and jDj = O(n
d
log n), and the �rst

term would be equal to mjDj = O(n2 logn). This example shows that performing BFS from all

the dominating set vertices is not expensive if the degrees are more or less uniform. Of course, in

general, such an assumption is not true. However, we can exploit this observation by partitioning

the vertex set into O(logn) classes, such that the ith class consists of vertices of degree between n
2i

and n
2i�1 , and computing the dominating sets for each class separately. This e�ectively reduces the

the �rst term to O(n2 polylog (n)), and now we can balance the second and third terms as in the

other case.

This algorithm, called Approx-kPSP, is described in Figure 6. The algorithm is recursive and

at the top level it is invoked with parameter value i = 1, assuming G1 = G. The algorithm uses a

parameter t that is chosen later so as to minimize the running time.

We begin the analysis by identifying the optimal choice of t.

Lemma 6 The parameter t can be chosen such that the running time of Algorithm Approx-kPSP

is O(n1:5
p
k log n+ n2 log2 n).

Proof: Observe that for each i and v 2 Vi, the degree of v in Gi is less than si�1 (assume

s0 = n). This implies that jEij = O(nsi�1). Let Ci denote the running time of the invocation of

Approx-kPSP with argument i. It is easy to see that Ct = njEtj and that for i < t, Ci is dominated

by the time required for Steps 3(c) and 3(d) which require jDijjEij and kjDij time, respectively.
The total time can now be estimated as follows:

tX
i=1

Ci = njEtj+
t�1X
i=1

(jDijjEij+ kjDij) �
t�1X
i=1

n

si
nsi�1 logn+ k

t�1X
i=1

n

si
logn + n2st

� 2n2 log2 n+
n

st
k log n+ n2st

Choosing t such that st = �

�q
k logn

n

�
gives the desired bound on the running time of the algo-

rithm. 2

13

Algorithm Approx-kPSP(i)

Comment: De�ne si =
n
2i

1. initialize all bd(u; v) to 1
2. if i = t then compute a BFS tree from each vertex v 2 Vi in Gi and update bd with the

shortest path lengths obtained

3. else let
Ui = fv 2 Vij degree of v in Gi is at least sig,
Vi+1 = Vi � Ui, and
Gi+1 be the subgraph of Gi induced by Vi+1

(a) call Approx-kPSP(i+1)

(b) compute a dominating set Di for Ui in Gi

(c) compute a BFS tree from each v 2 Di and update bd with the shortest path lengths
obtained

(d) for each fu; vg 2 P do

bd(u; v) minf bd(u; v); min
w2Di

bd(w; u) + bd(w; v)g

4. return

Figure 6: Algorithm Approx-kPSP

We can now complete the analysis of the algorithm.

Theorem 6 For all pairs (u; v) 2 P , the distances returned in bd by Approx-kPSP satisfy the

inequalities:

0 � bd(u; v)� d(u; v) � 2:

The algorithm runs in time O(n2 log2 n+ n1:5
p
k logn).

Proof: Let di(u; v) denote the distance between u and v in Gi. Clearly, it is su�cient to show

by induction on i that 0 � bd(u; v)�di(u; v) � 2 after �nishing Approx-kPSP(i). The base case (for

i = t) holds trivially since we compute the exact shortest paths. The proof of the inductive step is

similar to the proof Theorem 5, hence we omit the details. The time bound follows from Lemma 6.

2

5.1 Application: Randomized Approximation Scheme for Diameter

Algorithm Approx-kPSP can be used to obtain a randomized approximation scheme for the diame-

ter of a graph. Let u; v 2 V be such that d(u; v) = �. If we choose a vertex w uniformly at random

14

Approx-APSP Fast Approx-APSP Fast

speedup Approx-APSP accuracy Approx-APSP

speedup accuracy

GB Median 0:59 3:95 0:69 0:53

GB Average 2:44 10:18 0:72 0:47

GB Std Dev 0:24 1:73 0:16 0:13

RG Median 0:52 5:30 0:39 0:51

RG Average 0:63 4:75 0:39 0:55

RG Std Dev 0:23 1:70 0:14 0:12

Table 1: Summary of Experimental Results

from V , the probability of d(u; w) � �
2
� is �(��n). This guarantees that a set P of O(n2

�2�2 logn)

vertices chosen uniformly at random contains vertices x; y such that d(u; x) � �
2
� and d(v; y) � �

2
�,

hence d(x; y) � (1��)� with high probability. We can use Algorithm Approx-kPSP to approximate

distances between all pairs of vertices in P in O(n1:5
p
jP j logn+n2 log2 n) = O(n

2:5

��
logn+n2 log2 n)

time. For large �, say � =
(n�) for some � > 0, the improvement is signi�cant. We obtain the

following theorem.

Theorem 7 For any 0 < � < 1 there exists a Monte Carlo algorithm which �nds an estimator E

such that (1� �)� � E � �+ 2, in time O(n
2:5

�� logn+ n2 log2 n).

Note that while this randomized algorithm assumes knowledge of �, it is su�cient to provide it

with a constant-factor approximation to �. The depth of a BFS tree rooted at an arbitrary vertex

of G is a 2-approximation for � and can be used for this purpose.

6 Experimental Results

To evaluate the usefulness of our algorithm, we ran it on two families of graphs and compared the

results against a carefully coded algorithm based on breadth-�rst searches. The algorithm Approx-

APSP was tweaked with the following heuristic improvement to Step 5 that avoids many needless

iterations: when a node has a neighbor in D, then we copy the distances of its neighbor (since

they can di�er by at most 1). This algorithm (called Fast Approx-APSP) occasionally has a higher

fraction of incorrect entries, but seems to be the fastest way to solve the all-pairs shortest path

problem.

The �rst family of graphs were random graphs from the Gn;m model [Bol85], which are graphs

chosen uniformly at random from those with n vertices and m edges. In our experiments, we chose

random graphs with n ranging from 10 to 1000, and 2m=n2 ranging from 0:03 to 0:90. On these

graphs, Fast Approx-APSP runs about 5 times faster than the BFS implementation, and about

half of the distances are o� by one.

15

The second family of graphs come from the Stanford GraphBase [Knu93]. We tested all of the

connected, undirected graphs from Appendix C in Knuth [Knu93] (ignoring edge weights). This

is a very heterogeneous family of graphs, including graphs representing highway connections for

American cities, athletic schedules, 5-letter English words, and expander graphs, as well as more

combinatorial graphs. Thus the results here are quite indicative of practical performance. Although

the BFS-based algorithm runs fastest for certain subfamilies of the GraphBase, Fast Approx-APSP

outperformed all other algorithms overall.

The results are summarized in Table 1. In the table, GB and RG refer to GraphBase and random

graphs, respectively. The speedup numbers indicate the inverse of the ratio of the execution time

of the algorithms to that of the carefully coded BFS algorithm. The accuracy refers to the ratio

of the total number of exact entries in the distance matrix to the total number of entries in the

matrix. In both of these families, the accuracy of Approx-APSP could be improved by subtracting

1 in Step 5. This did not seem necessary given that the BFS approach performed about as fast

as Approx-APSP, and that Fast- Approx APSP performed faster with roughly 50% accuracy. The

numbers indicate that for general graphs where an additive factor error is acceptable, Fast Approx-

APSP is the algorithm of choice, and for more speci�c families of graphs, the parameters can be

adjusted for even better performance.

7 Conclusions and Further Work

Our work suggests several interesting directions for future work, the most elementary being: Is there

a combinatorial algorithm running in time O(n3��) for distinguishing between graphs of diameter

2 and 3? It is our belief that the problem of e�ciently computing the diameter can be solved given

such a decision algorithm, and our work provides some evidence in support of this belief. In fact, it

is our view that the bottleneck in obtaining a faster combinatorial APSP algorithm is precisely the

problem of distinguishing graphs of diameter 2 and 3. This also raises the question of whether there

is some strong equivalence between the diameter and APSP problems, e.g., that their complexity

is the same within poly-logarithmic factors. Finally, of course, removing the additive error from

our results remains a major open problem.

Acknowledgements

We are grateful to Noga Alon for his comments and suggestions, and to Nati Linial for helpful

discussions. We are also indebted to Edith Cohen for comments that helped us extend some of our

results. Thanks also to Michael Goldwasser, David Karger, Sanjeev Khanna, and Eric Torng for

their comments.

16

References

[ABCP93] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear cost sequential

and distributed constructions of sparse neighborhood covers. in Proceedings of the 34th

Annual IEEE Symposium on Foundations of Computer Science, pages 638-647, 1993.

[AGM91] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest

path problem. in Proceedings of the 32nd Annual IEEE Symposium on Foundations of

Computer Science, pages 569{575, 1991.

[AGMN92] N. Alon, Z. Galil, O. Margalit, and M. Naor. Witnesses for Boolean Ma-

trix Multiplication and for Shortest Paths. in Proceedings of the 33nd Annual IEEE

Symposium on Foundations of Computer Science, pages 417{426, 1992.

[BKM95] J. Basch, S. Khanna, and R. Motwani. On Diameter Veri�cation and Boolean Ma-

trix Multiplication. Report No. STAN-CS-95-1544, Department of Computer Science,

Stanford University (1995).

[Bol85] B. Bollob�as. Random Graphs. Academic Press, 1985.

[Chu87] Fan R.K. Chung. Diameters of Graphs: Old Problems and New Results. Congressus

Numerantium, 60:295{317, 1987.

[Coh93] E. Cohen. Fast algorithms for t-spanners and stretch-t paths. in Proceedings of the

34th Annual IEEE Symposium on Foundations of Computer Science, pages 648-658,

1993.

[Coh94] E. Cohen. Polylog-time and near-linear work approximation scheme for undirected

shortest paths. in Proceedings of 26th Annual ACM Symposium on Theory of Com-

puting, pages 16{26, 1994.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-

sions. Journal of Symbolic Computation, 9:251{280, 1990.

[CLR90] T. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT

Press and Mc-Graw Hill, New York, 1990.

[FM91] T. Feder and R. Motwani. Clique Partitions, Graph Compression and Speeding-up

Algorithms. Journal of Computer and System Sciences, 51:261{272, 1995.

[Joh74] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of

Computer and System Sciences, 9:256{278, 1974.

[Knu93] D.E. Knuth. The Stanford GraphBase: A platform for combinatorial computing.

Addison-Wesley, 1993.

17

[Lov75] L. Lov�asz. On the ratio of optimal integral and fractional covers. Discrete Mathemat-

ics, 13:383{390, 1975

[Sei92] R.G. Seidel. On the all-pairs-shortest-path problem. in Proceedings of the 24th Annual

ACM Symposium on Theory of Computing, pages 745{749, 1992.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354{

356, 1969.

18

