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Abstract

This paper presents an imperative and concurrent extension of the functional object-
oriented calculus described in [FHM94]. It belongs to the family of so-called prototype-

based object-oriented languages, in which objects are created from existing ones via
the inheritance primitives of object extension and method override. Concurrency is
introduced through the identi�cation of objects and processes. To our knowledge, the

resulting calculus is the �rst concurrent object calculus to be studied. We de�ne an
operational semantics for the calculus via a transition relation between con�gurations,

which represent snapshots of the run-time system. Our static analysis includes a type
inference system, which statically detects message-not-understood errors, and an e�ect

system, which guarantees that synchronization code, speci�ed via guards, is side-e�ect
free. We present a subject reduction theorem, modi�ed to account for imperative and

concurrent features, and type and e�ect soundness theorems.

1 Introduction

In the past few years, the desire to bring the bene�ts of object-oriented programming (mod-

ularity, re-usability and incremental design) to multiprocessor environments has led to a
signi�cant interest in concurrent object-oriented programming. The fact that objects seem
to provide a suitable abstraction for concurrent programming has further encouraged re-

search in this area. Various languages have been designed, some from scratch (e.g.POOL

[Ame89] and ABCL [Yon90]), and others by adding concurrent features to existing object-

oriented languages (e.g. concurrent C++ [CGH89] and Ei�el[Car93]). Despite this broad

interest, the most e�ective combination of the object-oriented and concurrent paradigms has
not yet emerged.

Considerable e�ort has been spent in developing theoretical frameworks for studying this
issue. To date, there have been two main approaches to such studies: actor languages and

process algebras. The actor model [Agh86] can easily represent concurrent objects [Agh90]

and has been used as a foundation for designing various concurrent object-oriented languages
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(e.g.ABCL [Yon90] and [FA93]). Theoretical research using this model has focused on seman-

tics and equational theories (e.g. [AMS92, Tal96]). The process algebra approaches to mod-

eling concurrent object-oriented systems [PT94, Vas94, Nie92, KY94, Jon93] are often exten-

sions of the �-calculus, obtained by adding objects and functional constructs. Researchers

adopting this approach have paid particular attention to typing issues (c.f. [Vas94, KY94]).

Both the actor and the process algebra approaches su�er from not making the notion of

an object a central concept. Because of this lack, some object-oriented features can be quite

di�cult to represent in these frameworks. In contrast, functional object-oriented calculi

[AC94, FHM94] already have primitives for object-oriented features and so are a convenient

starting point for studying concurrent object-oriented systems. Despite the naturalness of

adding concurrency to such calculi, this approach has not been extensively investigated. To

our knowledge, Cardelli's object-based language for distributed computation Obliq [Car95] is

the only existing language that adopts this philosophy. Except for its sequential imperative

core [AC95], however, no formal study of Obliq's semantics or its types has been carried out.
The general goal of this research is to establish theoretical foundations for concurrent

object-oriented programming, focusing on the development of intuitive semantics and sound
type systems. As a �rst step towards this goal, we present an imperative and concurrent
extension of the calculus in [FHM94]. We believe that one of the contributions of this work
is to introduce a new direction for the design of formal systems for studying concurrent
object-oriented programming, that of adding concurrency primitives to object calculi.

The rest of the paper is organized as follows. In Section 2, we describe our extended
language, focusing on the design choices we made in de�ning our calculus. In Section 3
we present an example program-fragment to illustrate our language. Section 4 describes an
operational semantics for the language, and Section 5 presents its static type system. Section
6 contains the technical results of the paper, including a subject reduction theorem, modi�ed

to account for imperative and concurrent features. Type soundness follows as a corollary.
Section 7 concludes with some notes on future work.

2 The language: an overview

In this section, we give an overview of our concurrent object-calculus, focusing on the design
choices we made in its development.

Typing. The usefulness of static type systems in increasing the reliability and readability of

programs, in detecting compile-time type errors, and in providing useful compile-time infor-
mation is widely recognized. Hence, we chose to de�ne a static type system for our calculus.

Reassuringly, only straightforward modi�cations to the type system of the functional object
calculi of [FHM94] were required. One such modi�cation was the incorporation of an e�ect

system [LG88] to insure that the guards we use to de�ne synchronization code are side-e�ect

free (See below). The potential to leverage prior work in this fashion is one of the appeals
of designing concurrent object-oriented calculi by extending sequential functional ones.

Prototype-based calculus. The object model of our calculus uses a prototype-based

approach to represent inheritance. In other words, new objects are created from existing

2



ones via the inheritance primitives of object extension and method override. A consequence

of this approach is that the methods of each object are embedded in the object itself, which is

important for managing method lookup when objects are physically distributed on a network.

In our syntax the expression hi creates an empty object, hob + m = methodi extends object
ob with new method m whose code is speci�ed in method, and hob m = methodi replaces
ob's m-method with new code method. We adopt these inheritance primitives instead of the

more complex operators de�ned in Obliq (e.g. clone) because they can be easily encoded.

Processes as objects. Objects represent a suitable and appealing abstraction for the

notion of a process, so we introduce concurrency by identifying objects and processes. It

is hoped that this uni�cation might simplify the process of writing concurrent code. More

de�nitely, it allows us to use our object primitives to create and activate processes, thus

reducing the number of primitives in the calculus.

Communication mechanisms. Concurrent object-oriented languages that identify the
notions of object and process use three kind of communication: synchronous, asynchronous
and eager invocation [WKH92]. In our calculus we directly support synchronous and asyn-

chronous method invocation because both are interesting and neither is encodable in the
other without adding more syntax. We do not directly provide eager invocation because
it can be derived via an encoding of future variables as objects. In our syntax, expres-
sion ob(am(arg) sends message m asynchronously with argument arg to object ob. The
corresponding synchronous invocation is ob(s m(arg).

Synchronization constraints. In a concurrent object-oriented language, at any given
time an object may only be able to respond to a subset of its entire set of messages without
losing its internal integrity. For example, a bu�er object cannot meaningfully respond to a

put message if its internal storage is full. Instead, it must wait until a get message causes
some of its space to become free. Such restrictions on the availability of methods are called
synchronization constraints because they a�ect the order in which methods are executed.
Code that controls method availability is called synchronization code [MY93]. We use guards
for this purpose, because they provide one of the most natural ways to de�ne synchronization

code and they require minimal additional syntax. (See [Yon90] for another use of guards.) In

our language, each method consists of a guard and a method body, method = when(g) body.
To insure that our guards behave properly, our static analysis guarantees that guards return

boolean values and cause no side e�ects.

Protection. A crucial point in the calculus is the distinction between self and non-self-

in
icted operations. According to the de�nitions introduced in [Car95], method overriding
hob m = methodi and invocation ob(m(arg)1 are self-in
icted i� ob is the same object

as the self -parameter of the current method. Otherwise the operation is non-self-in
icted2.

Method overriding has di�erent semantics in these two cases. In the self-in
icted case,

hob m = methodi replaces the method m of the object ob. This operation is the only

way to update the state of an object in our calculus. The non-self-in
icted overriding has a

1The symbol( indicates either synchronous and asynchronous method invocation.
2Note that self-in
icted method extension is prevented by the type system.
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cloning semantics, meaning that we �rst create a copy of the object ob and then replace the

m method with the new method3. There are two reasons for these choices. First, we want

to provide a form of protection against external writing operations. By insuring that only

self-in
icted operations can modify their host object, we can safeguard internal invariants of

objects. Secondly, the cloning semantics allows us to support depth inheritance (via method

overriding) and width inheritance (via object extension).

Serialized objects. As we will formalize in Section 4, an object can be in either an idle or a

busy state. Non-self-in
icted operations can be executed only if their target object is in the

idle state. This restriction gives each object a serialized structure: at any time a given object

is involved in at most one thread of computation. This single-threadedness helps maintain

object invariants, since we are guaranteed that once an object starts a computation, it will

not be interrupted by an outside request until it has �nished its computation. Self-in
icted

operations do not have to wait for their target object to become idle. The methods of an
object need to be able to access other host object methods without immediately causing
deadlock. This freedom maintains the single-threadedness of objects, since self-in
icted
operations continue in the same thread.

As can be seen from the preceding paragraphs, the notion of self-in
iction is an important
concept. Unfortunately, whether an operation is self-in
icted or not can generally only be

determined at run-time. Currently, our type system does not approximate this distinction.
We leave this question to future work.

3 Example

To provide some intuition for this calculus, we give example producer, consumer and one-slot
bu�er objects. As we will see formally in the next section, the language extends the untyped
�-calculus with object primitives. Here as a notational convenience, we adopt some syntactic
conventions. We write hm1 = when(e1)e

0

1
; : : : ;mk = when(ek)e

0

ki for h: : : hhi  + m1 =

when(e1)e
0

1i : : : + mk = when(ek)e
0

ki. We omit the guard in a method de�nition if it is the
constant true, i.e., if the method is always available. If we have a method invocation with no
parameters, we write e1(m instead of e1(m(nil), where nil is a constant with type unit.

We introduce the semicolon operator e1; e2 as syntactic sugar for ((�z: �x: x)e1)e2, which
has the expected meaning for sequencing as our semantics re
ects call-by-value evaluation.

Finally we use integer constants and their related operations.
The following code creates an empty one-slot bu�er object:

bu�er = h x = �self: �arg: 0;

size = �self: �arg: 0;
put = when(�self:(self(s size) = 0)

�self: �v:hhself x = �s: �a: vi size = �s: �a: 1i;
get = when(�self:(self(s size) = 1)

�self: �arg:hself size = �s: �a: 0i; self(s x i

Both guards and method bodies occasionally need to access other methods of their host

3Non-self-in
icted method extension has the same semantics.
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object. To grant this access, we write them as functions from a self parameter to their

actual code. The operational semantics binds these parameters to the host object when the

corresponding methods are invoked. The x method represents the storage of the bu�er. The

size method indicates whether or not the bu�er is full by storing either a 0 (for empty) or a

1 (for full). Both of these methods have constantly true guards, which we omit for clarity.

The put method is only available if the bu�er is currently empty, which its guard checks

by comparing its current size to 0. When available, put stores a new value into the bu�er's

storage x and sets the size to 1. Finally, the get method, which is only available if the bu�er

is full, sets the current size to 0 and returns the value contained in the storage x.

When an object is created, it is associated with an address generated by the system.

Future interactions with that object occur via the generated address, which may be thought

of as the name of the object. For expository purposes, we will assume that the name

generated for the above bu�er object is bu�.

We may write a producer object that interacts with the bu� object as follows:

producer = hm = �self: �arg:((�y: bu�(a put(y))(value production())) ; self(ami

Invoking a producer object's m method causes a non-terminating computation to start.
During each iteration of this computation, the producer gets a new value by calling the
function value production and then stores this value in the bu�er by asynchronously sending

bu� the message put. We will assume the name generated for the producer object is prod.
Our consumer object has the same structure:

consumer = hn = �self: �arg:((�y: consume value(y))(bu�(s get)) ; self(a ni

Once its n method is invoked, the consumer starts a non-terminating computation. Dur-
ing each iteration, the consumer gets a new value from the bu�er by synchronously send-
ing the get message to bu�. It then consumes the returned value by calling the function
consume value. We will assume the address generated for this consumer object is cons.

We illustrate the computational behavior of our objects using the following simpli�ed

evaluation rule that re
ects the operational semantics de�ned precisely below:

hm1 = when(e0

1)e1; : : : ;mk = when(e0

k)eki(mi �! ei hm1 = when(e0

1)e1; : : : ;mk = when(e0

k)eki

This rule allows us to evaluate a message send by retrieving the appropriate method body

from the object and applying it to the entire object itself.

Using the rule above and call-by-value beta-reduction, we may evaluate the message send
prod(am, assuming value production() �! v1:

prod(a m �! (�self: �arg:((�y: bu�(a put(y))(value prodction())) ; self(am) prod nil

�! ((�y: bu�(a put(y))(value production())) ; prod(am)

�! (bu�(a put(v1)) ; prod(am

�! prod(am

The asynchronous method invocation bu�(a put(v1) (which is a non-self-in
icted operation)
is put in the queue of pending messages, and the computation continues, sending message

m to the object prod. Note that the recursive structure of objects easily supports non-
terminating computation. When the bu�er is free to receive the message put(v1), it evaluates

the guard for the method put:
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(�self:(self(s size) = 0) bu� �! (bu�(s size) = 0

If the bu�er is empty, (bu�(s size) = 0 will evaluate to true. In this case, the put(v1)

message is removed from the queue and the method body is executed. Otherwise, the

message remains in the queue. The put method reduces as follows:

bu�(a put(v1) �! (�self: �v:hhself x = �s: �a: vi size = �s: �a: 1i) bu� v1
�! hhbu� x = �s: �a: v1i size = �s: �a: 1i
�! hbu� size = �s: �a: 1i
�! bu�

This evaluation overrides the methods x and size (both self-in
icted operations), so the

object bu� now has the following structure, modulo �-conversion:

bu� : h x = �self: �arg: v1;

size = �self: �arg: 1; put = : : : ; get = : : : i

The evaluation of the consumer method n (cons(a n) is similar to the previous case.

4 Operational Semantics

We formalize the operational semantics of the calculus as a transition relation on con�gura-

tions, which can be thought of as global snapshots of the run-time system. A con�guration
contains the collection of all created objects and all pending messages. Formally, a con�gu-

ration
DD
� j �

EE
consists of an object soup �, containing run-time objects, and a collection of

pending asynchronous messages �. More precisely, � is a �nite map from integers to pending
messages. As a notational simpli�cation, we use a single collection of pending messages
instead of having a smaller queue for each object.

An object is represented at run-time as a triple (a; �a; [Sa]), where a is the object's ad-
dress, �a is its method table, and Sa its state. A method table is a partial function from the

set of method names M to guarded expressions of the form when(e2)e3. The state Sa can
be either idle ([I]) or busy ([tea]), in which case the expression tea represents the remaining
computation. An object passes from the idle to a busy state in response to either a syn-
chronous or an asynchronous method invocation. At the end of the resulting computation,

it returns to the idle state.

4.1 Formal Speci�cation

In this section, we introduce the notation needed to formally describe the operational se-

mantics of the calculus.

Language expressions:

e : : = x j c j a j �x: e j e1e2
j hi j e1(am(e2) j e1(s m(e2)

j he1 + m = when(e2)e3i j he1 m = when(e2)e3i

te : : = gs(e; a) j ret(e; a) j ga(e; c) jnonret(e)
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In the set of expressions e, x is a variable, c is a constant symbol, a is an object address,

�x: e is a lambda abstraction, and e1e2 is function application. The remaining sytactic forms

are the object primitives described in Section 2. All expressions e except a may occur in

source programs. The top-level expressions te appear as the states of busy objects in object

triples. They allow us to determine if the expression we are reducing corresponds to a guard

evaluation or to a method body application and further, if the reduction is in response to

a synchronous or an asynchronous invocation. (We will see an example of this in the next

section, where these top-level expressions are explained in more detail.)

To describe transitions internal to an object, we need to uniquely decompose each non-

value expression into a reduction context �lled with a redex. With this intent, we de�ne

values, redexes and reduction contexts.

Values:

v : : = x j c j a j �x: e

Top Values:

tv : : = gs(v; a) j ret(v; a) j ga(v; c) jnonret(v)

Redexes:

erdx : : = v1v2 j hi j v1(am(v2) j v1(s m(v2)
j hv1  + m = when(e)v2i j hv1 m = when(e)v2i

Inner Reduction Contexts:

rin : : = 2 j rine j v rin
j rin(a m(e) j v(am(rin) j rin(s m(e) j v(sm(rin)
j hrin  + m = when(e)e1i j hv  + m = when(e)rini
j hrin m = when(e)e1i j hv m = when(e)rini

Top Reduction Contexts:

rtop : : = gs(rin; a) j ret(rin; a) j ga(rin; c) jnonret(rin)

The reduction contexts identify which subexpression of a given expression is to be evaluated

next. These contexts correspond to the standard call-by-value reduction strategy. Because
we have two forms of expressions, we need two forms of reduction contexts: top and inner.

The following lemma tells us that local computation inside objects is deterministic.

Lemma 1 (Unique Decomposition) Given an expression te, then either te is a top value

or there exists a unique (rtop; erdx) such that te = rtop[erdx].

4.2 Reduction Rules

In this section we de�ne the transition relation 7�! between con�gurations. We describe
in detail the rules for evaluating asynchronous, non-self-in
icted invocations and method

override because these rules illustrate the key concepts of the transition system. The other

rules are similar to these or are straightforward and can be found in Appendix A. Although

this transition relation describes an interleaving semantics for the calculus, a straightforward

modi�cation produces a truly concurrent semantics.
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Asynchronous, Non-Self-In
icted Reductions. These rules describe the computation

that results when an object a sends object b the message m asynchronously. The �rst

rule says that the execution of an asynchronous method invocation proceeds by putting the

message in the pending queue. The constant nil is returned to a to re
ect the fact that the

message has been placed in the queue. Integer i serves as the name or index of the pending

message.

((a) non-self-in
ictedDD
�; (a; �; [rtop[b(am(v)]]) j �

EE
7�!

DD
�; (a; �; [rtop[nil]]) j �; i : b(am(v)

EE

where i is fresh.

When object b is in the idle state and there is a pending message m in � for b, then b

evaluates its guard for m within top-level expression ga according to the rule (�):

(�)
DD
�; (b; �; [I]) j i : b(am(v0); �

EE
7�!

DD
�; (b; �; [ga(e b; i)]) j i : b(a m(v0); �

EE

where �(m) = when(e)v.

The top-level expression ga stores the index of the message send from the queue. This
information is needed so that the proper message send will be removed from the queue when

the method body starts its evaluation.
If the guard evaluates to true, rule (�-true) directs object b to start evaluating the method

body for m within the top-level expression nonret. This rule also removes the message send
at index i from the queue, since that message send is now being executed. This rule shows
the role of the top-level expressions. Indeed, if we simply had value true not wrapped by ga

as state of object b, we would not have enough information to �gure out to which state b

should now go.

(�-true) DD
�; (b; �; [ga(true; i)]) j i : b(am(v0); �

EE
7�!

DD
�; (b; �; [nonret(v b v0)]) j �

EE

where �(m) = when(e)v.

Finally, when the body of the method has been evaluated to a value, rule (nonret) returns
object b to the idle state and throws away the resulting value. Note that, similar to above,

if we simply had value v00 as the state of object b, we would not have enough information to

determine that v00 is the result of an asynchronous method invocation, and hence should be
thrown away.

(nonret)
DD
�; (b; �; [nonret(v00)]) j �

EE
7�!

DD
�; (b; �; [I]) j �

EE

Method Override Reductions. There are two di�erent rules for evaluating the method

override operation, one for self-in
icted and one for non-self-in
icted operations. In the self-

in
icted case, we simply replace the guard and body of the method m in the method table
of a:

( ) self-in
ictedDD
�; (a; �; [rtop[ha m = when(e)vi]]) j �

EE
7�!

DD
�; (a; �[m]: = when(e)v; [rtop[a]]) j �

EE

Note that because this operation is self-in
icted, we do not wait for a to become idle before
performing the update. The notation �[m]: = when(e)v stands for the function �0 that is
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just like � except that it maps m to when(e)v. This operation returns the address of the

modi�ed object as its result. In the non-self-in
icted case, we must wait for b to enter the

idle state before performing a method override requested by object a.

( ) non-self-in
ictedDD
�; (a; �; [rtop[hb m = when(e)vi]]); (b; �0; [I]) j �

EE
7�!DD

�; (a; �; [rtop[b
0]]); (b; �0; [I]); (b0; �0[m]: = when(e)v; [I]) j �

EE

where b0 is a fresh address.

This rule �rst clones object b to create a new object b0 and then replaces b0's m method with

the new guard and body. The address of the new object is returned. Note that we cannot

clone object b if it is busy. To see this point, suppose we create b0 while b is executing e. If

we put b0 in the idle state, we can violate the integrity of b0, because we do not complete

the pending computation e, which could be responsible for restoring some invariant for b0.
On the other hand, if we clone the state of b as well, we execute the pending computation e

twice, potentially causing unwanted side-e�ects.

5 Type and E�ect System

For the most part, the type system presented here is similar to the one de�ned in [FHM94].

The most novel parts are the e�ect system and the rules for typing asynchronous method
invocation and guards.

5.1 Pro Types

The type of an object is called a pro type, short for prototype. The following type expression:

pro t hhm1 : �1 ! � 0

1; : : : ;mk : �k ! � 0

kii

de�nes a type t with the property that any expression e of this type is an object such that
for 1 � i � k, the result of e(s mi(ei) is a value of type �

0

i , if ei is of type �i. Keyword pro is

a type binding operator. When bound type variable t appears in the types �1 : : : �k, �
0

1
: : : � 0

k,

it refers to the entire type. Thus, when we say e(smi(e1) has type �
0

i , we mean type � 0

i with
any free occurrences of t in � 0

i replaced by the type pro t hhm1 : �1 ! � 0

1; : : : ;mk : �k ! � 0

kii.
Thus, pro types are a special form of recursive type.

As an example of this kind of type, we may give the one-slot bu�er object considered
above the type:

bu� : pro t hh x : unit! int; size : unit! int;

put : int! t; get : unit! intii

5.2 E�ect, Types, Rows and Kinds

Our static analysis includes an e�ect system [LG88] that ensures that the evaluation of

guards is side-e�ect free. This guarantee is important because the guard for a method may
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be invoked any number of times before its corresponding body is allowed to proceed. Since

this number is a property of how the system orders pending messages, it is undesirable for

guards to produce any observable e�ects.

We formalize this requirement by adding pure and impure e�ects to our static analysis.

Only those expressions with pure e�ect will be permitted in guards because such expressions

are guaranteed to produce no observable e�ects. Of course, a �ner analysis of e�ects is

possible; however for our current purposes, this coarse division su�ces. The e�ect expressions

include the constants pure and impure, and �1_�2, which is impure if either �1 or �2 is impure.

E�ects

� : : = pure j impure j �1 _ �2

The type expressions include type variables, function types, pro types, and the constant

types bool, unit and int.

Types

� : : = t j �1
�
! �2 j pro t R j bool j unit j int

A behavior � consists of a type and an e�ect.

Behavior

� : : = � & �

The row expressions appear as subexpression of type expressions, with row and types distin-
guished by kinds. Intuitively, the elements of kind f~mg are rows that do not include method
names f~mg. The reason we must know statically that some method does not appear is to
guarantee that methods are not multiply de�ned. Kinds of the form T!f~mg are used to
infer a form of higher-order polymorphism of method guards and bodies.

Rows

R : : = r j hhii j hhR jm : �ii j �t:R jR�

Kinds

kind :: = T j�
� :: = f~mg jT!f~mg

The contexts of the system list term, type, and row variables.

Contexts

� : : = � j� ; x : � j� ; t : T j� ; r : �

The judgment forms are the following:

�` � well-formed context
�` e : � term has behavior �

�` � : T well-formed type

�`R : � row has kind
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5.3 Typing and E�ecting Rules

To give the intuition for the e�ect system, we consider the rule for typing functional expres-

sions:

(exp abs)
� ; x : �1 ` e : �2 & �

�` �x: e : �1
�
! �2 & pure

The lambda abstraction by itself is pure because it is a value, but we must keep track of the

latent e�ect of its body e. This e�ect will be visible when we apply the lambda abstraction

to an argument. Hence, we annotate the function type with the latent e�ect.

The typing rule for sending a message asynchronously is the following:

(pro (a asynch)

�` e1 : � & �1
�` e2 : [�=t]�1 & �2

�` e1(
a
m(e2) : unit & impure

where � = pro t hhR jm : (�1
�
! �2) & �0ii

The �rst hypothesis of this rule requires e1 to be an object that has at least a method m

with type �1! �2. The second hypothesis forces the type of the parameter e2 to be the same
as the argument type of the method m, once we have substituted � for any free variables t in

�1. This substitution re
ects the recursive structure of pro types. The type of the expression
e1(a m(e2) is unit, because the asynchronous method invocation does not return any result.
The e�ect is impure because we modify the queue of pending messages.

Latent e�ects, similar to those in (exp abs), occur within methods. We discuss the e�ect
portions of (pro(a asynch) in detail to illustrate how we track such e�ects. Because of
call-by-value semantics, the body of the method m has the syntactic form �self: e. So �0

records the latent e�ect of e. This e�ect is the one visible when we �rst reduce the method
body by applying it to the host object and a parameter p: (�self: e) a p. In other words, the
expression ([a=self ]e )p reduces to (�arg: e0) p producing an e�ect �0. Then [p=arg]e0 reduces
to a value producing the latent e�ect �.

The most complicated rule of the system is the (pro ext) rule:

�` e1 : pro t hhR j ~̀ : ~�ii & �1

�; t : T `R : f~̀;mg

�; r : T!f~̀; mg ` e2 : pro t hhr t j ~̀ : ~�; m : (�1
�
! �2) & �0ii

pure
! bool & pure

�; r : T!f~̀; mg ` e3 : [pro t hhr t j ~̀ : ~�; m : (�1
�
! �2) & �0ii=t](t

�0

! �1
�
! �2) & �3

�` he1 + m=when(e2)e3i : pro t hhR j ~̀ : ~�; m : (�1
�
! �2) & �0ii & impure

In this rule, the �rst two hypotheses together require that e1 is an expression with a pro

type that does not include a method m, the method to be added. The last two assumptions
are typings for e2 and e3, the expressions to be used respectively as the guard and body for

m. The �rst thing to notice about the typing for e3 is that it contains a row variable r, which
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is implicitly universally quanti�ed. Because of this quanti�cation, e3 will have the indicated

type for any substitution of row expression R for r, provided R has the correct kind. This is

essential, since it implies that e3 will have the required functionality for any possible future

extension of he1  + m=when(e2)e3i. The second important property of the typing of e3 is

that the type has the form t
�0

! �1
�
! �2, with the extended pro type substituted for t. While

t is hidden in the pro type of he1  + m=when(e2)e3i, it is necessary in the hypothesis

since sending the message m to he1  + m=when(e2)e3i will result in the application of

e3 to the extended object. The structure of the e�ects for e3 is the same as described

above, except it includes an additional e�ect �3, to re
ect the e�ect of reducing e3 to a

value. The typing assumptions for the guard e2 says that it can take any future extension

of he1  + m=when(e2)e3i as its self parameter and that it returns a boolean value. The

fact that each guard is a function from a self parameter to a boolean means that guards can

access various components of their host objects. The e�ect assumptions for e2 insure that

both the immediate and the latent e�ects for the guard are pure.

The rule for method override has the same form as (pro ext). The other rules are
straightforward and appear in Appendix B.

6 Main Results

In this section we present subject reduction, side-e�ect freeness for guards, and type sound-
ness theorems. We prove these results for programs, which are closed, address-free terms
typeable in the empty context. Given a program e, its possible computations originate from
the following initial con�guration:DD

(main; �; [I]) j �
EE

where �(begin) = �self: �arg: e and �(1) = main(a begin

which contains one object, whose address is main, with a method begin storing the program
and one message pending invoking method begin of main.

We let g and its decorated variants range over con�gurations. A computation sequence is

a �nite sequence of transitions of the form [gi 7�! gi+1 j i < n], for some natural number n,
where g0 is an initial con�guration.

6.1 Subject Reduction

Using techniques similar to those of [Har94], we prove a subject reduction theorem by ex-

tending typing judgments to type object addresses and method tables. With this intent, we

extend our contexts to contain typing assumptions for object addresses:

� : : = : : : j�; a : �

where � is a closed pro type. We use � to indicate the projection of the context � onto the

set of object addresses A. More formally, a : � 2 � i� a : � 2 � and a 2 A. To state our

subject reduction theorem, we need the following de�nitions.

De�nition 1 A method table �a of an object a is typeable in � if when �(a) = pro t hhR j ~m :

~� & ~�ii and 8mi 2 dom(�a), 1 � i � k, �a(mi) = when(ei)vi, then the judgments
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�; r : T ! f~mg ` vi : [pro t hhr t j ~m : ~� & ~�ii=t](t
�i! �i) & pure

and

�; r : T ! f~mg ` ei : pro t hhr t j ~m : ~� & ~�ii
pure
! bool & pure,

are both derivable.

In this de�nition ~m : ~� & ~� is an abbreviation for m1 : �1 & �1; : : : ;mk : �k & �k. Note that

the types of guards and bodies in the method table contain a free row variable. This re
ects

the fact that method bodies and guards may be used in extended objects, so they must have

the required functionality for any possible future extension of their current host object.

In the next de�nitions ObjAddr(�) stands for the set of addresses of objects contained

in �.

De�nition 2 An object soup � is typeable in � if dom(�)=ObjAddr(�) and 8a 2 ObjAddr(�),

the method table �a is typeable in � and if a is busy with state ea, there exist type �a and

e�ect �a such that the judgment � ` ea : �a& �a is derivable.

De�nition 3 A pending queue � is typeable in � if 8i 2 dom(�), there exist type �i and

e�ect �i such that the judgment � ` �(i) : �i& �i is derivable.

De�nition 4 A con�guration
DD
� j �

EE
is typeable in � if � and � are typeable in �.

In proving subject reduction, we are not interested in showing that the types of top-level
expressions are preserved by reduction. Indeed, the types of these expressions are trivially
preserved as they are always unit (see the typing rules in the Appendix B). Instead, we
are interested in preserving the types of the expressions that occur one level below the top

expressions. For example, if the state of object a is ea � ret(rin[erdx]; b) then rin[erdx] is
a's one-level-down expression. If after one reduction step we have e0

a � ret(rin[e
0]; b), then

we want to prove that rin[e
0] has whatever type we gave to rin[erdx]. Moreover, note that

subject reduction holds only for objects whose states before and after a transition are related.
In particular, if an object passes through an idle state or transitions from evaluating a guard

to evaluating a method body, then the types of its state before and after the transition will
be unrelated. This makes sense, since the computations before and after such a transition

are not connected.

De�nition 5 If
DD
� j �

EE
7�!

DD
�0 j �0

EE
via some transition rule T with a 2 ObjAddr(�),

we say that the states of a in � and �0 are related if a is busy in � and �0, and T is neither

(�-true) nor ((s-true) on object a.

We order e�ects as follows: pure � impure. The notation �0 � � means that if � is pure then
�0 is pure as well.

De�nition 6 Given a transition g 7�! g0 with g =
DD

� j �
EE
and g0 =

DD
�0 j �0

EE
typeable

in � and �0 respectively, we say that g and g0 are compatible if:
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� � and �0 are compatible, that is, for all objects a whose states ea and e0

a in � and

�0 are related, there exist type �a and e�ects �a and �0

a such that the judgments � `
rin[erdx]a : �a & �a

4 and �0 ` rin[erdx]
0

a : �a & �0

a, with �0

a � �a are both derivable;

� � and �0 are compatible, that is, 8 i 2 dom(�) \ dom(�0), there exists type � and e�ect

� such that the judgments � ` �(i) : � & � and �0 ` �0(i) : � & � are derivable.

Theorem 1 (Subject Reduction) Given a computation sequence [gi 7�! gi+1 j i < n],

if g0 is typeable in some context �0, then 8i < n, there exist contexts �, �i, �i+1, with

�i+1 � �i;�, such that gi and gi+1 are typeable in �i and �i+1 respectively and are compatible.

Side-e�ect freeness for guards and type soundness follow as corollaries of the previous theorem

under the same hypothesis.

Corollary 1 (E�ect Freeness) we have that guard evaluation is side-e�ect free.

De�nition 7 We de�ne the error expressions of an object soup � to be those expressions

of the forms (where rc can be either rin or rtop):

� rc[v1 v2] where v1 6= �x:e for some e;

� rc[v1(m(v2)] where v1 is not an object address a such that a 2 ObjAddr(�) and �a(m)
exists.

� rc[v1 m = when(e)v2] where v1 is not an object address a such that a 2 ObjAddr(�)
and m 2 dom(�a).

� rc[v1 + m = when(e)v2] where v1 is not an object address a such that a 2 ObjAddr(�)
and m 62 dom(�a).

Corollary 2 (Type Soundness) Given a computation sequence [gi 7�! gi+1ji < n], if g0
is typeable in some context �0, then for every con�guration gi =

DD
�i j �i

EE
and for every

busy object a 2 ObjAddr(�i), ea is not an error expression of the object soup �i.

Type soundness, which follows from Theorem 1, guarantees that the type system statically
detects all expressions that can reduce to the following error expressions: applying a non-

functional value to an argument, sending an object a message for which it has no de�ned

method (message not understood error), overriding a method which has not been de�ned,

and extending an object with a method it already has.

4Note that if ea is typeable in �, then its one-level down expression rin[erdx]a is typeable in � as well.
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7 Conclusions

We have presented what we believe is the �rst typed, prototype-based calculus for concurrent

objects. We have described an operational semantics using a transition system between

con�gurations and have given a type and e�ect system. We have proven the soundness of

our static analysis with respect to the operational semantics via a subject reduction theorem.

This work is intended as a starting point for studying the theoretical foundations of

concurrent object-oriented programming. In the following, we brie
y describe some of issues

we intend to investigate further. Our current type system does not support subtyping because

subtyping is unsound in pure prototype-based calculi [FM94]. This problem has been solved

for the sequential version of our calculus [FM95], and we believe this solution will carry over

to our concurrent setting. A second research direction focuses on method availability. Our

type soundness theorem demonstrates that the type system we have given detects \message

not understood" errors at compile time, in the sense that no object will ever receive a

message for which it has no method de�ned. However, the theorem does not ensure that
the method in question is available (by virtue of having a true guard) when its execution
is required. Although method unavailability is not a problem for asynchronous method
invocation, it can cause deadlock in the synchronous case. Addressing this problem requires
additional analysis to account for the communication behavior of objects. Such analyses

may be done by modeling communication behaviors as process algebra expressions in the
style of [NN93, Nie93]. Finally, we would like to investigate the equational theory of our
calculus by de�ning an observational semantics in the style of [AMS92].

AcknowledgmentWe are grateful to Carolyn Talcott for insightful discussions and carefully
reading a draft of this paper.
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A Operational Semantics

(�)
DD

�; (a; �; [rtop[(�x:e)v]]) j �
EE
7�!

DD
�; (a; �; [rtop[[v=x]e]]) j �

EE

(hi)
DD

�; (a; �; [rtop[hi]]) j �
EE
7�!

DD
�; (a; �; [rtop[a

0]]); (a0; �0; [I ]) j �
EE

where dom(�0) = ; and a0 62 ObjAddr(�).

( ) self-in
ictedDD
�; (a; �; [rtop[ha m = when(e)vi]]) j �

EE
7�!

DD
�; (a; �[m]: = when(e)v; [rtop[a]]) j �

EE

( ) non-self-in
ictedDD
�; (a; �; [rtop[hb m = when(e)vi]]); (b; �0; [I ]) j �

EE
7�!DD

�; (a; �; [rtop[b
0]]); (b; �0; [I ]); (b0; �0[m]: = when(e)v; [I ]) j �

EE

where b0 62 ObjAddr(�).

( +) non-self-in
ictedDD
�; (a; �; [rtop[hb + m = when(e)vi]]); (b; �0; [I ]) j �

EE
7�!DD

�; (a; �; [rtop[b
0]]); (b; �0; [I ]); (b0; �0[m]: = when(e)v; [I ]) j �

EE

where b0 62 ObjAddr(�).

((a) self-in
ictedDD
�; (a; �; [rtop[a(am(v0)]]) j �

EE
7�!

DD
�; (a; �; [rtop[(�x:nil)(v a v

0)]]) j �
EE

where �(m) = when(e)v.

((a) non-self-in
ictedDD
�; (a; �; [rtop[b(am(v)]]) j �

EE
7�!

DD
�; (a; �; [rtop[nil]]) j �; i : b(am(v)

EE

where i is fresh.

The next four rules share the condition that �(m) = when(e)v.
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(�)
DD

�; (a; �; [I]) j i : a(am(v0); �
EE
7�!

DD
�; (a; �; [ga(e a; i)]) j i : a(am(v0); �

EE

(�-true)
DD

�; (a; �; [ga(true; i)]) j i : a(am(v0); �
EE
7�!

DD
�; (a; �; [nonret(v a v0)]) j �

EE

(�-false)
DD

�; (a; �; [ga(false; i)]) j i : a(am(v0); �
EE
7�!

DD
�; (a; �; [I ]) j i : a(am(v0); �

EE

(nonret)
DD

�; (a; �; [nonret(v)]) j �
EE
7�!

DD
�; (a; �; [I]) j �

EE

((s) self-in
ictedDD
�; (a; �; [rtop[a(sm(v0)]]) j �

EE
7�!

DD
�; (a; �; [rtop[v a v

0]]) j �
EE

where �(m) = when(e)v.

The next four rules share the condition that �b(m) = when(e)v.

((s) non-self-in
ictedDD
�; (a; �a; [rtop[b(sm(v0)]]); (b; �b; [I ]) j �

EE
7�!DD

�; (a; �a; [rtop[b(sm(v0)]]); (b; �b; [gs(e b; a)]) j �
EE

((s-true)DD
�; (a; �a; [rtop[b(sm(v0)]]); (b; �b; [gs(true; a)]) j �

EE
7�!DD

�; (a; �a; [rtop[b(sm(v0)]]); (b; �b; [ret(v b v
0; a)]) j �

EE

((s-false)DD
�; (b; �b; [gs(false; a)]) j �

EE
7�!

DD
�; (b; �b; [I ]) j �

EE

((s-ret) DD
�; (a; �a; [rtop[b(sm(v0)]]); (b; �b; [ret(v

00; a)]) j �
EE
7�!

DD
�; (a; �a; [rtop[v

00]]); (b; �b; [I ]) j �
EE

B Type and E�ect Rules

Context Rules

(start �)
�` �

(type var)

�` �
t 62 dom(�)

� ; t : T `�

(row var)

�` �
r 62 dom(�)

�; r : T !fl1; : : : ; lkg` �
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(exp var)

�` � : T
x 62 dom(�)

�; x : � `�

(exp addr)

�` � : T
a 62 dom(�)

�; a : � ` �

Rules for type expressions

(type const)
�` �

�` � : T

where � can be bool, unit or int.

(type projection)

�` �

t : T 2 �

�` t : T

(type arrow)

�` �1 : T

�` �2 : T

�` �1
�
! �2 : T

(type pro)
�; t : T `R : fm1; : : : ; mkg

�` pro t R : T

Rules for rows

(empty row)
�` �

�` hhii : fm1; : : : ; mkg

(row projection)

�` �
r : � 2 �

�` r : �

(row label)

�`R : T i!fm1; : : : ; mkg

fn1; : : : ; n`g � fm1; : : : ; mkg

i 2 f0; 1g

�`R : T i!fn1; : : : ; n`g
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(row ext)

�`R : fm;m1; : : : ; mkg

�` � : T

�` hhR jm : � & �ii : fm1; : : : ; mkg

(row fn abs)
�; t : T `R : fm1; : : : ; mkg

�`�t:R : T !fm1; : : : ; mkg

(row fn app)

�`R : T!fm1; : : : ; mkg

�` � : T

�`R� : fm1; : : : ; mkg

Type and Row Equality

Type or row expressions that di�er only in names of bound variables or order of label : type

pairs are considered identical. In other words, we consider �-conversion of type variables bound by
� or pro and applications of the principle

hhhhR jn : �1ii jm : �2ii = hhhhR jm : �2ii jn : �1ii

within type or row expressions to be conventions of syntax, rather than explicit rules of the system.
Additional equations arise as a result of �-reduction, written !� , or �-conversion, written $� .

(row �)
�`R : �; R!� R0

�`R0 : �

(type �)
�` � : T; � !� � 0

�` � 0 : T

(type eq)
�` e : � & �; � $� � 0; �` �

0 : T

�` e : � 0 & �

Rules for assigning types to terms

(exp const)

�` �
c : � 2 Const

�` c : �

(addr projection)

�` �

a : � 2 �

�`a : � & pure

(exp projection)

�` �

x : � 2 �

�`x : � & pure
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(exp abs)
� ; x : �1 ` e : �2 & �

�`�x: e : �1
�
! �2 & pure

(exp app)

�` e1 : �1
�
! �2 & �1

�` e2 : �1 & �2

�` e1 e2 : �2 & �1 _ �2 _ �

(empty object)
�` �

�` hi : pro t hhii & impure

(pro (a asynch)

�` e1 : � & �1
�` e2 : [�=t]�1 & �2

�` e1(
a
m(e2) : unit & impure

where � = pro t hhR jm : (�1
�
! �2) & �0ii

(pro (s synch)

�` e1 : � & �1
�` e2 : [�=t]�1 & �2

�` e1 (s m(e2) : [�=t]�2 & �1 _ �2 _ �
0 _ �

where � = pro t hhR jm : (�1
�
! �2) & �0ii

(pro ext)

�` e1 : pro t hhR j ~̀ : ~�ii & �1

�; t : T `R : f~̀; mg

�; r : T!f~̀; mg `

e2 : pro t hhr t j ~̀ : ~�; m : (�1
�
! �2) & �0ii

pure
! bool & pure

�; r : T!f~̀; mg `

e3 : [pro t hhr t j ~̀ : ~�; m : (�1
�
! �2) & �0ii=t](t

�0

! �1
�
! �2) & �3

�` he1  + m=when(e2)e3i : pro t hhR j ~̀ : ~�; m : (�1
�
! �2) & �0ii & impure

(pro ov)

�` e1 : pro t hhR j ~̀ : ~�; m : (�1
�
! �2) & �0ii & �1

�; r : T!f~̀; mg `

e2 : pro t hhr t j ~̀ : ~�; m : (�1
�
! �2) & �0ii

pure
! bool & pure

�; r : T!f~̀; mg `

e3 : [pro t hhr t j ~̀ : ~�; m : (�1
�
! �2) & �0ii=t](t

�0

! �1
�
! �2) & �3

�` he1 m=when(e2)e3i : pro t hhR j ~̀ : ~�; m : (�1
�
! �2) & �0ii & impure
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Rules to assigning types to top level expressions

(exp gs)

�` e : bool & pure

�`a : � & pure

�` gs(e; a) : unit & pure

(exp ret)

�` e : �1 & �

�`a : �2 & pure

�` ret(e; a) : unit & � _ pure

(exp ga)

�` e : bool & pure

�` c : int & pure

�` ga(e; c) : unit & pure

(exp nonret)
�` e : � & �

�`nonret(e) : unit & �
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