
E�cient Snapshot Di�erential Algorithms for Data Warehousing

Wilburt Juan Labio, Hector Garcia-Molina

Abstract

Detecting and extracting modi�cations from information sources is an integral part of data

warehousing. For unsophisticated sources, in practice it is often necessary to infer modi�cations

by periodically comparing snapshots of data from the source. Although this snapshot di�eren-

tial problem is closely related to traditional joins and outerjoins, there are signi�cant di�erences,

which lead to simple new algorithms. In particular, we present algorithms that perform (pos-

sibly lossy) compression of records. We also present a window algorithm that works very well

if the snapshots are not \very di�erent." The algorithms are studied via analysis and an im-

plementation of two of them; the results illustrate the potential gains achievable with the new

algorithms.

1 Introduction

Warehousing is a promising technique for retrieval and integration of data from distributed, au-
tonomous and possibly heterogeneous information sources [Squ95]. A warehouse is a repository
of integrated information that is available for queries. As relevant information sources become
available or as relevant information sources are modi�ed, the new information is extracted from
the sources, translated to the data model of the warehouse, and integrated with the existing ware-
house data. In this paper, we focus on the detection and the extraction of the modi�cations to the
information sources.

The detection and extraction of modi�cations depends on the facilities at the source. If the
source is sophisticated, say a relational database system with triggers, then this process is relatively
easy. In many cases, however, the source does not have advanced facilities available for detecting
and recording modi�cations (e.g. legacy sources). If this is the case there are essentially three ways
to detect and extract modi�cations [IC94]:

1. The application running on top of the source is altered to send the modi�cations to the
warehouse.

2. A system log �le is parsed to obtain the relevant modi�cations (as done in the IBM Data
Propagator [Gol95]). Since log �les are used for recovery, this approach may not require any
modi�cation to the application.

1

3. The modi�cations are inferred by comparing a current source snapshot with an earlier one.
Typically, the snapshots used are the same ones generated for backup, so this approach may
not require modi�cation to the application either. We call the problem of detecting di�erences
between two source snapshots the snapshot di�erential problem; it is the problem we address
in this paper.

Although the �rst two methods are usually preferred, both methods have limitations and disad-
vantages. The �rst method requires that existing code be altered. In most cases, however, the code
is so shopworn that additional modi�cations are problematic. Since the modi�cations are recorded
as they happen, this method also entails extra processing on top of normal operations. The second
method also has its di�culties. For instance, it is often the case that DBA privileges are required
to access the log, so site administrators are reluctant to provide access. Moreover, log �les often
have a format that is hard to decipher and DBMS vendors are usually not willing to disclose it. It
may also be the case that the source does not even have (or need) a log. The third method is used
in practice when the other methods do not apply. Some commercial products, such as the Prism
Warehouse Manager [IC94], provide support for all the methods. However, as far as we know, there
are no published papers detailing the algorithms used by the commercial systems.

We stress that we are not arguing in favor of snapshot di�erentials as the best solution for
reporting modi�cations to a warehouse. It clearly does not scale well: as the volume of source
data grows, we have to perform larger and larger comparisons. We are saying, however, that
it is a solution we are stuck with for the foreseeable future (until sophisticated database systems
become universal), and because di�erentials are such inherently expensive operations it is absolutely
critical that we perform them as e�ciently as possible. In this paper we will present very e�cient
di�erential algorithms; they perform so well because they exploit the particular semantics of the
problem.

1.1 Problem Formulation

We view a source snapshot as a �le containing a set of distinct records. The �le is of the form
fR1; R2; :::Rng where Ri denote the records. Each Ri is of the form < K;B >, where K is the key
and B is the rest of the record representing one or more �elds. Without loss of generality, we refer
to B as a single �eld in the rest of the paper. (In [LGM95] we extend the algorithms presented in
this paper to the case where records do not have unique keys.)

For the snapshot di�erential problem we have two snapshots, F1 and F2 (the later snapshot).
Our goal is to produce a �le FOUT that also has the form fR1; R2; :::Rng and each record Ri has
one of the following three forms.

1. < Update;Ki; Bj >

2. < Delete;Ki >

3. < Insert;Ki; Bi >

2

The �rst form is produced when a record < Ki; Bi > in �le F1 is updated to < Ki; Bj > in �le F2.
The second form is produced when a record < Ki; Bi > in F1 does not appear in F2. Lastly, the
third form is produced when a record < Ki; Bi > in F2 was not present in F1. We refer to the �rst
form as updates, the second as deletes and the third as inserts. The �rst �eld is only necessary in
distinguishing between updates and inserts. It is included for clarity in the case of deletes.1

Conceptually, we have represented snapshots as sets because the physical location of a record
within a snapshot �le may change from one snapshot to another. That is, records with matching
keys are not expected to be in the same physical position in F1 and F2. This is because the source
is free to reorganize its storage between snapshots. Also, insertions and deletions may also change
physical record positions in the snapshot.

The snapshot di�erential can be performed at the source itself. That is, a snapshot is taken
periodically and stored at the source site. A daemon process then performs the snapshot di�erential
periodically and sends the detected modi�cations to the warehouse. The snapshot di�erential can
also be performed at an intermediate site (as is done in theWHIPS [HGMW+95] data warehousing
system we are building in Stanford). That is, the source sends the full snapshots to an intermediate
site where the snapshot di�erential process is performed. In any case, the exact procedure for
sending these modi�cations to the data warehouse is implementation dependent. One way of
sending the information is to produce the �le FOUT in its entirety. After it is produced, a message
is sent to the data warehouse (using TCP/IP say) for each record in FOUT . Based on the form of
the record, either an update, insert or delete message may be sent.

It is important to realize that there is no unique set of modi�cations that captures the di�erence
between two snapshots. At one extreme, a deletion can be reported for each record in F1 and an
insertion can be reported for each record in F2. Obviously, this can be wasteful. We capture this
notion of wasted messages by de�ning useless delete-insert pairs and useless insert-delete pairs.
A useless insert-delete pair is a message sequence composed of < Insert;Ki; Bi > followed (not
necessarily immediately) by < Delete;Ki >, produced when the two snapshots both have a record
< Ki; Bi > or when the earlier snapshot has < Ki; Bj > and the later one has < Ki; Bi >. A useless
insert-delete pair introduces a correctness problem. When the insert is processed at the warehouse,
it will most likely be ignored since a record with the same key already exists. Thus, when the delete
is processed, the record with the key Ki will be deleted from the warehouse. On the other hand,
a useless delete-insert pair (which is composed of the opposite sequence) does not compromise the
correctness of the warehouse. However, it introduces overhead in processing messages since either
no modi�cations were needed (when the two snapshots both have a a record < Ki; Bi >) or the
modi�cation could have been reported more succinctly by < Update;Ki; Bi >.

Since useless pairs are not an e�ective way of reporting changes, one may be tempted to require
snapshot di�erential algorithms to generate no useless pairs. However, strictly forbidding useless
delete-insert pairs turns out to be counterproductive! Allowing the generation of \some" useless
delete-insert pairs gives the di�erential algorithm signi�cant
exibility and leads to solutions that

1In some applications, we may also want to �lter out some modi�cations that we know in advance not to be of

interest to the warehouse (e.g., only cancer patient data is collected at the warehouse). However, for simplicity, we
assume that all of the modi�cations are relevant to the warehouse.

3

can be very e�cient in some cases. We return to these issues later when we quantify the savings
of \
exible" di�erential algorithms over algorithms that do not allow useless delete-insert pairs.
Thus, in this paper we do allow useless delete-insert pairs, with the ultimate goal of keeping their
numbers relatively small.

However, we do want to avoid useless insert-delete pairs since they may compromise correctness.
Useless insert-delete pairs can be eliminated by batching the deletes together and sending the deletes
�rst to the warehouse for processing. In essence, we have transformed the insert-delete pairs into
delete-insert pairs. This method also amortizes the overhead cost of sending the modi�cations
over the network. Another method for eliminating useless insert-delete pairs is to record the
modi�cations detected in a �le. A second pass can then be performed over the �le to eliminate the
useless pairs altogether. Since the size of the �le is probably much smaller than the snapshots, this
pass will not be too expensive. We assume for the rest of the paper that all useless insert-delete
pairs are eliminated by one of the methods just outlined.

1.2 Di�erences with Joins

The snapshot di�erential problem is closely related to the problem of performing a join between two
relations. In particular, if we join F1 and F2 on their common K attribute on the condition that
their B attributes di�er, we can obtain the update records required for the di�erential problem.
However, the join does not capture the unmatched deleted and inserted records. An outerjoin,
however, can generate the inserts and deletes, although the resulting tuples will not be in the
desired format (they will have all �elds of both relations, some with null values).

Still, join and outerjoin are so closely related to the di�erential problem that the traditional,
ad hoc, join algorithms ([ME92],[HC94]) can be adapted to our needs. Indeed, in Section 3 we
show these modi�cations. However, given the particular semantics and intended application of the
di�erential algorithms, we can go beyond the ad hoc solutions and obtain new and more e�cient
algorithms. The three main ideas we exploit are as follows:

� As discussed earlier, some useless delete-insert pairs are acceptable. In the context of out-
erjoins, a useless delete-insert pair is equivalent to \reporting" two tuples as \dangling"
when they actually have matching keys. Traditional outerjoin algorithms do not have useless
delete-insert pairs. The extra
exibility we have allows algorithms that are \sloppy" (but
very e�cient) in matching records.

� For some data warehousing applications, it may be acceptable to miss a few of the modi-
�cations, especially if these \errors" are very infrequent. For example, if the warehouse is
used for statistical analysis or data mining, missing one sales record out of billions may be
acceptable. Thus, for di�erentials we can use probabilistic algorithms that may miss some
di�erences (with arbitrarily low probability), but that can be much more e�cient. Again,
traditional algorithms are not allowed any \errors," must be very conservative, and must pay
the price.

� Snapshot di�erentials are an on-going process running at a source (or intermediate source).

4

This makes it possible to save some of the information used in one di�erential to improve the
next iteration. Traditional join algorithms typically do not take advantage of data structures
created during other joins (other than existing general purpose indexes).

1.3 Outline

The rest of the paper is organized as follows. Section 2 brie
y reviews related research in the
literature. We then present how the ad hoc join algorithms can be extended to perform di�erentials
in Section 3.1. We present the record compression techniques to reduce snapshot size in Section
3.2 and show how these techniques can be used with the ad hoc outerjoin algorithms. In Section 4,
we introduce our window algorithm, representing a second class of e�cient di�erential algorithms.
The algorithms are analytically compared in Section 5.1; we report on the implementation and
evaluation of some of the algorithms in Section 5.2. We conclude the paper in Section 6.

2 Related Work

Snapshots were �rst introduced in [AL80]. Snapshots were then used in the system R* project at
IBM Research in San Jose [Loh85]. The data warehouse snapshot can be updated by maintaining
a log of the modi�cations to the database. This approach was de�ned to be a di�erential refresh
strategy in [KR87]. If snapshots were sent periodically, this was called the full refresh strategy.
[KR87] proposed two logging methods for the di�erential refresh strategy. In this paper we only
consider the case where the source strategy is full refresh. [Lea86] also presented a method for
refreshing a snapshot that minimizes the number of messages sent when refreshing a snapshot. The
method requires annotating the base tables with two columns for a tuple address and a timestamp.
We cannot adopt this method in data warehousing since the sources are autonomous.

Reference [CRGMW96] investigates algorithms to �nd di�erences in hierarchical structures
(e.g., documents, CAD designs). Our focus here is on simpler, record structured di�erences, and
on dealing with very large snapshots that may not �t in memory.

There has also been recent complementary work on copy detection of �les and documents. Tools
have been created to �nd similar �les in a �le system [MW94]. Copy detection mechanisms for
documents have been proposed in an attempt to safeguard intellectual property on the Internet
([BDGM95], [SGM95]). These mechanisms ultimately provide as output the extent of the similarity
of two �les. The snapshot di�erential problem is concerned with detecting the speci�c di�erences of
two �les as opposed to measuring how di�erent (or similar) two �les are. Also related are [BGMF88]
and [FWJ86], which propose methods for �nding di�ering pages in �les. However, these methods
can only detect a few modi�cations and assume that no insertions or deletions have taken place.

The snapshot di�erential problem is also related to text comparison, for example, as imple-
mented by UNIX di� and DOS comp. However, the text comparison problem is concerned with
the order of the records. That is, it considers a sequence of records, while the snapshot di�erential
problem is concerned with a set of records. Reference [HT77] outlines an algorithm that �nds the

5

longest common subsequence (LCS) of the lines of the text, which is used in the UNIX di�. Report
[LGM95] takes a closer look at how this algorithm can be adopted to solve the snapshot di�erential
problem, although the solution is not as e�cient as the ones presented here.

The methods for solving the snapshot di�erential problem proposed here are based on ad hoc
joins which have been well studied; [ME92] and [Sha86] are good surveys on join processing. The
snapshot di�erential algorithms proposed here are used in the data warehousing system WHIPS.
An overview of the system is presented in [HGMW+95]. After the modi�cations of multiple sources
are detected, the modi�cations are integrated using methods discussed in [ZGMHW95].

Note that there are also cases wherein knowledge of the semantics of the information maintained
at the warehouse helps make change detection simpler. For instance, if the warehouse keeps a
history of all the information contained at the source, then it makes sense to simply pass complete
snapshots to the warehouse. We have an outline of these special cases in report [LGM95].

3 Using Compression

In this section we �rst describe existing, ad hoc, join algorithms but we do not cover all the
known variations and optimizations of these algorithms. We believe that many of these further
optimizations can also be applied to the snapshot di�erential algorithms we present.

After extending the ad hoc algorithms to handle the di�erential problem, we study record
compression techniques to optimize them. In the sections below, we denote the size of a �le F as
jF j blocks and the size of main memory as jM j blocks. We also exclude the cost of writing the
output �le in our cost analysis since it is the same for all of the algorithms.

3.1 Outer Join Algorithms

The basic sort merge join �rst sorts the two input �les. It then scans the �les once and any pair
of records that satisfy the join condition are produced as output. The algorithm can be adapted
to perform an outerjoin by identifying the records that do not join with any records in the other
�le during the scan. This can be done with no extra cost when two records are being matched: the
record with the smaller key is guaranteed to have no matching records.

Since di�erentials are an on-going process running at a source, it is possible to save the sorted
�le of the previous snapshot. Thus, the algorithm only needs to sort the second �le, F2. This can be
done using the multiway merge-sort algorithm. This algorithm constructs runs which are sequences
of blocks with sorted records. After a series of passes, the �le is partitioned into progressively longer
runs. The algorithm terminates when there is only one run left. In general, it takes 2�jF j�logjM jjF j

IO operations to sort a �le with size jF j ([Ull89]). However, if there is enough main memory
(jM j >

p
jF j), the sorting can be done in 4 � jF j IO operations (sorting is done in two passes). The

second phase of the algorithm, which involves scanning and merging the two sorted �les, entails
jF1j+ jF2j IO operations for a total of jF1j+ 5 � jF2j IO operations.

6

Algorithm 3.1

Input F1 sorted, F2
Output Fout (the snapshot di�erential), F2 sorted

Method

(1) F2 runs SortIntoRuns(F2)

(2) r1 read the next record from F1 sorted

(3) r2 read the next record from F2 runs; F2 sorted Output(< r2:K; r2:B >)

(4) while ((r1 6= NULL) ^ (r2 6= NULL))

(5) if ((r1 = NULL) _ (r1:K > r2:K)) then

(6) Fout Output(< Insert; r2:K; r2:B >)

(7) r2 read the next record from F2 runs; F2 sorted Output(< r2:K; r2:B >)

(8) else if ((r2 = NULL) _ (r1:K < r2:K) then

(9) Fout Output(< Delete; r1:K >)

(10) r1 read the next record from F1 sorted

(11) else if (r1:K = r2:K) then

(12) if (r1:B 6= r2:B) then

(13) Fout Output(< Update; r2:K; r2:B >)

(14) r1 read the next record from F1 sorted

(15) r2 read the next record from F2 runs; F2 sorted Output(< r2:K; r2:B >)

Figure 1: Sort Merge Outerjoin as a Snapshot Di�erential Algorithm

The IO cost can be reduced further by just producing the sorted runs (denoted as F2 runs) in
the �rst phase. This improved algorithm is shown in Figure 1. Step (1) produces the sorted F2
runs, at a cost of only 2 � jF2j IOs. (File F1 has already been sorted at this point.) The sorted F2
�le, needed for the next run of the algorithm, can then be produced while matching F2 runs with
F1. In producing the sorted F2 �le (steps 3, 7, 15), we read into memory one block from each run
in F2 runs (if the block is not already in memory), and select the record with the smallest K value.
The merge process (steps 4 through 15) now costs 2 � jF2j+ jF1j IOs. Thus, when sort merge join
is used as a snapshot di�erential algorithm, the total cost incurred is jF1j+ 4 � jF2j IOs.

Another method that we discuss here is the partitioned hash join algorithm. In the partitioned
hash join algorithm, the input �les are partitioned into buckets by computing a hash function on
the join attribute. Records are matched by considering each pair of corresponding buckets. First,
one of the buckets is read into memory (the smaller one) and an in-memory hash table is built
(assuming the bucket �ts in memory). The second bucket is then read and a probe into the in-
memory hash table is made for each record in an attempt to �nd a matching record in the �rst
bucket. A more detailed discussion of the partitioned hash algorithm is found in Appendix A where
we also show that the IO cost incurred is jF1j+ 3 � jF2j.

3.2 Compression Techniques

Our compression algorithms reduce the sizes of records and the required IO. Compression can be
performed in varying degrees. For instance, compression may be performed on the records of a �le

7

by compressing the whole record (possibly excluding the key �eld) into n bits. A block or a group of
blocks can also be compressed into n bits. There are also numerous ways to perform compression
such as computing the check sum of the data, hashing the data to obtain an integer or simply
omitting �elds in a record that are not important in the comparison process. Compression can
also be lossy or lossless. In the latter case, the compression function guarantees that two di�erent
uncompressed values are mapped into di�erent compressed values. Lossy compression functions do
not have this guarantee but have the potential of achieving higher compression factors. Henceforth,
we assume that we are using a lossy compression function. We ignore the details of the compression
function and simply refer to it as compress(x).

There are a number of bene�ts from processing compressed data. First of all, the compressed
intermediate �les, such as the buckets for the partitioned hash join, are smaller. Thus, there will
be fewer IO when reading the intermediate �les. Moreover, the compressed �le may be small
enough to �t in memory. Even if the compressed �le does not �t entirely in memory, some of the
join algorithms may still bene�t. For example, the compressed �le may result in buckets that �t
in memory which improves the matching phase of the partitioned hash join algorithm. Another
algorithm which may bene�t from compression is hybrid hash join (discussed in Appendix A). For
this algorithm, more in-memory buckets can be kept during the bucketizing phase if compression
is used.

Compression is not without its disadvantages. As mentioned earlier, a lossy compression func-
tion may map two di�erent records into the same compressed value. This means that the snapshot
di�erential algorithm is probabilistic and may not be able to detect all the modi�cations to a snap-
shot. We now show that this can occur with a probability of 2�n, where n is the number of bits

0

50

100

150

200

250

300

350

400

26 28 30 32 34 36 38 40

of

 Y
ea

rs

of bits

Expected # of Good Days vs. Bits used for compression

256MB
512MB

1024MB
2048MB

10240MB

Figure 2: Ngood days for Di�erent File Sizes

for the compressed value. Assume that we are compressing an object (which may be the B �eld,
or the entire record, or an entire block, etc.) of b bits (b > n). There are then 2b possible values

8

for this object. Since there are only 2n values that the compressed object can attain, there are
2b=2n original values mapped to each compressed value. Thus for each given original value, the
probability that another value maps to the same compressed value is ((2b=2n) � 1)=2b, which is
approximately 2�n for large values of b. For su�ciently large values of n, this probability can be
made very small. The expression 2�n, henceforth denoted as E, gives the probability that a single
comparison is erroneous. For example, if the B �eld of the record < K;B > is compressed into
a 32-bit integer, the probability that a single comparison (of two B �elds) is erroneous is 2�32 or
approximately 2:3�10�10. However, as we compare more records, the likelihood that a modi�cation
is missed increases. To put this probability of error into perspective, let us suppose we perform a
di�erential on two 256 MB snapshots daily. We now proceed to compute how many days we expect
to pass before a record modi�cation is missed. We �rst compute the probability (denoted as pday)
that there is no error in comparing two given snapshots (that is, there is no error in one day). Let
us suppose that the record size is 150 bytes which means that there are approximately 1,789,570
records for each �le.

pday = (1�E)records(F) = (1� 2:3 � 10�10)1;789;570 = 0:99979169 (1)

Using this probability, we can compute the expected number of days (denoted as Ngood days) before
an error occurs.

Ngood days = (1� pday) �
X

1�i

i � pi�1day =
1

1� pday
= 2; 430 days (2)

This comes out to be 2,430 days, or more than 6.7 years! We believe that for some types of
warehousing applications, such as data mining, this error rate will be acceptable.

It is evident from the equations above that as the number of records increases, the expected
number of days before an error occurs goes down. This is shown more clearly in Figure 2. The
graph shows that a 10 GB �le will encounter more errors than a 256 MB �le. However, as the
number of bits used for compressing the B �eld is increased, the the expected number of years
before an error occurs can be made comfortably large even for large �les.

For the algorithms we will present here, we consider two ways of compressing the records. For
both compression formats, we do not compress the key, and we denote the compressed B �eld as
b. The �rst format is simply compress a record < K;B > into < K; b >. For the second form, the
only di�erence is that a pointer is appended forming the record < K; b; p >. The pointer p points
to the corresponding disk resident uncompressed record. The use of the pointer will be explained
when we describe the algorithms. We use u to represent the ratio of the size of the original record
to that of the compressed record (including the key and pointer, if any). So, if an uncompressed
�le is size jF j, the compressed size will be jF j=u blocks long.

3.3 Outerjoin Algorithms with Compression

We now augment the sort merge outerjoin with compression. We assume that the compressed sorted
F1 �le was produced in the previous di�erential (denoted as f1 sorted, with a size of jF1j=u). For this

9

Algorithm 3.2

Input f1 sorted, F2
Output Fout (the snapshot di�erential), f2sorted
Method

(1) F2 runs SortIntoRuns(F2)

(2) r1 read the next record from f1 sorted (other r1 reads later on are also from f1 sorted)

(3) r2 read the next record from F2 runs; f2 sorted Output(< r2:K; Compress(r2:B) >)

(4)-(6) See Algorithm 3.1

(7) r2 read the next record from F2 sorted; f2 sorted Output(< r2:K; Compress(r2:B) >)

(8)-(11) See Algorithm 3.1

(12) if (r1:b 6= Compress(r2:B)) then

(13)-(14) See Algorithm 3.1

(15) r2 read the next record from F2 sorted; f2 sorted Output(< r2:K; Compress(r2:B) >)

Figure 3: Sort Merge Outerjoin Enhanced with the < K; b > Compression Format

algorithm, we use the < K; b > compression format. The modi�ed sort merge algorithm is shown
in Figure 3. Note that only the steps that di�er from Algorithm 3.1 are shown explicitly. Steps
(3), (7) and (15) now �rst compress the B �eld before producing an output into f2 sorted (which
is needed in the next di�erential). Also, when detecting the updates in step (12), the compressed
versions of the B �eld are compared.

The sorting phase of the algorithm incurs 2 � jF2j IOs (since it generates only the sorted runs
as in Algorithm 3.1). The matching phase (steps (4) onwards) incurs jF2j+ jf1j IOs since the two
�les are scanned once. Lastly, the sorted f2 sorted must be produced for the next di�erential, which
costs jf2j IOs. The total cost is then jf1j+ 3 � jF2j+ jf2j IOs.

Greater improvements may be achieved by compressing not only the �rst snapshot but also the
second snapshot before the �les are matched. When the second snapshot arrives, it is read into
memory and compressed sorted runs are written out. In essence, the uncompressed F2 �le is read
only once. The problem introduced by compressing the second snapshot is that when insertions and
updates are detected, the original uncompressed record must be obtained from F2. In order to �nd
the original (uncompressed) record, a pointer to the record must be saved in the compressed record.
Thus, for this algorithm, the < K; b; p > compression format must be used. The full algorithm is
shown in Figure 4. Step (5a) (step(12a)) shows that when an insertion (update) is detected, the
pointer p of the current record is used to obtain the original record in order to produce the correct
output.

Step (1) of Algorithm 3.3 only incurs jF2j+ jf2j IOs instead of 2 � jF2j IOs. Steps (4) through
(15) incur jf1j+ jf2j+ U + I IOs, where U and I are the number of updates and insertions found.
An additional jf2j IOs are needed to write out the sorted f2 �le. As a result, the overall cost
is jf1j + jF2j + 3 � jf2j + U + I . The savings in IO cost is signi�cant especially if there are few
updates and inserts. Moreover, we are also assuming that each access using the pointer p requires a
random IO. This can be optimized by recording all the pointers that need to be accessed. After the

10

Algorithm 3.3

Input f1 sorted, F2
Output Fout (the snapshot di�erential), f2 sorted

Method

(1) f2 runs SortIntoRuns � Compress(F2)

(2) r1 read the next record from f1 sorted

(3) r2 read the next record from f2 runs; f2 sorted Output(< r2:K; r2:b; r2:p >)

(4) while ((r1 6= NULL) ^ (r2 6= NULL))

(5) if ((r1 = NULL) _ (r1:K > r2:K)) then

(5a) rfull read tuple in F2 with address r2:p

(6) Fout Output(< Insert; r2:K; rfull :B >)

(7) r2 read the next record from f2 runs; f2 sorted Output(< r2:K; r2:b; r2:p >)

(8) else if ((r2 = NULL) _ (r1:K < r2:K) then

(9) Fout Output(< Delete; r1:K >)

(10) r1 read the next record from f1 sorted

(11) else if (r1:K = r2:K) then

(12) if (r1:b 6= r2:b) then

(12a) rfull read tuple in F2 with address r2:p

(13) Fout Output(< Update; r2:K; rfull:B >)

(14) r1 read the next record from f1 sorted

(15) r2 read the next record from f2 runs; f2 sorted Output(< r2:K; r2:b; r2:p >)

Figure 4: Sort Merge Outerjoin Enhanced with the < K; b; p > Compression Format

di�erential is performed, these recorded pointers are used to produce the inserts and the updates.
By sorting the pointers, the cost of probing the original snapshot is lessened since the IO operations
are no longer random.

The partitioned hash outerjoin is augmented with compression in a very similar manner to the
sort merge outerjoin. We assume that the compressed bucket �les for the �rst snapshot (denoted
collectively as f1) were produced in the previous di�erential. We show in Appendix B that the
overall cost is reduced to jf1j+ 3 � jF2j+ jf2j IOs if the buckets are compressed after the matching
phase. If the buckets are compressed before the matching phase (and using the < K; b; p > com-
pression format), we also show in Appendix B that the overall cost is jf1j+ jF2j+ 2 � jf2j+ I + U

IOs.

The performance gains can even be greater if the compression factor u is high enough such that
all of the buckets of F1 �t in memory. In this case, all the buckets for F1 are simply read into
memory (jf1j IOs). The �le F2 is then scanned, and for each record in F2 read, the in-memory
buckets are probed. The compressed buckets for F2 can also be constructed for the next di�erential
during this probe. The overall cost of this algorithm is only jf1j + jF2j + jf2j IOs. Note that the
cost is independent of the number of updates and inserts unlike the algorithm discussed previously.
Unfortunately, this optimization cannot be used for the sort merge outerjoin because constructing
the compressed sorted �le for F2 cannot be done by just scanning through F2 once.

11

TAIL HEAD

12

3

Age Queue

9

8

7

6

5

 4

Buckets
Input Buffer 2

Aging Buffer 1

Input Buffer 1

Aging Buffer 2

Figure 5: The window Algorithm Data Structures

4 The Window Algorithm

In the previous section, we described algorithms that compute the di�erential of two snapshots
based on ad hoc join algorithms. We saw that the snapshots are read multiple times. Since the �les
are large, reading the snapshots multiple times can be costly. We now present an algorithm that
reads the snapshots exactly once. This new algorithm assumes that matching records are physically
\nearby" in the �les. As mentioned in Section 1, matching records cannot be expected to be in
the same position in the two snapshots, due to possible reorganizations at the source. However, we
may still expect a record to remain in a relatively small area, such as a block, cylinder, or track.
This is because �le reorganization algorithms typically rearrange records within a physical sub-unit.
The window algorithm takes advantage of this, and of ever increasing main memory capacity, by
maintaining a moving window of records in memory for each snapshot. Only the records within the
window are compared in the hope that the matching records occur within the window. Unmatched
records are reported as either an insert or a delete, which can lead to useless delete-insert pairs.
As discussed in Section 1, a small number of these may be tolerable.

For the window algorithm, we divide available memory into four distinct parts as shown in
Figure 5. Each snapshot has its own input bu�er (input bu�er 1 is for F1) and aging bu�er. The
input bu�er is simply the bu�er used in transferring blocks from disk. The aging bu�er is essentially
the moving window mentioned above.

The algorithm is shown in Figure 6 and we now proceed to explain each step. Steps (1) and
(2) simply reads a constant number of input block of records from �le F1 and �le F2 to �ll input
bu�er 1 and input bu�er 2, respectively. This process will be done repeatedly by steps (9) and
(10). Before the input bu�ers are re�lled, the algorithm guarantees that they are empty. Steps

12

Algorithm 4.1

Input F1, F2, n (number of blocks in the input bu�er)

Output Fout (the snapshot di�erential)

Method

(1) Input Buffer1 Read n blocks from F1
(2) Input Buffer2 Read n blocks from F2
(3) while ((Input Buffer1 6= EMPTY) ^ (Input Buffer2 6= EMPTY))

(4) Match Input Buffer1 against Input Buffer2
(5) Match Input Buffer1 against Aging Buffer2
(6) Match Input Buffer2 against Aging Buffer1
(7) Insert contents of Input Buffer1 into Aging Buffer1
(8) Insert contents of Input Buffer2 into Aging Buffer2
(9) Input Buffer1 Read n blocks from F1
(10) Input Buffer2 Read n blocks from F2
(11)Report records in Input Buffer1 as deletes

(12)Report records in Input Buffer2 as inserts

Figure 6: Window Algorithm

(4) through (6) are concerned with matching the records of the two snapshots. In Step (4), the
matching is performed in a nested loop fashion. This is not expensive since the input bu�ers are
relatively small. The matched records can produce updates if the B �elds di�er. The slots that
these matching records occupy in the bu�er are also marked as free. In step (5), the remaining
records in input bu�er 1 are matched against aging bu�er 2. Since the aging bu�ers are much
larger, the aging bu�ers are actually hash tables to make the matching more e�cient. For each
remaining record in input bu�er 1, the hash table that is aging bu�er 2 is probed for a match. As
in step (4), an update may be produced by this matching. The slots of the matching records are
also marked as free. Step (6) is analogous to step (5) but this time matching input bu�er 2 and
aging bu�er 1. Steps (7) and (8) clear both input bu�ers by forcing the unmatched records in the
input bu�ers into their respective aging bu�ers. The same hash function used in steps (4) and (5)
is used to determine which bucket the record is placed into. Since new records are forced into the
aging bu�er, some of the old records in the aging bu�er may be displaced. These displaced records
constitute the deletes (inserts) if the records are displaced from input bu�er 1 (input bu�er 2).
The displacement of old records is explained further below. The steps are then repeated until both
snapshots are processed. At that point, any remaining records in the aging bu�ers are output as
inserts or deletes.

In the hash table that constitutes the aging bu�er there is an embedded \aging" queue, with
the head of the queue being the oldest record in the bu�er, and the tail being the youngest. Figure
5 illustrates the aging bu�er. Each entry in the hash table has a timestamp associated with it for
illustration purposes only. The �gure shows that the oldest record (with the smallest timestamp) is
at the head of the queue. Whenever new records are forced into the aging bu�er, the new records
are placed at the tail of the queue. If the aging bu�er is full, the record at the head of the queue
is displaced as a new record is enqueued at the tail. This action produces a delete (insert) if the

13

bu�er in question is aging bu�er 1 (aging bu�er 2).

Since �les are read once, the IO cost for the window algorithm is only jF1j+ jF2j regardless of
memory size, snapshot size and number of updates and inserts. Thus the window algorithm achieves
the optimal IO performance if compression is not considered. However, the window algorithm can
produce useless delete-insert pairs in Steps 6 and 7 of the algorithm. Intuitively, the number of
useless delete-insert pairs produced depends on how physically di�erent the two snapshots are.

To quantify this di�erence, we de�ne the concept of the distance of two snapshots. We want
the distance measure to be symmetric and independent of the size of the �le. While the reason
for the �rst property is obvious, the reason for the second is more subtle. If the measure is not
independent of the size of the �le, we may end up with a measure that is unbounded. For instance,
if the distance of two snapshots is de�ned to be the sum of the absolute value of the di�erences in
positions of matching records, this sum may become arbitrarily large for large snapshots. Moreover,
such a measure can be misleading since two small snapshots that are in opposite order will have a
small distance measure when intuitively they should have a large distance.

The equation below exhibits the two desired properties.

distance =

P
R1�F1;R2�F2;match(R1;R2)

jpos(R1)� pos(R2)j

max(records(F1); records(F2))2=2
(3)

The function pos returns the physical position of a record in a snapshot. The boolean function
match is true when records R1 and R2 have matching keys. The function records returns the
number of records of a snapshot �le. F represents the larger of the two �les. Thus, this equation
sums up the absolute value of the di�erence in position of the matching records and normalizes it
by the maximum distance for the given snapshot �le sizes. The maximum distance between two
snapshots is attained when the records in the second snapshot are in the opposite order (the �rst
record is exchanged with the last record, the second record with the second to the last, and so
on) relative to the �rst snapshot. If records(F1) = records(F2), it is easy to see that in the worst
case the average displacement of each record is records(F)=2, and hence the maximum distance is
records(F)�records(F)=2. If the �les are of di�erent sizes, using the larger of the two �les gives an
upper bound on the maximum distance. Our distance metric will be used in the following section
to evaluate the window algorithm.

5 Performance Evaluation

5.1 Analytical IO Comparison

We have outlined in the previous section algorithms that can compute a snapshot di�erential:
performing sort merge outerjoin (SM), performing a partitioned hash outerjoin (PH), perform-
ing a sort merge outerjoin with two kinds of record compression (SMC1, SMC2), performing
partitioned hash outerjoin with two kinds of record compression (PHC1, PHC2) and using the
window algorithm (W). SMC1 denotes sort merge outerjoin with a record compression format of
< K; b > (similarly for PHC1); SMC2 uses the record compression format < K; b; p > (similarly

14

Variable Description Default Values

M Memory Size 32 MB

B Block Size 16K

F File Size 256 MB or 1024 MB

R Record Size 150 bytes

records(F) Number of Rows 1,789,569 or 7,158,279

r Compressed Record Size 10 or 14 bytes

u Compression Factor 15 or 10

U + I Number of Inserts and Updates 1% of records(F)

IO Number of IOs N/A

X Intermediate File Size N/A

E Probability of Error N/A

Figure 7: List of Variables

Algorithm IO256 IO1024 X256 (MB) X1024 (MB) Probability
(%savings) (%savings) of Error (E)

SM 81,920 327,680 16384 65,536 0

SMC1 51,336 (37%) 205,346 (37%) 16,384 65,536 2:3 � 10�10

SMC2 40,833 (50%) 163,333 (50%) 1,639 6,554 2:3 � 10�10

PH 65,536 (20%) 262,144 (20%) 16,384 65,536 0

PHC1 18,568 (77%) 205,346 (37%) 16,384 65,536 2:3 � 10�10

PHC2 19,660 (76%) 156,779 (52%) 1,639 6,554 2:3 � 10�10

W 32,768 (60%) 131,072 (60%) 0 0 0

Figure 8: Comparison of Algorithms

for PHC2). In this section, we will illustrate and compare the algorithms in terms of IO cost, size
of intermediate �les, and the probability of error. Due to space limitations, this is not a compre-
hensive study, but simply an illustration of potential di�erences between the algorithms in a few
realistic scenarios.

Figure 7 shows the variables that will be used in comparing the algorithms. We assume that the
snapshots have the same number of records. The number of records (records(F)) are calculated
using F=R, where R is the record size (150 bytes). The compressed record size is 10 bytes for the
< K; b > format and 14 bytes for the < K; b; p > format. This leads to compression factors of 15
and 10 respectively.

Figure 8 shows a summary of the results computed for the various algorithms. The two columns
labeled IO256 and IO1024 show the IO cost incurred in processing 256 MB and 1024 MB snapshots

15

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500

IO
 C

os
t (

10
00

0
IO

s)

File Size (MB)

IO Performance vs. File Size

SM
PH

PHC1
PHC2

Window

Figure 9: IO Cost Comparison of Algorithms

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

IO
 C

os
t (

10
00

0
IO

s)

Compression Factor

IO Performance vs. Compression Factor

SM
SMC1
SMC2

PH
PHC1
PHC2

Window

Figure 10: IO Cost and Compression Factor

for the di�erent algorithms. Using the sort merge outerjoin as a baseline, we can see that the
partitioned hash outerjoin (PH) reduces the IO cost by 20%. Compression using the < K; b >

record format achieves a 37% reduction in IO cost over sort merge using SMC1, and a 50%
reduction using SMC2. For the 256 MB �le, the compressed �le �ts in memory which enables the
PHC1 and PHC2 algorithms to build a complete in-memory hash table, as explained in Section
3.3. The reduction in IO cost for these two algorithms, in this case, surpasses even that of the
window algorithm.

However, when the larger �le is considered, the compressed �le no longer �ts in the 32 MB
memory. Thus the PHC1 and PHC2 algorithms achieve more modest reductions in this case
(37% and 52% respectively). Other than these two algorithms, the reductions achieved by the
other algorithms are unchanged even with the larger �le.

Figure 9 shows how the algorithms compare when the size of the snapshots is varied over a
range. The values of other parameters are unchanged. Note that we have not plotted SMC1 and
SMC2 since their plots are almost indistinguishable from PHC1 and PHC2 respectively beyond
a �le size of 500 MB. Also note the discontinuity in the graph for PHC1 and PHC2. PHC1 is
able to build an in-memory hash table if the �le is smaller than 500 MB (and �les smaller than
320 MB for PHC2). If the partitioned hash join algorithms are able to build an in-memory hash
table, they can even outperform the window algorithm.

Clearly, the IO savings for compression algorithms depend on the compression factor. Figure
10 illustrates that when the compression factor is low, the algorithms with compression perform
worse than PH (even worse than SM in case of SMC1 and SMC2). The other point that this
graph illustrates is that the bene�ts of compression are bounded (which is to be expected from the
IO cost equations). Thus, going beyond a factor of 10 in this case does not buy us much.

The performance of the compression algorithms that use the pointer format (algorithms PHC2
and SMC2) depend on the number of updates and inserts. If U + I is higher than what we have
assumed, PHC1 and SMC1 outperform PHC2 and SMC2. Figure 11 shows the performance of

16

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

IO
 C

os
t (

10
00

0
IO

s)

I+U (% or records(F))

IO Performance vs. Input and Update Rate

SM
SMC1
SMC2

PH
PHC1
PHC2

Window

Figure 11: IO Cost and Varying Update and Insertion Rates

the algorithms with di�erent U+I . This shows that PHC2 and SMC2 are only useful for scenarios
with relatively few modi�cations between snapshots (less than say 2 percent of the records). By
manipulating the IO cost equations, it is not hard to show that if U+I is greater than 1.7%, PHC1
and SMC1 incur less IO than PHC2 and SMC2.

The next two columns in Figure 8 (X256 and X1024) examine the size of the intermediate �les.
In the case of the SM , PH , SMC1 and PHC1 algorithms, uncompressed intermediate �les need
to be saved. In the case of the SMC2 and PHC2 algorithms, the compressed versions of these �les
are constructed, which leads to a more economic disk usage. The window algorithm, on the other
hand, does not construct any intermediate �les.

The last column (labeled E) illustrates the probability of a missed matching record pair. Note
that both record compression formats result in the same probability of error although the two
formats have di�erent compression factors. This is because the B �eld is compressed into a 32 bit
integer for both formats.

In closing this section, we stress that the numbers we have shown are only illustrative. The
gains of the various algorithms can vary widely. For example, if we assume very large records, then
even modest compression can yield huge improvements. On the other hand, if we assume very large
memories (relative to the �le sizes), then the gains become negligible.

5.2 Evaluation of Implemented Algorithms

In WHIPS, we have implemented the sort merge outerjoin and the window algorithm to compute
the snapshot di�erentials. We have also built a snapshot di�erential algorithm evaluation system,

17

which we used to study the e�ects of the snapshot pair distance on the number of useless delete-
insert pairs that is produced by the window algorithm. We will also use the evaluation system to
compare the actual running times of the window algorithm and the sort merge outerjoin algorithm.
The evaluation system is depicted in Figure 12.

Snapshot

Generator

Message

Comparator

snapshot pair

minimal set of

messages from window

algorithm

set of messages

Snapshot

Diff Algo

Algorithm Specific
Parameters

Snapshot Pair

Parameters

SDAbox

Figure 12: The Evaluation System

Snapshot Parameters Default Values

Size of B �eld 150 bytes
R Size of Record 156 bytes

Number of Records 650,000
F File Size 100 MB

dispavg 50,000 records

U Number of Updates 20% of records(F)

Window Parameters Default Values

AB Aging Bu�er Size 8 MB

IB Input Block Size 16K

Figure 13: List of Parameters

The snapshot generator produces a pair of synthetic snapshots with records of the form< K; B >.
The snapshot generator produces the two snapshots based on the following parameters: size of the
B �eld, number of records, average record displacement (dispavg) and percentage of updates. The
�rst snapshot is constructed to have ordered K �elds with the speci�ed number of records and with
the speci�ed B �eld size. Figure 13 shows the default snapshot pair parameters.

Conceptually, the second snapshot is produced by �rst copying the �rst snapshot. Each record
Rj in the second snapshot is then swapped with a record that is, on average (uniformly distributed
from 0 to 2 �dispavg), dispavg records away from Rj. Based on the speci�ed percentage of updates,
some of the records in the second snapshot are modi�ed to simulate updates. Insertions and dele-
tions are not generated since they do not a�ect the number of useless delete-insert pairs produced.
Notice that dispavg is not the distance measure between snapshots. It is a generator parameter
that indirectly a�ects the resulting distance. Thus, after generating the two snapshots, the actual
distance of the two snapshots is then measured.

The two snapshots are then passed to the snapshot di�erential algorithm (in the SDABOX)
being tested. Note that any of the previous algorithms discussed can be plugged into the SDABOX.
In the experiments that we present here we focus on the window and the sort merge outerjoin
algorithms. Algorithm speci�c parameters are also passed into the SDABOX . By varying the
aging bu�er size and the input bu�er size parameters passed into the SDABOX, we can study how
these parameters a�ect the window algorithm. Figure 13 also shows the default window parameters.
These were used unless the parameter was varied in an experiment.

After the snapshot di�erential algorithm is run, the output of the algorithm is compared to
what was \produced" by the snapshot generator. Since the snapshot generator synthesized the two
snapshots, it also knows the minimal set of di�erences of the two snapshots (which is the set of
records of the �rst snapshot that it modi�ed to produce the second). The message comparator can

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55E
xt

ra
 M

es
sa

ge
s/

T
ot

al
 N

um
be

r
of

 R
ec

or
ds

Distance

Effect of Distance on the Number of Extra Messages

F = 50 MB
F = 75 MB

F = 100 MB

Figure 14: E�ect of Distance on the Number of Extra Messages

then check for the correctness of the output and count the number of extra messages.

The experiments we conducted enable us to evaluate, given the size of the aging bu�er, and
the size and the distance of the snapshots, how well the window algorithm will perform in terms
of the number of extra messages produced (see Section 1.1). In the �rst experiment, we varied the
dispavg (and indirectly the distance) and measured the number of extra messages produced. This
experiment was performed on three pairs of snapshots whose sizes ranged from 50 MB to 100 MB.
Figure 14 shows that, as expected, as the distance of the snapshots increases beyond the capacity of
the aging bu�er, the number of extra messages increases. As the number of extra messages sharply
rises, the graphs exhibit strong
uctuations. This is because the synthetic snapshots were produced
randomly and only one experiment was done for each distance. (Only one experiment was done for
each distance since it is hard to create two or more synthetic snapshot pairs with exactly the same
distance.) For each snapshot size, there is a critical distance (distcrit) which causes the window
algorithm to start producing extra messages with the given aging bu�er size.

For a system designer, it is helpful to translate distcrit into a critical average physical displace-
ment. For instance, if the designer knows that records can only be displaced within a cylinder
and the designer can only allocate 8 MB to each aging bu�er, it is useful to know if the window
algorithm produces few useless delete-insert messages in this scenario. We now capture this notion
by �rst manipulating the de�nition of distance (equation (3) in Section 4) to show that distcrit of
the di�erent snapshot pairs can be translated into a critical average physical displacement (in terms
of MB). Since there are no insertions nor deletions in the synthetic snapshot pair, we can de�ne
a critical average record displacement (denoted as dispcrit) which is related to distcrit as shown in

19

File Size records(F) distcrit dispcrit MB

50 MB 162,500 0.44 5.11

75 MB 325,000 0.34 7.91

100 MB 650,000 0.24 11.2

Figure 15: distcrit and dispcrit MB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16

N
um

be
r

of
 E

xt
ra

 M
es

sa
ge

s

Memory Size (1MB)

Effect of Memory Size on the Number of Extra Messages

Figure 16: E�ect of the Memory Size on the Number of Extra Messages

equation (4).

distcrit =

P
R1�F1;R2�F2 ;match(R1;R2)

jpos(R1)�pos(R2)j

records(F)2=2
(4)

= records(F)�dispcrit
records(F)�records(F)=2 (5)

dispcrit MB = dispcrit �R = distcrit � (records(F)=2) �R (6)

Using the size of the record (R), we can translate the distcrit into a critical average physical
displacement (denoted as dispcrit MB which is in terms of MB) using equation (5). Figure 15 shows
the result of the calculations for the di�erent snapshot pairs. The distcrit of the snapshot pairs
are estimated from Figure 14. This table shows, for example, that the window algorithm can
tolerate an average physical displacement of about 11.2 MB given an aging bu�er size of only 8
MB to compare 100 MB snapshots. Thus, if a system designer knows that the records can only be
displaced within, say a page (which is normally smaller than 11.2 MB), then the designer can be
assured that the window algorithm will not produce excessive amounts of extra messages.

In the next experiment, we focus on the 100 MB snapshots. Using the parameters listed in

20

0

50

100

150

200

250

300

350

0 20 40 60 80 100

T
im

e
(s

)

Size of Snapshots (MB)

Comparison of the CPU Times

Window
Sort Merge

Figure 17: Comparison of the CPU Times

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

T
im

e
(s

)

Size of Snapshots (MB)

Comparison of the Total Time Elapsed

Window
SortMerge

Read

Figure 18: Comparison of the Total Times

Figure 13, we varied the size of the aging bu�er from 1.0 MB to 16 MB. The dispavg was set at
50,000 with a resulting distance of 0.34, which is well above the distcrit. Figure 16 shows that once
the size of the aging bu�er is at least 12.8 MB, no extra messages are produced. This is to be
expected since we showed previously (Figure 15) that the tolerable dispcrit MB for the 100 MB �le
is 11.2 MB. Using the same snapshot pair, we also varied the input block size from 8 K to 80 K.
The variation had no e�ect on the number of extra messages and we do not show the graph here.
Again, this is to be expected, since the size of the aging bu�er is much larger than the size of the
input block. Thus, even if the input block size is varied, the window size stays the same. We also
varied the record size (keeping the size of the snapshot constant) and this showed no e�ect on the
number of extra messages produced.

Lastly we compared the CPU time and the clock time (which includes the IO time) that the
window algorithm consumes to that of the sort merge outerjoin based algorithm. We ran the
simulations on a DEC Alpha 3000/400 workstation running UNIX. We used the UNIX sort utility
in the implementation of the sort merge outerjoin. (UNIX sort may not be the most e�cient, but
we believe it is adequate for the comparisons we wish to perform here.) We used the same input
block size for both the window and the sort merge outerjoin algorithms (16 K). The dispavg of
the two snapshots was set so that the resulting distance was 0.05 (within the distcrit for all �le
sizes). The analysis in the previous section illustrated that the window algorithm incurs fewer IO
operations than the sort merge outerjoin algorithm. Figure 17 shows that the window algorithm
is also signi�cantly less CPU intensive than the sort merge based algorithm. As expected then,
Figure 18 shows that the window algorithm outperforms the sort merge outerjoin in terms of clock
time. Moreover, Figure 18 also shows that the CPU time is a small fraction of the clock time in
the window algorithm. Thus, the IO comparisons of Section 5.1 are indeed useful.

21

6 Conclusion

We have de�ned the snapshot di�erential problem and discussed its importance in data warehousing.
The algorithms we have proposed are \extensions" of traditional join algorithms, but take advantage
of the
exibility allowed for snapshot di�erentials. All of our proposed algorithms are relatively
simple, but we view this as essential for dealing e�ciently with large �les. In summary, we have
the following results:

� By augmenting the outerjoin algorithms with record compression, we have shown that very
signi�cant savings in IO cost can be attained. We have also illustrated that the probability
that an error will occur if compression is used can be made negligible.

� We have introduced the window algorithm which works extremely well if the snapshots are
not too di�erent. Under this scenario, this algorithm outperforms the join based algorithms
and its running time is comparable to simply reading the snapshots once. We have de�ned
the concept of snapshot pair distance to characterize quantitatively the scenarios where the
algorithm is applicable. We have also de�ned dispcrit MB which can be of use to the system
designer.

We have incorporated the window and the sort merge outerjoin algorithms into the initial
WHIPSWarehouse prototype at Stanford. The production version of the algorithm takes as input
a \format de�nition" that describes the record format of the snapshots and identi�es the key
�eld(s). The format allows for complex value �elds (e.g., lists), but the window algorithm will
consider the entire record as a single �eld. We also plan to implement a post-processor that �lters
out useless delete-insert pairs before they are sent to the warehouse. (If the number of output
records is small, this �ltering could be done very e�ciently in memory.) The di�erential algorithm
and the warehouse itself are implemented within the Corba distributed object framework, using
ILU, an implementation from Xerox PARC [CJS+94]. Thus, the modi�cations will be sent to the
warehouse by remote procedure calls on its \insert record," \delete record," and \update record"
methods. For our system demonstrations, we use the window algorithm to extract modi�cations
from a legacy source that handles �nancial account information at Stanford. In the future, we will
use the algorithm to compare �le dumps of company information obtained from various Dialog
databases ([Ser94]).

References

[AL80] M.E. Adiba and B.G Lindsay. Database snapshots. In Proceedings of the International
Conference on Very Large Databases, Montreal, Canada, October 1980.

[BDGM95] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mechanisms for digital
documents. In Proceedings of the ACM SIGMOD Annual Conference, San Francisco,
CA, May 1995.

22

[BGMF88] D. Barbara, H. Garcia-Molina, and B. Feijoo. Exploiting symmetries for low-cost
comparison of �le copies. In Proceedings of the International Conference on Dis-

tributed Computing Systems, San Jose, California, June 1988.

[CJS+94] A. Courtney, W. Janssen, D. Severson, M. Spreitzer, and F. Wymore. Inter-language
uni�cation, release 1.5. Technical Report ISTL-CSA-94-01-01, Xerox PARC, May
1994.

[CRGMW96] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection in
hierarchically structured information. In Proceedings of the ACM SIGMOD Annual

Conference, Montreal, Canada, June 1996.

[FWJ86] W.K. Fuchs, K. Wu, and Abraham J. Low-cost comparison and diagnosis of large
remotely located �les. In Proceedings of the Fifth Symposium on Reliability in Dis-

tributed Software and Database Systems, January 1986.

[Gol95] Rob Goldring. Ibm datapropagator relational application guide. IBM White Paper,
1(1), 1995.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing

Surveys, 25(2), 1993.

[HC94] L. Haas and M. Carey. SEEKing the truth about ad hoc join costs. Technical report,
IBM Almaden Rsearch Center, 1994.

[HGMW+95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The Stanford
Data Warehousing Project. IEEE Data Engineering Bulletin, June 1995.

[HT77] J.W. Hunt and Szymanski T.G. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5), 1977.

[IC94] W.H. Inmon and E. Conklin. Loading data into the warehouse. Tech Topic, 1(11),
1994.

[KR87] B. Kahler and O. Risnes. Extending logging for database snapshot refresh. In Proceed-
ings of the International Conference on Very Large Databases, Brighton, England,
September 1987.

[Lea86] B.G. Lindsay and et al. A snapshot di�erential refresh algorithm. In Proceedings of

the ACM SIGMOD Annual Conference, Washington DC, May 1986.

[LGM95] W.J. Labio and H. Garcia-Molina. Comparing very large database snapshots. Techni-
cal Report STAN-CS-TN-95-27, Computer Science Department, Stanford University,
June 1995.

[Loh85] G.M Lohman. Query processing in R*. In Query Processing in Database Systems,
Berlin, West Germany, March 1985.

23

[ME92] P. Mishra and M. Eich. Join processing in relational databases. ACM Computing

Surveys, 24(1), 1992.

[MW94] U. Manber and S. Wu. Glimpse: A tool to search through entire �le systems. In
Proceedings of the winter USENIX Conference, January 1994.

[Ser94] Dialog Information Services. Dialog pocket guide 1994. Dialog Information Services,
1(1), 1994.

[SGM95] N. Shivakumar and H. Garcia-Molina. Scam: A copy detection mechanism for dig-
ital documents. In Proceedings of the 2nd International Conference in Theory and

Practice of Digital Libraries, Austin, Texas, June 1995.

[Sha86] L. Shapiro. Join processing in database systems with large main memories. ACM

Transactions on Database Systems, 11(3), 1986.

[Squ95] C. Squire. Data extraction and transformation for the data warehouse. In Proceedings
of the ACM SIGMOD Annual Conference, San Francisco, CA, May 1995.

[Ull89] J.D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science
Press, Rockville, MD, 1989.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a
warehousing environment. In Proceedings of the ACM SIGMOD Annual Conference,
San Francisco, CA, May 1995.

A Analysis of the Partitioned Hash Join Algorithm

In this section, we obtain the IO cost formula for the partitioned hash algorithm. In the partitioned
hash join algorithm, the input �les are partitioned into buckets by computing a hash function on
the join attribute. The matching phase is performed by considering each pair of corresponding
buckets. The smaller bucket is read into memory and an in-memory hash table is built. The
second bucket is then read and a probe into the in-memory hash table is made for each record in an
attempt to �nd a matching record in the �rst bucket. Matching tuples are merged and produced
as output. Creating the buckets incurs 2 � jF1j+ 2 � jF2j IOs and the matching phase and merging
phase incur jF1j + jF2j IOs, assuming the buckets �t in memory. This assumption has a main
memory requirement of jM j >

p
min(jF1j; jF2j). If the buckets do not �t in memory, additional

repartitioning needs to be done. In general the IO cost is 2 � logN(jF1j=jM j) � (jF1j + jF2j) with
repartitioning (where N is the number of buckets) [Gra93]. For the rest of the analysis, we assume
that the buckets do �t in memory. In a similar manner to the sort merge join algorithm, the buckets
of the later snapshot can be saved for the next snapshot di�erential process. Thus the total IO
cost incurred is jF1j+ 3 � jF2j since only the second snapshot needs to be partitioned into buckets.
It may also be the case that there is enough memory to keep some of the hash buckets from being
written to disk when creating the buckets. This modi�ed partitioned hash join is called the hybrid

24

hash join. We do not consider the hybrid hash join in this paper. [LGM95] also extends the hybrid
hash join to perform an outerjoin.

Unlike the sort merge algorithm, the partitioned hash join algorithm does not detect the dele-
tions and insertions without additional data structures. For each pair of buckets, two arrays of
ags
must be allocated to keep track of the records that have not been matched. Let us assume that
an in-memory hash table is built for a bucket of �le F1 (denoted as BF1

), and a portion bF2
of the

corresponding F2 bucket is read from disk. We de�ne an array of
ags for BF1
and another array

for bF2
which indicate whether a record has been matched or not. All of the
ags are initialized

to indicate that all the records are unmatched. Whenever two matching (same K �eld) records
are found, the corresponding
ags are marked as matched. After bF2

is processed, the unmatched
records in bF2

, as identi�ed by the
ags, are identi�ed as inserted records. The next bF2
portion is

then read from disk and the
ag array for bF2
is reinitialized. After processing the last bF2

portion
for that F2 bucket, the array of
ags for BF1

is consulted to identify the unmatched records that
constitute deleted records. It is easy to see that the IO cost of the partitioned hash join algorithm
is not altered with this modi�cation (given that the array of
ags �t in memory).

B Augmenting the Partitioned Hash Join with Compression

In this section, we augment the partitioned hash algorithms with compression. We assume that the
compressed bucket �les for the �rst snapshot was produced in the previous snapshot di�erential.
When the second snapshot arrives, the buckets are created as in the previous section, incurring
2 � jF2j IOs. The corresponding buckets are matched by reading the smaller bucket (which is
most likely a bucket in f1) into main memory. An in-memory hash table is constructed and the
algorithm proceeds in a similar fashion to the partitioned hash outerjoin explained in Appendix A.
The only di�erence is that the compressed B �elds are compared when searching for an update.
In addition, the records in bF2

are compressed and written into a bucket �le. After processing all
of the F2 buckets, the set of compressed buckets that comprise f2 is also complete and ready for
the next snapshot di�erential. The matching phase incurs jf1j + jF2j IOs to read in the buckets
and jf2j to write out the buckets for the next snapshot di�erential. Therefore, the overall cost is
jf1j+ 3 � jF2j+ jf2j IOs.

Like the sort merge outerjoin, greater performance gains can be made by compressing the
buckets of F2 before the matching phase. Similarly, the < K; b; p > compression format is used. In
this case, only jF2j+ jf2j IO operations are needed to bucketize F2 into a set of compressed buckets
denoted as f2. The matching phase is similar except that pointers must be followed to �nd the
inserted and updated records. As a result, the overall IO cost is jf1j+ jF2j+ 2 � jf2j+ I +U . As in
the sort merge outerjoin, we can also argue that the probes on F2 through p can be recorded and
can be done more e�ciently after processing f2.

25

