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Abstract

We consider the problem of removing a given disk from a collection of unit disks in the

plane. At each step, we allow a disk to be removed by a collision-free translation to in�nity,

and the goal is to access a given disk using as few steps as possible. This Disks problem is a

version of a common task in assembly sequencing, namely removing a given part from a fully

assembled product. Recently there has been a focus on optimizing assembly sequences over

various cost measures, however with very limited algorithmic success. We explain this lack of

success, proving strong inapproximability results in this simple geometric setting. Namely, we

show that approximating the number of steps required to within a factor of 2log
1�


n for any


 > 0 is quasi-NP-hard. These inapproximability results, to the best of our knowledge, are the

strongest hardness results known for any purely combinatorial problem in a geometric setting.

As a stepping stone, we study the approximability of scheduling with and/or precedence

constraints. The Disks problem can be formulated as a scheduling problem where the order of

removals is to be scheduled. Before scheduling a disk to be removed, a path must be cleared, and

so we get precedence constraints on the tasks; however, the form of such constraints di�ers from

traditional scheduling in that there is a choice of which path to clear. We prove our main result

by �rst showing the similar inapproximability of this scheduling problem, and then by showing

that a su�ciently hard subproblem can be realized geometrically using unit disks in the plane.

Furthermore, our construction is fairly robust, in that it remains valid even when we consider

only horizontal and vertical translations, and it also applies to axis-aligned unit squares and

higher dimensions.
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1 Introduction

The assembly sequencing problem consists of taking a geometric description of a product, consisting of

a set of parts, and producing a sequence of collision-free operations which results in the (dis)assembly

of the product. This is one of the important problems arising in manufacturing processes where

computational geometry is expected to have a profound impact [11]. Many complexity measures for

judging the quality of a sequence are discussed in [17], where strong inapproximability results ae

proven for a non-geometric generalization of the sequencing problem. In this paper, we show that

strong lower bounds can be realized geometrically, for the problem of planning for the removal of a

given part from a fully assembled product. This problem is motivated by the issues of maintenance

and of recycling. The classic maintenance example is the need to replace a spark plug without

taking the entire car apart. A classic recycling example is to strip down an old computer for

a valuable part with minimal e�ort. Unfortunately, there has been little success algorithmically

for optimizing (dis)assembly sequences over complexity measures, and several current assembly

sequencing packages must rely on either a brute force search through all possibilities, or on heuristic

searches with no performance guarantees. Our work proves the di�culty of �nding optimal or

near-optimal cost assembly sequences, under much simpler geometric conditions than are needed by

industrial assembly sequences.

Speci�cally, we examine the problem of removing a key disk from a collection of unit disks in

the plane, where each step allows for a collision-free translation of a disk to in�nity. We consider

the optimization problem of minimizing the total number of disks which are removed in the pro-

cess. Unfortunately, we prove that approximating this Disks problem to within a 2log
1�
 n-factor1 is

quasi-NP-hard2 for any 
 > 0. These hardness results are the �rst such inapproximability results

involving the cost of assembly sequences, to be realized geometrically. Furthermore, to the best

of our knowledge, this provides the strongest lower bounds for the approximability of any purely

combinatorial problem in a geometric setting.

To prove our results, we study the problem of scheduling with and/or precedence constraints,

a generalization of the Disks problem. We prove the inapproximability of this and/or scheduling

problem, previously known only to be NP-hard, using a reduction from the LabelCovermin problem

[3, 4]. Moreover, we show that the hardness of and/or scheduling applies to a more restricted version

which can then be realized geometrically as our Disks problem. This reduction is valid even when

translations are limited to two directions. (Limited to one direction, the problem is trivially solvable.)

These results also generalize to axis-aligned unit squares as well as to higher dimensions.

Open directions for future research fall into two di�erent areas. First, devising a non-trivial

upper bound for theDisks problem (and other assembly sequencing problems) remains an important

goal. Although the results of this paper prove a discouraging lower bound, assembly sequencing

is a preprocessing phase for a long and expensive manufacturing process, and so even a coarse

approximation (e.g., anO(
p
n)-approximation)would be of great value when it comes time to perform

the sequence in mass quantities. A second direction for research involves proving n� lower bounds

on the approximability of any of these problems. Additionally, we feel that the study of and/or

scheduling may provide more meaningful implications in the complexity hierarchy.

1This factor, 2log
1�


n, lies between polynomial and polylogarithmic in that 2log
1�


n = o(n�) for any � > 0, and

2log
1�


n = !(logc n) for any constant c.
2that is, this would imply NP � DTIME(npoly(log n)). \A proof of quasi-NP-hardness is good evidence that the

problem has no polynomial-time algorithm." [4]
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2 Previous Work

Assembly Sequencing. The use of automation in assembly sequencing has increased rapidly

over the years [6, 12, 24, 25, 26, 33, 34, 43, 44, 46, 47]. Theoretical results showed that assembly

sequencing, in its most general form, is NP-complete [27, 30, 36, 47], and thus many researchers began

considering restricted, yet still interesting, versions of the problem. For many of these restricted

settings, polynomial algorithms have been designed which �nd an assembly sequence if one exists

[1, 19, 22, 43, 45]. There are also algorithms which enumerate all possible assembly sequences [12],

however there may be exponentially many such sequences for a product.

A logical continuation to this success is to use automated reasoning to �nd the \best" assembly

sequence under certain complexity measures. In fact, the IEEE Technical Committee on Assembly

and Task Planning summarized the current state of assembly sequencing by explaining [18], \: : :after

years of work in this �eld, a basic planning methodology has emerged that is capable of producing

a feasible plan : : :The challenges still facing the �eld are to develop e�cient and robust analysis

tools and to develop planners capable of �nding optimal or near{optimal sequences rather than

just feasible sequences." Unfortunately, meeting this challenge has been di�cult. Several complexity

measures for assembly sequencing have been suggested, motivated strongly by industrial applications

[7, 17, 45, 47]. In fact, some current software systems o�er the user the option of optimizing the

sequence over a choice of complexity measures [29, 40], however these systems must rely on either

a brute force search of the entire space, or else A�-type searches without performance guarantees.

The NP-completeness of exactly optimizing several measures is shown in a symbolic framework [47].

Furthermore, the approximability of several measures, including the number of removed parts, are

examined in a precursor of this work [17], as lower bounds for the approximability of several measures

are shown in a graph-theoretic generalization of assembly sequencing. The strongest of these lower

bounds, however, are not realized geometrically. For a restricted class of inputs which have a so-

called \total ordering" property, a greedy algorithm is given which claims to produce the minimal

length sequence to remove any given part [48], however the required property does not have a clean

de�nition, and as our results will show, this problem is quite di�cult.

Approximability Theory. As our optimization problems turn out to be NP-hard, we approach

the problems using techniques common to the theory of approximability [4, 14, 28, 35]. Since we

cannot expect to �nd the optimal sequence in polynomial time, we look for a polynomial time ap-

proximation algorithm which returns a solution whose cost can be bounded by some function of

the true optimal cost. A standard measure for the quality of an approximation algorithm is the

approximation ratio between the cost of the solution returned by the algorithm versus the cost of the

optimal solution. Although all NP-complete decision problems can be reduced to one another, the

approximability of such problems can be quite di�erent, ranging from problems which can be approx-

imated arbitrarily close to optimal, to problems where getting even a very rough approximation is

already NP-hard. Many researchers have worked towards classifying the approximability of di�erent

NP-hard problems. We consider four broad classes de�ned in [4], which group problems based on

the strength of the inapproximability results which have been proven. Class I includes all problems

for which approximating the optimal solution to within a factor of (1+ �) is NP-hard for some � > 0

(e.g., Max-3Sat [37]). Class II groups those problems for which it is quasi-NP-hard to achieve an

approximation ratio of c � logn for some c > 0 (e.g., Set Cover [13]). For problems in Class III, it

is quasi-NP-hard to achieve a 2log
1�
 n factor approximation for any 
 > 0 (e.g., LabelCover [3]).

Finally, Class IV consists of the hardest problems, namely those for which it is NP-hard to achieve
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an n� approximation factor for some � > 0 (e.g., Clique [23]). Our work places both the and/or

scheduling problem and the Disks problem into Class III of this hierarchy.

Computational Geometry. Assembly sequencing is an intriguing combination of a combinatorial

and geometric problem. Quite naturally, research from computational geometry relates very closely

to assembly sequencing. The separability of objects has been well studied in the geometric community

[8, 9, 10, 20, 41, 42]. In a single direction, a depth order of a set of parts is an ordering of the parts

which allows for collision-free translations of the individual parts to in�nity. A classic result states

that given a collection of convex shapes in two dimensions, for any translational direction there exists

some ordering, such that the parts can be translated away one at a time [20]. Similar separability

issues are studied in two dimensions for more general classes of shapes, such as monotone or star-

shaped polygons [42]. For a collection of balls in Rd, there exist at least d+ 1 balls, each of which

can be translated to in�nity in some direction [8]. Unfortunately, there exist collections of unit disks

in the plane for which the removal of a certain disk may require the prior removal of 
(n) other disks

[21]. Also, there exists a set of convex parts in three dimensions which cannot be disassembled using

two hands, with only translations, or even generalized rotations and translations [41].

A surprising element of our problem is that the general lower bounds can be realized for a

simple geometric setting consisting of a collection of unit disks in the plane. More often than not,

an optimization problem becomes signi�cantly easier when its input is restricted to a geometric

setting. For example, there exists some c > 0 for which achieving a (1 + c)-approximation for the

Metric Traveling Salesman problem is NP-hard [38], however in the Euclidean plane, TSP can

be approximated to within (1 + �) for all � > 0 [2]. Similarly, achieving an n�-approximation for

Minimum Independent Set is NP-hard [23], however for planar graphs,MIS can be approximated

to within (1 + �) [5]. Similar results hold for most optimization problem when restricted to planar

graphs [31]. There exists a lnn lower bound for approximating the Set Cover problem [13], however

the Rectangle Cover problem, covering a set of axis-aligned rectangles with minimum number

of points, has no such inapproximability results [35].

To the best of our knowledge, the geometric results in Section 3 provide the strongest inapprox-

imability bounds shown for a natural, combinatorial, geometric problem. Similar lower bounds have

been shown for the Nearest Lattice Vector problem [3]; however, this problem is not combin-

atorial, and although it shares the same lower bound as our problem, we cannot directly relate the

hardness of the two problems.

3 The Disks Problem

We consider an assembly consisting solely of disks of unit radius, whose centers lie on a polynomial-

size grid in the plane. We allow disks to be removed with collision-free translations to in�nity. Our

goal is to remove a key disk, while minimizing the total number of disks which are removed.

Since we remove the disks one at a time, we can view an instance of the Disks problem as a

scheduling problem. The removal of each part is thought of as a task which can be scheduled, and

the goal is to schedule a key task as early as possible. The cost of a solution is equal to the total

number of tasks scheduled.
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3.1 Scheduling with and/or Precedence Constraints

A complication in our formulation as a scheduling problem is that the tasks have certain precedence

constraints relating their order of removal. That is, it may be the case that a certain part cannot

be removed until after some other parts are removed. What distinquishes this problem from more

traditional scheduling is the form of the precedence constraints. Traditionally, a task may only have

and precedence constraints, in that it has an associated set of tasks all of which must be scheduled

before that task. Unfortunately this is not the case in our assembly sequencing problem. In a single

direction, if a part is to be removed, then indeed there is a clear set of parts which block that

operation and thus must be removed earlier. However, we may choose to remove that same part in

some other direction, in which case a di�erent set of constraints apply.

Instead, our problem can be viewed as a special case of scheduling with and/or precedence

constraints, where the or's allow us to o�er a choice of directions. We will consider scheduling,

where every task has a set of direct predecessors, and each task is either an and-task, in which case

it cannot be scheduled until after all of its predecessors, or the task is an or-task, in which case

it cannot be scheduled until after at least one of its predecessors. For our setting, we consider a

single processor and unit processing time for all tasks. It is worth noting that with classical and

precedence constraints, this problem of minimizing the number of scheduled tasks can be solved

exactly, in polynomially time by computing a depth order.

A model for scheduling with and/or precedence constraints has been studied earlier [15, 16], but

with one key di�erence. The precedence constraints for an instance can be represented as a directed

graph, with each node additionally tagged as either an and-node or an or-node; in this previous

work, they assume that there is no cycle in this precedence graph, as that would make the problem

infeasible. With and/or constraints, this is no longer a necessary condition for the existence of

a valid solution, and in fact cycles will often exist as it may be the case that part A blocks B in

one direction, B blocks C in another, and C blocks A in a third. For this reason, we make no a

priori assumptions about the structure of the precedence relations. Gillies and Lin [15, 16] prove the

NP-hardness of many variants of the problem, however they do not consider the approximability of

the hard problems.

Notation and De�nitions. The input contains a set of tasks, T . Each task, ti 2 T , is labeled as

either an and-task or an or-task, and has an associated set of tasks, Pi. An and-task, ti, cannot

be scheduled until after all tasks in Pi. An or-task, tj , cannot be scheduled until after at least one

task of Pj . We de�ne the or-degree of an instance as the maximum sized jPj j over all or-tasks
tj ; similarly, the and-degree of an instance is the maximum sized jPij over all and-tasks ti. The

constraints can be represented by a precedence graph, with a node for each task, ti, and a directed

edge from tj to ti whenever tj 2 Pi. A leaf-task is one with Pi = ;, and thus it can be scheduled at

any time. We say that an instance of and/or scheduling has partial-order precedence constraints if

there are no cycles in the precedence graph (as in [15, 16]). We say an instance of and/or scheduling

has internal-tree precedence constraints if there are no cycles, and additionally if the only nodes with

more than one outgoing edge are leaf nodes.

Theorem 1 It is quasi-NP-hard to approximate the number of leaves scheduled in an instance of

and/or scheduling with internal-tree precedence constraints, to within a factor of 2log
1�
 n for any


 > 0. This remains true even if both the and-degree and or-degree are bounded by two.

The proof is deferred to Section 4.
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Leaf Nodes

Internal Nodes

Figure 1: Overview of Disks construction

3.2 Inapproximability of the Disks Problem

At this point, we are able to establish the hardness result for Disks problem, by geometrically

realizing a suitably hard instance of and/or scheduling from Theorem 1.

Theorem 2 It is quasi-NP-hard to approximate the Disks problem to within a factor of 2log
1�
 n

for any 
 > 0. This bound also applies if we consider only translations along the positive X-axis

and Y -axis. Additionally, this construction generalizes to axis-aligned unit squares, and to higher

dimensions.

Proof sketch: Given a hard instance from Theorem 1 with or-degree bounded by two (we do

not require such a bound on the and-degree), we construct an instance of the Disks problem. We

assume, without loss of generality, that or-nodes rely only on internal nodes.

Our scene consists entirely of disks with radius one, whose centers lie on a polynomially-sized,

integer grid. We prove this result directly for the case where only two directions of translations are

allowed, namely North and East. We place a wall of width 2W around the perimeter of our working

area which we consider immovable. We will place some holes in the wall, as needed, which allow

a clear path out for some disks. We consider our main working area as two sections, one for the

mechanism involving the interior nodes, and the second section for the leaf node mechanisms. The

overview of the construction is given in Figure 1.

First we describe the mechanism involving the internal nodes. Since the internal-tree de�nes a

partial order on these nodes, we can number the internal nodes, T1; : : : ; TI so that if an internal node

depends on another internal node, it will have a higher index. For each such node, Ti, we create a

disk, Di, centered at (6i; 6i). We give each such disk an \escape route" to the North by creating a

hole in the above wall. For an or-disk, we create an additional passage to the East.

Finally, we add in additional disks to enforce the precedence constraints. For and-node, Ti,

blocked by node Tk 2 Pi (and thus i < k), we add a disk Ak
i centered at (6i+ 1; 6k� 1), and force

this disk to exit to the East. For an or-node, Ti, which depends on 2 nodes, Tk and Tl, we create
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Figure 2: Internal Node Mechanisms
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Figure 3: Leaf Node Mechanism

two new disks, Ok
i located at (6i+ 1; 6k� 1) which we force East, and Ôl

i located at (6l� 1; 6i+ 1)

which we force North. The entire internal node mechanisms are contained in a (6I + 1)� (6I + 1)

square. Examples are given in Figure 2.

The section for the leaf mechanisms begins at height 6(I+1) so as to be higher than the internal

mechanisms. We can number the leaf nodes in any order, and we create a separate mechanism for

each leaf in a strip of height 2I . For a given leaf, La, we create what we term a blockade, to the right

of this strip. The blockade consists �rst of a diagonal chain of to the Northeast of height 2I , followed

by a horizontal chain of B disks to the East of the end of the �rst chain (where B is determined

later). The disk beginning the blockade is centered at (6(I+1); 6(I+1)+ Ia). The wall to the East

of the blockade is removed, allowing the disks of the blockade an escape. For any disk located in the

horizontal strip associated with La, escaping to the East will require an additional cost of at least

B to break through the blockade. However this cost is only charged once per blockade, after which

any disks in the horizontal strip may escape. Now, for every internal node Ti which depends on leaf

La, we create a disk L
i
a, located at (6i+ 1; 6(I+ 1)+ Ia+ 2i), which we force East. Figure 3 shows

an example of a leaf mechanism.

To complete the construction, we set the blockade value, B = 4I(L+ I), to be greater than the

total number of disks in the remainder of the internal and leaf mechanisms combined. In this way, the

number of blockades removed dominates any additive costs in the rest of the construction. Finally,

we assign W = B(L + 1), so that the cost of removing all non-wall disks is less than the cost of

digging a single new hole through any part of the wall. For this reason, we may assume without

loss of generality that any solution to this Disks instance has cost at most W . Finally, we note that

the wall has perimeter which is O(BL), and hence the total number of disks in our construction is

polynomially bounded. An example of the �nal construction is given in Figure 4.
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Figure 4: A Complete Disks Construction

It is not hard to verify that for this Disks instance, a solution for removing the root disk with

cost at most kB can be translated to an and/or solution of cost at most k. Similarly, and and/or

solution of cost k can be translated to a Disks solution with cost less than (k + 1)B. Therefore,

approximating the Disks problem to within a factor of 2log
1�
 n for any 
 > 0 is quasi-NP-hard, as

the additive error and the polynomial increase of the input size disappear by adjusting 
.

Our proof shows the hardness of the Disks problem when translations are limited to the North

and East. In fact, if we allow translations in arbitrary directions, the theorem holds using this same

construction. Furthermore, there is no need to force a restriction to linear moves, since moves which

remove a group of disks at once could be replaced by a set of linear moves.

It is also easy to see that the disks can be replaced by axis-aligned, 2 � 2 squares and the

construction still holds. For higher dimensions, the wall can be extended to block any useful motions

in other dimensions, while still using polynomially many disks.

4 Inapproximability of and/or Scheduling

We begin by considering the and/or scheduling problem when restricted to internal-tree precedence

constraints. We will look at the problem where we only charge an algorithm for the leaves that it

schedules3. We show the inapproximability of this problem by showing that the LabelCovermin

problem[3, 4] is a special case. Following this, we show that the lower bound applies even when we

3The internal-tree de�nes a monotone, boolean function on the leaf nodes, in which setting a leaf's variable to

\one" signi�es that the leaf will be scheduled. Minimizing the number of scheduled leaves is equivalent to satisfying a

monotone boolean formula with the minimum number of ones. Therefore, our results also prove the inapproximability

of this problem on monotone boolean formulae. We are unaware of any previous results for this approximation

problem.
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Figure 5: Reductions between variants of and/or scheduling

further restrict the and/or problem to have degree bounded by two. Finally, we convert this bound

on the number of leaves scheduled, into a bound on the total number of scheduled nodes for the

general and/or scheduling problem. An overview of the reductions is given in Figure 5.

Proof sketch for Theorem 1: The LabelCovermin problem, de�ned in [4], is an arti�cial

generalization of the Set Cover problem introduced in approximability theory. The input is a

regular bipartite graph, G = (U; V;E), a set of labels f1; 2; : : : ; Ng, and a partial function �e :

f1; 2; : : : ; Ng �! f1; 2; : : : ; Ng for each edge e 2 E. A labeling associates a non-empty set of labels

with every vertex in U [ V . It is said to cover an edge e = (u; v), if for every label b assigned to v,

there is some label a assigned to u such that �e(a) = b. The goal of LabelCovermin is to give a

labeling which covers all edges, while minimizing the total number of labels assigned to nodes of U .

Given an instance of LabelCovermin, we express it as an instance of and/or scheduling with

internal-tree precedence constraints. The and/or instance has �ve levels, which alternate between

and-nodes and or-nodes. The highest level contains solely the root of the internal-tree, and the

lowest level contains exactly the leaves. The tasks at the �ve levels are as follows:

� The �rst level has a single and-node, which is the root of the internal-tree. This task enforces

that for a valid labeling, every node in V must have a non-empty set of labels.

� The second level has an or-node for each vertex in V . This nodes requires that for a given

node v to have a non-empty label set, at least one label must be assigned to it.

� The third level has an and-node for each pair hv; l0i, where v 2 V , and l0 2 f1; : : : ; Ng. This
node signi�es that for label l to be assigned to vertex v, it must be the case that for each edge

e = (u; v) incident to v, the mapping �e on that edge, must respect the labeling.

� The fourth level has an or-node for each pair he; l0i, where e = (u; v) is an edge, and l0 is a

label. If l0 is to be assigned to v, then edge e cannot be covered unless one of the pre-images

of l0 from mapping �e is assigned to u.

� The �fth level has a leaf for each pair hu; li, and corresponds to label l being assigned to vertex

u.
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Figure 6: LabelCover as and/or scheduling with internal-tree precedence

This completes the construction. It can be seen that there is a one-to-one correspondence between

valid labeling in the LabelCovermin instance and valid solutions to the and/or scheduling in-

stance. It is easy to verify that the and/or instance has internal-tree precedence constraints.

Notice that the number of non-leaf tasks in this construction is polynomially bounded in the size of

the LabelCovermin instance (namely, in jU j, jV j and N).

Combining this with the result of [4] which proves a similar lower bound for the approximability

of LabelCovermin, we get that it is quasi-NP-hard to achieve an 2log
1�
 n approximation for any


 > 0.

Given an instance with unbounded degree, we can bound the in-degree in the obvious way, by

replacing each internal node with a tree of bounded degree nodes. Assume there were originally I

internal nodes and L leaves, and that I is polynomially bounded in L. The maximum fan-in for any

node is at most (I+L), and thus that node must be replaced by a tree of at most (I+L) nodes, each

with fan-in two. The new instance has I(I +L) internal nodes, which is still polynomially-bounded

in L.

Theorem 3 For the problem of minimizing the number of tasks scheduled in a general instance of

and/or scheduling, it is quasi-NP-hard to achieve an approximation ratio of 2log
1�
 n for any 
 > 0.

This lower bound remains valid if both the and-degree and or-degree are bounded by two.

Proof sketch: The only di�culty in switching from the measure of counting scheduled leaves to

counting all scheduled nodes is that the overhead of the internal nodes may have a signi�cant cost,

changing our approximation ratio. This can be remedied quite easily.

Assume we have a hard instance of internal-tree scheduling from Theorem 1, with I internal

nodes and L leaves. We convert this to a general instance of and/or scheduling by hanging from

each leaf a chain of I new nodes. Notice that the or-degree is not increased, although this new

instance no longer has internal-tree precedence constraints.

In this way, the problematic additive cost can be made arbitrarily small, and so the only issue in

completing the proof is to address the input size. In Theorem 1, the value n was assumed to be the

number of leaves. In our new instance, the total number of nodes is n0, however we can rely on the

fact that n0 = poly(n), and thus an approximation ratio of 2log
1�
 n0 is less than a ratio of 2log

1�

0
n

for some 
0 > 0.
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4.1 Implications of the Hardness of and/or Scheduling

We feel that the problem of scheduling with and/or precedence constraints raises several important

complexity issues, of considerable interest in their own right. This form of precedence constraints is

a fairly natural extension to the standard scheduling problem, yet clearly the e�ect of this change on

the di�culty of the problem is quite dramatic. We pose a series of open directions of research related

to the theory of approximability and where this problem �ts in relation to several other problems.

In Figure 5, we consider several versions of this scheduling problem, giving reductions from

one to another, and then we prove a lower bound of 2log
1�
 n against the approximability of all of

these problems by showing that the easiest of these versions captures the LabelCovermin problem

as a special case. It is open to determine a separation between any of the steps of the series of

reductions. That is, the LabelCovermin results provide our strongest results even for the most

general and/or scheduling problem, yet there is reason to believe this may be an even more di�cult

problem. It is already conjectured that LabelCover is truly n�-hard to approximate [4], however it

may be possible to strengthen the lower bounds for and/or scheduling without necessarily settling

the LabelCover conjecture. Furthermore, reasoning about instances of and/or scheduling seems

to be a bit more intuitive then about instances of a problem such as LabelCover.

We examined a very structured class of instances of and/or scheduling which had what we

termed internal-tree precedence constraints, and we considered charging only for the leaves that are

scheduled. Without loss of generality, we can assume that the root of our tree is an and-node.

Without a bound on the in-degree of the internal nodes, we can collapse the internal nodes into

alternating levels of and-nodes followed by levels of or-nodes, eventually followed by a single level

of leaves. Now, we can consider the complexity of the problem based on the number of alternating

levels. If we consider one full alternation, that is an and-node at the root, followed by a level of or-

nodes, followed by the level of leaves, this problem is exactly equivalent to the Set Cover problem,

and hence lies in Class II. The and-node requires that we cover each item in the universe, and each

or-node requires that for the given item, we pick one of the sets which covers that item. Each leaf

corresponds to a ground set, and thus the number of leaves scheduled is equal to the number of sets

used to cover the universe. If we look again at Figure 6, we see that as soon as we allow two full

levels of alternations, this problem captures the LabelCovermin problem, and hence is in Class III.

However it is not at all clear that this problem is equivalent to LabelCover as we do not know

whether an instance of this restricted and/or scheduling can be translated into a LabelCover

instance. Furthermore, what happens when we go to three full alternations, or to an arbitrary depth

internal tree? Does this hierarchy collapse at some point, and if so when? Can the inapproximability

bounds be strengthened for these versions? What if no constraints are placed on the structure of the

precedence graph?

The answer for some of these questions may come from research in the study of monotone boolean

formulae. As we mentioned earlier, the internal-tree precedences exactly de�nes a monotone boolean

function on the leaves, where the goal is to satisfy the function using the minimum number of ones.

It is clear than an arbitrarily complex formula on n leaves can be collapsed into an and/or tree

with a single alternating level, where the top choice is of picking one of the satisfying assignments,

and for each satisfying assignment, you must schedule all of the leaves which correspond to variables

set to one. The problem here is that the number of internal nodes in this representation is no longer

polynomial in the number of leaves, and this condition was necessary for our reductions. There is a

wealth of research related to monotone formulae and circuits in this respect [32, 39, 49], however it

is open to strengthen any of our inapproximability results for and/or scheduling.
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