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Abstract

Our work examines various complexity measures for two-handed assembly sequences. For

many products there exists an exponentially large set of valid sequences, and a natural goal

is to use automated systems to select wisely from the choices. Since assembly sequencing is a

preprocessing phase for a long and expensive manufacturing process, any work towards �nding a

better assembly sequence is of great value when it comes time to assemble the physical product in

mass quantities. Although there has been a great deal of algorithmic success for �nding feasible

assembly sequences, there has been very little success towards optimizing the costs of sequences.

We attempt to explain this lack of progress, by proving the inherent di�culty in �nding optimal,

or even near-optimal, assembly sequences.

We begin by introducing a formal framework for studying the optimization of several complex-

ity measures. We consider a variety of di�erent settings and natural cost measures for assembly

sequences. Following which, we de�ne a graph-theoretic problem which is a generalization of

assembly sequencing, focusing on the combinatorial aspect of the family of feasible assembly

sequences, while temporarily separating out the speci�c geometric assumptions inherent, to as-

sembly sequencing. For our virtual assembly sequencing problem we are able to use techniques

common to the theory of approximability to prove the hardness of �nding even near{optimal se-

quences for most cost measures in our generalized framework. As a special case, we prove strong

inapproximability results for the problem of scheduling with and/or precedence constraints.

Of course, hardness results in our generalized framework do not immediately carry over to

the original geometric problems. We continue by realizing several of these hardness results in

rather simple geometric settings, proving the di�culty of some of the original problems. We are

able to show strong inapproximability results in a far simpler setting than the domain of most

assembly sequencers, for example using an assembly consisting solely of unit disks in the plane.

These inapproximability results, to the best of our knowledge, are the strongest hardness results

known for a purely combinatorial problem in a geometric setting.
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1 Introduction

Given a set of parts and a geometric description of their relative positions in a product, the assembly

sequencing problem is to devise a sequence of collision-free operations which results in the assembly

of the product from the individual parts. E�cient algorithms have been developed, for many classes

of motions, which are guaranteed to �nd a valid assembly sequence when one exists. The IEEE

Technical Committee on Assembly and Task Planning summarized the current state of assembly

sequencing by explaining [21], \after years of work in this �eld, a basic planning methodology has

emerged that is capable of producing a feasible plan : : :The challenges still facing the �eld are to

develop e�cient and robust analysis tools and to develop planners capable of �nding optimal or near{

optimal sequences rather than just feasible sequences." Indeed, better understanding the inherent

complexity of assembling a product is critically important for bringing assembly planning systems

into industrial use. In manufacturing, the resulting assembly sequence will be performed in mass

quantities, and so the cost of the sequence is of great importance. Furthermore, for products where

the optimal cost assembly sequence proves to be expensive, this information can be used by engineers

in modifying the design of the product.

Unfortunately, there has been little success in optimizing the cost of assembly sequences. Our

work explains this lack of progress by formally proving the hardness of approximating the optimal

cost sequence in a variety of settings. We attempt to classify the approximability of many variants of

assembly sequencing, based on the desired cost measure, the speci�c goal required, and other restric-

tions placed on the sequence. Our list of possible cost measures are motivated directly by industry,

and include many measures suggested by previous researchers. Examples include minimizing the

number of distinct directions of motion used during a sequence, minimizing the number of steps in

a sequence, or minimizing the number of re-orientations of the assembly.

We begin by studying a graph-theoretic generalization of assembly sequencing which we term

virtual assembly sequencing (VAS). Much of the success in �nding feasible sequences has been a

result of the introduction of the non-directional blocking graph [50, 52]. For a given direction of

motion, the geometric model of the product can be analyzed to construct a graph which represents

the blocking relationships among the parts. Once a set of such graphs has been computed, they can

be analyzed to compute a feasible (dis)assembly sequence, when one exists. Our model considers

this set of blocking graphs as the original input to the problem, and we examine whether these graphs

can be used to �nd near-optimal sequences, rather than simply feasible sequences.

We prove that for many of the variants, it is hard to �nd any sequence whose cost can be

bounded to within a 2log
1�
 n-factor1 of the optimal cost sequence for any 
 > 0. Our reductions

show that assembly sequencing simultaneously encompasses di�culties seen in covering, scheduling,

and supersequencing problems. As a special case, when sequences are restricted to move only one

part at a time, this problem can be modeled as an instance of scheduling with and/or precedence

constraints2. We prove similar inapproximability results for this scheduling problem.

Finally, since our virtual assembly sequencing model is a generalization, our lower bounds do not

necessarily apply to the original problem as we no longer assume that the set of input graphs are

the result of any original geometric setting. We continue by showing that many of our lower bounds

can, in fact, be realized geometrically, thereby proving the hardness of the true assembly sequencing

problems. As an example, we consider a setting consisting entirely of unit disks in the plane, and

we look at the task of removing a given disk from the rest of the assembly. We prove that achieving

1This factor, 2log
1�


n, lies between polynomial and polylogarithmic in that 2log
1�


n = o(n�) for any � > 0, and

2log
1�


n = !(logc n) for any constant c.
2N.B.: this is not to be confused with the and/or tree representation of assembly sequences[28]
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a 2log
1�
 n-approximation to minimizing the total number of disks which must be removed to access

the given disks is hard for any 
 > 0.

The paper proceeds as follows. In Section 2, we discuss previous work in the areas of assembly

sequencing, approximation theory, and computational geometry, which relate to our work. In Sec-

tion 3, we review the de�nition of the assembly sequencing problem, and we speci�cally examine

the development of the non-directional blocking graph in Section 3.1. We introduce our virtual as-

sembly sequencing problem in Section 4, as we formalize a list of possible tasks, restrictions, and

cost measures for assembly sequencing. In Section 5, we de�ne the and/or scheduling problem.

Following this, we approach the problem of how well the choice of sequences can be optimized

over such cost measures. Even in cases where �nding the exact optimal solution is di�cult, it is

desirable to approximate the problem by �nding such a near{optimal solution. In Sections 7 and 8,

we present our results which prove that in our generalized framework, �nding even an approximate

solution for most cost measures is quite hard. We re-introduce the geometry in Section 9, to prove

the inapproximability of several variants of the original assembly sequencing problems. Section 10

discusses some particularly interesting complexity issues relating to and/or scheduling, and �nally

Section 11 discuss several other open directions for research, and contains concluding remarks.

2 Previous Work

2.1 Assembly Sequencing

The use of automation in assembly sequencing has increased rapidly over the years [7, 16, 26, 27, 28,

37, 39, 50, 51, 53, 54]. Progressing from days when assembly sequencing was purely a craft of the

human designers, computers have become a powerful tool in the sequencing process. Early systems

resulted in ine�cient generate-and-test sequencers, operating by generating candidate operations and

testing their feasibility [28, 53]. However, if arbitrarily complex motions and paths are allowed,

assembly sequencing was shown to be intractable [29, 34, 43, 54]. This led some researchers to

consider restricted, but still interesting, versions of the problem (e.g., monotone sequences, where

each operation generates a �nal subassembly, and two-handed sequences, where every operation

merges exactly two subassemblies). For many classes of motions, described by a constant number

of degrees of freedom, polynomial algorithms were developed which will �nd an assembly sequence

if one exists [22, 24, 50, 52]. Most of this success can be achieved within the framework of non-

directional blocking graphs [50, 52], and as our work is intricately related to this approach, we review

these approaches in more detail in Section 3.1. It is also possible to enumerate all possible assembly

sequences [16], although there may be exponentially many such sequences for a product.

With the ability to �nd feasible sequences e�ciently, several researchers have focused on the

importance of using automated tools to choose cost-e�ective sequences. There are many possible

ways to de�ne the cost of a sequence, depending on how these sequences will be used eventually

in a manufacturing system. Several empirical measures have been suggested [10], and more formal

complexity measures are examined in a generalized system [54]. The importance of using automated

reasoning to evaluate the complexity of assembly sequences is discussed, along with the introduction

of several evaluationmeasures [52]. A hierarchical approach is used to identify common subassemblies

in products, thereby allowingmore e�ort to be used towards �nding a \better" assembly sequence [11].

Although practical, this technique simply delays the eventual need for better automated reasoning to

overcome increasingly large data sets. For a restricted class of inputs which have a so-called \total

ordering" property, a greedy algorithm is given which claims to produce the minimal length sequence

to remove any given part [55], however the required input property does not have a clear de�nition,

and as our results will show, this problem is quite di�cult.
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Class Factor of Approximation that is hard Representative Problems

I 1 + � Max-3Sat

II O(logn) Set Cover

III 2log
1�
 n LabelCover

IV n� Clique

The four classes and their representative problems. (Table 10.1 from [4])

Several software systems o�er the user the option of optimizing the sequence over a choice of

complexity measures [33, 47, 54], however these systems currently must rely on either a brute force

search of the entire space, or else branch-and-bound type searches with no performance guarantees

for the resulting sequence.

2.2 Approximation Theory

For most of our variants, �nding the optimal cost assembly sequence is NP-hard. As the number

of parts and complexity of products keeps increasing, it quickly becomes infeasible to rely on an

exponential, brute-force search of all possibilities. For this reason, there is little hope of e�ciently

�nding the true optimal solution, however this does not rule out the possibility of �nding approximate

solutions e�ciently. Since assembly sequencing is a preprocessing phase for a long and expensive

manufacturing process, any work towards �nding a \better" assembly sequence is of great value

when it comes time to assemble the physical product in mass quantities.

For this reason, we approach these problems using techniques common to the theory of approx-

imability [4, 18, 31, 42]. Since we cannot expect to �nd the optimal sequence in polynomial time,

we look for a polynomial time approximation algorithm which returns a solution whose cost can

be bounded by some function of the true optimal cost. A standard measure for the quality of an

approximation algorithm is the approximation ratio between the cost of the solution returned by the

algorithm versus the cost of the optimal solution. Although all NP-complete decision problems can

be reduced to one another, the approximability of such problems can be quite di�erent, ranging from

problems which can be approximated arbitrarily close to optimal, to problems where getting even a

very rough approximation is already NP-hard.

Many researches have worked towards classifying the approximability of di�erent NP-hard prob-

lems [4, 5, 12, 44]. We will consider four broad classes de�ned in [4], which group problems based on

the strength of the inapproximability results which have been proven. Class I includes all problems

for which approximating the optimal solution to within a factor of (1+ �) is NP-hard for some � > 0.

The canonical problem for this class is Max-3Sat, and the class includes all Max-SNP-complete

problems [44], for example Vertex Cover, Metric TSP, Max Cut, and others. Class II groups

those problems for which it is quasi-NP-hard3 to achieve an approximation ratio of c � logn for some

c > 0. The typical such problem in this class is Set Cover, for which the threshold of approx-

imability has been placed at lnn(1 + o(1)) [17]. For problems in Class III, it is quasi-NP-hard to

achieve a 2log
1�
 n factor approximation for any 
 > 0. LabelCover is the canonical problem in this

class[3], although the class contains several other natural problems such as Longest Path [32] and

Nearest Lattice Vector [3]. Finally, Class IV consists of the hardest problems, namely those

3that is, this would imply NP � DTIME(npoly(log n)). \A proof of quasi-NP-hardness is good evidence that the

problem has no polynomial-time algorithm." [4]
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for which it is NP-hard to achieve an n� approximation factor for some � > 0. This class includes

problems such as Clique [25] and Coloring [40].

We give a series of results, proving not only the hardness of �nding the exact optimal solu-

tions in this model, but even of �nding reasonable approximation algorithms. To do so, we use

approximation-preserving reductions [42, 44]. Classical reductions, for instance those equating all

NP-complete problems, show that �nding the optimal solution for one problem can be used to �nd

the optimal solution for another problem. Such classical reductions do not guarantee anything about

the relation between approximate solutions, and this in part explains the vast di�erence between

the approximability of various NP-complete problems. Therefore, to compare the approximability of

di�cult problems, it is necessary to use such approximation-preserving reductions which show not

only that �nding an optimum of one problem can be used to �nd an optimal of the other, but also

that �nding an approximate solution can be translated to an approximate solution for the other of

similar performance ratio.

2.3 Computational Geometry

Assembly sequencing is an intriguing combination of a combinatorial and geometric problem. Quite

naturally, research from computational geometry relates very closely to assembly sequencing. The

separability of objects has been well studied in the geometric community [13, 14, 15, 23, 48, 49]. In a

single direction, a depth order of a set of parts is an ordering of the parts which allows for collision-

free translations of the individual parts to in�nity. A classic result states that given a collection of

convex shapes in two dimensions, for any translational direction there exists some ordering, such that

the parts can be translated away one at a time [23]. Therefore, if trying to minimize the number of

directions needed for an assembly sequence, this result tells us that one direction is always su�cient

for an assembly of convex parts in two dimensions. Similar separability issues are studied in two

dimensions for more general classes of shapes, such as monotone or star-shaped polygons [49]. For a

collection of balls in Rd, there exists at least d+ 1 balls, each of which can be translated to in�nity

in some direction [13]. However, there exists a set of convex parts in three dimensions which cannot

be disassembled using two hands, with only translations to in�nity, or even generalized rotations and

translations [48].

A surprising element of our problem is that the general lower bounds given in Section 8, are

realized in Section 9, for a simple geometric setting consisting of a collection of unit disks in the

plane. More often than not, an optimization problem becomes signi�cantly easier when its input is

restricted to a geometric setting. For example, there exists some c > 0 for which achieving a (1+ c)-

approximation for the Metric TSP problem is NP-hard [45], however in the Euclidean plane, TSP

can be approximated to within (1+ �) for all � > 0 [2]. Similarly, achieving an n�-approximation for

Minimum Independent Set is NP-hard [25], however for planar graphs, Minimum Independ-

ent Set can be approximated to within (1 + �) [6]. Similar results hold for most optimization

problem when restricted to planar graphs [35]. There exists a (1+o(1)) lnn lower bound for approx-

imating the Set Cover problem [17], however the Rectangle Cover problem, covering a set of

axis-aligned rectangles with minimum number of points, has no such inapproximability results [42].

To the best of our knowledge, the geometric results in Section 9 provide the strongest inapprox-

imability bounds shown for a natural, combinatorial, geometric problem. Similar lower bounds have

been shown for the Nearest Lattice Vector problem [3], however this problem is not combin-

atorial, and although it shares the same lower bound as our problem, we cannot directly relate the

hardness of the two problems.
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Figure 1: Assembly tree for a simple product

3 De�nition of Assembly Sequencing

In general terms, the input to an assembly sequencer is a product, consisting of a set of parts, and

described by a geometric model of the parts and their relative positions, as well as a family of

allowable motions. For example, an assembly may consist of a collection of unit disks in the plane,

and the family of allowable motions may be translations to in�nity. The classic goal is to produce

a sequence of operations resulting in the construction of the product from its individual parts. Each

operations combines a set of subassemblies, using a motion from the allowable family.

In the assembly sequencing problem, we will concern ourselves only with �nding a feasible se-

quence of collision-free motions. We are not concerned with grasping the objects, the forces involved,

or the stability of the subassemblies, rather we will think of our parts as free-
oating objects. Addi-

tionally, we assume that the product is made of rigid parts, we assume that each operation is binary,

that is, combines exactly two subassemblies, and we consider only monotone assembly sequences, that

is, when an operation has placed a part in a subassembly, that part may no longer be moved relative

to the subassembly. Although restrictive, these assumptions are common in assembly sequencing

and can be applied to a majority of products.

Under these conditions, we may think of devising an assembly sequence by constructing a disas-

sembly sequence and then reversing the entire sequence4. The advantage of reasoning about disas-

sembly is that the �nal assembled product is usually much more constrained than the initial con�gur-

ation of parts, and so infeasible plans can be more quickly eliminated in this way. Additionally, there

are several jobs related to maintenance or recycling of products which require a partial disassembly

of a complete product.

With this in mind, the goal of a binary, monotone assembly sequencer is to start with the fully

assembled product and partition the set of parts into two groups which can be separated by a

collision-free motion. Once this is done, each of the resulting subassemblies can be disassembled.

This decomposition can be represented naturally as a binary assembly tree. The root of the tree

represents the fully-assembled product, and the children of each internal node represent the two

subassemblies which are combined to produce the larger subassembly. For a more detailed discussion,

4In general, these tasks are not symmetric, for instance when 
exible parts are deformed during assembly [38].
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Figure 2: A simple assembly and two DBG's for in�nitesimal translation

see [52, 50, 54]. Figure 1 gives an example, taken from [52], of such an assembly tree for a simple

two-dimensional product. Note that the assembly tree represents the set of operations used in

the decomposition, however it does not represent the exact sequence in which the operations are

performed.

3.1 A Review of Non-directional Blocking Graphs

The �rst key concept in understanding current techniques in assembly sequencing is that of a direc-

tional blocking graph (DBG). For a speci�c motion, a DBG can be de�ned as a directed graph with

a node for each part of the assembly, and an edge A! B, if part A collides with part B when that

motion is applied to A, while B remains stationary. Figure 2, also from [52], gives an example of a

two-dimensional product as well as twoDBGs for in�nitesimal translation. The blocking graph for a

given motion provides a compact representation of all collision-free operations for that motion, in that

a directed cut between subset S and subset T in aDBG exactly represents a collision-free separation.

Since a DBG represents all possible operations for a single direction of motion, by constructing a

DBG for each possible motion, we can fully represent all possible operations. Unfortunately, the

family of motions may have in�nite size.

However, it was noticed that many distinct motions may be represented by the identical DBG,

since slight changes in a motion may not e�ect the blocking relationships between any of the parts.

The construction of a non-directional blocking graph (NDBG) divides the space of motions into

equivalence classes based on the blocking graphs, and the resulting NDBG consists of a single DBG

for each equivalence class. Thus theNDBG completely captures the necessary geometric information

for identifying all valid operations for those motions.

The only issue remaining is the number of equivalence classes and how to compute them. In

general, it seems that if the family of motions has a constant number of degrees of freedom, then

the number of distinct equivalence classes is polynomially bounded. Techniques from computational

geometry allow for the construction of the NDBG for a variety of motion classes, including in�n-

itesimal translations [52], extended translations (i.e., to in�nity) [52], multiple step translations [24],

and in�nitesimal generalized motions (i.e., rigid body motions) [22, 52].

For each of these families of motions, the NDBG framework immediately provides a polynomial

time algorithm for constructing a feasible assembly sequence, if one exists. After constructing the set

of DBG's, an arbitrary assembly sequence is found by taking any legal separation using any of the

directions, and then recursing on the resulting subassemblies. Since the removal of parts can only

reduce the blocking relationships, there will be no false dead ends and this procedure will result in

either producing an entire assembly tree, or else will reach a subassembly which cannot be partitioned

by any of the motions, thereby proving that no assembly sequence exists. This algorithm runs in

polynomially time, is quite simple, and has been implemented to construct assembly sequences for

many of the above motion classes [33, 47]. As we will see, searching for a \good" sequence in this

way is not quite so simple.
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4 Virtual Assembly Sequencing (VAS)

Our generalized framework is based directly on the work of the NDBG, as we assume that our

problem begins as we are handed the full set of DBG's, and our goal is to choose a binary, monotone

assembly sequence. Notice that the NDBG is simply a re-organization of the original input to aid

in sequencing. The complete set of directed graphs contains all of the information about the input

relevant to assembly sequencing, and so nothing is lost by considering the graphs as the input to

the problem. Therefore, we will de�ne the virtual assembly sequencing problem as a graph-theoretic

problem where the sole input is a set of directed graphs, and thus the VAS problem directly captures

the original assembly sequencing problem for any geometric setting in which the NDBG has been

constructed in polynomial time.

What is important to understand is that VAS is a generalization of the original problem, and

this is because we will not make any assumptions about the structure of the individual graphs, or

their interdependence on each other. In reality, when an NDBG is constructed from a geometric

description of a product, the resulting set of blocking graphs may have some hidden structure. It

is conceivable that this structure would allow for additional success in devising assembly sequences,

and therefore VAS may indeed be a strictly harder problem than the original assembly sequencing

problem. However to date, no such hidden structure has been used successfully for any geometric

setting, and current systems based on the NDBG eventually analyze the set of graphs at face value

in �nding assembly sequences.

For this reason, we formally de�ne VAS as the following graph-theoretic problem.

Input: A set, P of n items.

[We will call each member of this set a \part."]

A polynomial-sized family, F , of directed graphs on n nodes.

[We will call each member of this family a \direction."]

Output: An assembly sequence for P using only \legal" operations based on F .

We inherit the de�nition of \legal" motions from the notion of directed blocking graphs. Given a

subset of parts P 0 � P , a direction d 2 F can be used to partition P 0 into sets A and B if the graph

d has no edges directed from a part in B to a part in A, (i.e., the partition provides a directed cut

on the induced subgraph for P 0).

4.1 Possible Goals

Originally, we said that the goal of an assembly sequencer is to produce an assembly sequence that

completely decomposes the original product into its individual parts. Although this is a common

task, there are other variants which are highly motivated by industrial applications. The following

contains a list of possible goals, along with their motivations. Each of these goals are de�ned based

on the structure required of the resulting assembly tree.

G1 Full disassembly.

This is the classical problem. In our terms the goal is to �nd a sequence of operations which be-

gin with the fully assembled product, and results in the complete decomposition into individual

parts. Each leaf of the assembly tree must consist of an individual part.

G2 Remove a key part. [47]

Instead of disassembling the entire product, it is often desirable to quickly remove a single key

part from an assembly without necessarily disassembling the entire product. The motivation
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for this stems from issues of maintenance and recycling. The classic maintenance example is

to replace a spark plug without taking the entire car apart. A classic recycling example is to

strip down old computers for valuable parts while throwing out the rest.

For this variant, we assume that we are given a product as well as the label for one key part

which is to be removed. In the resulting assembly tree, the key part must be isolated at a leaf,

however other leaves may represent many parts, since there is no need to further decompose

subassemblies that do not contain the desired part.

G3 Remove a given set of parts.

Rather than removing a single part, we may be asked to remove an arbitrary subset of parts.

In this variant, each of the requested parts must be isolated at a leaf of the assembly tree.

When only one part is requested, this is identical to goal G2, and if the entire set is requested,

this is identical to goal G1.

G4 Separate a given pair.

Given a key pair of parts, the goal in this variant is to decompose the fully-assembled product

until the two parts lie in di�erent subassemblies. This task is motivated by products for which

it is important to identify the �rst operation which requires both of the key parts to be brought

together. This may be important in situations where the two parts are manufactured at di�erent

locations, or for sensitive materials which need to be treated specially when they are brought

together.

For this variant, the two key parts must be located in di�erent leaves in the resulting assembly

tree. Note that the two parts need not be completely isolated from the entire assembly, simply

separated into components that do not include the other key part.

G5 Separate a given set.

Rather than a pair of parts, a set of parts is given here, and the goal is to decompose the

assembly so that no two of the key parts are in the same subassembly. When the key set

consists of two parts, this is exactly goal G4, and when the set consists of all parts, this is

identical to goal G1.

4.2 Possible Restrictions

Often, manufacturing systems impose additional constraints on assembly sequences other than simply

geometric feasibility. Although we are ignoring many such important issues, we consider a few such

restricted versions of the assembly sequencing problem.

R1 Linear Sequence. [47, 52]

A linear assembly sequence is one in which each operation brings together a single part with

an existing subassembly. Such sequences are reminiscent of a classical assembly line, in which

each station is responsible for adding one part. Although not all products can be assembled

linearly, such sequences are used in manufacturing for several reasons. The organizational level

of a linear assembly line is much simpler than for a sequence which requires building many

subassemblies in parallel. Also, the fact that one of the subassemblies is a single part greatly

reduces the �xturing costs.

Therefore, we consider the additional problem of choosing the best such sequence for a product,

when restricted to linear assembly sequences. Note that even when restricted to linear se-

quences, there still may be exponentially many valid sequences for a given product.
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R2 Constant-sized Family of Motions. [1]

Originally, our only assumption was that the number of blocking graphs is polynomially

bounded in the number of parts. Now we consider instances where the number of graphs

in bounded by some constant, k.

For automated assembly systems, each motion type or direction may require a specialized robot,

and thus manufacturing systems may be constrained to use only a small set of pre-de�ned

motions based on the existing robotics system. For example, a system may be constrained to

using axis-aligned translations.

Once constrained to a small number of input graphs, we are interested in whether or not the

smaller input allows for better sequencing algorithms than does the more general problem.

4.3 Possible Complexity Measures

How do we decide which of two assembly sequences is the better one for a given product? Of course,

every person asked will give a di�erent de�nition of which is better for their application. Further-

more, the truest measure of cost-e�ciency may be a combination of many di�erent factors. We begin

the study of cost measures for assembly sequencing by introducing a collection of primitive complex-

ity measures, motivated by speci�c aspects of industrial applications. Our view is that studying

these basic measures in depth is a necessary �rst step before examining specialized combinations of

complexity measures.

C1 Fewest Number of Directions. [47, 52, 54]

The cost of an assembly sequence is equal to the number of directions in F which are used.

Once a direction has been used, future uses of the same direction are free of charge. The

motivation here is that in manufacturing, each direction requires a di�erent type of movement

for a robot, and it is more e�cient to have robots that have as few degrees of freedom as

possible. Note that this di�ers from restriction R2, in that we are not told which directions to

use in restricting our search.

C2 Fewest Re-orientations. [54]

The cost of an assembly sequence is equal to the number of operations which use a direction

which is di�erent from the previous operation. In many manufacturing situations, the main

cost of a robot is in orienting it to perform a type of motion, yet once it is oriented, it is

fairly inexpensive to perform several motions of that type. Similarly, in some assemblies all

parts must be physically inserted from above and thus an operation in a di�erent direction is

performed by re-oriented the subassembly on the assembly line so that the desired direction is

aligned vertically. This is typically slow and might require additional expensive �xtures. In

both of these cases, using an orientation that was encountered earlier in the process is of no

advantage unless the product is still in that orientation.

C3 Fewest Number of Non-Linear Steps. [52]

A step is linear if one of the two subassemblies is a single part. The cost of an assembly

sequence is equal to the number of non-linear steps. The motivations for this measure are

similar to those for the R1 restriction, however rather than absolutely requiring that all steps

are linear, we simply attempt to minimize the use of non-linear operations.

C4 Minimum Depth of an Assembly Sequence. [52]

The cost of an assembly sequence is equal to the depth of the corresponding tree. The mo-

tivation here is that in many assembly environments, parallelism in production is helpful, as
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the minimum depth tree has the quickest \throughput." As a special case, when the goal is to

remove a key part, than this cost is equal to the depth of the key leaf, and thus exactly the

number of steps taken to free the part from the rest of the product.

C5 Fewest Number of Removed Parts.

This measure is speci�c to the partial disassembly problems. We de�ne the exact measure as

(n�M) where M is the number of parts in the largest, intact subassembly. We will consider

this subassembly as the \main" assembly, and thus all other parts were \removed" at some

point from the main assembly.

4.4 Immediate Observations

We take a few moments to make some initial observations about our model, and several immediately

results. This also gives the reader a chance to digest the problem.

� A graph admits a legal operation on a subassembly if and only if there exists a directed cut

on the node-induced subgraph for the parts in that subassembly. The existence of a directed

cut is equivalent to the fact that the subgraph is not strongly-connected. This condition can be

checked for each graph in polynomial time.

� In polynomial time, we can check whether the set of graphs admits a feasible sequence for any

of our goals. We are able to �nd a legal operation, if one exists, which decomposes our problem

into two subassemblies, and then recurse. No operations is a mistake in terms of feasibility,

as the removal of parts can only decrease the blocking relationships of future moves. At any

point, if we �nd a subassembly for which there is no legal operation, we are assured that those

parts could not have been separated by any sequence.

� A graph admits a valid linear operation to remove part p, if and only if part p has no outgoing

(incoming) edges. In polynomial time, we may check whether a set of graphs admits a feasible

linear sequence for any of our goals.

� A stack assembly is de�ned in [52], as a product which can be completely (dis)assembled using

translations along a single direction. They observe the a product admits a stack assembly, if

and only if one of the blocking graphs is acyclic, and this can be checked in polynomial time.

� For restriction R2, when the number of graphs is constant, it is polynomially solvable to �nd

the minimum number of directions required for any of the �ve goals, with or without the linear

restriction. There are a constant number of possible subsets of directions, and so we may simply

try each possibility, and check the feasibility of the problem with those graphs, in polynomial

time.

� For restriction R2, if jFj = 2, minimizing the number of re-orientations for any of our goals

can be solved in polynomial time. For jFj � 3, we can achieve a (jFj � 1)-approximation

for minimizing the number of re-orientations, using a set of universal sequences, similar to the

techniques used for approximating the Shortest Common Supersequence problem [8]. For

more discussion on the relation between re-orientations and supersequences, see the proofs of

Theorems 11 and 13.
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5 and/or Scheduling

As a special case, we consider the goal of removing a key part, while minimizing the number of

removed parts, and restricting ourselves to linear steps (G2/R1/C5). In this situation, we can view

the VAS problem in a more simple manner as a scheduling problem. The removal of each part is

thought of as a task which can be scheduled, and the linear disassembly sequence is simply a schedule

for the order of removal. The goal of the scheduling problem is to successfully schedule a key task

and the cost is equal to the total number of scheduled tasks5.

A complication in our formulation as a scheduling problem is that the tasks have certain pre-

cedence constraints relating their order of removal. That is, it may be the case that a certain part

cannot be removed until after some other parts are removed. What distinquishes this problem from

more traditional scheduling is the form of the precedence constraints. Traditionally, a task may

only have and precedence constraints, in that it has an associated set of tasks all of which must be

scheduled before that task. Unfortunately this is not the case in our assembly sequencing problem.

In a single direction, if a part is to be removed, then indeed there is a clear set of parts which block

that operation and thus must be removed earlier. However, we may choose to remove that same part

in some other direction, in which case a di�erent set of constraints apply.

Instead, our problem can be viewed as a special case of scheduling with and/or precedence

constraints, where the or's allow us to o�er a choice of directions. We will consider scheduling,

where every task has a set of direct predecessors, and each task is either an and-task, in which case

it cannot be scheduled until after all of its predecessors, or the task is an or-task, in which case

it cannot be scheduled until after at least one of its predecessors. For our setting, we consider a

single processor and unit processing time for all tasks. It is worth noting that with classical and

precedence constraints, this problem of minimizing the number of scheduled tasks can be solved

exactly, in polynomially time by computing a depth order.

A model for scheduling with and/or precedence constraints has been studied earlier [19, 20], but

with one key di�erence. The precedence constraints for an instance can be represented as a directed

graph6with each node additionally tagged as either an and-node or an or-node; in this previous

work, they assume that there is no cycle in this precedence graph, as that would make the problem

infeasible. With and/or constraints, this is no longer a necessary condition for the existence of a

valid solution, and in fact cycles will often exist as it may be the case that part A blocks B in one

direction, B blocks C in another, and C blocks A in a third. For this reason, we make no apriori

assumptions about the structure of the precedence relations. Gillies and Lin [19, 20] prove the NP-

hardness of many variants of the problem, however they do not consider the approximability of the

hard problems.

It is important to note that in context of assembly sequencing, the precedence constraints for

this scheduling problem could be more naturally modeled as DNF-scheduling, where each task has

a constraint of the form (A ^ B) _ (A ^ C ^ D). Clearly, and/or scheduling is a special case of

this where each constraint is either a conjunction or a disjunction, but not both. We choose to

consider the and/or scheduling problem for several reasons, most notably because we will use this

problem to give a geometric realization of the hardness results for assembly sequencing in Section 9.

Therefore, in translating an assembly sequence instance into an and/or scheduling instance, we

may have to introduce polynomially many arti�cial tasks in order to break up the DNF formulae

into the appropriate form (see Theorem 6).

5We could also consider the problem of removing a set of parts in this way (G3/R1/C5).
6Not to be confused with the original blocking graphs.
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5.1 Notation and De�nitions

The input contains a set of tasks, T . Each task, ti 2 T , is labeled as either an and-task or an

or-task, and has an associated set of tasks, Pi. An and-task, ti, cannot be scheduled until after all

tasks in Pi. An or-task, tj , cannot be scheduled until after at least one task of Pj . We de�ne the

or-degree of an instance as the maximum sized jPj j over all or-tasks tj ; similarly, the and-degree

of an instance is the maximum sized jPij over all and-tasks ti. The constraints can be represented

by a precedence graph, with a node for each task, ti, and a directed edge from tj to ti whenever

tj 2 Pi. A leaf-task is one with Pi = ;, and thus it can be scheduled at any time. We say that

an instance of and/or scheduling has partial-order precedence constraints if there are no cycles in

the precedence graph (as in [19, 20]). We say an instance of and/or scheduling has internal-tree

precedence constraints if there are no cycles, and if the only nodes with more than one outgoing edge

are leaf nodes.

6 Reductions Between Variants of VAS

In this section, we examine the relationships betweenmany of the possible goals, restrictions, and cost

measures given in Section 4. We give several approximation-preserving reductions which demonstrate

that certain variants are at least as hard to approximate as others. Because of the su�ciently strong

lower bounds we will prove in Sections 7 and 8, we allow our reductions to have an additive error in

the approximation factor, and where noted, we will allow a polynomial blowup of the input size. An

overview of the reductions is given in Figure 6, although without noting the applicable cost measures,

and the full proofs are given later in this section.

Theorem 1 [G2 =) G4]

The problem of removing a key part from the rest of the assembly can be reduced, in an approximation-

preserving fashion, to the problem of separating a key pair of parts from each other for all �ve cost

measures.

Theorem 2 [G4 =) G2]

The problem of separating a key pair of parts from each other can be reduced, in an approximation-

preserving fashion, to the problem of removing a key part from the rest of the assembly, for all �ve

cost measures.

Theorem 3 [G2 =) G1]

The problem of removing a key part from the rest of the assembly can be reduced, in an approximation-

preserving fashion, to the problem of fully decomposing the product, for the following cost measures:

fewest directions, fewest re-orientations, or fewest non-linear steps.

Theorem 4 [G2/R1/C5 =) G2]

Minimizing the number of removed parts for the keypart problem when restricted to linear moves can

be reduced, in an approximation-preserving fashion, to minimizing either the number of directions,

number of re-orientations, minimum depth, or number of removed parts for the problem of removing

a key part with or without the linear restriction. (polynomial blowup in number of graphs)

Theorem 5 [and/or =) G2/R1/C5]

An instance of the and/or scheduling problem can be written directly as a special case of the problem

of minimizing the number of removed parts for the problem of removing a key part when restricted

to linear moves. The number of graphs is exactly equal to the or-degree of the scheduling problem.
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Figure 3: Reductions between variants of VAS

Theorem 6 [G2/R1/C5 =) and/or]

Minimizing the number of removed parts for the problem of removing a key part when restricted

to linear moves can be reduced, in an approximation-preserving fashion, to the problem of and/or

scheduling. (polynomial blowup in size)

6.1 Proofs

Proof of Theorem 1:

The intuition for this reduction is simple. We take an instance of the problem of removing a key part

k, and construct an instance of the problem of separating two parts by introducing a part k0 which

is \glued" to k unless all other parts are separated from k.

To implement this idea, we modify each graph in F by introducing part k0 and adding edges

(k; k0) and (k0; k). Therefore, no legal operation using one of these graphs can separate k and k0

into di�erent subassemblies. Finally, we add one new graph which is the complete graph with the

two edges (k; k0) and (k0; k) removed. If k and k0 are the only parts in a subassembly, then this new

graph will allow for their separation. However, this graph is useless for any other operations.

We claim that there is a one-to-one correspondence between solutions of the two instances. Any

solution for removing part k in the original problem, can be mimicked in the new problem to separate

k and k0 from the rest of the problem, and then one �nal operation using the extra graph can separate

k and k0. Similarly, any solution to separate k from k0 must end with such a move, and thus the rest

of the sequence can be mimicked for the �rst problem.

The input size for the reduction is increased by one part and one graph, and for all cost measures,

the costs of the corresponding solutions di�er by at most an additive error of one.
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Figure 4: Separating a pair reduces to removing a part

Proof of Theorem 2:

Here, we take an instance of the problem of separating parts k1 and k2, and we construct an instance

of simply removing part k1. We will create a new graph which allows k1 to be separated from

everything, so long as it had previously been separated from k2.

In this reduction, we take each graph in F without modi�cation, and we create one new graph

with edges (k1; k2) and (k2; k1) along with edges (k1; a) and (a; k2) for all other parts a. This graph

is shown in Figure 4. It is easy to verify that if both k1 and k2 are in a subassembly, then this graph

is strongly connected and so no legal operations can be done. However, if k1 has been previously

separated from k2, than this graph will allow k1 to be separated from everything else.

Again, any solution to one of these problems can be translated into a solution to the other with

error of at most one for any of the cost measures.

Proof of Theorem 3:

Again, we give a very simple modi�cation to translate an instance of the problem of removing a key

part k, into an instance of fully disassembling a product. For this reduction, we simply create one

additional graph which allows the entire product to fall apart if the key part is missing.

Speci�cally, we take each graph in F without modi�cation, and insert one new graph with the

edges (k; a) and (a; k) for all other parts a. For all subassembly not containing k, this graph will

allow complete disassembly with additional cost one in terms of the number of directions, number of

re-orientations or number of non-linear steps. (Notice that for Cost C4, there may be a logarithmic

increase in the depth). Furthermore, this graph is strongly connected, and hence of no use, for any

subassembly which contains k.

This gives us an approximation-preserving reduction for these cost measures. Clearly, any solu-

tion to the new full disassembly instance can be translated to a solution to the original keypart

problem with at least as low of a cost. Furthermore, the optimal solution for the full disassembly

problem has cost at most one more than the optimal solution for removing the key part, namely using

the new graph to �nish the disassembly with additive cost one.

Proof of Theorem 4:

For this reduction, we will take an instance which when restricted to linear moves, and we will enforce

this linear restriction by converting each graph into n graphs, each which only allows the removal of

one part. Given an instance of the problem of removing a given part when restricted to linear steps,

we create the following unrestricted instance.

We keep the same set of n parts, and we create a new family of njFj graphs. Since F = poly(n),

then so is njFj. For each pair (p; d), with part p 2 P and direction d 2 F , we create a new graph

which is a clique on the n � 1 parts (P � p), and which has edges (p; a) and (a; p) for each part a

if edge (a; p) 2 d. We claim that the only possible action allowed by this graph is to remove the

single part p from a subassembly, and that this one action is possible if and only if there is a linear

operation which removes part p from the same subassembly using direction d. That is, the set of
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parts which immediately block p in direction d are exactly those parts which must be removed to

disconnect p in our new graph.

With this claim, we immediately get an approximation preserving reduction, because there is

a one-to-one correspondence between solutions of the original problem and solutions of the new

problem. Every linear move in the original problem has a unique graph in the new problem that

allows the identical part to be removed, and vice versa. Therefore, the number of steps in a solution

to the original problem is exactly equal to the number of steps in a solution to the new problem.

Furthermore, since each graph is useful for at most one linear move in our new instance, then the

number of steps in the original solution is also equal to the number of removed parts, number of

directions, or number of re-orientations used in the new instance.

Since all valid moves in our new instance happen to be linear, this construction immediately

proves that when restricted to linear moves, minimizing the number of removed parts reduces to

minimizing the number of directions, the number of re-orientations, or the number of steps.

Proof of Theorem 5:

Given an instance of and/or scheduling, we realize it as an instance of removing a given part,

restricted to linear moves, while minimizing the number of steps. We create one part for each task

in the scheduling problem. The number of graphs in our family of motions is exactly equal to the

or-degree of the scheduling problem. By default, each of the graphs is complete, however we will

delete the following edges. For an and-task, ti, we will modify the �rst graph by deleting edges

(ti; a) for all a 62 Pi. In this way, part ti can be removed using this graph, if and only if all of its

corresponding predecessors have been previously removed. For an or-task, tj , with degree �, we

will modify the �rst � graphs as follows. For each a 2 Pj , we will modify one of the graphs by

deleting all edges (tj ; b) for all b 6= a. In this way, part tj can be removed using this graph so long

as part a is priorly removed. Therefore, if any one of the predecessors has been removed, then there

will be some graph which allows for the removal of tj with a linear move. This VAS instance is

exactly the original and/or scheduling instance, where the number of parts removed is equal to the

number of scheduled tasks.

Proof of Theorem 6:

Given an instance of removing a key part with linear steps, we create an instance of and/or

scheduling as follows. The intuition is that we want to equate the removal of a part with the

scheduling of two tasks, namely one tasks which says \I am about to remove part p in direction d"

and a second task which says \Part p has been removed." We implement this as follows. For each

part p, we will create a task, tp, and for each pair (p; d), with part p 2 P and direction d 2 F , we
will create task t̂(p;d). We will equate task t̂(p;d) with the statement \I am about to remove part p

in direction d," and thus we make it an and-task with task ta in its predecessor set for every edge

(p; a) 2 d. We will equate task tp with the statement, \part p has been removed" and so we make it

an or-task with task t̂(p;d) in its predecessor set for each direction d.

For this construction, any solution to the scheduling problem can be translated to a solution

of the VAS problem with the number of removed parts at most half of the number of scheduled

tasks. Similarly every solution to the VAS problem can be translated directly to a solution to the

scheduling problem with the number of scheduled tasks exactly twice the number of removed parts.

In this sense, we get an approximation preserving reduction, in that any t-approximation to the

and/or scheduling instance gives us a t-approximation to the original VAS instance. However,

our construction uses a polynomial blowup in the problem size, therefore what we have shown is

that an f(n)-approximation algorithm for and/or scheduling gives us an f(poly(n))-approximation

algorithm for this VAS variant.
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7 Inapproximability of and/or Scheduling

We begin by considering the and/or scheduling problem when restricted to internal-tree precedence

constraints, as de�ned in in Section 5. We will look at the problem where we only charge an algorithm

for the leaves that it schedules7. We show the inapproximability of this problem by showing that

the LabelCovermin problem[3, 4] is a special case. Following this, we show that the lower bound

applies even when we further restrict the and/or problem to have degree bounded by two. Finally,

we convert this bound on the number of leaves scheduled, into a bound on the total number of

scheduled nodes for the general and/or scheduling problem. An overview of the reductions is given

in Figure 7.

Theorem 7 It is quasi-NP-hard to approximate the number of leaves scheduled in an instance of

and/or scheduling with internal-tree precedence constraints, to within a factor of 2log
1�
 n for any


 > 0. This remains true even if both the and-degree and or-degree are bounded by two.

Theorem 8 For the problem of minimizing the number of tasks scheduled in a general instance of

and/or scheduling, it is quasi-NP-hard to achieve an approximation ratio of 2log
1�
 n for any 
 > 0.

This lower bound remains valid if both the and-degree and or-degree are bounded by two.

7.1 Proofs

Proof of Theorem 7: The LabelCover problem, de�ned in [4], is an arti�cial generalization of

the Set Cover problem introduced in approximability theory. The input is a regular bipartite graph,

G = (U; V; E), a set of labels f1; 2; : : : ; Ng, and a partial function �e : f1; 2; : : : ; Ng �! f1; 2; : : : ; Ng
for each edge e 2 E. A labeling associates a non-empty set of labels with every vertex in U [ V . It

is said to cover an edge e = (u; v), if for every label b assigned to v, there is some label a assigned

to u such that �e(a) = b. The goal of LabelCovermin is to give a labeling which covers all edges,

while minimizing the total number of labels assigned to nodes of U .

7The internal-tree de�nes a monotone, boolean function on the leaf nodes, in which setting a leaf's variable to

\one" signi�es that the leaf will be scheduled. Minimizing the number of scheduled leaves is equivalent to satisfying a

monotone boolean formula with the minimum number of ones. Therefore, our results also prove the inapproximability

of this problem on monotone boolean formulae. We are unaware of any previous results for this approximation

problem.
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Given an instance of LabelCovermin, we express it as an instance of and/or scheduling with

internal-tree precedence constraints. The and/or instance has �ve levels, which alternate between

and-nodes and or-nodes. The highest level contains solely the root of the internal-tree, and the

lowest level contains exactly the leaves. The tasks at the �ve levels are as follows:

� The �rst level has a single and-node, which is the root of the internal-tree. This task enforces

that for a valid labeling, every node in V must have a non-empty set of labels.

� The second level has an or-node for each vertex in V . This nodes requires that for a given

node v to have a non-empty label set, at least one label must be assigned to it.

� The third level has an and-node for each pair hv; l0i, where v 2 V , and l0 2 f1; : : : ; Ng. This
node signi�es that for label l to be assigned to vertex v, it must be the case that for each edge

e = (u; v) incident to v, the mapping �e on that edge, must respect the labeling.

� The fourth level has an or-node for each pair he; l0i, where e = (u; v) is an edge, and l0 is a

label. If l0 is to be assigned to v, then edge e cannot be covered unless one of the pre-images

of l0 from mapping �e is assigned to u.

� The �fth level has a leaf for each pair hu; li, and corresponds to label l being assigned to vertex

u.

This completes the construction. It can be seen that there is a one-to-one correspondence between

valid labeling in the LabelCovermin instance and valid solutions to the and/or scheduling in-

stance. It is easy to verify that the and/or instance has internal-tree precedence constraints.

Notice that the number of non-leaf tasks in this construction is polynomially bounded in the size of

the LabelCovermin instance (namely, in jU j, jV j and N).

Combining this with the result of [4] which proves a similar lower bound for the approximability

of LabelCovermin, we get that it is quasi-NP-hard to achieve an 2log
1�
 n approximation for any


 > 0.

Given an instance with unbounded degree, we can bound the in-degree in the obvious way, by

replacing each internal node with a tree of bounded degree nodes. Assume there were originally I

internal nodes and L leaves, and that I is polynomially bounded in L. The maximum fan-in for any

node is at most (I+L), and thus that node must be replaced by a tree of at most (I+L) nodes, each
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with fan-in two. The new instance has I(I +L) internal nodes, which is still polynomially-bounded

in L.

Proof of Theorem 8: The only di�culty in switching from the measure of counting scheduled

leaves to counting all scheduled nodes is that the overhead of the internal nodes may have a signi�cant

cost, changing our approximation ratio. This can be remedied quite easily.

Assume we have a hard instance of internal-tree scheduling from Theorem 7, with I internal

nodes and L leaves. We convert this to a general instance of and/or scheduling by hanging from

each leaf a chain of I new nodes. Notice that the or-degree is not increased, although this new

instance no longer has internal-tree precedence constraints.

In this way, the problematic additive cost can be made arbitrarily small, and so the only issue in

completing the proof is to address the input size. In Theorem 7, the value n was assumed to be the

number of leaves. In our new instance, the total number of nodes is n0, however we can rely on the

fact that n0 = poly(n), and thus an approximation ratio of 2log
1�
 n0 is less than a ratio of 2log

1�

0
n

for some 
0 > 0.

8 Inapproximability of Virtual Assemby Sequencing

In this section, we will prove the inapproximability of many variants of the VAS problem. Our

�rst set of results will be a direct consequence of the hardness of and/or scheduling shown in the

previous section. Our second set of results will show weaker inapproximability results for minimizing

the number of re-orientations which apply when the family of motions is restricted to be of constant

size (restriction R2). These results come from a natural reduction from the Loading Time Scheduling

Problem [8].

Theorem 9 For the problem of removing a key part, when restricted to linear moves, while min-

imizing the number of removed parts, it is quasi-NP-hard to achieve a 2log
1�
 n-approximation for

any 
 > 0. This result applies even when jFj = 2. (For one graph, this problem is polynomially

solvable.)

Corollary 10 It is quasi-NP-hard to achieve a 2log
1�
 n-approximation for any 
 > 0, for the fol-

lowing variants of VAS, namely for any of the goals, (G1, G2, G3, G4, G5), while minimizing any

of the cost measures, (C1, C2, C4, C5), with or without the linear restriction, (R1).

Theorem 11 We consider minimizing the number of re-orientations, when the family of motions

is restricted to be of constant size, (R2). For any of the goals, (G1, G2, G3, G4, G5), we prove

the following two results, (i) for jFj = 3, this problem is NP-complete; (ii) for jFj � 4, there exists

an � > 0, such that achieving an jFj�-approximation for NP-hard. Both of these facts hold with or

without the linear restriction, R1. (for jFj = 2 this problem is trivially solvable.)

8.1 Proofs

Proof of Theorem 9: This theorem is an immediate result of the hardness of and/or scheduling

given in Theorem 8, combined with the reduction of Theorem 5.

Proof of Corollary 10: This is a result of Theorem 9, combined with the reductions between

variants of VAS given in Theorems 1, 2, 3, and 4.

Proof of Theorem 11: We begin by proving this result for the goal of removing a key part from

the assembly. We will give a reduction from the Loading Time Scheduling Problem, de�ned a follows
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[8]. There is a set of n jobs, and � machines, and each job, j, can only be performed by some subset

of the machines, M(j). An algorithm pays for loading a machine, but once that machine is loaded,

it may perform any available operations at no additional cost. Finally, the jobs have (standard)

precedence constraints, represented by a directed acyclic graph G. The overall cost is the sum of

the machine loading times for the sequence. They consider a weighted version where each machine

mi has loading time l(mi).

We give a reduction from the LTSP problem when all loading times are equal to 1, to the VAS

problem of removing a key part (with or without the linear restriction), while minimizing the number

of re-orientations. Given an instance of LTSP we create an instance of VAS with a part for each

job in the LTSP instance, and one additional part, key, whose removal will be our goal. For each

machine m, we create a graph Gm 2 F . The graph will be a superset of the precedence graph, G,

given in the LTSP instance8, augmented with the edge (key; i) for all parts i, as well as the edge

(j; key) for any job, j, such that m 62M(j). An example of such a graph is given in Figure 7.

We will associate the removal of a part in our problem to the scheduling of a job in the LTSP

instance. We claim that our graph Gm allows for the immediate removal of part j by a linear step, if

and only if job j can be immediately scheduled on machine m. Assume that job j can currently be

scheduled on machine m. In this case it must be that m 2M(j) and that all predecessors of j have

already been scheduled. But in this case we claim that vertex j has no outgoing edges in graph Gm,

and thus can legally be removed using that graph. Since m 2M(j), then vertex j does not have an

edge to key, and since all of the predecessors of job j have been previously scheduled, then vertex j

does not have any outgoing edges remaining from the original graph G. Similarly, if job j cannot

be immediately scheduled, then it must be either because m 62 M(j) or else one of the predecessors

of j has not yet been scheduled and cannot be scheduled on this same machine. If m 62 M(j), then

both edges (key; j) and (j; key) exist and hence j and key cannot be separated. Instead, if one of the

predecessors of j, call it b, has not yet been scheduled, than the edges (key; j), (j; b), and (b; key)

will exist, and again j cannot be separated from key. For this reason, we claim that any solution to

the LTSP instance can be translated to a solution with equal cost for removing the key part, and

8actually, we reversal all edges of G, as [8] de�nes an edge from x to y as signifying that y cannot be run until

after x.

20



vice versa, and thus we have an approximation preserving reduction. Finally, we note that we need

not explicitly require the restriction to linear moves since if our graph allows for a set of parts to be

removed at once, then it is also possible to remove them one at a time without re-orienting.

At this point, we rely on results shown in [8], combined with a result of [41], which prove these

claims, where the number of machines corresponds to jFj.
Notice that for our construction, the full disassembly problem will be solved exactly as the key

part when all parts have been removed from the key part, and so these bounds hold for the full

disassembly problem. For the problem of separating a pair, we can use a trick similar to Theorem 1

by modeling the key part as two parts stuck together which can be separated with one additional

graph once they are isolated from the other parts. Both of these constructions are valid with or

without the restriction to linear steps.

9 Geometric Lower Bounds

It is important to note that the reductions which we gave in our general VASmodel do not automat-

ically apply to the original geometric assembly sequencing problems. This includes the reductions

proving hardness of problems, and similarly all of the reductions relating the hardness of di�erent

variants of our problem. The reason these results do not apply is that a hard instance of the general

problem may not be realizable using geometric input. It is possible that by generalizing the original

problem, we may have made it much more di�cult.

In this section, we realize lower bounds for three di�erent complexity measures. First we consider

minimizing the number of directions for any of the �ve problem goals, in a setting of three-dimensional

polyhedral assemblies, when the allowable motions is either in�nitesimal or in�nite translations.

Second, we consider minimizing the number of re-orientations for any of the �ve problem goals, when

restricted to linear moves. We give a lower bound construction using two-dimensional polygonal

assembly, showing the inapproximability when restricted to removing one part at a time. Finally,

for minimizing the number of parts removed in accessing a key part, we give our strongest inap-

proximability results. We prove a 2log
1�
 n lower bound for the approximability, using an assembly

consisting entirely of unit disks in the plane, where disks are removed using translations to in�nity.

As far as we know, this provides the strongest inapproximability results for a simple, combinatorial,

geometric problem.

Theorem 12 We consider minimizng the number of directions used (C1), for a polyhedral assembly

in three-dimensions, and either in�nitesimal or in�nite translations. In this setting, it is NP-hard

to minimize the number of distinct directions for any of the goals (G1, G2, G3, G4, G5). This is

valid with or without the linear restriction, R1.

Theorem 13 We consider minimizing the number of re-orientations used in removing a key part

when restricted to linear steps (R1/C2), for a polyhedral assembly in two-dimensions, using either

in�nitesimal or in�nite translations. In this setting we prove, (i) when jFj = 3, minimizing the

number of re-orientations is NP-complete; (ii) when jFj = 4, there exists some c > 0, such that

acheiving a (1+ c)-approximation is NP-hard; and (iii) there exists some � > 0, such that achieving

a log� n-approximation is quasi-NP-hard.

Theorem 14 We consider an assembly consisting solely of disks of unit radius, whose centers lie

on a polynomial-sized grid in the plane. Our goal is to remove a key disk, and we allow disks to

be removed by translations to in�nity (either individually, or as a group). For this setting, it is

quasi-NP-hard to approximate the minimum number of removed disks to within a factor of 2log
1�
 n
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for any 
 > 0. This bound also applies if we consider only translations along the positive X-axis

and Y -axis. Additionally, this construction generalizes to axis-aligned unit squares, and to higher

dimensions.

9.1 A Special Case of Set Cover

Proof of Theorem 12: We begin by considering the goal of removing a key part, and we construct

a three-dimensional assembly as follows. For the key part, we create a large 
at base rectangle which

sits on the bottom of the assembly. Then, the remainder of the parts will be \pegs" which are

imbedded far apart into the base piece. The goal will be to isolate the base piece, or remove all

the pegs. The key is that we will describe the shape of each peg in a way so that it can only be

translated away from the base in a specifc region of the space of directions. As pointed out in [54],

this instance looks very much like a Set Cover problem, in that we must chose a minimum number

of directions, where each direction allows for the removal of some set of pegs. Unfortunately, it is

not possible to realize an arbitrary instance of Set Cover in this way, so the lower bounds for that

problem do not apply.

However, we will show that we can realize any instance of a special case of Set Cover which

we call Polygon Cover. The problem is the following, given a collection of polygons (possibly

degenerate), in the plane, the goal is to pick a minimum number of points so that each polygon

contains a point. An even more restricted problem, Rectangle Cover is de�ned in [42], where

all polygons are axis-aligned rectangles, however it is not even known if Rectangle Cover is

NP-hard. However, we can prove the NP-completeness of Polygon Cover through a reduction

from Planar Vertex Cover, which is known to be NP-complete [18]. Given an instance of

Planar Vertex Cover, we can simply let each edge be represented by a (degenerate) polygon.

Without loss of generality, in covering the polygons, there is no need to pick a point that is not at a

vertex of the graph, and hence this instance is exactly the instance of Planar Vertex Cover.

What remains is to show that any instance of Polygon Cover can be realized using our \pegs"

construction. Given a set of polygons, we will think of their spherical projections onto the upper

hemispehre. Given a single such projection, we can design a peg which can be removed from the

base using exactly those directions represented by the polygon. We simply create a peg which is

embedded into the base, with the shape of the polyhedral cone de�ning the projected polygon (for

example, if the polygon were a square centered around the origin, our corresponding peg would be

a four-sided pyramid embedded upside down with its tip in the base). For degenerate polygons, we

may use parallel planes with an arbitrarily small separation to de�ne our pegs. Each peg can be

made arbitrarily small, and so we may lay out many such pegs in the base, without them interfering

with each others removal. Thus we can embed any instance of Polygon Cover and hence we have

shown the NP-completeness for removing a given part.

Finally, we note that this exact construction is fully disassembled exactly when all pegs have

been removed from the base, and so this proves the hardness for goal G1. For the goal of separating

two parts, we can split the base into two pieces, cutting it parallel to its top surface, so that all the

pegs completely penetrate the �rst piece, and are imbeded into the second. The two parts of the base

will be stuck to each other until all of the remaining pegs share a common direction for removal, and

hence our cost will be unchanged.

9.2 Finding a Common Supersequence

Proof of Theorem 13: When constrained to using linear moves, we give a construction which

reduces the problem of �nding a common supersequence [18], to the problem of removing a part from
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Figure 8: Example construction for SCS reduction

an assembly consisting of polygons in two-dimensions. A string T is a supersequence of a string

S, if S can be obtained by erasing zero or more symbols of T . Given a �nite set of strings over

alphabet �, a common supersequence is a string T which is a supersequence for each string in the

set. Given a set of s strings, with combined length n, over an alphabet of size j�j = k, we build the

following instance of removing a part from an assembly. The key part is a long 
at base rectangle,

and each sequence will be represented as a tower of \square" blocks stacked on the base, with the

towers spaced su�ciently away from each other. Each block will represent a symbol in a string, and

will be attached to the piece below it with a small \peg" inserted into the piece below will restrict

the separation to a single direction of motion. The exact direction of motion for each block will be

chosen according to the alphabet symbol represented by the block, and each alphabet symbol will be

given a unique direction. All of the directions will be chosen to lie in a su�ciently small cone so as

to prevent the individual towers from interfering with each other. A (modi�ed) example is given in

Figure 8.

If we assume that none of the input sequences contain consecutive occurences of the same char-

acter, then we claim that any solution for removing the key part provides us with a supersequence

whose length is equal to the number of re-orientations, and vice versa. If the supersequence input

does have consecutive occurences of the same character, we can remedy this at the cost of doubling

the size of the alphabet by replacing each occurence of character a by the sequence a1a2.

The problem of �nding the shortest common supersequence is known to be NP-hard [18], and

more recently it was shown to be Max-SNP-hard, even over a binary alphabet [9]. Therefore, by

doubling the alphabet as above, we get that our problem of removing a part is Max-SNP-hard, when

jFj � 4. Also, it was shown in [30] that there exists a constant � > 0, such that it is quasi-NP-hard to

approximate the shortest common supersequence to within a factor of log�n. Finally, even if strings

have consecutive occurences of the same symbol, it was shown that for an alphabet of size j�j = 3,

that �nding a common supersequence with the minimum number of runs is NP-complete [41]. A

run is de�ned as a group of consecutive occurences of the same symbol, and hence the number of

runs is exactly equal to the number of re-orientation in our problem. For this reason, minimizing the

number of re-orientations is NP-complete when jFj = 3. This proves our theorem for the problem of
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Figure 9: Overview of Disks construction

removing a key part.

Again, we can apply this construction to prove the identical result about the other possible goals.

In our original construction, we note that as soon as our key part is separated from all of the parts,

then we have completed the full disassembly problem. For the problem of separating a pair of parts,

we must introduce two extra parts which are to be separated. These two parts are placed along the

bottom of the original base, and pegs are used as shown in Figure 8 to stick the parts to each other

and to the base. Because we are restricted to using linear operations, the only way these two parts

can be separated is by �rst moving the base upwards away from them, and this in turn can only be

done after all of the towers are removed from the base. This completes our proof.

9.3 The Disks Problem

Proof of Theorem 14: Our proof is based on a reduction from and/or scheduling with internal-

tree precedence constraints, and with or-degree bounded by two. (We do not require such a bound

on the and-degree.) Given a hard instance from Theorem 7, we construct an instance of the Disks

problem. We assume, without loss of generality, that or-nodes rely only on internal nodes.

Our scene consists entirely of disks with radius one, whose centers lie on a polynomially-sized,

integer grid. We prove this result directly for the case where only two directions of translations are

allowed, namely North and East. We place a wall of width 2W around the perimeter of our working

area which we consider immovable. We will place some holes in the wall, as needed, which allow

a clear path out for some disks. We consider our main working area as two sections, one for the

mechanisms involving the interior nodes, and the second section for the leaf node mechanisms. The

overview of the construction is given in Figure 9.

First we describe the mechanism involving the internal nodes. Since the internal-tree de�nes a

partial order on these nodes, we can number the internal nodes, T1; : : : ; TI so that if an internal node

depends on another internal node, it will have a higher index. For each internal node, Ti, we create

a disk, Di, centered at (6i; 6i). We give each such disk an \escape route" to the North by creating

a hole in the above wall. For an or-disk, we create an additional passage to the East.
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Finally, we add in additional disks to enforce the precedence constraints. For and-node, Ti,

blocked by node Tk 2 Pi (and thus i < k), we add a disk Ak
i centered at (6i+ 1; 6k� 1), and force

this disk to exit to the East. For an or-node, Ti, which depends on 2 nodes, Tk and Tl, we create

two new disks, Ok
i located at (6i+ 1; 6k� 1) which we force East, and Ôl

i located at (6l� 1; 6i+ 1)

which we force North. The entire internal node mechanisms are contained in a (6I + 1)� (6I + 1)

square. Examples are given in Figure 10.

The section for the leaf mechanisms begins at height 6(I+1) so as to be higher than the internal

mechanisms. We can number the leaf nodes in any order, and we create a separate mechanism for

each leaf in a strip of height 2I . For a given leaf, La, we create what we term a blockade, to the right

of this strip. The blockade consists �rst of a diagonal chain of to the Northeast of height 2I , followed

by a horizontal chain of B disks to the East of the end of the �rst chain (where B is determined

later). The disk beginning the blockade is centered at (6(I+1); 6(I+1)+ Ia). The wall to the East

of the blockade is removed, allowing the disks of the blockade an escape. For any disk located in the

horizontal strip associated with La, escaping to the East will require an additional cost of at least

B to break through the blockade. However this cost is only charged once per blockade, after which

any disks in the horizontal strip may escape. Now, for every internal node Ti which depends on leaf

La, we create a disk L
i
a, located at (6i+1; 6(I+1)+ Ia+2i), which we force East. Figure 11 shows

an example of a leaf mechanism.

To complete the construction, we set the blockade value, B = 4I(L+ I), to be greater than the

total number of disks in the remainder of the internal and leaf mechanisms combined. In this way, the

number of blockades removed dominates any additive costs in the rest of the construction. Finally,

we assign W = B(L + 1), so that the cost of removing all non-wall disks is less than the cost of

digging a single new hole through any part of the wall. For this reason, we may assume without
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Figure 12: A complete Disks construction

loss of generality that any solution to this Disks instance has cost at most W . Finally, we note that

the wall has perimeter which is O(BL), and hence the total number of disks in our construction is

polynomially bounded. An example of the �nal construction is given in Figure 12.

It is not hard to verify that for this Disks instance, a solution for removing the root disk with

cost at most kB can be translated to an and/or solution of cost at most k. Similarly, an and/or

solution of cost k can be translated to a Disks solution with cost less than (k + 1)B. Therefore,

approximating the Disks problem to within a factor of 2log
1�
 n for any 
 > 0 is quasi-NP-hard, as

the additive error and the polynomial increase of the input size disappear by adjusting 
.

Our proof shows the hardness of the Disks problem when translations are limited to the North

and East. In fact, if we allow translations in arbitrary directions, the theorem holds using this same

construction. Furthermore, there is no need to force a restriction to linear moves, since moves which

remove a group of disks at once could be replaced by a set of linear moves.

It is also easy to see that the disks can be replaced by axis-aligned, 2 � 2 squares and the

construction still holds. For higher dimensions, the wall can be extended to block any useful motions

in other dimensions, while still using polynomially many disks.

10 Implications of the Hardness of and/or Scheduling

We feel that the problem of scheduling with and/or precedence constraints raises several important

complexity issues, of considerable interest in their own right. This form of precedence constraints is

a fairly natural extention to the standard scheduling problem, yet clearly the e�ect of this change on

the di�culty of the problem is quite dramatic. We pose a series of open directons of research related

to the theory of approximability and where this problem �ts in relation to several other problems.

In Section 7, we consider several versions of this scheduling problem, giving reductions from

one to another, and then proved a lower bound of 2log
1�
 n against the approximability of all of
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these problems by showing that the easiest of these versions captures the LabelCovermin problem

as a special case. It is open to determine a separation between any of the steps of the series of

reductions. That is, the LabelCovermin results provide our strongest results even for the most

general and/or scheduling problem, yet there is reason to believe this may be an even more di�cult

problem. It is already conjectured that LabelCover is truly n�-hard to approximate [4], however it

may be possible to strengthen the lower bounds for and/or scheduling without necessarily settling

the LabelCover conjecture. Furthermore, reasoning about instances of and/or scheduling seems

to be a bit more intuitive then about instances of a problem such as LabelCover.

10.1 Alternating Levels of Internal-Tree Precedence Constraints

We examined a very structured class of instances of and/or scheduling which had what we termed

internal-tree precedence constraints, and we considered charging only for the leaves that are sched-

uled. Without loss of generality, we can assume that the root of our tree is an and-node. Without a

bound on the in-degree of the internal nodes, we can collapse the internal nodes into alternating levels

of and-nodes followed by levels of or-nodes, eventually followed by a single level of leaves. Now, we

can consider the complexity of the problem based on the number of alternating levels. If we consider

one full alternation, that is an and-node at the root, followed by a level of or-nodes, followed by

the level of leaves, this problem is exactly equivalent to the Set Cover problem, and hence lies in

Class II. The and-node requires that we cover each item in the universe, and each or-node requires

that for the given item, we pick one of the sets which covers that item. Each leaf corresponds to a

ground set, and thus the number of leaves scheduled is equal to the number of sets used to cover the

universe. If we look again at Figure 6, we see that as soon as we allow two full levels of alternations,

this problem captures the LabelCovermin problem, and hence is in Class III. However it is not at

all clear that this problem is equivalent to LabelCover as we do not know whether an instance

of this restricted and/or scheduling can be translated into a LabelCover instance. Furthermore,

what happens when we go to three full alternations, or to an arbitrary depth internal tree? Does this

hierarchy collapse at some point, and if so when? Can the inapproximability bounds be strengthened

for these versions? What if no constraints are placed on the structure of the precedence graph?

The answer for some of these questions may come from research in the study of monotone boolean

formulae. As we mentioned earlier, the internal-tree precedences exactly de�nes a monotone boolean

function on the leaves, where the goal is to satisfy the function using the minimum number of ones.

It is clear than an arbitrarily complex formula on n leaves can be collapsed into an and/or tree

with a single alternating level, where the top choice is of picking one of the satisfying assignments,

and for each satisfying assignment, you must schedule all of the leaves which correspond to variables

set to one. The problem here is that the number of internal nodes in this representation is no longer

polynomial in the number of leaves, and this condition was necessary for our reductions. There is a

wealth of research related to monotone formulae and circuits in this respect [36, 46, 56], however it

is open to strengthen any of our inapproximability results for and/or scheduling.

11 Conclusions & Open Problems

We explain the lack of progress in �nding optimal or near-optimal assembly sequences by formally

proving the inapproximability for minimzing the cost of an assembly sequence for a variety of desired

cost measures. We look at several variants of the problembased on either full or partial (dis)assembly,

and we classify the approximability of the problems based on the desired cost measure and additional

restrictions placed on the allowed sequences.
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For a graph-theoretic generalization of these problems, we show that achieving an approximate

solution within a factor of 2log
1�
 n of optimal, for any 
 > 0, is di�cult for most of the cost meas-

ures we consider. As a special case, we prove similar hardness results for the problem of scheduling

with and/or precedence constraints. Finally, as our graph-theoretic problem is a generalization, we

prove hardness results for several complexity measures in simple geometric settings. For minimizing

the number of parts which must be removed to access a key part, we match our strongest inapprox-

imability results, even for a setting consisting entirely of unit disks in the plane, while using simple

translations to in�nity to remove parts. For minimizing the number of directions used or the number

of re-orientations, our geometric lower bounds are far weaker than their graph-theoretic counterparts.

Our hope is that our work can be used to better identify the source of the di�culties, possibly

leading the way to successful approximation algorithms, or else in redirecting future e�orts into

identify other structure or properties of industrical assembly sequencing instances which would allow

for better approximations.

The over whelming open problem which remains is to develop non-trivial approximation al-

gorithms for any of the settings which we study. The importance of our graph-theoretic model is

that it captures techniques that are currently used for �nding feasible sequences for a great deal

of geometric settings. Achieving any postive results in this model would immediately apply to all

of these geometric settings. Our lower bounds show that success in this model is limited, however

achieving something such as a
p
n-approximation would still be of great practical value. Automated

assembly sequencers are beginning to have more impact in industrial use, and for a manufacture,

it is of no comfort to simply say that a problem is di�cult. The product is going to have to be

manufactured one way or another, and so any improvement to the cost is quite valuable.

Alternatively, it may be the case that by studying di�erent geometric settings individually, that

much better approximations can be achieved by taking advantage of additional structure in the

problem. Although we have shown that in some cases, the geometric problem is indeed quite hard,

many of our geometric lower bounds are far below the geneeral bounds. These geometric problems

are the true motivation for this work and so future research should either provide approximation

algorithms for these settings, or else improve the geometric lower bounds to justify the lack of

progress.

Improving any of our lower bounds, or providing non-trivial upper bounds remains open for

either our general problem, or any of the geometric settings we consider. Furthermore, this work

intrduces several interesting questions regarding the theory of approximation. The graph-theoretic

generalization of assembly sequencing which we introduce captures a variety of previously studied

problems, in a fairly intuitive manner. Better understanding the place of these problems in the

approximation hierarchy would be helpful. Speci�cally for the special case of and/or scheduling,

many of these issues were discussed in Section 10.
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