
Reducing Initial Latency in a Multimedia Storage System

Edward Chang and Hector Garcia-Molina�

December 3, 1995

Abstract

A multimedia server delivers presentations (e.g., videos, movies), providing high band-

width and continuous real-time delivery. In this paper we present techniques for reducing

the initial latency of presentations, i.e., for reducing the time between the arrival of a request

and the start of the presentation. This reduction is important in interactive applications

such as playing of video games and browsing of multimedia documents. The techniques

are analyzed and their performance compared. We show that latencies can be signi�cantly

reduced (almost eliminated in some cases) without adversely a�ecting throughput.

Keywords: multimedia, data placement, data replication.

1 Introduction

The delivery of multimedia presentations poses many challenges, from data retrieval [GS93],

to real-time network transmission [RRVK92][RR93][NB95], to user interface design [AN95]. In

this paper we focus on the data retrieval aspect.

An e�ective multimedia storage system must retrieve data at very high rates and in a

continuous fashion. That is, each multimedia presentation (e.g., movie, video) can be viewed as

a sequence of data segments, where each segment must arrive at the display device at or before

the time of display. To achieve this, the storage system must make each segment available to

the network at the appropriate times, even if the disk arms are busy servicing other requests.

In addition to high bandwidth and continuous delivery, our goal is to also minimize the

initial latency. The initial latency is the time between the arrival of a new request and the time

when its �rst data segment becomes available in the server's memory. Traditionally, initial

latency has not received much attention. We believe that this is because one major application

�Stanford University, Department of Computer Science, Gates Hall 4A, Stanford, CA 94305. email: fechang,
hectorg@cs.stanford.edu.

1

of multimedia servers is \movies on demand" where a delay of a few minutes before a new

multi-hour movie starts is acceptable. Indeed, some of the proposed servers either ignore the

latency issue entirely [CPK95] or acknowledge having initial latencies on the order of minutes

[GKS95].

However, we believe that there are important applications where high latencies are not ac-

ceptable. For example, consider a video game where at each step the player's actions determine

what short video to play next. Here we clearly do not want the player to wait a signi�cant

amount of time before each video scene starts. We could try to pre-fetch all the possible videos

that might be selected, but this would signi�cantly increase the server load and memory re-

quirements. Instead, we will reduce the initial latencies by intelligently placing the data on the

disks. Another application that requires low latency is hypermedia documents, as found in the

World Wide Web or a Digital Library. Here a user may examine a \page" that contains links to

a variety of other pages, some of which may be multimedia presentations. Again, it is ine�cient

to pre-fetch all linked options, and the user does not want a signi�cant delay between the time

he clicks on a link and the time the presentation starts.

As mentioned above, we reduce initial latencies simply by placing data segments intelligently

on disk. However, it is important not to sacri�ce throughput (i.e., reduce the number of

concurrent requests that can be serviced) and not to violate the continuous delivery constraint.

Our investigation into data allocation begins with the techniques of [VR93][GKS95], which

already achieve high bandwidth and continuous delivery. A second technique we use is data

replication: Initial segments can be replicated at key positions on the disk, almost eliminating

initial latencies with little overhead. Note that we focus on latencies only at the server; we do

not here consider techniques for reducing network initial latencies.

Trying to reduce initial latencies introduces interesting tradeo�s among latency, through-

put, disk speeds and main memory available. For example, adding memory to a server can be

used to increase throughput or to reduce latencies, so it is important to understand the inter-

relationships between all these factors. A second contribution of this paper is to analyze these

tradeo�s through an analytic model, and to present some guidelines for the choice of appro-

2

priate parameters. Prior studies focus just on improving throughput for a movie-on-demand

server, and do not provide storage design guidelines for multimedia applications of di�erent

requirements.

In this paper we consider the data allocation and replication strategies for a single disk

that contains a set of multimedia presentations or videos. The results can be easily gener-

alized to a system with M disks in two ways. The �rst is to assume that the multi-disk

system partitions videos into M sets, and each is allocated to one disk using our techniques.

The second way is to assume that the M units represent a disk array that can be viewed as

a single \virtual" disk with high bandwidth and striped segments. Here again, we can use

our techniques to allocated the segments to the virtual disk. (We refer interested readers to

[BG94][CLG94][CH95][CPK95][MC95] for a discussion of other issues related to multiple disks.)

The rest of this paper is organized as follows. Section 2 describes the previously-studied

allocation strategies and performance model that we use as a starting point. Section 3 describes

our allocation techniques for reducing initial latency, and which Section 4 evaluates through a

case study.

2 Constrained and Partitioned Allocation

In this section we summarize the existing storage allocation policies that we use as our starting

point. To assist the reader, Table 1 gives the main parameters used to describe these and

the following policies. The �rst portion of Table 1 lists the performance-related parameters,

including throughput and initial latency. The second portion describes the physical and derived

characteristics of the hardware, including memory and disks. The last part summarizes the

notation we use to refer to presentations (e.g., movies, videos) and their segments.

Seek time is the most critical factor over which we have some control (through segment

allocation). To reduce this factor, early studies [GS93][VR93] take advantage of the sequential

access nature of a presentation and propose to limit the distance between their segments on

disks. This placement policy is referred to as constrained allocation. For example, say a presen-

3

Parameter Description

N Throughput, or maximum number of simultaneous displays

TLatency Initial latency to access a media

Mem Total size of memory, bytes

DR Data display rate, bytes/s

TR Disk transfer rate, bytes/s

S Segment size, bytes

R Number of disk partitions, or regions

CY L Number of cylinders, or tracks per surface

� Seek time parameter, constant part

� Seek time parameter, distance dependent part

TSeek Inter-segment seek time, milliseconds

TRegionSeek Total seek time in a disk region, milliseconds

TRegionTR Total transfer time in a disk region, second

m Number of replicas for �rst segments

Xi ith presentation

Xi;j Segment j of presentation i

K Number of presentations

Table 1: Parameters

tation Xi is divided into n segments, (Xi;1, Xi;2, Xi;3..., Xi;n), for storage on disk. Constrained

allocation places each pair of consecutive segments within D tracks, or

jTrack(Xi;j+1)� Track(Xi;j)j � D

Constrained allocation reduces the seek distance from what in the worst case can be the radius

of the disk, to a maximum of D tracks.

Constrained allocation for the segments of a presentation does not limit seek time with

concurrent presentations. To illustrate, assume there are two presentations on disk, Xi and

Xi+1. The distance between any two given segments | one from Xi and the other from Xi+1

| could be as large as the number of tracks on the disk. An interleaved request, say for Xi+1;1

(�rst segment of presentation Xi+1), scheduled between the retrieval of segment Xi;j and Xi;j+1

could therefore generate a seek of more than D tracks, making it hard to meet the continuous

display constraint.

To remedy the shortcomings of constrained allocation, [GKS95] introduces a combined al-

location scheme that employs both constrained and unconstrained allocation policies. The

4

scheme partitions a disk into R equal regions. Segments of all presentations are assigned in

a zigzag manner that follows the disk head movement as the head sweeps the disk. Since the

regions divide the disk evenly, the distance between two contiguous segments is constrained by

a maximum of two regions (assuming that at worst one segment is at the head of one region

and another is at the tail of the next region), or 2
R
of the disk radius. Within a region, segments

of di�erent presentations are placed with no constraints.

Table 2 illustrates this scheme with a disk with 8 regions and three videos. The �rst segment

of each video is placed in region 1. Subsequent segments are placed in regions 2-8, and then in

the reverse order from 8 to 1. Additional segments (not shown) would repeat the pattern.

To display objects, the disk head moves like an elevator from the innermost region (region

1) to the outermost (region 8). After reaching the outermost region, it swings inward to the

innermost region. This procedure repeats itself until there are no more segments to retrieve.

At each region, the disk head picks up all requested segments in the region. For instance, if

presentation X1 is requested, the disk head picks up segment X1;1 as it services region 1. If X1

and X2 are both requested at the same time, then two segments, X1;1 and X2;1 are retrieved

from region 1; and X1;i and X2;i, i = 2 to 16, are retrieved from the subsequent regions. At both

ends of the disk, the regions are serviced twice before the disk head moves inward or outward.

For instance, the disk head when on region 8 the �rst time retrieves segment Xi;8, the next

time period it stays in the same region to retrieve segment Xi;9.

A new request for a currently displayed or new presentation can arrive any time. For

example, say a request for presentation X3 arrives while the disk head is servicing the second

region and moving toward the third region. The new request can be serviced provided the disk

bandwidth is adequate. However, the new request must wait for the disk head to reach region

8, swing back to region 1, and reverse its direction to pick up segment X3;1.

This scheme guarantees each concurrent presentation a fraction of the disk bandwidth while

at the same time limiting the length of seeks to 2
R
of the disk radius. However, new presenta-

tions must wait until the disk head sweeps to the starting position. In our example above, a

5

Region Video 1 Video 2 Video 3

1 X1;1 X1;16 X2;1 X2;16 X3;1 X3;16

2 X1;2 X1;15 X2;2 X2;15 X3;2 X3;15

3 X1;3 X1;14 X2;3 X2;14 X3;3 X3;14

4 X1;4 X1;13 X2;4 X2;13 X3;4 X3;13

5 X1;5 X1;12 X2;5 X2;12 X3;5 X3;12

6 X1;6 X1;11 X2;6 X2;11 X3;6 X3;11

7 X1;7 X1;10 X2;7 X2;10 X3;7 X3;10

8 X1;8 X1;9 X2;8 X2;9 X3;8 X3;9

Table 2: Two Direction Data Placement Example With Eight Regions

new request could wait for the disk head to travel up to 16 regions. In general, the maximum

initial latency is the time for the disk head to service 2�R regions1. The simulation reported

in [GKS95] shows that this delay can be large, especially when the system is busy. For ex-

ample, with 33 concurrent presentations and 24 regions, the initial latency can be up to 63.2

seconds. As we argued in Section 1, such delays may be unacceptable in many applications

with unpredictable requests for short presentations.

In Section 3 we study a variety of schemes to reduce this latency without adversely a�ecting

the number of concurrent presentations. However, before that, we brie
y derive expressions

for the latency and throughput under the initial strategy of this section. These expression

will then be contrasted to those derived for the later schemes. The derivations that follow are

equivalent to those of [VR93][GKS95], except that we derive closed-form expressions for both

TLatency and the maximum throughput N , instead of getting their values by solving a set of

equations numerically. We believe that the analytical expressions are useful for explaining and

contrasting the various approaches.

2.1 Performance Expressions

As mentioned earlier, the worst case initial latency for the R region disk partitioning scheme is

the time to service 2� R regions. This can be written as (R � 2)

TLatency = 2�R� (TRegionTR + TRegionSeek) (1)

1In the degenerate case R = 1, the delay need not be multiplied by 2. The evaluation in Section 4 takes this

into account.

6

where TRegionTR is the time to transfer all requested segments in a region, and TRegionSeek is

the total seek time for segments fetched in a region. With N simultaneous displays, TRegionTR

is N times the time to transfer a segment, or

TRegionTR = N � S

TR

The worst case seek distance in a region, with non-constrained allocation in the region, is the

width of the region or CY L
R

tracks. Using the seek time model of [BT89], the seek time is

�+(��p#tracks), where � and � are disk parameters. Hence, the worst individual seek time

can be written as

TSeek = � + (� �
s
CY L

R
): (2)

The total seek time for N segments of a region is2

TRegionSeek = N � TSeek :

Substituting TRegionTR and TRegionSeek into equation 1 yields

TLatency = 2�R�N � (
S

TR
+ �+ (� �

s
CY L

R
)): (3)

To derive the maximum throughput, N , we need to select the segment size S and the

number of regions R that maximize N without violating two constraints: memory availability

and display continuity. The former speci�es that the memory required to display N concurrent

presentations be less than or equal to the available memory, Mem. At �rst glance, it may

appear that N � S bytes are needed for N presentations. However, as each segment is played,

the memory blocks that make it up can be reused for other segments. So on the average over

time only S=2 bytes are needed per presentation. Thus, the memory constraint is:

S �N

2
�Mem:

This inequality can be rewritten as

S � 2�Mem

N
: (4)

2Actually, one of the N seeks can be for up to 2�CYL

R
but we ignore this here.

7

To satisfy the second constraint, we need to use bu�ering and read-ahead to ensure that for

each presentation there is always a segment that is ready to be transmitted as soon as the last

one is consumed [RV92]. This constraint can be written as

N � (
S

TR
+ TSeek) � S

DR
: (5)

The right side of inequality 5 is the time to consume a segment from memory. To maintain a

continuous display, the bu�er must be replenished before it runs out. In other words, in that

amount of time we must be able to read the next segment, as well as the other segments (for

other presentations) that are read with the disk heads visits a region. The time to read N

segments is thus on the left of inequality 5. We can rewrite inequality 5 as

N � TSeek � S � (
1

DR
� N

TR
) (6)

and then substitute S by 2�Mem
N

in the right hand side, to obtain

N � TSeek � (
2�Mem

N
)� (

1

DR
� N

TR
) (7)

Multiplying N and moving all terms to one side, we obtain the expression

TSeek �N2 +
2�M

TR
�N � 2�M

DR
� 0:

This second order polynomial can be solved for equality. Selecting the only positive root, and

selecting the closest smaller integer value we obtain an expression for the maximum throughput:

N = b
q
(M
TR

)2 + 2�Tseek�M
DR

� M
TR

TSeek
c (8)

Once N is determined, we can compute the minimum segment size S that satis�es both in-

equalities 4 and 5, and then use this value to compute TLatency using equation 3.

3 Schemes for Reducing Initial Latency

This section proposes data placement and disk scheduling policies that attain low initial latency

while maintaining high throughput. We study four policies, each given a short name for future

reference. Each policy uses the previously listed policies, plus a new technique that reduces

latency further or reduces memory requirements.

8

Region Video 1 Video 2 Video 3

1 X1;1 X1;9 X2;1 X2;9 X3;1 X3;9

2 X1;2 X1;10 X2;2 X2;10 X3;2 X3;10

3 X1;3 X1;11 X2;3 X2;11 X3;3 X3;11

4 X1;4 X1;12 X2;4 X2;12 X3;4 X3;12

5 X1;5 X1;13 X2;5 X2;13 X3;5 X3;13

6 X1;6 X1;14 X2;6 X2;14 X3;6 X3;14

7 X1;7 X1;15 X2;7 X2;15 X3;7 X3;15

8 X1;8 X1;16 X2;8 X2;16 X3;8 X3;16

Table 3: Unidirectional Data Placement Example With Eight Regions

1. Unidirectional data layout policy (Scheme Unidirectional);

2. Unidirectional, plus sequential access of segments within a region (Scheme Sequential);

3. Sequential, plus constrained allocation of segments within a region (Scheme Constrained);

4. Constrained, plus replication of �rst segments of presentations (Scheme Replicated).

In reality, the schemes we propose can be used independently. For example, replication

can be used with unidirectional layout only, or directly on the scheme of Section 2. However,

to reduce the number of combinations that have to be analyzed, here we study them in the

sequence de�ned above. After presenting each scheme, we will derive expressions for TLatency

and maximum throughput N .

3.1 Unidirectional layout

Instead of placing the segments in an elevator-like zigzag manner as proposed in [GKS95] (see

Section 2), with unidirectional layout we place the data segments in one direction. Table 3

illustrates this layout on our three video, 8 region example. As shown, the segments of a given

presentation are placed (in presentation order) from the innermost region to the outermost.

When the outermost region is reached, the next segment is placed in the innermost region

again. This scheme modi�es the disk scheduling policy slightly: The disk head retrieves data

only in the same direction as the data placement. After a unidirectional sweep, the disk head

returns to the other end to start the next round of retrieval.

9

The maximum initial latency is reduced from the time to service 2�R regions, to the time

to service R regions plus the cost of resetting the disk head to the �rst region. For modern disks,

this disk head reset from one end of the disk to another is typically less than 20 milliseconds.

Compared with the magnitude of the initial latency that we aim to improve, this 20 millisecond

cost is negligible.

Since the maximum initial latency is roughly half of that for our �rst scheme, our latency

expression is simply equation 3 divided by 2, or

TLatency = R�N � (
S

TR
+ �+ (� �

s
CY L

R
)) (9)

This represents a reduction of 50% in initial latency, with essentially no change to the maximum

throughput achievable.

3.2 Unidirectional sequential data retrieval

With non-constrained allocation of segments within a region (our assumption so far), each seek

distance can be as large as the width of the region. However, forcing the disk head to pick up

segments in their on-disk sequential order (as opposed to some �xed presentation order) cuts

down the expected seek distance to CY L
R�N

, where N is the number of concurrent presentations.

Thus, with this scheme the disk head scans through a region once, picking up segments for the

N presentations.

However, the sequential access policy su�ers a potential drawback. When segments within

a region are read in a �xed presentation order (Section 2), we know that between the time

segment Xi;j is read, and its continuation segment Xi;j+1 is read, we will do at most N � 1

accesses to other segments. With sequential access, on the other hand, segments are read in

di�erent order within each region. In the worst case, segment Xi;j could be read �rst in one

region, while the next segment Xi;j+1 could be read last in its region. This means that we could

have 2� (N � 1) other accesses in between. However, if Xi;j is physically last in its region, and

Xi;j+1 is �rst, then there could be no other accesses between these two Xi reads.

To insulate the playback process from this variability in inter-segment times, we proceed as

10

follows. Say a new presentation Xi needs to be started and its �rst segment Xi;1 is in region

k. When region k is scanned, we read Xi;1 into a �rst memory bu�er (size S) but do not

immediately start playback. When region k is fully scanned, we start playback of Xi;1. If Xi;2

occurs at the beginning of region k + 1, then we need to read it into a cushion bu�er because

the �rst bu�er is still in use. At the other extreme, if Xi;2 appears at the end of k+ 1, then we

do not need the cushion bu�er at all, since the new segment arrives in memory as playback of

the �rst one completes. In any case, by the time the scan of region k+ 1 completes, we have a

full bu�er of Xi ready for transmission, and we are ready to repeat the process.

Thus, playback takes place as in the earlier scenarios, with the exception of the cushion

bu�ers that are needed to handle the variable time between accesses to consecutive segments.

Under the assumption that on the average bu�ers are half full, we need N�S
2

memory for the

main bu�ers of the N presentations, plus N�S
2

for the cushion bu�ers, for a total of N � S.

This means that our memory constraint is N � S �Mem.

The reduced seek times for the sequential policy leads to a smaller initial latency. However,

we also need to take into account the start up delay to �ll up a bu�er with Xi;1 and wait for

the region scan to complete. In the worst case, the request for presentation Xi arrives just after

the disk head has passed over Xi;1 and while this segment is at the very beginning of region

k. In this case, we need to wait for R region scans to return to the beginning of region k, plus

the full scan of region k before we start playback. Hence, the equation for latency is similar to

equation 9 where the R factor is replaced by R+1, and the inter-segment seek distance (in the

radical) is divided by N to re
ect the shorter seeks:3

TLatency = (R+ 1)�N � (
S

TR
+ �+ (� �

s
CY L

R�N
)): (10)

To compute the maximum throughput achievable with sequential access, we proceed as

in Section 2. We start with inequality 5, replacing S by Mem=N (from our new memory

constraint), and using our reduced seek time expression. We omit the rest of the details as the

3Within a region, some seeks could cover more than CY L=(R � N) cylinders, but then some of the other
seeks would have to be shorter. Given the form of our seek time expression, the worst case occurs if the total

seek distance that must be covered within the region, CY L=R, is uniformly split among the N seeks.

11

derivation is very similar to that for the continuous policy that we describe next (and whose

throughput derivation is shown in the Appendix).

3.3 Two-level constrained allocation

With the sequential access policy, we need additional bu�ers to cushion the variability in times

between segments of the same presentation. This variability can be eliminated by placing

segments in the same order within all regions. Thus, segment Xi;j is constrained at both levels:

it must go into the region that follows Xi;j�1, and within that region it must be placed in a

�xed order with respect to the segments of other presentations.

To illustrate, let us return to our three video, 8 region example of Table 3. Assume we decide

to order presentations within a region in the order X1, X2, X3. The segments in region 1 could

be placed in the order X1;1, X2;1, X3;1, X1;9, X2;9, X3;9, X1;17, X2;17, X3;17, ..., X1;1+(R�j),

X2;1+(R�j), X3;1+(R�j), In this case, the segments of presentations are interleaved with each

other. An alternative is to order the segments as X1;1, X1;9, X1;17, ..., X1;1+(R�j), ..., X2;1,

X2;9, X2;17, ..., X2;1+(R�j), ..., X3;1, X3;9, X3;17, ..., X3;1+(R�j), In this case, all the X1

segments in the �rst region are next to each other, followed by the X2 segments, and so on.

In either case, when the disk head scans this region, the X1 segment needed at this point

in time will be read before the needed X2 segment, and so on. Thus, the number of cylinders

between consecutive segments of a presentation is constrained by

jTrack(Xi;j+1)� Track(Xi;j)j � CY L

R

Since the variability in access times is eliminated, we do not need the cushion bu�ers, so the

memory requirement is as with the unidirectional policy, or (N�S)=2 �Mem. The worst case

initial latency is as with sequential access except that only R regions (not R+ 1) are involved:

TLatency = R�N � (
S

TR
+ � + (� �

s
CY L

R�N
)): (11)

The Appendix shows the derivation of the expected maximum throughput for the con-

strained allocation policy. There we show that for continuous display N must satisfy the

12

following quadric inequality:

N4 + (4M2 �M3)�N3 + 4(M2
2 �M1)�N2 � 8M1M2 �N + 4M2

1 � 0 (12)

where M1 =
Mem
��DR

, M2 =
Mem
��TR

, and M3 =
�2�CY L

�2�R
. All parameters except R are determined

by the hardware con�guration. For each R value, the quadric equation can be numerically

solved, and we can obtain N by rounding down the smallest positive real solution.

While constrained allocation can eliminate access variability and reduce seek times, it does

limit the way disk space can be allocated. This may not be acceptable in a dynamic environment

where presentations are created and deleted, and are of varying lengths. On the other hand,

in a static application it may be possible to initially write all the presentations to disk in the

proper order. In Section 4 we will compare the performance of constrained allocation to others,

but the reader should keep in mind that this policy may not be applicable in all environments.

3.4 Replication

Initial latency can be totally eliminated by replicating an initial portion of a presentation in

memory. When a request comes in, the replicated copy in memory is played until the disk head

reaches the �rst non-replicated segment on disk. At that point, playback continues from disk.

The time to reach the �rst disk segment is in the worst case T
0

Latency , so the amount of memory

needed to hold the replicas is the number of presentations K times the data needed for playback

during T
0

Latency seconds. Notice that K is the total number of presentations stored, not just

those that are currently being played. Also notice that we use a \prime" symbol to refer to the

latency of the original storage system without replication; the new latency will be zero. Thus,

the memory needed for replicas is (in addition to the memory needed for usual playback):

K �DR� T
0

Latency (13)

Our latency reducing techniques can cut down T
0

Latency and hence reduce the required memory.

Still, the amount of memory can be large. For instance, if DR is 1.5 Mbps/second (a typical

value), our system stores 100 presentations, and T
0

Latency = 5 seconds, we need nearly 100

MBytes (750 Mbits) to reduce the latency to zero.

13

To reduce the memory requirements, we propose an on-disk segment replication scheme.

The on-disk segment replication scheme consists of the following steps:

1. Determine a tolerable initial latency. For example, a delay that is smaller than the video

frame update rate (25 frames/seconds) is unnoticeable by human eyes. In this case, the

maximum initial latency that is acceptable is 1
25

= 0:04 seconds.

2. Compute the number of replicas, m, required to support the target latency. The value of

m can be obtained by dividing the initial latency of the storage system T
0

Latency by the

target initial latency, and subtracting one (we do not need a replica where the presentation

starts). For example, if the initial latency of the storage system is 1 second and our target

latency is 0.04, then we need 24 (1
0:04

� 1) replicas on the disk.

3. For each presentation, its m replicas contain its beginning segment(s). The size of each

replica is DR�T 0

Latency , i.e., enough data so that in the worst case we can sustain playback

until the disk head reaches the �rst non-replicated segment. (We discuss how to reduce

this size later on in this section.)

4. Place the replicas on disk so that, together with the starting point of the presentation,

they are separated by a distance of CY L
m+1

.

What is the memory requirement for this on-disk segment replication scheme? Without

any optimization, the extra memory required is equal to the unconsumed read-ahead data in

memory when the disk head reaches the �rst non-replicated segment. This excess memory will

remain tied up for the duration of the presentation. To illustrate, consider three replicas that

are separated from each other and the initial segment by CY L
4

tracks. The distance from the

replicas to the original copy is CY L
4

, CY L
2

, and 3�CY L
4

tracks respectively. Assume that the �rst

non-replicated segment is in the cylinder that precedes the one with the �rst replica. In this

case, if we happen to read this �rst replica to start the presentation, all data will be consumed

by the time we reach the �rst non-replicated segment, so we will not need any extra memory.

However, if the �rst non-replicated segment is in the cylinder that follows the �rst replica, we

14

will have a lot of unplayed data when we reach the non-replicated segment. At that point, we

start reading the non-replicated segments of the presentation in a normal fashion, but we will

not be able to release the extra memory. That is, at that point, data starts coming in from disk

at the same rate we are playing it back, so we cannot \wither down" the read-ahead bu�er.

On the average, we expect that when we reach the �rst non-replicated segment we will have

consumed half of the replica. Thus, we will have to maintain in memory (DR � T
0

Latency)=2

bytes for each active presentation, for a total extra memory requirement of

N � DR� T
0

Latency

2
(14)

The extra memory requirement for the on-disk replication scheme is proportional to N (equa-

tion 14), as opposed to the in-memory scheme where the requirement is proportional to K

(equation 13). For the latter, the memory requirement is �xed, and cannot be improved. For

the former, we can actually eliminate the extra memory requirement by using variable size

replicas, as we discuss next.

To remove the memory requirement, the objective is to ensure that no data is left in the

bu�er when the disk head reaches the �rst non-replicated segment. To accomplish this, the size

of each replica should depend on the distance between the replica and the �rst non-replicated

segment. The closer the replica is, the smaller the replica needs to be to cover playback until

the disk head catches up with the presentation. For example, when a replica is a full radius

away from the �rst non-replicated segment, the size of the replica should DR�T
0

Latency. When

the replica is one-half disk radius away from the medium, a replica of half that size is su�cient.

Replicating just the necessary amount of data to cover the time for the disk head to \catch up"

with the presentation on disk leaves no data in the read-ahead bu�er. Therefore, this scheme

eliminates the bu�ering requirement entirely.

A �nal important point to make is that disk replication may involve reading at startup

more data than sitting in a normal segment. If we are not careful, this can disrupt the con-

tinuous display constraint. For example, suppose that we are running the system with N � 1

presentations, i.e., one less than capacity. At this point the system can take on an additional

15

presentation, so assume that we read a replica as we process a given region k. Say the size

of the replica is 3S, where S is the size of a regular segment. If we do the read, we violate

the continuity constraint, since we can at most do N segment reads (of size S, not 3S) as we

process k.

The solution is to split the size 3S replica across three contiguous regions. Thus, region

k contains the �rst segment of the replica, region k + 1 contains the second segment, and so

on. As we read region k we read the �rst segment. This provides enough data to get to the

second replica segment, and so on. Finally, we get to the �rst-non replicated segment where the

process continues as usual. Notice, incidentally, that say the third segment of one replica may

end up in the same region as the �rst segment of the next replica. This causes no problems. In

summary, by spreading out the segments that make up a replica, we ensure that the number of

segments read in each region is at or below the allowable limit. Thus, the maximum throughput

with data replication is the same as in the original system with no replication.

The extra disk space required to support on-disk replication is the average size of a replica

times the number of replicas. For K presentations, the total disk space requirement is

K � DR� T
0

Latency

2
�m (15)

This is m
2
times the requirement for the in-memory replication scheme (equation 13). However,

disk storage is much cheaper than memory (and disk prices are dropping more rapidly than

memory prices these days), so we believe that disk replication is signi�cantly more cost e�ective.

For example, we argued earlier that initial latencies of 0.04 seconds are acceptable. With

T
0

Latency of a few seconds (see Section 4), on the order of 100 or less copies could be su�cient.

Since memory is more than 100 times as expensive as disk, the disk scheme is likely to be more

cost e�ective.

4 Case Study

To compare the proposed schemes we use the same Seagate Barracuda 2 disk parameters (listed

in Table 4) as used in [GKS95]. To con�rm the latency and throughput results, we also imple-

16

Parameter Name Value

Disk Capacity 2.08 GBytes

Number of cylinders, CYL 2,710

Min. Transfer Rate TR 68.6 Mbps

Display Rate DR 1.5 Mbps

Max. Rotational Latency Time 8.33 milliseconds

� 10.63 milliseconds if #cyl � 400, else 8.73

(� value includes 8.33 milliseconds of rotational latency time.)

� 0.0052 milliseconds if #cyl � 400, else 0.2

Table 4: Seagate Barracuda 2 Disk Parameters

mented the resource planner documented in [GKS95]. The numbers obtained with the planner

and via our analytic formulas agree very closely.

Figure 1 and 2 present initial latency and maximum throughput results for �ve di�erent

data placement and disk head scheduling policies: Old, Unidirectional, Sequential, Constrained,

and Replicated. Scheme Old refers to the disk partition scheme of [GKS95] (Section 2). For

scheme Replicated, we use m = 25 replicas. Recall that our latency reducing schemes build

upon each other. Thus, for example, Replicated uses Constrained allocation.

Our evaluations start with a 4 MByte main memory con�guration that grows to 64 MBytes.

We believe that a 4 MByte memory con�guration is too small for today's computers; however,

we study this size merely to compare the results with those of [GKS95].

Figure 1 shows the relationship between TLatency and R under di�erent memory con�gura-

tions. As expected, scheme Unidirectional cuts the latency of Old by half. It is reduced further

by the other schemes, until Replicated (with m = 25) makes it negligible. Notice that the

discontinuities in latency (e.g., in scheme Sequential with 64 MBytes, as R goes from 5 to 6)

occur when the throughput N increases by 1 or more.

Two counter-intuitive observation appear from Figure 1. First, maximum initial latency

grows as memory expands. Intuitively, it would seem that adding resources (i.e., memory)

should help in achieving our objectives, i.e., in reducing latency. Actually, the added resources

do help our other objective, maximum throughput. Having more memory lets us increase

the segment size (see inequality 4). This in turn let us playback a segment for a longer pe-

17

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

La
te

nc
y

Number of Partitions

Scheme Old
Scheme Uni-direction

Scheme Sequential
Scheme Constrained

Scheme Replicated (m = 25)

(a) 4 MBytes Memory

0

50

100

150

200

2 4 6 8 10 12 14 16 18 20
Number of Partitions

Scheme Old
Scheme Uni-direction

Scheme Sequential
Scheme Constrained

Scheme Replicated (m = 25)

(b) 16 MBytes Memory

0

50

100

150

200

2 4 6 8 10 12 14 16 18 20

La
te

nc
y

Number of Partitions

Scheme Old
Scheme Uni-direction

Scheme Sequential
Scheme Constrained

Scheme Replicated (m = 25)

(c) 32 MBytes Memory

0

50

100

150

200

2 4 6 8 10 12 14 16 18 20
Number of Partitions

Scheme Old
Scheme Uni-direction

Scheme Sequential
Scheme Constrained

Scheme Replicated (m = 25)

(d) 64 MBytes Memory

Figure 1: TLatency versus R

18

riod, allowing us to process more concurrent presentations. Unfortunately, a larger S also

increases TLatency linearly (see equation 10). A second, related counter-intuitive observation is

that scheme Constrained has a higher initial latency than scheme Sequential. Again, scheme

Constrained has less variability than Sequential; this improves throughput, but degrades initial

latency.

Figure 2 shows the relationship between the maximum throughput N and number of par-

titions R. Scheme Unidirectional enjoys the same throughput as scheme Old, as it improves

only initial latency. Scheme Replicated achieves the same throughput as Constrained. Scheme

Constrained achieves a signi�cant improvement over Old when memory size is small. When

memory size is large, all schemes achieve about the same level of throughput.

Notice that scheme Sequential has the worst throughput. Even though its seeks are sig-

ni�cantly shorter than for schemes Old and Unidirectional, it still performs worse due to its

high bu�er requirements. Each presentation requires twice as much memory (to cushion access

variability), and overall this causes maximum throughput to drop. Only when there is am-

ple memory (e.g., 64 MByte case) does Sequential appear to be a viable alternative over Old

and Unidirectional: in that case it can reduce initial latency signi�cantly while only reducing

throughput very slightly.

Figure 1 shows only the relationship between TLatency and R, but not N . To further un-

derstand the interplay between these parameters, let us investigate the initial latency incurred

when achieving the same maximum N . In Table 5 we compare Schemes Constrained and Old

when they achieve the same N . With a 4 MByte main memory, scheme Constrained supports

33 simultaneous displays with a latency of 1.28 seconds (R = 1). To accomplish the same level

of throughput requires scheme Old to partition the disk into 24 regions, incurring a 62 second

delay. This and the other comparisons of Table 5 illustrate that the real magnitude of initial

latency improvement is much larger than is shown in Figure 1.

19

25

30

35

40

45

50

55

2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Number of Partitions

Scheme Old/Uni-direction
Scheme Sequential

Scheme Constrained/Replicated

(a) 4 MBytes Memory

25

30

35

40

45

50

55

2 4 6 8 10 12 14 16 18 20
Number of Partitions

Scheme Old/Uni-direction
Scheme Sequential

Scheme Constrained/Replicated

(b) 16 MBytes Memory

25

30

35

40

45

50

55

2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Number of Partitions

Scheme Old/Uni-direction
Scheme Sequential

Scheme Constrained/Replicated

(c) 32 MBytes Memory

25

30

35

40

45

50

55

2 4 6 8 10 12 14 16 18 20
Number of Partitions

Scheme Old/Uni-direction
Scheme Sequential

Scheme Constrained/Replicated

(d) 64 MBytes Memory

Figure 2: N versus R

20

Memory Throughput Scheme Constrained Scheme Old

Latency R's Latency R's

4 M 33 1.28 1 62 24

16 M 41 4.19 1 291 35

32 M 43 7.58 1 333 21

64 M 44 12.21 1 182 6

Table 5: TLatency Comparison Given N

4.1 Additional Observations and Analysis

The case study reveals a few important facts. First, a small number of regions works well

under the Unidirectional and Sequential policies. Increasing the number of disk partitions

accomplishes a marginal improvement in throughput, but increases initial latency dramatically.

To verify this observation let us examine inequality 5. Leaving N on the left side of the

inequality, we rewrite it as

N � TR

DR
� S

S + (TSeek � TR)
: (16)

Notice that in the inequality TR
DR

is the throughput cap. The major factor that in
uences N is

TSeek . In other words, the best way to improve N is to reduce TSeek . Now recall that TSeek is

� + (� �
q

CY L
R�N

). CY L is a constant, so the TSeek reduction can be achieved by increasing N

or R. Under scheme Old, the seek time is not reduced by the N factor, so throughput can only

be improved by increasing R. With the Sequential or Constrained policies, seek times are also

reduced by the N factor (within the radical in Tseek), and this eliminates the need for a large

R. Thus, with a large N , the magnitude left to be improved by a large R is insigni�cant. In

short, with all policies except Old and Unidirectional, a large R does not increase throughput

signi�cantly, but it does increase latency linearly. Thus, if low initial latency is a goal, R = 1

is a good choice for all policies except Old and Unidirectional.

The next observation concerns the memory requirement. Intuitively, with a large R, the

seek distance is shorter in a region, therefore the memory required to bu�er data is smaller. In

other words, a large R value conserves memory. This argument is accurate, but the question

remains: how much memory can disk partitioning save? To illustrate, Table 6 lists the memory

requirement and R values needed for scheme Constrained to achieve the same throughput

21

Regions Throughput Memory Requirement Initial Latency

1 43 29.92 MBytes 7.42 seconds

2 43 28.57 MBytes 14.18 seconds

4 43 27.62 MBytes 27.41 seconds

8 43 26.95 MBytes 53.48 seconds

16 43 26.47 MBytes 105.06 seconds

32 43 26.13 MBytes 207.45 seconds

64 43 25.90 MBytes 411.12 seconds

Table 6: Scheme Constrained Memory Requirement by R

N = 43. The table also shows the initial latency for each scenario. We can see that the

memory savings are not signi�cant as R grows, but the latency growth is signi�cant. To see

why, we rewrite inequality 5 as

S � TSeek � N �DR� TR

TR�N �DR
: (17)

If N, DR and TR are �xed, then TSeek is the only factor that can save memory. As with

throughput, a large R value does not save much on memory.

4.2 Storage System Design Guidelines

In designing a storage system for multimedia applications, the goal is high throughput and low

initial delay with minimum cost. The cost includes not only the hardware cost, but also the

implementation and maintenance costs. For the latter, a simple design is critical.

Partitioning the disk into regions (R � 2) is bene�cial mainly if memory conservation is

important and the initial latency incurred is not critical. Interactive applications with unpre-

dictable access patterns are not in this category.

With a single partition (R = 1), it is actually quite simple to use the Constrained policy and

get its high throughput and low latency. In particular, we propose to place each presentation

on contiguous tracks and cylinders. On an 8.3 GByte IBM 3.5-inch Ultrastar 2 XP disk, for

instance, six 1.3 GByte movies can be laid out to form six concentric circles. With R = 1

the distance between retrieving two segments of a presentation is e�ectively bounded by CY L

tracks. This CY L distance may look large at �rst glance, but because segments are retrieved in

22

physical order, each seek distance is cut on the average by a factor of N . Furthermore, because

the segments are retrieved in the same order in each disk sweep, the memory requirements are

low.

If the above scheme still does not provide low enough initial latency, it can be further

reduced by replicating data. The in-memory and on-disk replication schemes can lower the

latency to essentially zero, but as we discussed, we believe the on-disk approach is more cost

e�ective.

In a multi-disk system, a useful variation for on-disk replication places all the replicas on a

separate disk. This makes it easier to manage disk allocation, since the replicas do not interfere

with the constrained allocation on the main disks. Furthermore, if some popular presentations

are fully replicated on the main disks, they can share the same startup replicas.

5 Conclusion

In this study we have presented several techniques for reducing initial latency in multimedia

presentations. The �rst technique, Unidirectional, reduces latency by laying down segments on

disk in a single direction. The Sequential and Constrained techniques cut latency by reading

segments within a region in physical order. For Constrained, this order is the same for all

regions, reducing the variability in time between accesses to consecutive segments of a pre-

sentation. We have also proposed a novel on-disk replication scheme, which replicates initial

segments of presentations. Each replica is strategically placed on disk, and its size varies.

Our results show that these techniques can signi�cantly cut initial latencies while keeping

throughput high. Each technique re
ects di�erent costs, e.g., the cost of disk replicas, or the

cost of constrained allocation on disk. Thus, the proper choice of technique will depend on the

target latency, throughput, and costs for the application.

6 Acknowledgement

We want to thank Je� Erickson for his editorial comments on this paper.

23

References

[NB95] Nussbaumer, J.-P., et al. Networking requirements for interactive video on demand.
In IEEE Journal On Selected Areas In Communications., vol.13, no.5, p. 779-87,
June 1995.

[AN95] Arnold, K., et al. Media-independent interfaces in a media-dependent world. In
Proceedings Proceedings of USENIX Conference on Object-Oriented Technologies.,
26-29 June 1995.

[BT89] D. Bitton Arm Scheduling in Shadowed Disks. In Proceedings of Compcon 89, page
132-136 1989.

[BG94] S. Berson and S. Ghandeharizadeh. Staggered Striping: A Flexible Technique to
Display Continuous Media. In MULTIMEDIA TOOLS AND APPLICATIONS.,
(June 1995) vol.1, no.2, p. 127-48.

[CLG94] Chen94] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and
David A. Patterson. RAID: High-Performance, Reliable Secondary Storage In ACM
Computer Surveys, 26(2), June 1994.

[CH95] M. Cheng, H. Hsiao, wt al. Using Rotational Mirrored Declustering for Replica
Placement in a Disk-Array-Based Video Server. In proceedings of ACM Multimedia
95, Pages 121-130, November 1995.

[CPK95] Ann L. Chervenak, David A. Patterson, Randy H. Katz Choosing the Best Storage
System for Video Service In proceedings of ACM Multimedia 95, Pages 109-118,
November 1995.

[GKS95] S. Ghandeharizadeh, S.H. Kim, and C. Shahabi. On con�guring a single disk contin-
uous media server. In 1995 ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems., SIGMETRICS '95/PERFOR-
MANCE '95. PERFORMANCE EVALUATION REVIEW (May 1995) vol.23, no.1,
p. 37-46.

[GS93] Ghandeharizadeh, S., et al. Continuous retrieval of multimedia data using par-
allelism. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEER-
ING., vol.5, no.4, p. 658-69.

[BMC94] P. Bocheck, H. Meadows, and S. Chang. Disk Partitioning Technique for Reducing
Multimedia Access Delay. In ISMM Distributed Systems and Multimedia Applica-
tions, August 1994.

[MC95] Merchant, A., et al. Analytic modeling and comparisons of striping strategies for
replicated disk arrays. In IEEE Transactions On Computers., (March 1995) vol.44,
no.3, p. 419-33.

[RR93] Srinivas Ramanathan and P. Venkat Rangan Adaptive Feedback Techniques for Syn-
chronized Multimedia Retrieval over Integrated Networks. In IEEE/ACM Transac-
tions on Networking/, Vol. 1, No. 2, April, 1993.

[RRVK92] Srinivas Ramanathan, P. Venkat Rangan, Harrick M. Vin and Thomas Kaeppner
Optimal Communication Architectures for Multimedia Conferencing in Distributed
Systems In Proceedings of 12th International Conference on Distributed Computing
Systems., June, 1992.

[RV91] P. Venkat Rangan and Harrick M Vin. Designing File Systems for Digital Video
and Audio. In proceedings of the 13th Symposium on Operating Systems Principles
(SOSP'91), Operating Systems Review, Vol. 25, No. 5, Pages 81-94, October 1991.

24

[VR93] Harrick M Vin. and P. Venkat Rangan. Designing a Multi-User HDTV Storage
Server In IEEE Journal on Selected Areas in Communication, Special Issue On
HDTV and Digital Video Communication, Vol. 11, No. 1, January 1993.

[WYY91] J. Wells, Q. Yang, and Yu. Placement of Audio Data on Optical Disks. In Int'l
Conference of Multimedia Information Systems, pages 123{134, 1991.

7 Appendix - Derivation of N

Here we show the details of deriving the maximum throughputN for scheme Constrained. Start
with inequality 7

N � (
2�Mem

N � TR
+ TSeek) � 2�Mem

N �DR

Substitute TSeek with �+ (� �
q

CY L
R�N

), we get

N � (
2�Mem

N � TR
+ �+ (� �

s
CY L

R�N
)) � 2�Mem

N �DR

2�Mem

TR
+ ��N + � �

s
CY L�N

R
� 2�Mem

N �DR

Multiply by N

2�Mem�N

TR
+ � �N2 + � �

s
CY L�N3

R
� 2�Mem

DR

Exchange terms

2�Mem�N

TR
+ ��N2 � 2�Mem

DR
� �� �

s
CY L�N3

R

Square both sides

�2�N4+(
4�M � �

TR
��

2 � CY L

R
)�N3+(

4�M2

TR2
�4�M � �

DR
)�N2� 8�M2

TR�DR
�N+

4�M2

DR2
� 0

Divide by �2

N4+(
4�M

TR� �
��

2 � CY L

R� �2
)�N3+(

4�M2

TR2 � �2
� 4�M

DR� �
)�N2� 8�M2

TR�DR� �2
�N+

4�M2

DR2 � �2
� 0

Now make

M1 =
Mem

��DR

M2 =
Mem

�� TR

M3 =
�2 � CY L

�2 � R

N4 + (4M2 �M3)�N3 + 4(M2
2 �M1)�N2 + 8M1M2 �N + 4M2

1 � 0

25

