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Abstract:
This paper describes an approach for automatically classifying visitors of a web site according to
their access patterns. User access logs are examined to discover clusters of users that exhibit
similar information needs; e.g., users that access similar pages. This may result in a better
understanding of how users visit the site, and lead to an improved organization of the hypertext
documents for navigational convenience. More interestingly, based on what categories an
individual user falls into, we can dynamically suggest links for him to navigate. In this paper, we
describe the overall design of a system that implements these ideas, and elaborate on the
preprocessing, clustering, and dynamic link suggestion tasks. We present some experimental
results generated by analyzing the access log of a web site.
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Introduction

Imagine a shopper browsing through a department store online catalog using his favorite web browser.
Suppose he is interested in purchasing clothes for himself, consumer electronics, and sports goods. As
these items are sold by different departments, and the pages of these departments may not be linked
together directly, he has to navigate through many intervening pages before he can locate the desired
ones.

Potentially there may be a whalategoryof users who share similar interests as the "male yuppie"

shopper here. There may also be other categories of shoppers, such as expectant mothers, retired adults
or skiers. Suppose the catalog designer has some way of identifying the access pattern for each category
of user. To help the users navigate more easily, the designer may link up pages that are identified to be
often accessed together. For example, the electronics page may contain a link to the sports goods page.

In this paper, we first show how categories of users can be identified by analyzing user access logs with
clusteringtechniques [HA75]. We show that these techniques can discover categories that might not be
thought of by the catalog designer beforehand, and might not be inherent in the static hypertext layout
(e.g., a user chooses to jump to a page after doing a keyword search). The idea of identifying user



patterns applies to accesses to a (single) web site with a multitude of information in general, even though
we have described it under the scenario of an online shopping catalog.

Once these common patterns are discovered, they can help in the design of the static hypertext
organization (i.e., which pages are linked together), as suggested above. More interestingly, we may
customize the organization on-the-fly and dynamically link hypertext pages for individual users. The
idea is to try and match an active user’s access pattern with one or more of the categories discovered
from the logs. Pages in the matched categories that have not been explored by the user and are not
adjacent to the user’s current position may serve as navigational hints for the user to follow. In the
example above, after the shopper has accessed the men’s clothings and electronics pages, we may
suggest a link to the sports goods page.

Such dynamic linking is desirable for a number of reasons. Firstly, it is customized for each individual
user, based on what interests the user has shown so far. A static link (such as a link from the electronics
page to the sports goods page) may not be applicable to all users. Secondly, because the content of a
web site may keep changing, automatic clustering and dynamic linking provides more up-to-date
suggestions than a static design. Finally, as the number of categories may be large, adding suggestion
links may become cumbersome for the designer.

Besides dynamic link suggestion, we may put user category information into other uses. For example, it
may help in enhancing server performance. The server may prefetch pages that a user is likely to visit
soon, based on what he has accessed and what category he falls into.

The contributions of this paper are as follows. We describe the overall design of a system that
implements the clustering and dynamic linking ideas. We discuss in detail issues on log-preprocessing,
clustering, and dynamic link suggestion and present our solutions. We report some experimental results
generated by analyzing the access logs of a web site to support our ideas. Finally, we are distributing the
log analyzer as public domain software:

ftp:/lwww-db.stanford.edu/pub/analog/analog.0.1.tar.Z

This tool can be used to help web administrators analyze user access logs generated by a NCSA httpd
server [NCSA95].

Related Work

Mining information from large datasets is an area of active research (see, e.g., [FU95]). Clustering
algorithms [HA75, BP92] form one class of data mining techniques. In our work, we apply clustering
techniques to mine web user access patterns.

Researchers in the hypertext community have studied dynamic hypertext configuration. In one approach
[SF91], criteria for reconfiguration are supplied by the hypertext designer. Based on a user’'s accesses,
these criteria are checked and if satisfied, the linkage among documents adapts in a predefined way.
WebWatcher [AFIJM95] proposes a learning approach to provide navigation hints. User feedback is used
to improve the quality of the hints. Letizia [LI95] records what interests a user has shown, e.g., links
followed and keyword searches performed. It then looks ahead in the neighboring pages that might be of
interest and suggests them to the user. Our approach of adding "suggestions" to a requested page is
borrowed from [AFIJM95] and [LI95]. Our proposal of analyzing access logs, finding common patterns,



categorizing users, and online matching have not been studied before.

System Design

In this section we give an overview of the system design. Refering to Figure 1, the system consists of
three main components: a web server capable of maintaisargsessiomformation (see below), an
offline module responsible for log analysis, and an online module responsible for dynamic link
generation.

The web server in our design is just like a typical server that supports HTTP [BFF95], such as NCSA
httpd server. The only difference is that it supports in addition the notion of a user session; i.e., an
ongoing interaction between the user and the web server. As a user may have different information goals
each time he accesses a web site, we believe it is better to model user interests on a per session basis.
However, in HTTP, connections between a web client and a server are stateless and there is no notion of
session at all. To overcome this difficulty, we may, as others have done (e.g., [TW96]), encode session
identifiers in URLs. The first time a user accesses the server, a new session identifier is generated. In the
HTML document returned, this identifier is encoded in all URLSs refering to objects on the same web

site. Thus, the next time the user clicks on these encoded URLS, the session identifier is passed back.
This way, a session can be maintained across multiple URL requests. An identifier timeout mechanism
can also be used to make sure different sessions from the same client are given different identifiers. We
have modified the NCSA httpd server to support all these capabilities.

In the offline module, the preprocessor periodically (e.g., weekly) extracts information from user access
logs to generateecordsof users sessions. One record is generated for each session in the logs. The
record registers the access patterns exhibited by the user in that session. Records are then clustered into
categories, with "similar" sessions put into the same category.

The online module performs dynamic link generation. When a user requests a new page, the module
tries to classify his current partial session record against one or more of the categories obtained offline.
The top matching categories are identified, and links to unexplored pages contained in these categories
are inserted at the top of the page shipped back to the user.
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Figure 1. Overview of System Design

In the following we elaborate on three areas in this design: preprocessing, clustering, and dynamic link
generation.

Preprocessing

We may view a web site as consisting of a numbertefest itemsFor example, we may consider an

HTML page as an interest item. An alternative may be to group pages into "semantic" interest items;
e.g., all pages on the subject of "professional sports” form one item. Another alternative, applicable in an
online catalog scenario, is to consider a purchase item as an interest item. Below we just assume each
HTML page is an interest item.

During a session, a user may show varying degrees of interests in these items. If thare st

items in the web site, we may represent a user sessiomadirmgnsional vector, thieth element being
theweight or degree of interest, assigned toithie interest item. If we view an HTML page as an

interest item, then we can give it a weight equal to the number of times the page is accessed, or the
amount of time the user spends on the page (perhaps normalized by the length of the page), or the
number of links the user clicks on that page. We experimented with a number of options and the results
are reported below.

Such am-dimensional vector forms a user session record mentioned above. Session vectors that are
"close" together in the-dimensional space form a cluster. The task of the preprocessing step is to
convert the information in user access logs into the vector representation.

Below we show how a user access log from a web server supporting sessions may look like. It shows
four requests from one session. (Requests from other sessions are not shown.)

foo.bar.edu - - [16/Nov/1995:18:50:04 -0800] \

"GET /$$87612/sigmod_record/ HTTP/1.0" 200 1252
foo.bar.edu - - [16/Nov/1995:18:50:14 -0800] \

"GET /$$87612/sigmod_record/issues.html HTTP/1.0" 200 653
foo.bar.edu - - [16/Nov/1995:18:50:23 -0800] \

"GET /$$87612/sigmod_record/9-95/ HTTP/1.0" 200 3565
foo.bar.edu - - [16/Nov/1995:18:50:29 -0800] \

"GET /$$87612/sigmod_record/issues.html HTTP/1.0" 200 653

The first line shows the start of the session, originated from a user at foo.bar.edu. The session was
assigned identifer $$87612. The page "sigmod_record" was accessed at 18:50:04 on November 16,
1995. The request was successful (return code 200) and the size of the page returned was 1,252 bytes.

Suppose the pages "sigmod_record,” "sigmod_record/issues.html,” and "sigmod_record/9-95" have been
assigned page numbers 200, 135, and 313 respectively. Also assume that we assign page weights by
counting how many times a page is accessed. In this case, the above session can be represented by a
vector where position 135 has a value of 2, position 200 has a value of 1, position 313 has a 1 value, and
all other positions have a zero value. Of course, this vector can be represented more compactly as <(135
2), (200, 1), (313, 1)>. Note that the page numbers are arbitrarily assigned and do not reflect the order in
which the pages were accessed. The order of accesses is an important piece of information, but is not
captured by the vector representation presented. We do not address this in this paper.



Clustering

Once the sessions are represented in a vector format, we are ready to run a clustering algorithm against
them. The goal of this process is to discover session clusters that exhibit similar interests. When
translated to the vector representation, we are interested in finding clusters of session vectors that are
"similar."” Similarity can be defined in a number of ways. For example, two vectors are similar if the
euclidean distance between them is short enough, or the angle between them is small enough.

Clustering (also known as unsupervised learning) is a well-studied area [HA75, BP92] and there are a
number of well-known clustering algorithms; e.g., leader, k-means, hierarchical, and fuzzy set
approaches. In some algorithms, a vector may belong to more than one cluster, and in that case, cluster
membership can be crisp or fuzzy. Interested readers are refered to references such as [HA75] or
[BP92]. Our paper presents an approach to apply these techniques to discover useful information in web
user access logs.

We may impose a number of constraints desirable for performance (clustering time) reasons or for better
clustering outcomes. The first is that we may be interested in only those sessions that access more than «
certain number of pages, sfyinNumPagesFor example, it is not very useful to cluster users who just

visit the home page and leave. With this constraint we may reduce the number of sessions in our
analysis. Secondly, we may be interested only in those clusters that are above a certain size, say
MinClusterSizeThis removes insignificant clusters and may also improve performance.

We illustrate this discussion with a simple algorithm, the leader algorithm (described in [HA75]). The
input is a seV of vectors. The output is a <efof clusters (a cluster is a set of vectors). We start with no
clusters and look at the input vectors one by one. For each vector we try to add it to the closest cluster
whose median from the vector is shorter than an euclidean distab@xbDfstance If no such cluster

exists, the vector forms a new cluster.

set Cto empty
for each v
if the cardinality of v is greater than MinNumPages
then
find cluster cin Csuch that the distance
between the median of cand v is the minimum
(set d to this minimum) among all clusters in C
if the distance d is less than MaxDistance
then add vio ¢
else add { vito C
for each cin C
if the size of c is less than MinClusterSize
then remove cfrom C
return C

The leader algorithm has several drawbacks; most noticeably that it is not invariant under reordering of
the vectors. Also, the distance between a vector and the final median of the cluster it belongs to is
unbounded. However, one very important strength of the algorithm is that it is fast and memory
efficient. It requires only one pass over the data, and the vectors do not need to be stored in memory at
all. For these reasons, in the Experiments section we used the leader algorithm. Even with this
straightforward clustering algorithm, we were able to discover valuable information from access logs.

After the clusters are found, we may compute the median of each cluster and characterize what the



cluster represents. The dominating pages are those with the highest associated weights, and we can thus
tell what pages characterize a cluster.

Dynamic Link Generation

As a user navigates through the pages of a web site, we need to keep track of what pages he has access
and put him into one or more known categories if possible. We may then insert links to interesting pages
for him to follow.

To maintain active user session information, user access logs are temporarily buffered in main memory.
(We use a high performance memory-resident database management system, Smallbase [HP95], for this
purpose.) The active session information is maintained using the same type of vectors as in the
preprocessing step.

When the online user requests a new URL, the vector is updated. Note that at this point, the vector only
represents a partial record of this ongoing session -- there are more accesses to follow. When classifying
the partial session vector, the distance between a cluster median and the partial vector may not be a goot
matching measure, as it is expected the partial vector has fewer non-zero elements than the median
vector. An alternative is to count the number of pages the user has accessed in each category. If the
count is above a certain predefined threshold (say 2 pages), then a matching category is found.

After all matching categories are identified, we can look at the pages in those categories. Pages that the
user has not accessed so far, and are not accessible from the URL just requested, are included as
suggestions at the top of the HTML document shipped back to the user.

To illustrate, suppose we found offline a clusteff users accessing the pages on men'’s clothings,
consumer electronics, and sports goods. Now suppose a shopper who has accessed men'’s clothings pac
is requesting the URL for the electronics page. At this point, the active session of the user is updated to
show he has accessed these two pages. The system subsequently matches this session evithctluster
includes a link to the sports goods page at the top of the electronics page for him dynamically.

Experiments

To validate our conjecture that clusters exist in user accesses to web sites, and that there are clusters nof
directly reflecting the physical hypertext structure, we carried out a number of experiments. The logs
were taken from the Stanford Database Group web site, at URL http://www-db.stanford.edu. The site
hosts a variety of information, including materials on 12 projects, the home pages of 41 group members,
member publications, and database course information. It is also the host for the ACM SIGMOD Record
Online issues. The logs covered a period of two months, from November 16, 1995 to January 15, 1996.
There were 71,642 logged requests in total.

The logs that we were able to obtain did not contain session identifier information. To approximate a
session, we considered that requests coming from the same host formed a session. And if an access
originating from the same host came after an idle time of more than 24 hours, we considered that the
start of a new session. This way, the preprocessing identified 13,240 user sessions accessing 3,984
distinct URLs corresponding to HTML pages. This definition of session is admittedly rough, since for
some hosts there could be more than one user, giving rise to some "false sessions" consisting of accesse



from more than one user. Note that these false sessions would work against our clustering attempts,
since it was unlikely that the aggregated behavior of users from one host would be similar to that of
another host. However, when inspecting the logs, we found that most of the accesses came from "small"
hosts, rather than large internet service providers such as America Online. Thus we believe the number
of false sessions was not high. The fact that we were able to find good clustering outcomes in the
experiments reported below supports this claim.

We first did a preliminary experiment to understand user accesses better. Let us call an HTML page
request a hit. We plotted the distribution of the hit duration, i.e., how much time a user spends on a page.
Figure 2 shows the results. (The last hit of a session was ignored, since we had no way of knowing how
long it lasted. Besides, we were just interested irdigteibution of the hit durations, so not counting the

last hit should not affect the distribution.) Note the logarithmic scale of the x- and y-axes. The apparent
horizontal lines are actually discrete data points for different x values. The logarithmic scale crowds

them together.) The distribution follows roughly the well-known Zipfian distribution; most of the hits

are very short. The wide range of the times on the x-axis indicates that using the time spent on a page as
the weight given to the page in the vector representation may not be a good idea; one long access may
completely obscure the importance of the other pages accessed. We thus decided to use the number of
times a page is accessed per session as the weight assigned to that page.
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Figure 2. Number of Hits vs. Hit duration

Next, to help us decide on an appropriate valudioNumPagesi.e., the minimum number of pages in
a user session for it to be considered in our clustering step, we plotted the distribution of the number of
pages accessed in a session. Figure 3 shows the results.
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Figure 3. Percentage of Sessions vs. Number of Pages Accessed in a Session

Only about one half of the user sessions accessed 2 pages or more, about 20% accessed 5 pages or mo
and less than 10% accessed 10 pages or more. As we were not interested in sessions that were too shor
and at the same time we wanted to cover a good portion of users, we decided a value of 5 would be a
good choice foMinNumPagesThis corresponded to 2,709 user sessions.

For the other two parametdviaxDistanceandMinClusterSizewe set them to what we believed

reasonable values of 3 and 5 respectively. We ran the leader algorithm against the dataset using this bas
setting of parameters. We found 41 clusters of size greater than 5. The number of sessions that fell into
any one of the clusters was 1,279, which represdratiff all sessions considered. Thus, our claim

that user access patterns can be clustered was validated.

We looked at the pages that characterize each cluster manually. Not surprisingly we found clusters that
accessed pages physically linked together. Some of them accessed pages on a project, its members, anc
the associated publications. Other accessed course information. More interestingly, we also found a
number of clusters that were not apparent from looking at the hypertext layout. One large cluster (made
up of 66 sessions) was a cluster that accessed pages on object-oriented database systems (the pages ar
not physically linked together). Two clusters (of sizes 16 and 8) accessed group members of certain
nationality. One cluster (sized 10) accessed group members who are alumni of the same university.
Another (6 sessions) accessed pages on the topic "information finding."

We also ran a number of experiments that varied the values of the three parkhmNeraPages
MaxDistance andMinClusterSizeFigure 4 below shows the results of one interesting case in which we
variedMaxDistance (Other results are reported in [YJGD96].) In the graph, we plotted the number of
clusters with at least five vectors (let us call thedmissibleclusters) againgtlaxDistance We note

that with very shorMaxDistancethere are many small clusters (each vector would form a cluster by
itself if MaxDistancewere zero). So the number of admissible clusters is small (equal to 2 for a
MaxDistanceof 1). AsMaxDistanceincreases, the small clusters merge to become admissible clusters.
The number of admissible clusters reaches a maximum MbgBDistances 3. Then, adMaxDistance

is relaxed further, more clusters merge, and the number of clusters decreases.
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Finally we measured the times needed to run the clustering algorithm against the dataset. With both
MinNumPagesndMinClusterSizeset to 5, andlaxDistancevarying from 1 to 10, the running times

were between 33 to 60 seconds on a DEC Alpha workstation. The log-preprocessing step took
comparable amounts of time. This was quite efficient for 71,642 user accesses. As both the
preprocessing and the clustering (using the leader algorithm) steps require running times approximately
linear to the log size, we are confident that the system can cope with logs of larger sizes.

Conclusions and Future Work

We have presented a system design that facilitates the analysis of past user access patterns to discover
common user access behavior. This information can then be used to improve the static hypertext
structure, or to dynamically insert links to web pages. We have implemented the offline module and the
session-logging web server, and started work on the online module. We are distributing the offline
module as public domain software:

ftp://Iwww-db.stanford.edu/pub/analog/analog.0.1.tar.Z

Web administrators may find the tool useful for analyzing user access logs generated by a NCSA httpd
server.

Our experimental results obtained by analyzing real user access logs show that indeed clusters of user
access patterns exist. Further, some of these clusters are not apparent from the physical linkage of the
pages, and thus would not be identified without looking at the logs.

For future work, we will look into how to capture the order of accesses to better represent user interests,
the use of semantic information to model user interests, the impact of different clustering algorithms on
the quality of the cluster information, and the effectiveness of the suggestions given to the users (i.e., we
need to evaluate whether the users find the suggestions useful).
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