
 [DigLib] Stanford Digital Library Project
Working Paper

Title: Conceptual models for comparison of digital library systems and
approaches
Author: Terry Winograd

Abstract: This document is a working paper that grew out of the discussions
at the Digital Libraries joint projects meeting in Washington on Nov. 8-9,
1994. It is intended as a first rough cut at a conceptual framework for
understanding the significant differences among systems and ideas, so that
we can better decide where to work for interoperability and where to take
complementary approaches. Contents:

  1. Basic Approach
  2. Dimensions of the model
  3. The Models

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Conceptual models for comparison of digital library systems and approaches

This document is a working paper that grew out of the discussions at the
Digital Libraries joint projects meeting in Washington on Nov. 8-9, 1994. It
is intended as a first rough cut at a conceptual framework for understanding
the significant differences among systems and ideas, so that we can better
decide where to work for interoperability and where to take complementary
approaches. This is a working draft and open to discussion and debate at all
levels. I had thought about trying to do it more thoroughly before
distribution, but decided not to for two reasons. First, time is important
-- decisions need to be made in various aspects of the digital library
project that may be determined by some of these issues. Second, by leaving
it as rough as it is (especially the second half) it accurately conveys the
fact that it is not a polished reference source, but a set of issues to
provoke relevant discussions. The more detailed working out will come on an
item-by-item basis when we have actual models to implement and want to
anticipate where they will and will not interoperate.

Basic Approach

There are many different levels to be considered in achieving
interoperability. Some have to do with platforms, some with specific formats
and encodings, others with communications connectivity. This document deals

- 1 -



with the structure of the underlying conceptual models on which the systems
are based. Integration requires alignment of models, which often is much
harder than more straightforward formatting or porting issues. It is not a
substitute for those other discussions, but is complementary to them.

The distinctions for talking about models that are described here reflect
decisions that must be made (explicitly or implicitly) in each design. In
many cases they may not show up directly in the "user model" that end-users
of the system need to understand. Often it is possible to get away with
fewer distinctions for simple cases. The goal here is to fully clarify and
distinguish the full range of possibilities for our understanding and for
consistency. By laying bare the bones here, we are concerned with the
"builder models" that distinguish different architectures and designs.

Having laid out the dimensions we need to then understand the operational
consequences of model choices. In some cases a choice may determine many
elements of an implementation. In others, an implementation can be neutral,
allowing choice among several models when it is applied in practice. This
document is a first step and does not get to the point of addressing the
operational questions. Comments on those (as well as any other aspects) are
welcome.

Dimensions of the model

The structure of different model dimensions here is a first cut at
identifying the important differences. It is based on a to-level distinction
between Data models and Action models.

For each dimension we will give the basic distinctions, some examples of
where the different model choices are currently used, and some examples of
operational consequences of the choice. The following summary is explained
in detail on the following pages.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

I. Data models

A. Ontology

   * World, Identity, Segmentation, Ownership, Validation

B. Representation

- 2 -



   * Embodiment, Basic representation, Attribute, Attribute definition, Type
     and Inheritance, Storage, Naming, Linking

C. Data management

   * Distribution, Consistency, Access control, Records management

II. Activity models

A. Basic action models

   * Action definition, Automation, Economic

B. Provision models

   * Material provision, Change, Update, Indexing, Access management

C. Presentation models

   * Presentation control, Client capability, Application, Timing

D. Interaction models

   * Initiative, Turn-taking, Client/server state, Dialog context

E. Query models

   * Query language, Query translation, Search activity, Query result

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The Models

I.  Data models
  Data models are divided into Ontology (the kinds of objects in the
  world that are modeled in the system), Representation (the way that
  data represents the objects), and Records (how the representation
  records are stored and managed in the system).

A.  Ontology

  1.  World model
    The collection of "items" in a digital library (DLitems) includes

- 3 -



    but may not be limited to current connotations of "document".  One
    or more of the following may be allowed or disallowed as "first
    class" items for storage, access, etc. in the library.

    a)  Information items

      -   Base items
        These are the items of end-interest to users, and generally
        exist independently of the library system.  Many system
        properties derive from the decision as to the range of item
        types to be included (text, images, structured data records,
        video, audio, mixed documents, , ...)

      -   Library items
        These are the information structures that the library adds in
        order to provide access and management of the base items. It
        includes things such as collection listings, indices, catalogs and
        databases about information objects.  There is no firm dividing
        line.  An annotated bibliography provided by a professional
        society may be a thought of as a base item or a library item.
        The point in distinguishing is to recogognize the different
        treatment these get in current systems.

      -   Meta-item
        These are the information structures that the digital library
        system uses in its representation of other items.  The include
        the meta-descriptions and other data structures used in
        representing the digital library items.  They can in turn be
        treated as information objects in the same space of objects, or
        can be kept separate.

      -   Computational item

        -  computer, program, process, schema, method,...

    b)  Real-world item

      -   person

      -   physical information object (book, X-ray, reel of film,...)

      -   general (e.g., museum objects cataloged in a library)

- 4 -



    c)  Social-world item

      -   organization

      -   project

      -   group (e.g., for access rights)

      -   ...

  2.  Identity model
    What constitutes a distinct item  in the information space?

    a)  bitwise (e.g., same checksum)
      Digital items are distinct iff they have different bits.  This is an
      extremely narrow but easily manageable sense of identity

    b)  multi-dimensional
      Something can be the same object but have "variants" along one
      or more dimensions:

      -   Encoding (ASCII vs. other character codes; uuencoded, etc.)

      -   Format (Postscript, RTF, PDF,...)

      -   Resolution (spatial or in color dimensions)

      -   Version (over time)

      -   Language (e.g. English or French)

      -   Formatting (e.g., HTML form and corresponding pure ASCII)

      -   Contents intent (e.g., "today's weather forecast for Chicago" can
      be a single object whose contents change daily)

      -   Location (same file stored on two servers)

      -   ...etc.

    c)  identity of object vs. identity of record
      In dealing with objects that aren't purely information, there can
      be a sense of identity that is based on the system contents (e.g.,

- 5 -



      two different and distinguishable records for a person) and one
      that is based on the thing referred to.

  3.  Segmentation model
    Composite objects have a structure of parts.  In talking about
    hierarchies, we take sequences as just the one-level special case.

    a)  Predefined hierarchy (e.g., Head and Body for HTML)

    b)  Tagged hierarchy (E.g., SGML.  Interpretation of the tags requires a
    definition, such as a DTD)

    c)  Labeled hierarchy (e.g., the sections and subsections of a
    reference manual, where there is a label for each)
      This includes the special case of numbered pages.  Note that there
      can be more than one segmentation of a DLitem -- a book may be
      segmented by sections and also by pages.

    d)  Derivable hierarchy (e.g., the sequence implicit in taking the
    frames as the parts of a video, or the paragraphs or words as
    parts of a text)

    e)  Open segments
      These are parts whose boundaries can be set in a specific use,
      such as "clip" of video, a stretch of words in a document, a
      geometrically defined region of a map,... They can are treated as
      independent DLitems in many cases, such as sending a URL with
      selection information encoded at its end.

    f)  Granularity model
      The grain size of the objects that will be treated as distinct
      DLitems (E.g., words in text, regions of the screen in video, whole
      file systems,.journals, book series, dictionary entries,...)  This
      also includes composites.  For example what is the unit that is
      a"document" that has been spread onto a number of interlinked
      web pages?

  4.  Ownership model
    There are many systems that record some kind of "owner" of
    information objects, with different meanings.

    a)  Right to assign access permissions

- 6 -



    b)  Party responsible for the contents (in a social and legal sense)

    c)  Person to contact with regard to breakdowns concerning the
    information (the meaning on most web pages)

    d)  Recipient of payments for use

  5.  Validation model
    In most systems today, validation is an all-or-none matter.  If
    something is in a "library" it has whatever degree of authority and
    reliability is associated with the material as a whole.  In a
    distributed library there will be a finer-grained association of
    these properties with particular DLitems.

    a)  Declaring authority (who said so -- e.g., on a list of prices)

    b)  Third-party certification (e.g., digital notary, seals of approval,
    ...)

B.  Representation
  Every information system must map the objects of interest onto
  some kinds of data structures, whether they be files, objects,
  relational databases, etc.  We will not deal here with the specifics
  but the general nature of the mapping.

  1.  Embodiment model
    The model of the relationship between the digital representations
    and the objects they represent. There is a big difference here
    between the tradition of bibliographic systems (the digital
    representation is a partial description of the "real" thing) and
    on-line information systems (e.g. WWW) in which what you get is
    all there is. As with many of the distinctions here, many systems
    provide some mixture.

    a)  "real" online object
      There is a "real" information object in digital form, and all other
      characterizations are derived from it.  This is the way we often
      think of files, on-line documents, etc.

    b)  "true" record
      The representation is not a full description of the object, but only
      captures certain relevant characteristics.  This is typically the
      case for bibliographic systems and is inevitably the case for

- 7 -



      things such as people, organizations, etc. where the "real thing"
      isn't in the computer.

    c)  multiple partial records
      There may be no one privileged representation, but multiple
      records, each of which may express some attributes of the object.

  2.  Basic representation model
    There are two basic forms for representation in common use:
    objects, and structured byte streams (which may be texts, or may
    be streams representing other media such as video).

    a)  object/attribute
      An item is represented by giving a set of attribute-value pairs.
      (see below for the nature of the attributes)

    b)  object/method
      An item is represented by an object which can respond to some
      standard set of methods indicating operations.  Often these
      include the explicit setting and reading of attributes.

    c)  structured byte sequence
      The most developed format of this kind is SGML, but many
      information objects are structured sequences based on some
      specialized or ad hoc conventions.  Often the conventions
      correspond in part to attribute/value pairs (as in the <title> tag
      for HTML)

  3.  Attribute model
    Since all of the representations end up with attribute value
    mappings of some kind we can look separately at the nature of the
    attributes.  It is possible to intermix these in various ways.

    a)  data type attributes [string, number, date,...]
      These are what have traditionally been in relational databases,
      standards for headers, etc.

    b)  content-encoding attributes
      In putting DLitems into an attribute-only model, the part
      normally thought of as the "content" can be thought of as just one
      attribute.  This will be of whatever type is suitable for the
      content type.  One question is whether there should be a
      privileged content-encoding attribute for every item.

- 8 -



    c)  Pointer attributes [inter-item relationships]
      Some attributes, though they may be represented using byte
      sequences such as numbers or alphanumeric strings are treated
      specially as the names of other DLitems.  This includes the use of
      object pointers as values in objects, and of links in hypertext.

  4.  Attribute definition model
    For a particular type of object, there can be a specified set of
    possible attributes.

    a)  schema-free / self-describing (property list)
      In a schema-free model, attribute names can be assigned at will,
      and it is up to conventional agreement among the applications to
      interpret them appropriately.  This the convention, for example
      for the experimental (X-...) headers in email, for Lisp property
      lists, etc.

    b)  universal schema
      All items of a type can be encoded with a fixed schema which is
      "wired in" to the standards.  The MARC bibliographic format and
      TEI headers are examples for specific subsets of DLitems.

    c)  Published standards
      These can include widely-used standards, such as one of the
      bibliographic schemas (e.g.,. IAFA, Bibref,...) or image description
      standards (
      TIFF...), as well as others we invent.  Publication can included
      real-time publication on the net (by having a known server).

    d)  Schema carried with object
      e.g., a DTD sent with an SGML file based on it.

    e)  Extensible
      There can be a mixture of standardized attributes plus additional
      extensibility, as in GAIA, Internet email headers,  Harvest...

  5.  Type and inheritance model

    a)  hardwired set of types

    b)  type hierarchy

- 9 -



      -   no inheritance (flat type system)

      -   single inheritance (most working object systems)

      -   multiple inheritance

    c)  cross-identity inheritance
      e.g., inheriting attributes from the source file to the
      corresponding object file even though they have different
      identities

  6.  Storage model

    a)  file-system-centric
      This identifies DLitems directly with corresponding file system
      objects (files and directories).  It covers most current networked
      models, such as WWW basic model (extended in an ad hoc way by
      specialized URLs).  It is easy to build, not very general (for many
      purposes we want a single file to hold many DLitems while one
      DLitem may be spread into multiple files)

    b)  document-centric  (e.g. SGML documents with internally encoded
    meta-information in the form of tags and headers)
      This doesn't handle second-party information independent of the
      original information, since the meta-information is included in
      the document.

    c)  database-centric (relational or object database)

    d)  descriptor-centric
      There is an independent abstraction of "descriptors" which can be
      stored in more than one way (e.g., embedded in files and also
      stored in databases)

  7.  Naming model

    a)  locality of name spaces

      -   Global name space

      -   Hierarchically scoped declarable naming contexts (as in
      programming languages, and with hierarchical global schemes
      such as DNS)

- 10 -



      -   Name space associated with "chunk" (e.g., server designation in
      the standard for URLs)

    b)  stability of names

      -   Name uniquely determines content

      -   Content of name changes over time - e.g., URLs and Unix file
      names are time-dependent names.

      -   Special names to reflect "current" or "starting" time

    c)  canonicality

      -   Distinct canonical names imply distinct objects.  Given an
      object it may or may not be possible to derive its canonical
      name.

    d)  meta-information encoded as part of name
      For example, time/host stamps encode source/origin/history
      information, other naming schemes encode type information.

    e)  correlation with other name spaces [URL, URN, etc.]

  8.  Linking model
    These have been laid out at length in the literature on hypertext.

    a)  object-object links

    b)  segment or point links

    c)  two way vs. one-way links

    d)  enforced link coherence vs. open linking

C.  Data management
  Whatever the form of representation structures, there will be
  mechanisms for managing them -- storing, copying, retrieving, etc.

  1.  Distribution model

    a)  Single privileged source (most older systems)

- 11 -



      This can include caching to reduce load.

    b)  Coordinated replication (e.g., Lotus Notes, DNS, News groups)

    c)  Multiple partial sources (e.g., resource discovery systems)
      The data may be partitioned into known places or there may be
      overlapping and/or redundant sources.  One common division is to
      have metadata stored in one place (e.g., a database) and the
      "content" in another (e.g., conventional file system).  Another is
      to have multiple databases, with items partitioned by producer,
      topic, etc.

  2.  Consistency model

    a)  Absolute
      Inconsistent data should appear only in the case of a system
      error.  This is a simplifying ideal but one that is hard to meet in a
      system that integrates information from existing (and unreliable)
      sources, such as library catalogs.

    b)  Dynamic (partial) resolution
      Inconsistency is expected and there are heuristics or adjudication
      mechanisms for making decisions when it is detected (e.g.,  give a
      person the choice of which to use, or give "unknown" as a result).

    c)  Qualified information (Meta-marked)
      Inconsistency is expected as part of system operation, and data is
      tagged with meta-information about its source that helps resolve
      inconsistencies.  This is the general case for what we do in the
      real world when we get conflicting information.

  3.  Access control model
    In this section we are looking at the way that access rights are
    allocated, not the mechanisms for establishing access.

    a)  Granularity of access control

      -   For materials: server, database, directory, file, record,...

      -   For accessors: host machine, IP address, group membership,
      individual, capability,...

    b)  Repertoire of rights (view, destroy, modify, modify additively,

- 12 -



    execute, copy, ...)

    c)  Nature of access control

      -   Authentication of appropriate rights

      -   Quid-pro-quo (e.g., charging for access)

    d)  Access characteristics

      -   prices, copyright restrictions,...

  4.  Records management model
    Records management is another tradition, which has dealt with
    official records in organizations. But many of its issues apply to
    the extended library.

    a)  Persistence Guarantees

      -   distributed / open - nothing can be assumed

      -   archive of immutable selected items

      -   strategies and markers for selective archiving and retention
      schedules (e.g., time-to-live attributes)

    b)  Recording history of items

      -   provenance, original order, change history, access history, audit
      trail,...

II.  Activity models

A.  Basic action models

  1.  Action definition model

    a)  Standard actions, defined by applications and tools [Web]]

    b)  Specialized action by object type [Gaia]
      This may include restriction of actions depending on object
      attributes.

- 13 -



    c)  Specialized action suites as "plug-ins" to applications [Viola]

  2.  Automation model

    a)  Human action primary (e.g., traditional library systems)

    b)  Support machine "users" (e.g., Z39.50 in place of traditional
    teletype interface to database)
      This is not incompatible with a human-based interfaces.  For
      example Dienst has two interfaces, one for each.

    c)  Provide "agents" in servers (e.g., notification agents)

    d)  Incremental automation with workflow
      e.g., when a source document is updated, people who  have derived
      things from the older version can be notified that updates are
      needed.

  3.  Economic model

    a)  resource measurement in use (e.g., search given a fixed amount of
    resources)

    b)  charging (various schemes from fee-per-byte to subscription,
    etc.)

B.  Provision models

  1.  Material provision model

    a)  Centralized (most current library systems)

    b)  Distributed specialized (HTTP servers)

    c)  General use (read/write access to file systems, post to
    newsgroups)

  2.  Change model

    a)  Incremental change of elements of a DLitem (edit in place, or
    append)

    b)  checkout/edit/replace cycle

- 14 -



  3.  Update model
    As base DLitems are entered or changed, how do corresponding
    changes get reflected in library DLitems such as indices, catalogs,
    summaries, etc.?

    a)  Always get information direct from base sources (update at query
    time)

    b)  Delayed distribution (e.g., re-index overnight)

    c)  Recompute when used if invalidated (e.g., lazy compilation)

    d)  Manual update (some user needs to invoke the operation)

  4.  Indexing model

    a)  Indexing is an add-on [Web]

    b)  Automatic indexing [WAIS]

    c)  Explicit provider control of indexing [Lotus Notes]

    d)  Cooperative indexing (between provider and other services)
    [Harvest]

  5.  Access management model
    This includes the actions for establishing access control over
    individual DLitems or groups of items (e.g. by associating
    passwords with files or directory subtrees), for establishing
    individual identities, group identities, group membership, etc.

C.  Presentation models

  1.  Presentation control models

    a)  Detailed control by provider (Acrobat/PDF)

    b)  Multiple views by provider (Lotus Notes)

    c)  Control by client (HTML)

  2.  Client capability model

- 15 -



    a)  Client has known characteristics (most in-house research
    systems that have specialized capabilities)

    b)  Broad base of client characteristics with full implementation for
    each (e.g., Acrobat/PDF)

    c)  Broad base of client characteristics with partial results (e.g., if
    you can't display images, use Lynx)

  3.  Application model

    a)  multiple applications for media types (current Mosaic)

    b)  Integrated single "viewer" application

  4.  Timing model

    a)  No control

    b)  Ordering of elements (e.g., inline images in HTML)

    c)  Controlled synchronization (e.g., Hytime, ScriptX,..)

    d)  View program runs interactively in the client (e.g., Viola)

D.  Interaction models

  1.  Initiative model

    a)  Pull (send a query, get an answer)
      This includes browsing, in which the "query" is the selection of
      some item that was represented in the result of the previous
      action, and is effectively linked to serve as a subsequent request.

    b)  Push (server gets new info and sends on basis of previous
    standing request)

  2.  Turn-taking model

    a)  Complete an action once initiated

    b)  interruptability, feedback in process, progress monitoring,....

- 16 -



  3.  Client/server state model

    a)  Stateless (original intention of Gopher, HTTP)

    b)  Server maintains state (most operating systems with logins,
    Z39.50, etc.)

    c)  Client maintains state (X-Windows, some Web browsers,...)

    d)  Mixture

  4.  Dialog context

    a)  history of interactions
      This can be short term (session, result set) or long term
      (persistent history records).

    b)  user/host/network identity

E.  Query models

  1.  Query language model

    a)  defined structure-based (e.g., SQL)

    b)  text-based (WAIS)

    c)  text-based with field structure (Notes)

  2.  Query translation model

    a)  canonical query language

    b)  pairwise translation

  3.  Search activity model

    a)  parallel searching of multiple sources

    b)  incremental searching (some results before completion)

    c)  resource-controlled searching

- 17 -



    d)  internal and external indices (w.r.t. the specific library system)

  4.  Query result model

    a)  one-shot results

    b)  incremental result sets

    c)  queries, results,etc., as full-fledged DLitems

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Change history:
Converted (some parts) to HTML Jule 27, 1995
Original version Novemberr 21, 1994 by Terry Winograd

- 18 -


