
Performance Evaluation of

Centralized and Distributed Index Schemes

for a Page Server OODBMS

Julie Basu Arthur M. Keller Meikel P�oss

julie@cs.stanford.edu ark@cs.stanford.edu poess@cs.tu-berlin.de

Stanford University Stanford University Technical University of Berlin

Computer Science Department Computer Science Department Computer Science Department

and Oracle Corporation Stanford, CA 94305-9020, USA. 10587 Berlin, Germany

March 19, 1997

Abstract

Recent work on client-server data-shipping OODBs has demonstrated the usefulness of lo-

cal data caching at client sites. However, none of the studies has investigated index-related

performance issues in particular. References to index pages arise from associative queries and

from updates on indexed attributes, often making indexes the most heavily used hot spots in

a database. System performance is therefore quite sensitive to the index management scheme.

This paper examines the e�ects of index caching, and investigates two schemes, one centralized

and the other distributed, for index page management in a page server OODB. In the central-

ized scheme, index pages are not allowed to be cached at client sites; thus, communication with

the central server is required for all index-based queries and index updates. The distributed

index management scheme supports inter-transaction caching of index pages at client sites, and

enforces a distributed index consistency control protocol similar to that of data pages. We study

via simulation the performance of these two index management schemes under several di�erent

workloads and contention pro�les, and identify scenarios where each of the two schemes performs

better than the other.

1 Introduction

Object-oriented database systems (OODBs) have gained popularity in recent years, especially in

the application areas of CAD/CAM and CASE. OODBs typically have client-server architectures,

and commonly use the data shipping approach [6] to move relevant data from the central database

server to local client caches. The data-shipping strategy allows query processing to occur locally

at client sites, and exploits the resources of client workstations. A page (of 4K or 8K �xed byte

1

length) is usually the physical unit of data transfer between a client and a server, such systems

being termed page servers. Page-level data shipping has been found to have superior performance

under many di�erent load conditions over object servers, which use individual objects as the logical

units of data transfer [3].

Local caching and inter-transaction reuse of pages fetched in from the server can reduce network

tra�c between a client and the server, thus minimizing query response times. Despite the potential

cost of maintaining the consistency of local caches, several studies of page server OODBs have

demonstrated the general positive e�ects of client-side data caching on system performance [2, 3,

7, 8, 15, 16].

All of the above studies have examined in detail di�erent techniques of data caching and con-

sistency maintenance of data pages cached at client sites. However, a general assumption has been

that transactions access the client cache navigationally, i.e., only through object IDs. For example,

the simulation model adopted in [8] assumes an input transaction to be represented by a list of

object references. In our view, this model is inadequate, in that it ignores the commonly-used

associative queries and updates, which specify a target set of objects using general predicates on

some attributes of an object class.

Supporting associative queries at client sites requires content-based access to cached data, i.e.,

access based on the values of the object attributes and not merely on their IDs. Indexes de�ned

at the server are normally used during query planning and execution phases to provide e�cient

associative access to the central database. One way of providing associative access to a client cache

is to allow caching of these index pages at the client site. However, the di�erent factors involved in

caching of central index pages, including the maintenance costs and e�ects on system performance,

have not been investigated in earlier studies.

An important performance issue is that one index page generally contains many more entries

compared to a data page, often making index pages the most heavily used hot spots in a database.

System throughput is therefore sensitive to the number and frequency of index accesses and up-

dates. Modi�cation of any indexed attribute of a cached object will result in the corresponding

index page(s) being updated. Previous studies of client-side data caching have not adequately

modeled during analysis and simulation the costs arising from such index updates in the course of

a transaction, even for navigational ID-based object writes.

This paper attempts to investigate the issues raised above, and to evaluate by simulation the

performance of a page server OODB system supporting the usual navigational and also associative

client cache access via index page caching. We extend the simulation model adopted in [3] to in-

corporate index-based associative queries in transactions, consider index read costs for associative

2

processing along with index update costs for both navigational and associative transactions, and

quantify the bene�ts and drawbacks of index page caching at client sites. We consider a distributed

index caching scheme in which inter-transaction caching of index pages is supported following a

distributed consistency control protocol. This method of index management is contrasted against

a centralized scheme that maintains all index pages at the server, with no client-side index caching

being permitted within or across transactions. We develop simulators for both the schemes, and

experimentally analyze the e�ects on system performance under di�erent access patterns and con-

tention pro�les.

The rest of this paper is organized as follows. Section 2 reviews related work. In Section 3, we

discuss the issues and trade-o�s in index caching at client sites. Section 4 gives details of the system

con�guration, the simulation model, and the various cost parameters. Sections 5 and 6 describe

the workloads considered and experiments that were performed, and present the simulation results.

Finally, we summarize our conclusions in Section 7.

2 Related Work

As noted in the Introduction, several recent studies have established the performance bene�ts

of client-side data caching schemes for OODBMSs [2, 3, 7, 8, 15, 16]. All of these papers have

examined caching of pages in general, without considering index pages in particular. For example,

in the simulation study of [3], some of the load pro�les portray regions of high contention among

clients. However, representing indexes simply as high contention data regions does not provide

an adequate model of index behavior | as discussed in Section 3, access, update, and contention

characteristics of index pages are very di�erent from those of general data pages, and in particular

from the data page read and write patterns considered in [3].

Among other related work, index partitioning among di�erent sites in the context of distributed

databases has been investigated in [12]. As in our work, range queries are a focus of their study

also. However, in contrast to our dynamic caching environment, the partitioning in [12] is static

and does not vary with query patterns at a site. Additionally, unlike our centralized client-server

environment, query processing is distributed in nature, with possibly several sites computing partial

query results. In our scenario, transactions are tied to their site of origin | i.e., multiple clients

do not cooperatively work on a single transaction.

In a broader perspective, the issue of supporting associative access to a client-side cache has been

addressed in [5] and [11] | the latter presents a predicate-based caching scheme while the former

employs ViewCache techniques with local indexes on the client cache in the ADMS� system. A

paper closely related to [11] is the semantic caching approach presented in [4]. Unlike these studies,

using centrally de�ned indexes to support associative cache access is the subject of this paper.

3

3 Issues in Index Caching

We note the characteristics and use of index pages, and the bene�ts and costs of index caching.

The discussion is with respect to a page server system supporting client-side caching.

3.1 Index Page Characteristics and Usage

Index pages di�er from data pages in the following respects:

� Index page entry size: The size of an index page entry, conceptually consisting of an

<attribute value, associated OID> pair, is normally much smaller than a data object size.

Therefore, there are, on the average, many more entries per index page than there are objects

in a data page, making index pages often the most heavily used hot spots in a database.

� Index reads: Index range reads always occur at the start of processing an associative range

query, and may result in either clustered or unclustered data access. The number of data

objects accessed per page, i.e., the page locality [6], may di�er radically depending on whether

the data is accessed via a clustered or an unclustered index. The simulation model of [3] does

have page locality as a parameter, but no index lookup or update costs are considered.

� Page reference pattern for index writes: Modi�cation of an indexed attribute in a data

object will cause the corresponding index page(s) to be updated | the old index entry must

be deleted, and a new index entry corresponding to the new attribute value must be inserted,

possibly in a page di�erent from that of the old entry. Zero or more index page updates may

follow an object write. Thus, the index page referencing pattern is quite di�erent from that

of data pages.

� Index write probability: Previous simulation studies have generally investigated the e�ect

of varying the data object write probability. The index write probability per data object

update is a di�erent quantity | it depends on whether the indexed attribute is modi�ed. It

should therefore be considered separately.

Consider, for example, a employee table or object class EMP(name, title, salary, dept id) that

records a name, title, salary and department for each employee. Assume there are two indexes

de�ned on EMP: a clustered B+-tree index based on the foreign key attribute dept id, and the

other an unclustered B+-tree index on salary. Now suppose that the following associative query is

submitted:

SELECT name, title, salary, dept_id FROM EMP

WHERE salary BETWEEN 50000 AND 70000

FOR UPDATE;

4

In order to process this query e�ciently, a range scan of the salary index is necessary. Depending

on the index management strategy, this reference to the index may happen either at the server or

at the client, but in either case producing a list of qualifying object IDs. Since the index on salary

is unclustered, EMP objects will be referenced randomly in the data pages. If the query predicate

instead was \WHERE dept id = 100," the set of EMP objects retrieved would be grouped closely

together in successive data pages. The client processes the EMP object IDs one by one, fetching

the corresponding data page from the server if it is missing from the local cache. If a fetched object

is updated (based on some program logic), one or both of the indexes may need to be updated.

3.2 Costs and Bene�ts of Index Caching

The query optimizer at the server uses any available indexes to generate e�cient execution plans

for associative queries, by limiting the set of data pages that need to be examined. Indexes could

also be used to provide associative access to a client cache. For any query that speci�es target

objects through a predicate involving an indexed attribute, the relevant index pages may be used

to determine whether a client has all or some of the desired objects cached locally. If any queried

object is locally available, then the corresponding data page need not be re-fetched from the remote

server, thereby reducing network communication and improving query response times.

If the caching policy disallows storage and reuse of index pages at client sites, then all index

page references for range queries and index updates at the client must be routed to the server, which

may become a bottleneck in the system. Although inter-transaction caching of index pages can

support local processing of associative queries, it requires the enforcement of a distributed index

consistency control protocol, which may be expensive in certain update-intensive scenarios. Two

particular index management schemes, one centralized and the other distributed, are described in

the following section and are analyzed quantitatively in our simulation.

4 Centralized and Distributed Schemes for Index Management

We consider two di�erent schemes, one centralized and the other distributed, for access and main-

tenance of the server index pages in a client-server environment. For both the schemes, we use

the PS-AA caching method for data pages [3], which provides adaptive granularity for concurrency

control and consistency maintenance of cached data, while using the page as the �xed unit of data

transfer across the network. The PS-AA method of locking and replica control switches from page-

based to object-based locking when �ner-grained sharing is deemed better, and uses callbacks (�rst

proposed in the context of the Andrew File System [10]) for coordinating updates. For a variety of

workloads studied in [3], the adaptive page server following PS-AA caching strategy was found to

have consistently good performance, generally outperforming the other static and dynamic caching

strategies investigated.

5

4.1 Centralized Index Management

In this scheme, all index pages are centrally stored and managed exclusively by the server. They

are not allowed to be cached by clients, and thus are treated very di�erently from data pages. A

client submits each associative query to the server. The server searches the relevant index pages

to determine which data objects fall within the query range, and responds with a list of qualifying

object IDs. We assume that an object ID is in the common structured form, i.e., it contains a

physical page number in its higher order bits and a logical slot number in the low order bits [1], so

that the page in which an object resides is indicated by its ID. The client processes the received

list of objects IDs sequentially, as in the case of the \next" operation on a cursor, and requests the

server for the data page of an object missing from its local cache.

Any index entry delete and insert requests resulting from a data object update (for the old

and new index entries respectively) are sent to the server for incorporating on the central index

pages. We assume in this paper that propagation of index updates to the server is not deferred.

The deferred approach is used by some commercial OODB systems to reduce network tra�c, but

may cause delayed detection of index errors.

The centralized index approach has the basic disadvantage that every access and update of index

pages requires a round-trip communication with the remote server. The advantage is that central

maintenance of the index at the server simpli�es coordination of simultaneous updates to index

pages by di�erent clients. As shown in our simulation results, the performance of the centralized

scheme in a client-server environment depends on the nature of the workload.

4.2 Distributed Index Caching

We now outline an inter-transaction index caching scheme which allows local storage of any index

pages referenced (read or updated) by the client. Which index pages get cached locally depends on

the data access and update pattern of the client. Whenever an index page has to be read for an

associative query, the client requests the server for a copy of the index page only if it is not cached

locally. Thus, cached index pages have implicit permission for local read.

Updating cached index pages requires coordination through the server. In a centralized scenario,

we assume that an index page is latched at the server (e.g., via a semaphore) only for the duration of

an actual insert or delete operation on it, and that advanced techniques such as index range locking

or predicate/granular locks [9] are not used. For this case, the isolation model for concurrency

control is that of cursor stability [9] | there is no protection against phantoms, and no repeatable

read property for queries. This level of transaction consistency is popular in commercial database

systems [9, 14], and is adopted in our study; our centralized and distributed index schemes both

provide an isolation model comparable to cursor stability.

6

For index page writes, we follow a policy similar to the Callback-Read [7] scheme for data pages.

Acquiring a write latch on an index page involves invalidating cached copies of the page at all clients

other than the requestor, and granting the owner of the latch exclusive permission to update the

page. The index page is sent to the requestor site if it is not already cached there. A client sends the

index page in question back to the server immediately after the update, whereupon the distributed

write latch is released, allowing any other clients waiting to read or write the same index page to

proceed. The client may continue to cache the copy of the index page locally until it is
ushed in

response to an invalidation message from the server, or is aged out by the normal LRU bu�er page

replacement algorithm.

The main bene�t of allowing index caching at client sites is that no communication is necessary

with the server when index pages to be read are locally available at a client. However, client

caching of indexes has the basic problem that update contention over shared index pages may

increase network tra�c and update costs, even when there is no sharing of data pages. Consider

a situation where one half of an index page relates to objects cached at a client A, and the other

half relates to a disjoint set of objects and pages cached at client B. Even if the update activity is

relatively low at both clients A and B, substantial contention and loss of performance may occur

due to the dependence of both clients on the shared index page. Our objective in this study is to

quantify the performance characteristics of such a scheme.

5 Simulation Model

We now describe the details of our simulation model and the various system and cost parameters,

focusing mainly on our re�nements to explicitly model indexes. The overall client-server system

architecture is represented in Figure 1.

Client 2 Client 3 Client NClient 1

DISK DISK DISK

Server 1 Server 2 Server N

Local Area Network

Figure 1. A typical client-server system communicating via a LAN.

7

5.1 Page-Server Simulation Model

Our simulation model for the page server is essentially the same as that of [3]. We have reproduced

in Figure 2 below the basic page server simulation model from [3], with an additional \index

manager" module on the server side for our index handling extensions. We describe here very

brie
y the general page server scheme | the details may be found in [3].

Resource Manager
 (CPU only)

Buffer
Manager

 Client
Manager

Transaction Source

Concurrency

 Manager
Control

Buffer
Manager

 Server
Manager

 Index Manager

Resource Manager
 (CPU and disks)

Concurrency
Control

 Manager

Other Clients

Client Model Server Model

Network Manager

Figure 2. Simulation Model of a Page Server OODBMS

Pages (generally of �xed byte size) are the unit of data transfer and caching in the page server

systems. Several studies, e.g., [6] and [7] have investigated the performance of page servers compared

to object servers. This issue is not the focus of our work, and we assume page-based algorithms

for data and index page transfer and caching. The unit of concurrency control may di�er however

from the data transfer and caching units, and based on the favorable results reported in [3], we

adopt the PS-AA concurrency control method for data pages. However, for index page access and

update, we experiment with the two page-based protocols, centralized and distributed, as de�ned

earlier in Section 4. Like data pages, index pages are allowed to be cached in the distributed index

scheme, but a concurrency control protocol di�erent from the data pages is used, keeping in mind

the special characteristics of index pages.

5.2 Modeling Indexes

We model each associative access as an index range read, the width of the \read window" depend-

ing on the parameter average transaction size, i.e., the average number of objects accessed by a

transaction. More than one index page may be read if the range scan crosses index page boundaries.

The start points of index scans are generated randomly, based on the index usage pro�le supplied

for the particular client (workload pro�les are described in detail in Section 5.4). The result of an

index scan is a list of OIDs that is then processed by the client transaction, with object and index

8

writes occurring according to the speci�ed workload.

For each index range read, the centralized scheme results in a round-trip to the server. Network

and index lookup costs are associated with this operation. The distributed scheme incurs similar

index read overhead in processing associative queries for which the index pages are not locally

available. For large-sized transactions, the index read window may overlap two or more index

pages. In keeping with the \one-page-at-a-time" functionality of the page server, the distributed

scheme handles index page read (and also write) requests one index page at a time. Thus, unlike

the centralized case, a single but large index range read may cause multiple round-trips to the

server for the distributed scheme. This extra cost is re
ected in our performance measurements, as

discussed in the next section (Figure 3(b)).

Upon each data object write, one or more index updates may occur, based on the index write

probabilities (parameters in our simulation model). For the centralized case, a round-trip to the

server is required to update the appropriate indexes associated with the modi�ed attribute value.1

An index update request for the distributed scheme requires communication with the server to

obtain exclusive update privileges for each index page updated, as described in Section 4.2. Once a

write latch is granted on an index page, the index entries are updated (the old entry deleted and a

new entry inserted) to re
ect the data object write. All index writes are undone upon transaction

aborts, which may be caused by the detection and resolution of deadlocks by the simulator. Since

appropriate locks are held on the data objects themselves, updating the index before a transaction

commits does not cause erroneous behavior | if a transaction reads an uncommitted index entry,

it will subsequently block upon a read or write request for the associated data object until the

updating transaction commits or aborts.

For the purposes of this study, we do not consider the e�ects of index page splitting and merging

that may take place in a B-tree index or one of its variants. In other words, index page over
ow

and under
ow is not considered. This assumption is not overly restrictive, since page splitting and

merging are often relatively rare occurrences in practice, especially for light update loads. A result

of this simpli�cation is that only index pages at the leaf level that contain pointers to OIDs are

considered pertinent for this study. All non-leaf index pages in a B-tree index can be assumed to

be invariant for our simulation, and available read-only to all clients and the server. Availability

of the non-leaf index pages allows a client to locally determine which leaf level index page must be

accessed for an index scan or update.

Our simulator explicitly models two indexes, one clustered and the other unclustered, on the

database. These indexes are named cix and uix respectively. It is important to consider both

types of indexes, since the index usage, and data access and update patterns are di�erent for the

1As in [3], data object modi�cations are not sent to the server until a transaction commits or aborts.

9

two. A query that uses a range predicate on an attribute with a clustered index will retrieve a set

of objects grouped closely together in some set of data pages. On the other hand, access through

an unclustered index will result in random data pages being fetched in. Clustered indexes are

generally less likely to be updated, because data objects are generally clustered in pages according

to an attribute that is infrequently updated, such as the department number of employee tuples in

an employee relation.

During the initialization phase of the simulator, both types of index pages are explicitly popu-

lated with associated object IDs. Clustered index pages hold object IDs in the order they appear

in data pages. That is, objects are placed in the clustered index pages sequentially according to

their page IDs. Pages of the unclustered index are randomly populated with object IDs. To avoid

aberrations in the results from a cold start with empty caches, both the server and the client

caches are pre-loaded with pages. The server main memory bu�er manager �rst loads in all index

pages during the initialization phase, since it is likely that index pages will be frequently used by

the clients. It �lls up the remaining bu�er space with data pages selected randomly. In contrast,

each client loads into its cache a fraction of its hot data pages, and places cold data pages in the

remaining space; no index pages are cached by the clients at the start of simulation.

5.3 System and Cost Parameters

General system and cost parameters and their values for the simulation experiments are listed in

Table I { these are identical to those assumed in [3]. Additional index-related parameters and costs

that are speci�c to our enhancements are de�ned separately in Table II. The simulator code is

written in the Modula-2 based simulation language DeNet [13], and uses for the basic PS-AA page

server the same code as in the simulator developed in [3]. Thus, we have the exact behavior for

data page caching as reported in [3], with index page reads, writes and local index caching being

our newly added functionality.

An index entry is assumed to be 16 bytes. Given our page size of 4K bytes, this implies that

an index page contains 250 object entries, as opposed to 20 objects per data page. Our database

contains in total 25,000 objects, and therefore the clustered and unclustered indexes occupy 100

pages each.

Index range reads incur a lookup cost, represented by IxLookUpCost, to locate from the root of

the B+ index the leaf index page which holds the �rst object entry in the read interval. Once this

index entry is located, each consecutive index entry is read, at a cost of IxEntryReadCost, until

the end of the range read interval is reached. Index page updates also require a lookup, followed

by acquiring a latch, with cost IxLatchCost, on each page updated. The actual update is assumed

to have a cost of IxPageUpdateCost. As mentioned before, we do not consider index page splitting

10

Table I: General System and Cost parameters

Parameter Meaning Value

NumClients Number of client workstations 10

ClientCPU Instruction rate of client CPU 15 MIPS

ServerCPU Instruction rate of server CPU 30 MIPS

ClientBufSize Per-client bu�er size 25% of DBsize

ServerBufSize Server bu�er size 50% of DBsize

ServerDisks Number of disks at server 2 disks

MinDiskTime Minimum disk access time 10 milliseconds

MaxDiskTime Maximum disk access time 30 milliseconds

NetworkBandwidth Speed of network communication 80 Mbits per second

PageSize Size of a page (data transfer unit) 4096 (4K) bytes

DBsize Size of the database 1250 pages (5 MB)

ObjsPerDataPage Number of objects per data page 20 objects

FixedMsgCost Fixed instructions per message 20,000 instructions

PerByteMsgCost Additional instructions per message byte 10,000 per 4KB page

ControlMsgSize Size of a control message 256 bytes

LockCost Cost per lock/unlock pair 300 instructions

RegisterCopyCost Cost to register/uregister a page copy 300 instructions

DiskCost Cost of performing a disk I/O 5000 instructions

ReadObjCost Mean cost to read an object 5000 instructions

WriteObjCost Mean cost to write an object 10000 instructions

DataPageMergeCost Cost to merge two copies of a data page 300 instructions per object

Table II: Index-related System and Cost Parameters

Parameter Meaning Value

NumClustIx Number of clustered indexes on DB 1

NumUnclustIx Number of unclustered indexes on DB 1

InitEntriesPerIxPage Initial no. of entries per index page 250

NumCixPages Number of clustered index (cix) pages 100

NumUixPages Number of unclustered index (uix) pages 100

IxLatchCost Cost per latch/unlatch of an index page 50 instructions

IxLookupCost Cost to locate an index page entry given an object ID 1000 instructions

IxEntryReadCost Cost to read the next entry in index range 10 instructions

IxPageUpdateCost Cost to insert or delete an index page entry 2000 instructions

11

Table III(a): Workload Pro�le for Client i, i = 1..10.

Workload Type

Parameter Meaning HOTCOLD UNIFORM HICON

HotDataPgs Hot range of data pages h to h+ 124; | 1 to 250

h = 125 � (i� 1) + 1

ColdDataPgs Cold range of data pages rest of DB whole DB rest of DB

HotCixPgs Hot range of clustered index pages c to c+ 9, | 1 to 20

c = 10 � (i� 1) + 1

ColdCixPgs Cold range of clustered index pages rest of cix pgs all cix pages rest of cix pgs

HotUixPgs Hot range of unclustered index pages | | |

ColdUixPgs Cold range of unclustered index pages | all uix pgs |

AccHotDataProb Probability of accessing a hot data page 0.8 | 0.8

AccHotCixProb Probability of accessing a hot cix page 0.8 | 0.8

AccColdCixProb Probability of accessing a cold cix page 0.2 uniform 0.2

AccColdUixProb Probability of accessing a cold uix page | uniform |

and merging costs. New entries are targeted randomly to the existing index pages, and we assume

that all index pages handle entry insertion and deletion without over
ow or under
ow.

5.4 Workload Model

Transactions in our workload model are of two types: associative and navigational. The former

type of transaction accesses data using an index; the latter is a list of data object ID references, as

modeled in [3]. For the purposes of our simulation, an associative transaction consists of a single

range query or update, which is expressed in terms of a linear range on either the clustered or the

unclustered index. Processing of such a transaction commences by examining the necessary index

pages, and by making a range scan over these pages to generate the list of object references. This

list of object IDs is then processed one by one at the client site, fetching data pages as necessary

from the server. An object write can trigger index updates, which result in write requests for index

pages.

Client-speci�c workload pro�les and general transaction parameters are summarized in Tables

III(a) and III(b) respectively. The distribution of data and index pages among the di�erent clients

is described in Table III(a). These parameters vary by the choice of workload type | HOTCOLD,

UNIFORM, or HICON, but are invariant for each client given any particular workload.

The HOTCOLD load pro�le considered for this study is similar to that of the HOTCOLD load

studied in [3]. The HOTCOLD workload has a high degree of access locality per client and a

moderate amount of data contention amongst the clients. As shown in Table III(b), each client has

its own set of 125 hot data pages, access to which occurs with a probability of 80%. The hot page

bounds of the clustered cix index matches the hot data page bounds for each client | each set of

12

10 cix pages corresponding to the hot data page range for the client is the hot cix page range for

the client. The probability that a range read occurs in the hot cix page range is 80%. Associative

access to data via range reads on the unclustered uix index is not considered for the HOTCOLD

model, since it causes random page references. However, both the indexes are subject to updates

upon individual object writes.

For the UNIFORM workload, data object references are assumed to be uniformly random over

all the 1250 data pages, as in [3]. For this workload type, associative access to data via both

clustered and unclustered indexes are considered. A range read starts randomly at any one of

100 pages of the accessed index, and then proceeds sequentially over the read window. Parameter

settings for client i for the UNIFORM workload type are summarized in Table III(b).

The HICON workload is adapted from the corresponding workload in [3]. It is a skewed workload

representing high data contention amongst the clients. As shown in Table III(b), all clients access

the �rst 250 pages of the database, which are the shared hot data pages, with 80% probability.

Only the clustered cix index is considered relevant for associative data access in this workload, the

hot cix index range corresponding to the 250 hot data pages being the �rst 20 cix index pages.

Transaction characteristics for all workload types are listed in Table III(b). The set of �rst

six parameters is kept �xed while the second set of parameters is varied in our experiments. The

probability that a transaction is associative and accesses data via an index is represented by the

AssocProb parameter. A value of 0 for AssocProb implies that none of the transactions use either of

the two indexes for accessing data; although there are no index reads in this case, index writes may

occur upon data object updates in navigational transactions. Given an associative transaction,

CixAccProb denotes the probability that data is accessed via the clustered cix index. Only the

UNIFORM workload supports associative data access via the unclustered uix index, and in this

case, the corresponding parameter UixAccProb for the uix index is simply (1� CixAccProb).

An important characteristic of a transaction is its size or length, which is the number of data

objects it accesses. In our model, there are four parameters that relate to the size of a transaction

| NumPages, PageLocality, CixReadSize, and UixReadSize. The �rst two are applicable only

for navigational transactions, while the latter two are relevant for associative transactions only.

NumPages denotes the mean number of pages accessed by a navigational transaction. The size of

a navigational transaction in terms of the number of data objects it accesses is determined by the

PageLocality parameter. Based on the simulation parameter values adopted in [3], we have chosen

for our experiments a (�xed) PageLocality range of 1-7 with a mean of 4. That is, a navigational

transaction will access 4 data objects per page on the average, giving an overall transaction size of

(4 �NumPages) number of objects. In contrast, the size of an associative transaction is controlled

by the CixReadSize and UixReadSize parameters. If data is accessed via the clustered index,

13

Table III(b): Transactions Parameters for All Workloads

Parameter Meaning Value

ThinkTime Mean think time between transactions 0

PageLocality No. of objects accessed per page 1-7 (min-max),

by a navigational transaction mean 4

CixWrtProb Probability of clustered index update per object write 0.1

UixWrtProb Probability of unclustered index update per object write 0.8

Cix2pgWrtPb Probability that a clustered index update 0.8

modi�es two index pages

Uix2PgWrtPb Probability that an unclustered index update 0.8

modi�es two index pages

ReadOnlyProb Probability that a transaction is read-only varies

AssocProb Probability that a transaction is associative varies

CixAccProb Probability that an associative transaction varies

accesses data via the clustered index

UixAccProb Probability that an associative transaction 1� CixAccProb

accesses data via the unclustered index

NumPages Mean no. of data pages accessed varies

per navigational transaction

CixReadSize Mean no. of objects in a range scan of clustered index varies

UixReadSize Mean no. of objects in a range scan of unclustered index varies

ObjWrtProb Data Object Write Probability varies

CixReadSize de�nes the mean number of index entries scanned by the range query. UixReadSize

is the corresponding parameter for the unclustered index. Thus, CixReadSize and UixReadSize

directly determine the length of an associative transaction in terms of data objects referenced.

A read-write transaction chooses to update a data object with probability ObjWrtProb. A data

object write may result in updates to one or both the indexes, depending on the attributes updated.

CixWrtProb and UixWrtProb respectively denote the probability of a clustered or an unclustered

index update upon a data object write. These parameters have �xed values for our experiments,

10% and 80% respectively. Updating an index entry requires deleting the old entry for the old

value and inserting a new entry with the new attribute value for the object. Whether the new

entry is in a page di�erent from the one holding the old entry determines whether one or two index

pages are accessed for the index update operation. To accurately model this behavior, we use two

additional parameters, Cix2PgWrtPb and Uix2PgWrtPb, to denote the probabilities that a new

index entry is in a page di�erent from the old one, when an index update occurs on the clustered

or the unclustered index respectively. We do not consider object deletes and inserts in this study,

although they could be incorporated in our simulation model.

14

Notice that there are two di�erent parameters controlling object writes | namely, ObjWrtProb

and ReadOnlyProb. The latter parameter controls object writes on a per-transaction granularity,

while the former is a per-object write probability for a given read-write transaction. A read-

only transaction occurs with probability ReadOnlyProb, and has no object writes. Therefore, the

ObjWrtProb parameter is not relevant for a transaction that is read-only. Both object reads and up-

dates are performed by a read-write transaction, which occurs with probability (1�ReadOnlyProb);

with ObjWrtProb being the probability of an object being written by it.

6 Simulation Experiments and Results

To check our implementation of the index management algorithms, we �rst veri�ed that in the

absence of associative queries (i.e., index reads) and index updates, both the centralized and dis-

tributed index algorithms yield exactly the same results. These results are also in agreement with

the results reported in [3]. After this and a few other initial validation steps, several experiments

were performed to evaluate the e�ects of the centralized and distributed index schemes under dif-

ferent load and access patterns. In the results reported below, we focus primarily on associative

transactions and on index behavior. We use the throughput in terms of number of transactions per

second (TPS) as our main measure of system performance. Our simulator keeps track of several

other quantities, such as the number of remote index read and write requests. We use these two

measures in particular to analyze the results of our experiments.

6.1 Read-Only Scenarios

In order to explore the parameter space systematically, and to observe the e�ects of individual

parameters, we �rst investigate the read-only behavior of the system with no object or index

updates. In this scenario, there are two parameters that can be varied for all workloads: (i) the

transaction size (controlled by CixReadSize and UixReadSize for an associative transaction, and

by NumPages for a navigational one), and (ii) AssocProb, the probability of a transaction being

associative. Additionally, for the UNIFORM workload only, the CixAccProb parameter can be

varied to control the ratio of data access via the clustered versus the unclustered index.

Figures 3(a) through 3(e) give the results of varying the transaction size for all three workloads,

keeping the parameters AssocProb and CixAccProb constant at values of 1.0 and 1.0 respectively.

The scenario in Figure 3(f) is similar, except that it uses the unclustered index for data access in

a UNIFORM workload with CixAccProb being 0.0.

15

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Transaction size (average no. of objects accessed)

Figure 3(a): Read-Only Clustered with Varying Transaction Size

Workload Type = HOTCOLD
Object Write Probability = 0.0
Associative Queries = 100%
Clustered Index Access = 100%

Centralized Scheme
Distributed Scheme

0

0.2

0.4

0.6

0.8

1

10 30 50 70 90 110 130 150

R
em

ot
e

In
de

x
R

ea
d

R
eq

ue
st

s
P

er
 T

ra
ns

ac
tio

n

Transaction size (average no. of objects accessed)

Figure 3(b): Read-Only Clustered with Varying Transaction Size

Workload Type = HOTCOLD
Object Write Probability = 0.0
Associative Queries = 100%
Clustered Index Access= 100%

Centralized Scheme
Distributed Scheme

20

40

60

80

100

20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Transaction size (average no. of objects accessed)

Figure 3(c): Read-Only Clustered with Varying Transaction Size

Object Write Probability = 0%
Clustered Index Access = 100%
Associative Queries = 100%
Workload Type = UNIFORM

Centralized Scheme
Distributed Scheme

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

R
em

ot
e

In
de

x
R

ea
d

R
eq

ue
st

 P
er

 T
ra

ns
ac

tio
n

Transaction size (average no. of objects accessed)

Figure 3(d): Read-Only Clustered with Varying Transaction Size

Object Write Probability = 0%
Clustered Index Access = 100 %
Associative Queries = 100%
Workload Type = UNIFORM

Centralized Scheme
Distributed Scheme

40

80

120

160

200

240

280

20 40 60 80 100 120 140

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Transaction size (average no. of objects accessed)

Figure 3(e): Read-Only Clustered with Varying Transaction Size

Object Write Probability = 0%
Clustered Index Access = 100%
Associative Queries = 100%
Workload Type = HICON

Centralized Scheme
Distributed Scheme

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Transaction size (average no. of objects accessed)

Figure 3(f): Read-Only Unclustered with Varying Transaction Size

Object Write Probability = 0%
Clustered Index Access = 0%
Associative Queries = 100%
Workload Type = UNIFORM

Centralized Scheme
Distributed Scheme

Figure 3(a) shows the e�ect of varying transaction size on the system throughput for the HOT-

16

COLD workload when there are no object writes, all transactions are associative, and all range

reads are on the clustered index. It can be seen from the graph that the distributed scheme does

much better than the centralized one over the range read sizes considered. The reason for this

behavior is explained by Figure 3(b), which plots the number of index read requests sent to the

server for the same load pro�le as in Figure 3(a). For the centralized scheme, each transaction

causes exactly one remote index read request irrespective of the transaction size. In contrast, the

distributed scheme fetches an index page from the server only if there is a cache miss for the page,

and therefore the average number of requests for an index page is less than 0.25 over a wide range

of transaction sizes. This number is 0.1 for a transaction size of 20 objects, and rises slowly to

about .22 for a transaction size of 160 objects.

The reason for the slight upwards slope in the curve for the distributed scheme in Figure 3(b)

is twofold. Firstly, recall that our simulator fetches index pages one at a time for range reads when

the read interval overlaps two or more index pages. As the average index read size increases, more

associative transactions reference two index pages instead of one at the start of processing, requiring

two separate trips to the server. This penalty is not paid by the centralized scheme, which fetches

a list of qualifying OIDs from the server in one round-trip. Secondly, increasing transaction sizes

result in a larger number of data pages to be cached per transaction, causing some index pages to

be aged out of the cache and decreasing the cache hit ratio for index pages.

Figures 3(c) and (d) are the counterparts of Figures 3(a) and 3(b) for the UNIFORM workload.

In contrast with the HOTCOLD results, the distributed scheme actually performs worse than the

centralized in the UNIFORM case, converging to about the same performance for large transaction

sizes. This reversal of performance happens despite the fact that the number of index read requests

sent to the server is less for the distributed scheme compared to the centralized one (Figure 3(d)),

just as in the HOTCOLD case (Figure 3(b)). The reason for this behavior of the distributed scheme

is that random access to all 100 clustered index pages causes caching of more index pages for the

UNIFORM case compared to the HOTCOLD one, which e�ectively reduces the space available for

data pages in the client cache, thereby causing data page misses and decreasing the throughput.

The behavior of the HICON workload for the scenario corresponding to Figure 3(a) is shown in

Figure 3(e). As in the HOTCOLD case, and in contrast with the UNIFORM one, the distributed

scheme out-performs the centralized one for all transaction sizes. However, a comparison of Figures

3(a) and 3(e) shows that the throughput of the distributed scheme for any transaction size in the

HICON case is lower than the corresponding value for HOTCOLD. This behavior is expected, since

20 index pages are hot in this workload compared to 10 in the HOTCOLD case, e�ectively causing

more index caching and reducing the client bu�er size by 10 pages.

Of our three workloads, only the UNIFORM workload involves associative data access via the

unclustered index. Figure 3(f) shows the system throughput with varying transaction size in the

17

UNIFORM workload using the same parameter settings as in 3(c), except that CixAccProb is set

to 0.0; that is, for Figure 3(f), all associative queries use the unclustered index. The throughput for

the distributed scheme slightly trails that of the centralized one over the entire range of transaction

sizes. Notice that the throughput is much lower compared to the clustered access case of Figure

3(c), and that the relative di�erence in performance of the two index schemes is not as large. The

reason for this behavior is that random data page references due to unclustered access reduce the

performance of both the centralized and distributed schemes, and cause nearly equal number of

data page misses in both cases.

0

10

20

30

40

20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentage of Access via Clustered Index

Figure 4(a): Read-Only Associative with Varying Clustered Access

Associative Queries = 100%
Workload Type = UNIFORM

Object Write Probability = 0%
Transaction Size = 80 objects

Centralized Scheme
Distributed Scheme

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

R
em

ot
e

In
de

x
R

ea
d

R
eq

ue
st

 P
er

 T
ra

ns
ac

tio
n

Percentage of Access via Clustered Index

Figure 4(b): Read-Only Associative Varying Clustered Access

Workload Type = UNIFORM
Associative Queries = 100%
Transaction Size = 80 objects
Object Write Probability = 0%

Centralized Scheme
Distributed Scheme

Next, consider the read-only UNIFORM case with varying CixAccProb, i.e., varying access via

the clustered index for associative queries. Figures 4(a) and 4(b) show the throughput and the

index read requests in this scenario for a transaction size of 80 objects. The throughput of the

distributed scheme lags slightly behind the centralized one over the entire range of clustered access,

with performance of both schemes increasing rapidly beyond the point where 80% of associative

access is through the clustered index. As shown in Figure 4(b), index page hits in the distributed

scheme also increase for 80% and greater values of clustered access, with remote index read requests

per transaction falling beyond the constant 1 for the centralized scheme. However, there is no cross-

over in the throughput curves, because uniform access of the 200 cix and uix index pages and their

caching reduces the e�ective client bu�er size in the distributed scheme.

The last read-only scenario for all workloads consists of varying the parameter AssocProb to

control the percentage of associative queries. The results are presented in graphs 5(a) through

5(h). The transaction size is kept constant at 80 objects, and associative data access is entirely

through the clustered index for the cases in Figures 5(a) through 5(e). Figures 5(g) and 5(h) are

for the UNIFORM workload, and are similar to 5(c) and 5(d) except that data access occurs via

the unclustered index.

18

20

40

60

80

100

120

140

0 20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentage of Associative Queries

Figure 5(a): Read-Only Clustered with Varying Associative Access

Object Write Probability = 0%
Transaction Size = 80 objects
Clustered Index Access = 100 %
Workload Type = HOTCOLD

Centralized Scheme
Distributed Scheme

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
em

ot
e

In
de

x
R

ea
d

R
eq

ue
st

s
P

er
 T

ra
ns

ac
tio

n

Percentage of Associative Queries

Figure 5(b): Read-Only Clustered with Varying Associative Access

Object Write Probability = 0%
Transaction Size = 80 objects
Clustered Index Access = 100 %
Workload Type = HOTCOLD

Centralized Scheme
Distributed Scheme

10

20

30

40

0 20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentages of Associative Queries

Figure 5(c): Read-Only Clustered with Varying Associative Access

Object Write Probability = 0%
Transaction Size = 80 objects
Clustered Index Access = 100%
Workload Type = UNIFORM

Centralized Scheme
Distributed Scheme

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
em

ot
e

In
de

x
R

ea
d

R
eq

ue
st

s
P

er
 T

ra
ns

ac
tio

n

Percentages of Associative Queries

Figure 5(d): Read-Only Clustered with Varying Associative Access

Object Write Probability = 0%
Clustered Index Access= 100%
Transaction Read Size = 80 objects
Workload Type = UNIFORM

Centralized Scheme
Distributed Scheme

10

30

50

70

90

110

0 20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentage of Associative Queries

Figure 5(e): Read-Only Clustered with Varying Associative Access

Object Write Probability = 0%
Transaction Size = 80 objects
Clustered Index Access = 100 %
Workload Type = HICON

Centralized Scheme
Distributed Scheme

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
em

ot
e

In
de

x
R

ea
d

R
eq

ue
st

s
P

er
 T

ra
ns

ac
tio

n

Percentage of Associative Queries

Figure 5(f): Read-Only Clustered with Varying Associative Access

Object Write Probability = 0%
Transaction Size = 80 objects
Clustered Index Access = 100 %
Workload Type = HICON

Centralized Scheme
Distributed Scheme

As shown in the above �gures, varying the ratio of navigational versus associative access through

the clustered index causes the throughput to vary substantially for all the three workloads. The

19

distributed scheme starts out as slightly worse than the centralized in the HOTCOLD workload

(Figure 5(a)), but does better beyond 85% associative access. Similar behavior is observed for

the HICON workload, with the throughput cross-over occurring slightly higher at 90% associative

access. For both of these workloads, medium and high values of associative clustered access generate

a lower number of index page read requests at the server for the distributed scheme than in the

centralized (Figures 5(b), 5(d), and and 5(f)), indicating that index page caching is indeed e�ective

in increasing the throughput by causing index hits for associative queries.

In contrast, for the UNIFORM workload, Figure 5(c) does not show a cross-over in throughput

for the two index schemes. The number of remote index read requests as plotted in Figure 3(d) is

higher for the distributed scheme until about 85% associative access, when it falls below that of the

centralized. However, because of the uniform access to a larger number of index pages compared to

the HOTCOLD and HICON workloads, and the resulting decrease in cache space for data pages,

the throughput for the distributed scheme in the UNIFORM case does not rise enough to beat the

centralized even for 100% associative data access, although the performance of the two schemes are

comparable over the entire range of associative access.

1

1.5

2

2.5

3

0 20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentage of Associative Queries

Figure 5(g): Read-Only Unclustered With Varying Associative Access

Object Write Probability = 0%
Transaction Size = 80 objects
Clustered Index Access = 0 %
Workload Type = UNIFORM

Centralized Scheme
Distributed Scheme

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

R
em

ot
e

In
de

x
R

ea
d

R
eq

ue
st

s
P

er
 T

ra
ns

ac
tio

n

Percentage of Associative Queries

Figure 5(h): Read-Only Unclustered with Varying Associative Access

Object Write Probability = 0%
Transaction Size = 80 objects
Clustered Index Access = 0 %
Workload Type = UNIFORM

Centralized Scheme
Distributed Scheme

Figures 5(g) and 5(h) show the case of unclustered access for varying percentage of associative

queries in the UNIFORM workload. Due to the random nature of data page references with

unclustered access, the performance of the both the index schemes deteriorates compared to the

clustered case of Figure 5(c), and remains more or less constant with varying associative access.

The distributed scheme causes slightly higher index read requests than the centralized, and unlike

Figure 5(d), does not fall o� for high ratios of associative access. This behavior can be attributed

to that fact that uniform access to the unclustered index causes a larger number of random index

and data page references compared to the clustered, reducing cache hits and the reuse of index and

data pages at the client site.

20

6.2 Read-Write Cases

We have performed several sets of experiments varying the twomajor write parameters in our model,

namely, ReadOnlyProb and ObjWrtProb. All of our results cannot be reported in this paper due to

space constraints, so we discuss below some representative cases. The general trend we observed

was that in the presence of update (read/write) transactions, there is signi�cant deterioration in

performance for the distributed index scheme, even with quite low object write probabilities. This

behavior is not surprising given the cost associated with acquiring a distributed latch on an index

page. However, as demonstrated in Figures 6(a) through 6(d), the ratio of update versus read-only

transactions and the workload type are important factors in determining whether the centralized

index scheme performs better than the distributed or vice-versa.

40

60

80

100

120

140

160

180

200

220

240

20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentage of Read-Only Transactions

Figure 6(a): Read-Write Clustered With Varying Update Transactions

Object Write Probability = 10%
Transaction Size = 30 objects
Clustered Index Access = 100 %
Associative Transactions = 100%
Workload Type = HOTCOLD

Centralized Scheme
Distributed Scheme

0

1

2

3

4

5

0 20 40 60 80 100

R
em

ot
e

In
de

x
R

ea
d

R
eq

ue
st

s
P

er
 T

ra
ns

ac
tio

n

Percentage of Read-Only Transactions

Figure 6(b): Read-Write Clustered With Varying Update Transactions

Object Write Probability = 10%
Transaction Size = 30 objects
Clustered Index Access = 100 %
Associative Transactions = 100%
Workload Type = HOTCOLD

Centralized Scheme
Distributed Scheme

30

40

50

60

70

80

90

0 20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentage of Read-Only Transactions

Figures 6(c): Read-Write Clustered with Varying Update Transactions

Object Write Probability = 10%
Transaction Size = 30 objects
Clustered Index Access = 100 %
Associative transactions = 100%
Workload Type = UNIFORM

Centralized Scheme
Distributed Scheme

40

80

120

160

200

20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentage of Read-Only Transactions

Figure 6(d): Read-Write Clustered with Varying Update Transactions

Object Write Probability = 10%
Transaction Size = 30 objects
Clustered Index Access = 100 %
Associative Transactions = 100%
Workload Type = HICON

Centralized Scheme
Distributed Scheme

Figures 6(a) and 6(b) show the e�ect of varying the ratio of read-only versus update transactions

for the HOTCOLD workload, using associative transactions of size 30 objects and the clustered

index. The object write probability is 10%. The cross-over in throughput occurs when about 75%

of the transactions are read-only, beyond which point the performance of the distributed index

21

scheme increases rapidly, exceeding the much slower growth for the centralized. The number of

remote index read requests per transaction, as plotted in Figure 6(b), shows a rapid decrease for

the distributed scheme with increasing number of read-only transactions, falling below that of the

centralized when update transactions are less than 15% of the transaction load. Similar behavior

is observed in the case of the HICON workload, with the cross-over in throughput occurring at a

mix of 70% read-only queries and 30% update transactions (Figure 6(d)).

The performance characteristics of the UNIFORM workload under the same conditions are

quite di�erent from the HOTCOLD and HICON cases, as illustrated in Figure 6(c). In keeping

with the behavior observed in the read-only scenarios of Section 6.1, the distributed index scheme

never beats the centralized one, even with a 100% read-only load. Uniformly random access to all

the 100 pages of the cix index causes a larger number of index pages to be cached in the client

bu�er, reducing the data page hits and the throughput.

0

40

80

120

160

200

240

280

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Object Write Probability

Figure 7(a): Read-Write Clustered with Varying Object Writes

Transaction Size = 30 objects
Clustered Index Access = 100 %
Associative Transactions = 100%
Read Only Transactions = 0%
Workload Type = HOTCOLD

Centralized Scheme
Distributed Scheme

0

40

80

120

160

200

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Object Write Probability

Figure 7(b): Read-Write Clustered with Varying Object Writes

Transaction Size = 30 objects
Clustered Index Access = 100 %
Associative Transactions = 100%
Read Only Transactions = 0%
Workload Type = HICON

Centralized Scheme
Distributed Scheme

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Object Write Probability

Figure 7(c): Read-Write Navigational with Varying Object Writes

Workload Type = HOTCOLD
Associative Queries = 0%
Read-Only Transactions = 0%
Transaction Size = 80 objects

Centralized Scheme with Index Writes
Distributed Scheme with Index Writes

Both index schemes with no Index Reads or Writes

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Transaction size (average no. of objects accessed)

Figure 7(d): Read-Write Clustered with Varying Transaction Size

Workload Type = HOTCOLD
Read-Only Probability = 0.0
Associative Queries = 100%
Clustered Index Access = 100%
Object Write Probability = 10%

Centralized Scheme
Distributed Scheme

22

Figures 7(a) and 7(b) report the throughput of the HOTCOLD and HICON workloads with

varying probability of object writes. For low values (less than 10%) of object update probability,

the distributed index performs better than the centralized one with the given parameter settings.

The performance of the UNIFORM workload (not shown here due to space restrictions) is di�erent

in that the centralized scheme is better than the distributed one for all object write probabilities.

Figure 7(c) above shows the system performance in terms of throughput for a load of exclusively

navigational queries and mean transaction size of 80 objects. Notice that the centralized scheme

closely follows the curve of no index reads or write. However, the distributed scheme with the same

parameters lags behind, even for small values (5%) of the data object write probability.

Figure 7(d) is the read-write counterpart for the read-only scenario of Figure 3(a). The object

write probability is only 10%, but all transactions are read-write. The performance of the dis-

tributed index scheme trails the centralized one for the whole range of transaction sizes from 20

through 160 objects.

6.3 Mixed Load Behavior

Our simulation model allows for associative and navigational transactions, clustered and non-

clustered access, read-only versus read-write transactions, as well as client-speci�c de�nition of data

and index usage. We have explored \mixed" loads where the above parameters have intermediate

values in their allowable ranges. Figures 8(a) and 8(b) show a couple of our experimental results.

0

5

10

15

0 20 40 60 80 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentages of Associative Queries

Figure 8(a): Read-Only Mixed Load with Varying Associative Access

Object Write Probability = 0%
Transaction Size = 80 objects
Clustered Index Access = 80%
Workload Type = HOTCOLD with Unclustered

Centralized Scheme
Distributed Scheme

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t i

n
T

ra
ns

ac
tio

ns
/S

ec
on

d

Percentage of Read-Only Transactions

Figure 8(b): Read-Write Mixed Load with Varying Update Transactions

Workload Type = HOTCOLD with unclustered
Associative Queries = 50%
Clustered Index Access = 50%
Transaction size = 120 objects
Object Write Probability = 50%

Centralized Scheme
Distributed Scheme

For Figure 8(a), we allowed a small percentage (20%) of unclustered data access in the HOT-

COLD workload. This reduces the data skew to a more uniform usage. As in the read-only

UNIFORM case, the centralized and distributed schemes have comparable performance for all ra-

tios of associative versus navigational queries. Figure 8(b) is a Read-Write mixed load scenario,

23

with 50% associative queries, 50% clustered access and a 50% object write probability for transac-

tions of size 120 objects. The performance of the centralized and distributed scheme are both quite

poor, with the di�erence between the two decreasing with larger number of read-only transactions.

7 Conclusion

Indexes can provide e�cient associative access to data, and their access and maintenance are

important performance considerations for a database system. Previous studies in client-side caching

for page server OODBs have not speci�cally considered index update costs and index-based queries,

or index page caching in particular. We have extended the page server simulation model of [3] to

incorporate clustered and unclustered indexes and associative (range) queries, and have evaluated

through detailed simulation experiments the performance of two di�erent schemes, one centralized

and the other distributed, for index management in a page server OODB. The former executes

all index read and write operations at the server site, while the latter allows index page caching

and reuse at client sites following a distributed consistency control protocol. We have considered

three separate workload types, HOTCOLD, UNIFORM, and HICON, modeling di�erent data and

index usage patterns at the clients, and have analyzed performance of the two index schemes under

various parameter settings.

Reviewing our results, we �nd that for the UNIFORM workload, the centralized index always

performs better than or is comparable to the distributed scheme in read-only as well as read-write

scenarios. This result, although rather surprising for the read-only case, is due to the fact that

index access is uniform in this workload, leading to a larger number of references to di�erent index

pages and their caching in the client bu�er. The e�ective bu�er space for data pages at the client

site is thus reduced, and so is the system throughput.

The HOTCOLD and HICON workloads represent non-uniform data access by the clients, with

contention characteristics being di�erent for the two. For read-only scenarios in both of these

workloads, distributed indexes o�er substantial performance bene�t over the centralized scheme

when a large portion of associative access (85% or more) is through the clustered index. In other

read-only cases, centralized indexes are competitive with distributed indexes. However, as the

transaction size is decreased, the distributed scheme makes larger performance gains than the

centralized one due to e�ective local reuse of index pages.

The picture for HOTCOLD and HICON cases is quite di�erent in the presence of many up-

dates; centralized indexes in general perform better than distributed, even for rather small write

probability (10%) of data objects a�ecting an index. This behavior is a result of the high cost

involved in obtaining exclusive distributed write latches on index pages. The gap narrows, how-

ever, as the percentage of read-only transactions increases. Cross-over points in throughput were

24

Table IV: Index Performance with Di�erent Workloads, Transaction size 30 objects

Read-Only Read-Write Transactions with

Transactions 10% Object Write Probability

Workload Type < 75% Read-Only > 75% Read-Only

UNIFORM, Centralized Centralized Centralized

> 70% clustered, all associative better better better

UNIFORM, Both schemes Centralized Centralized

< 70% clustered, all associative comparable better better

HOTCOLD/HICON, Distributed Centralized Distributed

> 90% associative, all clustered better better better

HOTCOLD/HICON, Both schemes Centralized Both schemes

< 90% associative, all clustered comparable better comparable

obtained in our experiments with a varying mixture of read-only and read-write transactions, with

the distributed scheme overtaking the centralized for high occurrences (about 70% or more) of

read-only queries. We suggest that centralized indexes be used whenever there are a signi�cant

percentage of transactions updating indexes; otherwise, distributed index are better, at the cost of

some architectural and implementation complexity.

We summarize in Table IV the behavior of the centralized and index schemes for di�erent

workload types. The results hold for a transaction size of 30 objects and an object write probability

of 10%. The behavior is quite similar for larger transaction sizes; however, increasing the object

write probability reduces the performance of the distributed scheme.

In conclusion, indexes behave very di�erent than data in a page server OODBMS. While client-

based query processing appears pro�table for data pages, centralized (i.e., server-based) index

processing seems superior for some workloads. In light of these results, we believe a \hybrid"

approach of both server and client-based query processing might be the best alternative for a page

server OODB. Further work remains to be done in this area to clearly identify the performance

trade-o�s, taking into account both data and index usage patterns. Advanced techniques like index

range locking, or using the PS-AA locking and replica control protocol for both data and index

pages are some topics for future work.

Acknowledgements

We are very grateful to Prof. Michael Carey for providing us the source code of the simulator developed for

the work reported in [3], and to Markos Zaharioudakis for clarifying several questions on the implementation

of the simulator. Their help has greatly simpli�ed our simulation task.

The work of Julie Basu was supported in part by Oracle Corporation, and by an equipment grant from

Digital Equipment Corporation.

25

References

[1] R.G.G. Cattell, Object Data Management, Addison Wesley, Reading, MA, 1991.

[2] M. Carey, M. Franklin, M. Livny, and E. Shekita, \Data Caching Tradeo�s in Client-Server DBMS

Architecture," ACM SIGMOD Intl. Conf. on Management of Data, Denver, CO, May 1991, pp. 357-

366.

[3] M. Carey, M.J. Franklin, and M. Zaharioudakis, \Fine-Grained Sharing in a Page Server OODBMS,"

ACM SIGMOD Intl. Conf. on Management of Data, Minneapolis, MI, May 1994, pp. 359-370.

[4] S. Dar, M. J. Franklin, B. Jonsson, D. Srivastava, and M. Tan, \Semantic Data Caching and Replace-

ment," 22nd Intl. Conference on Very Large Data Bases (VLDB 96), Bombay, India, September, 1996,

to appear.

[5] A. Delis and N. Roussopoulos, \Performance and Scalability of Client-Server Database Architectures,"

18th Intl. Conf. on Very Large Data Bases, Vancouver, B.C., Canada, 1992, pp. 610-623.

[6] D. J. DeWitt, D. Maier, P. Futtersack, and F. Velez, \A Study of Three Alternative Workstation-Server

Architectures for Object-Oriented Database Systems," 16th Intl. Conf. on Very Large Data Bases,

Brisbane, Australia, 1990, pp. 107-121.

[7] M.J. Franklin, \Caching and Memory Management in Client-Server Database Systems," PhD thesis,

University of Wisconsin-Madison, 1993.

[8] M.J. Franklin, M.J. Carey, and M. Livny, \Local Disk Caching for Client-Server Database Systems,"

19th Intl. Conf. on Very Large Data Bases, Dublin, Ireland, August 1993, pp. 641-654.

[9] J. Gray and A. Reuter, \Isolation Concepts," in Transaction Processing: Concepts and Techniques, San

Mateo, CA, Morgan Kaufmann Publishers, 1993, pp. 403-406.

[10] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M. West, \Scale

and Performance in a Distributed File System," ACM Transactions on Computer Systems, Vol. 6, No.

1, February 1988, pp. 51-81.

[11] A.M. Keller and J. Basu, \A Predicate-based Caching Scheme for Client-Server Database Architectures,"

The VLDB Journal, Vol. 5, No. 1, Jan 1996, pp. 35-47.

[12] J. Liebeherr, E.R. Omiecinski, and I.F. Akyildiz, \The e�ect of index partitioning schemes on the

performance of distributed query processing," IEEE Transactions on Knowledge and Data Engineering,

June 1993, vol.5, no.3, pp. 510-522.

[13] M. Livny, \DeNet User's Guide (Version 1.5)," Computer Sciences Department, University of Wisconsin-

Madison, 1990.

[14] Oracle Corporation, \Concurrency Control, Transaction Isolation and Serializability in SQL92 and

Oracle7," White Paper, Part No. A33745, July 1995.

[15] Y. Wang and L.A. Rowe, \Cache Consistency and Concurrency Control in a Client-Server DBMS

Architecture," ACM SIGMOD Intl. Conf. on Management of Data, Denver, CO, May 1991, pp. 367-

376.

[16] K. Wilkinson and M.-A. Neimat, \Maintaining Consistency of Client-Cached Data," 16th Intl. Conf.

on Very Large Data Bases, Brisbane, Australia, 1990, pp. 122-133.

26

