
Approximation Algorithms for Directed Steiner Tree

Problems �

Moses Charikary Chandra Chekuriz Ashish Goelx Sudipto Guha{

Dept of Computer Science

Stanford University

fmoses,chekuri,agoel,sudiptog@cs.stanford.edu

March 20, 1997

Abstract

The Steiner tree problem which is known to be NP-Complete is the following. Given a weighted

undirected graph G = (V;E), and a set X � V of terminals, the objective is to �nd a tree

of minimum cost which connects all the terminals. If the graph is directed, in addition to

X, we are given a root r 2 V , and the objective is to �nd a minimum cost arborescence

which connects the root to each of the terminals. In the Generalized Steiner tree problem, we

are given a set X of pairs of vertices, and the goal is to �nd a subgraph of minimum cost

such that each pair in X is connected. In the undirected case, constant factor algorithms are

known for both the versions [11, 14, 17, 1, 15], but essentially no approximation algorithms

were known for these problems in the directed case, other than the trivial O(k)-approximations.

We obtain the �rst non-trivial approximation algorithms for both problems in general directed

graphs. For the Directed Steiner tree problem, we design a family of algorithms that achieve

an approximation ratio of O(k�) in time O(kn1=�) for any �xed � > 0, where k is the number of

terminals. For the Directed Generalized Steiner tree problem, we give an algorithm that achieves

an approximation ratio of O(k2=3 log1=3 k), where k is the number of pairs of vertices that are to

be connected. Related problems including the Group Steiner tree problem, the Node Weighted

Steiner tree problem and several others can be reduced in an approximation preserving fashion

to the problems we solve, giving the �rst non-trivial approximations to those as well.

�For the Directed Steiner tree problem, a result similar to ours has been obtained independently in [6] by To-yat

Cheung, Zuo Dai and Ming Li of the Department of Computer Science, City University of Hong Kong.
ySupported by an ARO MURI Grant DAAH04-96-1-0007 and NSF Award CCR-9357849, with matching funds

from IBM, Schlumberger Foundation, Shell Foundation, and Xerox Corporation.
zSupported by an ARO MURI Grant DAAH04-96-1-0007 and NSF Award CCR-9357849, with matching funds

from IBM, Schlumberger Foundation, Shell Foundation, and Xerox Corporation.
xSupported by ARO Grant DAAH04-95-1-0121 and NSF Grant CCR9304971
{Supported by an ARO MURI Grant DAAH04-96-1-0007 and NSF Award CCR-9357849, with matching funds

from IBM, Schlumberger Foundation, Shell Foundation, and Xerox Corporation.

1 Introduction

The Steiner tree problem is de�ned as follows: given a graph G = (V;E) with a cost function c on

the edges, and a subset of vertices X � V (called terminals), the goal is to �nd a minimum cost

tree that includes all the vertices in X . The cost of the tree is de�ned as the sum of the costs of the

edges in the tree. Note that the tree may include vertices not in X as well.

The Steiner tree problem is known to be NP-Hard even when the graph is induced by points in

the plane [7], and is MAXSNP-hard [4] for general graphs. The �rst polynomial time approximation

algorithms for this problem were developed by Kou, Markowsky and Berman [11] and by Takahashi

and Matsuyama [14]. These algorithms achieved an approximation factor of 2 � 1

k
where k is the

number of terminals. Zelikovsky [17] obtained a ratio of 11

6
and this has been further improved by

Berman and Ramaiyer [3] and Karpinski and Zelikovsky [13]. The best ratio achievable currently is

1:644. In a recent breakthrough result, Arora [2] has given a polynomial time approximation scheme

for the Steiner tree problem on graphs induced by points in the plane.

The directed version of the Steiner tree problem is a natural extension of the undirected version

and is de�ned as follows. Given a directed graph G = (V;A), a speci�ed root r 2 V , and a set of

terminals X � V; (jX j = k) the objective is to �nd the minimum cost arborescence rooted at r and

spanning all the vertices inX (in other words r should have a path to every vertex inX). The Directed

Steiner tree problem has several applications in network design, routing in multicast networks and

other related areas. See [16] for a survey on the use of Steiner tree problems in networks. From a

theoretical point of view it turns out to be useful in a number of reductions of problems involving

connectivity and covering including, the Group Steiner tree problem in both directed and undirected

graphs, several interesting problems in connected domination, namely Edge Weighted Connected

Dominating sets, Group (or Set) TSP, Node weighted Steiner Connected domination, and others.

For some of the reductions regarding connected domination see [9]. We also consider the Directed

Generalized Steiner tree problem where instead of a root and a set of terminals we are given a set of

k pairs of vertices, and the objective is to �nd a minimum cost subgraph which connects each pair.

Constant factor algorithms are known for the undirected case [1, 15].

A fairly easy reduction from the Set cover problem (as has been observed by many others) shows

that it is hard to approximate Directed Steiner tree to a factor better than ln k where k is the number

of terminals. It is also easy to obtain an approximation factor of k, by connecting every terminal to

the root via a shortest path. The only known polynomial time approximation algorithm even for a

special case is due to Zelikovsky [18], where he gives an approximation algorithm of ratio O(k�) for

any � > 0 for directed acyclic graphs. No algorithms were known for the case of general directed

graphs.

In this paper, we present a factor O(k�) approximation algorithm for any � > 0 for the Directed

Steiner tree problem. This is a new and simpler approach compared to Zelikovsky's approach in [18].

Our algorithm can be modi�ed to give an O(2
p

logk) approximation in quasi-polynomial time. This

fact hints at the possibility of obtaining polylogarithmic approximation guarantees for the problem.

We also present an algorithm for the Directed Generalized Steiner tree problem which achieves an

approximation factor of O(k
2

3 log
1

3 k). Our results imply similar ratios for several other variants

including the Group Steiner tree problem and the Node Weighted Steiner tree problem in directed

graphs via some well known simple approximation preserving reductions. The rest of the paper is

organized as follows. In Section 2 we set up the notation and prove some basic lemmas. Sections 3

and 4 describe the algorithms for the Directed Steiner tree and the generalized versions respectively.

We brie
y sketch the reductions of some of the other variants in Section 5.

1

2 Preliminaries

In this section we will prove some basic lemmas concerning decomposing trees and how to use them

to obtain partial solutions for the problem at hand. We de�ne a slightly more general version of the

Directed Steiner tree problem below.

De�nition 1 Given root r 2 V (G), an integer k and a set X � V of terminals with jX j � k, the

problem D-Steiner(k; r;X) is to construct a tree rooted at r, spanning any k terminals in X and

of minimum possible cost.

We give a O(k�) approximation to the D-Steiner(k; r;X) problem which implies the same ratio

for the Directed Steiner tree problem. It is also easy to see that this implies a similar ratio for

the generalization of the k-MST problem [5, 8] to directed graphs, where the objective is to �nd an

arborescence on k vertices of G of minimum cost.

Let c(e) denote the cost of edge e and let c(T) denote the cost of a tree T , or the sum of the costs

of the edges in T . Let k(T) denote the number of terminals in T ; in other words k(T) = T \X .

De�nition 2 De�ne d(T), the density of tree T to be the ratio of the cost of the tree to the number

of terminals in T ; in other words d(T) = c(T)=k(T).

We will assume without loss of generality that all terminals are at the leaves of any Steiner tree. We

can arrange this by connecting a dummy terminal to the real terminal with a zero cost edge. The

following lemma shows that we can partition a tree into two almost equal parts.

Lemma 1 We can partition any out-tree T into two trees T 0
1
and T 0

2
such that c(T 0

1
)+ c(T 0

2
) � c(T)

and k(T 0
1
) + k(T 0

2
) � k(T) and k(T 0

i) � k(T)=3. Such a partition is called a 1

3
� 2

3
partition of T .

Proof: For any node i in T , let Ti denote the subtree rooted at i. Among all nodes i such that

k(Ti) � 2

3
k(T), let x be the node which is farthest away (in terms of number of edges) from the root

r. The node x is well de�ned since k(Tr) = k(T). Let x1; : : : ; xl be the children of x and without

loss of generality assume that k(Txi) are non-decreasing. From the de�nition of x, it follows that

k(Txi) <
2

3
k(T) for all xi. Suppose there is some i, 1 � i � l, such that 1

3
k(T) � k(Txi) <

2

3
k(T).

Then T 0
1
= Txi and T 0

2
= T � Txi clearly satisfy the requirements. If there is no such node we have

k(Txi) <
1

3
k(T) for all i. Consider the largest i such that

P
j�i k(Txj) <

2

3
k(T). We claim thatP

j�i k(Txj) � 1

3
k(T). Suppose not. It must be the case that i < l since

P
j�l k(Txj) = k(Tx) �

2

3
k(T). We have

X
j�i+1

k(Txj) =
X
j�i

k(Txj) + k(Txi+1) <
1

3
k(T) +

1

3
k(T) =

2

3
k(T)

and this contradicts the choice of i. Let T1 be the tree rooted at x with T (x1); : : : ; T (xi) as its

subtrees and let T2 be T � T1. It is easily veri�ed that T1 and T2 satisfy the conditions required of

them.

We can use this fact to show that, given a tree T , there exist smaller trees whose density is at

most a �xed constant times more than that of T .

Lemma 2 Given a tree T , for any x � k(T), there is a tree Tx such that k(Tx) � x and c(Tx) <

3x � d(T).

2

Proof: We construct a sequence of trees T = T0; T1; : : : ; Tx as follows. Ti+1 is obtained from Ti
in the following way: Construct a 1

3
� 2

3
partition of Ti to get the trees T

0
1
and T 0

2
. Note that

c(T 0
1
) + c(T 0

2
)

k(T 0
1
) + k(T 0

2
)
� c(T)

k(T)
= d(Ti)

Without loss of generality, suppose d(T 0
1
) � d(T 0

2
). Then d(T 0

1
) � d(Ti). Let Ti+1 = T 0

1
. Note that

d(Ti+1) � d(Ti). Also,
1

3
k(Ti) � k(Ti+1) �

2

3
k(Ti)

. We stop as soon as x � k(Ti) < 3x for some i. Since the sequence fd(Ti)g is non-increasing,

c(Ti)=k(Ti) = d(Ti) � d(T0) = d(T)

which implies that

c(Ti) � k(Ti) � d(T) < 3x � d(T):
Ti is the required tree Tx.

De�nition 3 De�ne a f(k)-partial approximation procedure for D-Steiner(k; r;X) to be a pro-

cedure which constructs a tree T 0 rooted at r, spanning 1 � k0 � k terminals in X such that

d(T 0) � f(k) � COPT
k

, where COPT is the cost of an optimal solution to D-Steiner(k; r;X).

If A(k; r;X) is a partial approximation procedure for D-Steiner(k; r;X), we can apply A re-

peatedly to obtain an approximation algorithmB(k; r;X) forD-Steiner(k; r;X)as follows. B(k; r;X)

�rst calls A(k; r;X). Suppose this returns a tree T1 spanning k1 terminals. If k1 = k, return T1.

Else, let X1 be the set of terminals spanned by T1. Call B(k � k1; r; X �X1) and let T2 be the tree

returned by this procedure. Return T1 [T2.

Lemma 3 Given A(k; r;X), an f(k)-partial approximation for D-Steiner(k; r;X)where f(x)=x is

a decreasing function of x, the algorithm B(k; r;X) is a g(k)-approximation algorithm forD-Steiner(k; r;X)

where g(k) =
R k
0

f(x)
x
dx.

Proof: We will prove the claim by induction on k. The base case k = 1 follows as f(1) �R
1

0

f(x)
x
dx (by the decreasing property of f(x)

x
). Suppose it is true for all values less than k. We will

prove the claim for k. Let TOPT be an optimal solution to D-Steiner(k; r;X). Suppose the call to

A(k; r;X) returns tree T1 rooted at r spanning k1 terminals, i.e. k(T1) = k1.

d(T1) =
c(T1)

k1
� f(k)

c(TOPT)

k
(1)

c(T1) � k1 �
f(k)

k
� c(TOPT) �

 Z k

k�k1

f(x)

x
dx

!
c(TOPT) (2)

where the last inequality follows from the decreasing property of f(x)x . If k1 = k, the algorithm returns

T1. For this case, c(T1) � g(k) � c(TOPT) proving that the algorithm gives a g(k)-approximation.

Suppose k1 < k. Let X1 be the set of terminals spanned by T1. Let T2 be the tree returned by

the recursive call to B(k�k1; r; X�X1). Since TOPT spans k terminals in T , it spans at least k�k1
terminals in X �X1. Hence the minimum cost tree on k� k1 terminals in X �X1 has cost at most

c(TOPT). By the inductive hypothesis, c(T2) � g(k� k1) � c(TOPT), i.e.

c(T2) �
 Z k�k1

0

f(x)

x
dx

!
c(TOPT) (3)

3

Adding (2) and (3), we get

c(T1) + c(T2) � g(k)c(TOPT)

This proves that for this case too, the algorithm gives a g(k)-approximation.

3 Directed Steiner Tree

Before we describe our algorithm formally, we will provide some intuition and an outline of our

techniques. The density of a tree can be interpreted as the average cost of connecting a terminal to

the root. Lemma 2 shows that a partial approximation procedure which �nds a tree with density

close to that of optimal, leads to a good approximation algorithm. Our algorithm to �nd trees of

good density is motivated by the following.

A trivial algorithm for the problem is to compute shortest paths from each of the terminals to

the root and combine them. It is instructive to consider an example for which this algorithm gives a

ratio of k. Consider a graph where there is path of cost COPT from the root to a vertex v, and zero

cost edges from v to each of the terminals. In addition, there are paths of cost COPT � � from the

root to each of the terminals. The naive algorithm picks each of the shortest paths and does not use

the path through v, thus incurring a cost k(COPT � �).

Motivated by the above extreme example, we can think of �nding subtrees of good density which

have the following structure. The tree consists of a path from the root r to an intermediate node

v, and v is connected to some set of terminals using a shortest path to each of them. For obvious

reasons, we call such a structure a bunch. The advantage of choosing such a simple structure is that

we can compute in polynomial time, a bunch with the best density. Of course for this scheme to

work, we need to guarantee the existence of a bunch with good density. We use the decomposition

lemma (Lemma 2) for this purpose. Consider a subtree of the optimal, Tv with k(Tv) = x terminals

and density at most 3d(TOPT). This subtree of the optimal tree naturally de�nes a bunch. The

cost of the bunch is composed of two parts. The cost of connecting r to v is at most COPT . The

cost of connecting each of the terminals in Tv to v is at most c(Tv). Therefore the cost of the

bunch de�ned by Tv is COPT + x � c(Tv) = COPT + 3x2COPT=k, and the density of the bunch is

(1=x+ 3x=k)COPT . Since Lemma 2 guarantees a subtree with the required properties for any x, we

can choose x =
p
k to minimize this expression. This proves the existence of a bunch with density

at most
p
kCOPT=k =

p
kd(TOPT). Combined with the fact that we can �nd the bunch with the

best density in polynomial time, we obtain a O(
p
k) approximation.

An obvious way to improve the result is to �nd structures which are more general than bunches

that approximate the optimal more closely. We obtain an improved O(k�) ratio using this ap-

proach, but the simplest way to describe it is via recursion, which we proceed to do next. We

will de�ne a sequence of algorithms Bi(k; r;X) such that Bi gives an O(k1=i)-approximation for

D-Steiner(k; r;X).

B1(k; r;X) (and A1(k; r;X)) operates as follows: Determine the k terminals in X closest to r.

Connect the root r to each such terminal t by the shortest path from r to t. The tree returned is simply

the union of all these shortest paths. Clearly, this is a k-approximation for D-Steiner(k; r;X).

Having de�nedBi�1(k; r;X),we will construct a partial approximationAi(k; r;X) forD-Steiner(k; r;X)

and prove that Ai(k; r;X) is an O(k1=i)-partial approximation. Applying Lemma 3, we obtain

Bi(k; r;X) which is an O(k1=i)-approximation algorithm for D-Steiner(k; r;X).

Ai(k; r;X) works as follows:

1. For all nodes v, call Bi�1(k
1�1=i; v; X). Let Tv be the tree returned by this procedure.

2. Find the node r0 for which d(r; v)+ c(Tv) is minimized.

4

3. Add the path from r to r0, and the tree Tr0 and return the resultant tree.

Lemma 4 Ai(k; r;X) gives an O(k1=i) partial approximation for D-Steiner(k; r;X) and hence

Bi(k; r;X) gives an O(k1=i) approximation for D-Steiner(k; r;X).

Proof: (by induction on i.)

The claim is clearly true for i = 1. We will prove the claim for i. Consider Ai(k; r;X). Let TOPT
be an optimal solution to D-Steiner(k; r;X) and let COPT be its cost. k(TOPT) � k. Then,

d(TOPT) �
COPT

k

Setting T = TOPT and x = k1�1=i in Lemma 2, we know that there exists a tree T1 such that

k(T1) � k1�1=i

c(T1) � 3x � d(TOPT) � 3
COPT

k1=i

Let T1 be rooted at r
0. Note that d(r; r0) � c(TOPT). The optimal solution toD-Steiner(k

1�1=i; r0; X)

has cost at most c(T1) � 3COPT
k1=i

By the inductive hypothesis, Bi�1(k; r
0; X) gives an O(k1=(i�1))

approximation to D-Steiner(k1�1=i; r0; X), hence the cost of the tree Tr0 returned by the call to

Bi�1(k
1�1=i; r0; X) is

c(Tr0) � O((k1�1=i)1=(i�1))c(T1)

� O(k1=i) � c(T1)
� O(COPT)

d(r; r0) + c(Tr0) � O(COPT)

Hence the minimum cost tree T 0 returned by Ai(k; r;X) has cost O(COPT). Also, the tree spans at

least k1�1=i terminals. Hence, the density of the tree

d(T 0) � O

�
COPT

k1�1=i

�

d(T 0) � O(k1=i) � d(TOPT)

This proves that Ai(k; r;X) gives an O(k1=i) partial approximation to D-Steiner(k; r;X).

Bi(k; r;X)usesAi(k; r;X) to construct an approximation forD-Steiner(k; r;X). Using Lemma 3,

we know that Bi(k; r;X) gives a g(k) approximation to D-Steiner(k; r;X) such that

g(k) =

Z k

0

f(x)

x
dx

where f(x) = O(x1=i). Hence g(k) = O(k1=i). This completes the inductive step.

An analysis of the constant hidden in the O(ki) notation reveals that the constant grows fairly

rapidly with i. Suppose Bi�1(k; r;X) gives a ci�1 � k1=i approximation. Suppose, in Ai(k; r;X), we

invoke Bi�1(k
0; v; X) with k0 = x � k1�1=i. Then, by the analysis in the above proof, the cost of the

tree returned is at most

COPT + ci�1(xk
1�1=i)

1

i�1

�
3COPT

k

�
(xk1�1=i)

= (1 + 3ci�1x
i=(i�1))COPT

5

Hence the density of the tree is at most

(1 + 3ci�1x
i=(i�1))COPT

xk1�1=i
�
�
1

x
+ 3ci�1x

1=(i�1)

�
k1=i

COPT

k

Choosing x = (i�1
3ci�1

)(i�1)=i, so as to minimize this density, we get that Ai(k; r;X) gives an f(k)

partial approximation where

f(k) = i

�
3ci�1
i� 1

�(i�1)=i
k1=i

Substituting this in g(k), we get

g(k) = i2
�
3ci�1
i� 1

�(i�1)=i
k1=i

This means that Bi(k; r;X) gives a cik
1=i approximation where

ci = i2
�
3ci�1
i� 1

�(i�1)=i

Solving for ci, we get

ci = i

x=iY
x=1

xx

!1=i

3(i�1)=2

or ci � (3i)i=2.

Lemma 5 The running time of algorithm Ai(k; r;X) is O(k1�1=i � ni) and that of Bi(k; r;X) is

O(k � ni).

Proof: We shall prove the claim by induction on i. Assume it is true for i � 1. We shall

prove the claim for i. Ai(k; r;X) calls Bi�1(k
1�1=i; v; X) for all nodes v. The number of calls to

Bi�1(k
1�1=i; v; X) is at most n, each with a running time of O(k1�1=i � ni�1), giving a running time

of O(k1�1=i � ni) for Ai(k; r;X).

Bi(k; r;X) invokes Ai(k; r;X) repeatedly, each invocation takes time O(k1�1=i � ni) and further,

the value of k drops by k1�1=i. Thus, we can charge a running time of O(ni) per unit drop in the

value of k. This gives a total running time of O(k � ni) for Bi(k; r;X).

Theorem 1 For every i > 0, there is an algorithm which gives an approximation ratio of (3i)ik1=i

for the Directed Steiner tree problem and runs in time O(kni).

Corollary 1 There is a quasi-polynomial time algorithm which gives an approximation of O(2
p

logk)

for the Directed Steiner tree problem.

Zelikovsky conjectures in [18] that Directed Steiner tree problem cannot have a subpolynomial

approximation guarantee unless P = NP . Contrary to his conjecture, we believe that Corollary 1

gives evidence that polylogarithmic approximation guarantees are possible. One reason for our belief

is the fact that there is no problem known which has a hardness of 2log
1�� n for some �xed � > 0.

6

a b

x

x

x

y

y

y

1

2

1

2

p p

Figure 1: The bunch < a; b; Y >

4 Directed Generalized Steiner Trees

In this section we extend some of our techniques from Section 3 to obtain an approximation algorithm

for the Directed Generalized Steiner tree problem. Formally the problem is the following. Given a

directed graph G(V;E) and a set X = f< ui; vi >g of k node pairs, �nd the minimum cost subgraph

H of G such that for each node pair < ui; vi >2 X , there exists a directed path from ui to vi in H .

The cost of the subgraph H is the sum of the cost of all the edges in H . This problem has been well

studied in undirected graphs and constant factor approximations are presented in [1, 15].

As before, we work with a slightly more general problem we call DG-Steiner (k;X) which is

the problem of �nding a minimum cost subgraph H of G that satis�es at least k node pairs from the

set X . Clearly, Directed Generalized Steiner tree is a special case of DG-Steiner (k;X). In this

section, we present an O(k
2

3 log
1

3 k) approximation to the DG-Steiner (k;X) problem.

Let COPT (k;X) denote the cost of the optimal solution to DG-Steiner (k;X). De�ne k(H) to

be the minimum of k and the number of node pairs in X that get satis�ed by H . Further, let c(H)

denote the cost ofH , and d(H) = c(H)=k(H) be the density ofH . We will omit the parameters (k;X)

where their values are clear from the context. A f(k) partial approximation to DG-Steiner (k;X)

can be de�ned in a manner similar to that for D-Steiner(k;X).

We assume without loss of generality that between every pair of vertices < u; v >, there exists an

edge of cost equal to the shortest path distance from u to v in G. The main idea of the algorithm is

similar to that for the steiner tree problem. We can obtain a trivial k approximation by connecting

each pair < ui; vi > with a shortest path between them. As before, if optimal's solution is much

better than this, it must be the case that there exists a long path which is shared by many pairs.

Our objective is to �nd such a path and a set of terminals which share it, thus obtaining a subgraph

of good density. However, unlike in the rooted case, the structure of the bunches we look for are

di�erent and proving the existence of good bunches involves more work. We formally de�ne what

we mean by a bunch below.

De�nition 4 Let Y = f< u1; v1 >; : : : ; < up; vp >g be a subset of X containing p � k node

pairs. Also let a and b be vertices of G. A bunch B =< a; b; Y > is a graph with the vertex set

fa; b; x1; x2; : : :xp; y1; y2; : : :ypg. B has an edge < a; b > of cost identical to that of the edge < a; b >

in the graph G. B also has edges < xi; a > and < b; yi >, with costs identical to those of < ui; a >

and < b; vi > in G.

Figure 1 illustrates the structure of a bunch. Notice that the xi s and yi s are unique even though

the ui s and vi s may not be. So B may not be a subgraph of G. However, given a bunch B we

can �nd a subgraph of G that has cost no more than c(B) and satis�es each of the k(B) node pairs

satis�ed by B.

In Figure 2 we give an algorithm C(k;X) that �nds a bunch of minimum density. We then prove

the existence of a bunch B(k;X) that has density no more than O(d(HOPT) �k
2

3 log
1
3
k). This allows

7

1 d 1; B �

2 for all pairs < a; b >2 V (G)� V (G)

3 for each pair < u; v >2 X, s[u; v] c(< u; a >) + c(< b; v >)

4 sort X in increasing order of s. Let < uj ; vj > refer to the jth pair in

this sorted list.

5 for p going from 1 to k

6 C c(< a; b >) + s[u1; v1] + s[u2; v2] + : : :+ s[up; vp]

7 if C=p � d then (d C=p; B < a; b; f< u1; v1 >; : : : ; < u;vp >g)

8 output B

Figure 2: Algorithm C(k;X)

us to claim that C provides an O(k
2

3 log
1

3 k) partial-approximation to DG-Steiner (k; x). We then

apply Lemma 3 to obtain an approximation to DG-Steiner (k; x).

4.1 Finding the Best Bunch

To �nd the best bunch, we �nd the lowest cost bunch for all possible values of a, b, and p. We

choose the minimum density bunch out of these (at most n2k) lowest cost bunches. Figure 2 formally

describes an algorithm C(k;X) which �nds the best bunch.

The proof of the following lemma is quite simple and hence we omit it.

Lemma 6 The algorithm C(k;X) �nds a minimum density bunch.

4.2 Low Density Bunches Exist

For convenience, we de�ne h(k); k > 1 to be the quantity 6k
2

3 log
1

3 k. Also, let h(1) = 1.

Theorem 2 There exists a bunch B(k;X) such that d(B) � (COPT=k) � h(k).

Proof: Suppose there exists a node pair < u; v >2 X such that the distance between u and v is

no more than (COPT=k) � h(k). Then < u; v; f< u; v >g > is the required bunch, and we are done.

Notice that if k = 1 then such a node pair always exists. Therefore we will implicitly assume k � 2

for the rest of the proof.

If there exists no such node pair, then in the optimal solution H�(k;X) each node pair must be

separated by a distance of at least (COPT=k) � h(k). Also, no node pair can be separated by more

than COPT . For i � 1, let Xi denote the set of node pairs < u; v > such that the distance from u

to v in H�(k;X) lies in the range
h
2i�1 � h(k)COPTk ; 2i � h(k)COPTk

i
. Let IMAX denote the maximum

value of i for which Xi is non empty. Since k � 2,

IMAX �
&
log

k
1

3

6 log
1

3 k

'
� log k

. Therefore there exists an i0 such that jXi0j � k
logk . Let H�

i0 be a minimum cost subgraph of H�

satisfying all node pairs in Xi0 . For each node pair < u; v >2 Xi0 , let PH�

i0
(u; v) be the shortest path

8

between u and v in H�
i0 . If there are more than one shortest paths between u and v, choose one of

them arbitrarily.

Claim 1 There exists an edge e 2 E(H�
i0) such that at least

h(k)
logk
� 2i0�1 of the paths pass through e.

The sum of the shortest paths between all the node pairs in Xi0 is greater than 2i
0�1h(k) � COPTk �

(k
logk

). But the cost of H�
i0 is no more than COPT . Thus there has to be an edge which is shared by

at least
h(k)
logk � 2i

0�1 paths, proving the above claim.

We now concentrate on the edge e =< u; v > guaranteed by the above claim, and the set Xe of

node pairs < a; b > such that PH�

i0
(a; b) passes through e. Each of these paths can be split into three

parts, P (a; u), the edge < u; v > and P (v; b). Let H1 be the union of paths of the form P (a; u) (ie.

the �rst components) and H2 be the union of paths of the form P (v; b) (ie. the third components).

Clearly c(H1) � COPT and c(H2) � COPT . Let T1 be a shortest-incoming-path tree (rooted at u)

in the graph H1 and T2 be a shortest-outgoing-path tree (rooted at v) in the graph H2.

Let distT1(a; u) be the cost of the path from a to u in T1. distT2(v; b) is de�ned similarly. Let

D = MAX<a;b>2Xe(distT1(a; u) + distT2(b; v)). By de�nition of the sets Xi, D is no more than

(COPT=k)h(k) � 2i
0

. Let c represent the quantity (k
logk

)
1

3 . We now divide the trees T1 and T2
into at most c segments, each of depth COPT=c. Node a belongs to segment i of T1 if distT1(a; u) 2h
(i� 1) � COPT

c
; i � COPT

c

i
. Similarly, node b belongs to segment j of T2 if distT2(v; b) 2

h
(j � 1) � COPT

c
; j � COPT

c

i
.

De�nition 5 We de�ne kij (1 � i � c; 1 � j � c) to be the number of node pairs < a; b >2 Xe

such that a belongs to segment i of T1 and b belongs to segment j of T2. Also, let n
(1)

i (i � 2) be the

number of nodes a0 2 T1 which satisfy the following properties:

1. a0 belongs to segment i� 1 of T1.

2. There exists no vertex a in segment i� 1 of T1 such that a lies on the path from a0 to u.

3. There exists a vertex a in segment i of T1 such that a0 lies on the path from a to u.

De�ne n
(1)

1
to be 1. The quantities n

(2)

i are similarly de�ned on the tree T2. Let nij be the product

of n
(1)

i and n
(2)

j .

Informally, n
(1)

i represents the number of branches of the tree T1 that cross the entire (i� 1)-th

segment of T1.

Lemma 7 There exist 1 � i � c and 1 � j � c such that kij=nij � (h(k)
logk
� 2i0�1)=c2.

Proof of Lemma 7: To prove this claim, we make the following observations:

X
1�i;j�c

kij �
h(k)

log k
� 2i0�1

X
1�i;j�c

nij � c2

The �rst observation follows from the facts that each node pair that belongs to Xe contributes

to kij for some pair (i; j). For the second observation, we use the fact that
P

i n
(1)

i is bounded by c,

9

since the number of branches that cross an entire segment of depth COPT=c can be no more than c

(remember that the cost of T1 can be no more than COPT) .
P

j n
(2)

j is similarly bounded. Now,

X
1�i;j�c

nij =
X

1�i;j�c

n
(1)

i n
(2)

j

� (
X

1�i�c

n
(1)

i) � (
X

1�j�c

n
(2)

j)

� c2

Since
P

1�i;j�c kij=
P

1�i;j�c nij � (
h(k)
logk � 2i

0�1)=c2, we are guaranteed that there exists a pair

(i; j); 1� i; j � c which satis�es the required condition. This completes the proof of Lemma 7.

Claim 2 There exist nodes a0 and b0 in T1 and T2, respectively, and a set X 0 � Xe such that

jX 0j � (
h(k)
logk � 2i

0�1)=c2 and for each node pair < a; b >2 X 0 the following properties hold:

1. a0 lies on the path from a to u in T1 and b0 lies on the path from v to b in T2.

2. distT1(a; a
0) � 2COPT=c and distT2(b

0; b) � 2COPT=c

This claim follows from Lemma 7.

Let the bunch B0 be de�ned as < a0; b0; X 0 >. Let k0 = k(B0) be the number of node pairs

satis�ed by this bunch (k0 � (
h(k)
logk �2i

0�1)=c2). Also, let c(B0) be the cost of this bunch. The shortest

path from any �rst component of X 0 to a0 is at most 2COPT=c, by construction. The shortest path

from a0 to b0 is at most D. The shortest path from b0 to any second component of X 0 is also at most

2COPT=c. Therefore, c(B
0) � D + 4k0 �COPT=c. We now give a bound on the density of B0. Recall

that D � (COPT=k)h(k) � 2i
0

, c = (k
logk)

1

3 , and h(k) = 6k
2

3 (logk)
1

3 .

d(B0) = c(B0)=k0

� D=k0 + 4COPT=c

� (COPT=k)h(k) � 2i
0

(h(k)
logk
� 2i0�1)=c2

+ 4COPT=c

=
COPT

k
� (4k=c+ 2c2 log k)

=
COPT

k
� h(k)

This completes the proof of Theorem 2. The following corollary follows from Theorem 2 and

Lemma 6.

Corollary 2 The algorithm C(k;X) produces a h(k) partial approximation to DG-Steiner (k; x).

Theorem 3 C(k;X) can be used to obtain a polynomial time algorithm which gives an approximation

ratio of O(k
2

3 log
1

3 k) for the Directed Generalized Steiner tree problem.

Proof: Follows from Corollary 2 and Lemma 3.

10

5 Group Steiner Tree and Other Related Problems

In this section we show how the results in Section 3 can be used to obtain O(k�)-approximations for

several related problems.

5.1 The Group Steiner Tree Problem

The Group Steiner Tree Problem is the following: Given a graph G(V;E), a root r, and a collection

of groups X = fg1; g2; :::; gkg; gi � V , �nd the minimum cost tree T that connects at least one vertex

in each of the groups gi to the root. There is also a directed version of this problem. Also, as in the

Directed Steiner Tree Problem, there can be a variant where jX j > k but we need to connect only

k of the groups to the root.

It is easy to see that the Undirected Group Steiner Tree Problem is at least as hard as the

Minimum Connected Dominating Set Problem in undirected graphs and is therefore unlikely to be

approximated below a factor of logn. Also, the Undirected (as well as Directed) Group Steiner Tree

Problem reduces to the Directed Steiner Tree Problem as follows: For each group gi introduce a

new dummy vertex xi. Draw (directed) zero cost edges from xi to each of the vertices in gi. We

now have a directed graph even if we started out from an undirected one. Construct an instance

of the Directed Steiner Tree Problem on this new graph with the given root r and with xi : : : xk
as the vertices that need to be connected. It is easy to see that any solution to the Group Steiner

Tree Problem corresponds to an equal-cost solution of the Directed Steiner Problem, and vice versa.

This gives an O(k�) approximation for the Directed as well as the Undirected versions of the Group

Steiner Tree Problem.

5.2 Node Weighted variants

For directed problems there is a simple approximation preserving reductions between the node

weighted and the edge weighted cases. Therefore all our results carry over to the node weighted case

as well.

References

[1] A. Agrawal, P. Klein and R. Ravi. \When trees collide: An approximation algorithm for

generalized Steiner tree problem on networks" 23rd ACM Symposium on Theory of Computing,

134-144,(1991)

[2] S. Arora. \Polynomial-time approximation schemes for Euclidean TSP and other geometric

problems". Proceedings of 37th IEEE Symp. on Foundations of Computer Science, pp. 2-12,

1996.

[3] P. Berman and V. Ramaiyer, \Improved approximation algorithms for the Steiner tree prob-

lem", J. Algorithms, 17:381{408, (1994).

[4] M. Bern and P. Plassmann, \The Steiner problems with edge lengths 1 and 2 ", Information

Processing Letters, 32:171{176, (1989).

[5] A. Blum, R. Ravi and S. Vempala, \A constant factor approximation for the k-mst problem",

Proceedings of the 28th Annual ACM Symposium on Theory of Computing , 442{448, 1996.

11

[6] T. Cheung, Z. Dai and M. Li, \Approximating the Steiner Problems on Directed Graphs",

Technical Report, Department of Computer Science, City University of Hong Kong, March

1997.

[7] M. R. Garey and D. S. Johnson, \Computers and Intractability: A guide to the theory of

NP-completeness", Freeman, San Francisco (1978).

[8] N. Garg, \A 3-approximation for the minimum tree spanning k vertices", Proceedings of the

37th Annual IEEE Symposium on Foundations of Computer Science, 302{309, 1996.

[9] S. Guha and S. Khuller, \Approximation algorithms for Connected Dominating Sets", To appear

in Algorithmica. A primary version appeared in Proc. of 4th Annual European Symposium on

Algorithms (1996).

[10] S. Guha and S. Khuller, \Approximation algorithms for Node Weighted Steiner Trees", Sub-

mitted for publication.

[11] L. Kou, G. Markowsky and L. Berman, \A fast algorithm for Steiner trees", Acta Informatica,

15, pp. 141{145, (1981).

[12] P. N. Klein and R. Ravi, \A nearly best-possible approximation algorithm for node-weighted

Steiner trees", J. Algorithms, 19(1):104{114, (1995).

[13] M. Karpinsky and A. Zelikovsky, \New approximation algorithms for the Steiner tree problem",

Technical Report, Electronic Colloquium on Computational Complexity (ECCC): TR95-030,

(1995).

[14] H. Takahashi and A. Matsuyama, \An approximate solution for the Steiner problem in graphs",

Math.Japonica, Vol. 24, pp. 573{577, (1980).

[15] D. Williamson, M. Goemans, M. Mihail and V. Vazirani, \A primal-dual approximation al-

gorithm for generalized Steiner network problems", Proceedings of 25th Annual Symposium on

the Theory of Computing, 16{18, 1993.

[16] P. Winter, \Steiner problem in networks: a survey", Networks, 17:129{167, 1987.

[17] A. Zelikovsky, \An 11/6 approx algo for the network Steiner problem", Algorithmica, 9: 463{

470, (1993).

[18] A. Zelikovsky, \A Polynomial-Time Subpolynom-Approximation Scheme for the Acyclic Direc-

ted Steiner Tree Problem" , Tech. Report 85113-CS, University of Bonn, 1994.

12

