
Precedence Constrained Scheduling to Minimize Weighted

Completion Time on a Single Machine

Chandra Chekuri
�

Rajeev Motwani
y

Dept. of Computer Science
Stanford University

Abstract

We consider the problem of scheduling a set of jobs on a single machine with the
objective of mimizing weighted (average) completion time. The problem is NP-hard
when there are precedence constraints between jobs, [12] and we provide a simple and
e�cient combinatorial 2-approximation algorithm. In contrast to our work, earlier
approximation algorithms [9] achieving the same ratio are based on solving a linear
programming relaxation of the problem.

1 Introduction

We consider the problem of scheduling a set of jobs in the presence of precedence constraints

with the objective of minimizing the weighted completion time. Speci�cally, given a set of

jobs fJ1; J2; : : : ; Jng with execution times pi and weights wi to be scheduled on a single ma-

chine, �nd a non-preemptive schedule S (or equivalently an ordering) to minimize
P

iwiCi,

where Ci is the completion time of Ji in the schedule S. Precedence constraints between

jobs are presented as a directed acyclic graph whose vertices correspond to the jobs, and

whose edges represent the precedence constraints.

The problem is NP-hard if we permit arbitrary precedence constraints on the jobs [8, 12].

It is polynomially solvable when the precedence graph is a forest [10] or a generalized series-

parallel graph [12, 1]. The best known approximation algorithm for the general DAG case

until recently had a ratio of O(logn logL) where L =
P

i pi is the sum of the execution

times of the jobs [14]. Recently, Hall et al [9] gave constant factor approximations using

linear programming relaxations. It is interesting to note that several di�erent formulations

give the same bound of 2 [9]. Our analysis might give some insight as to why this is the

case.

A more general version of the problem is to schedule the jobs on a set of m identical

machines. For m � 2, the problem is NP-hard even without precedence constraints, unless

the weights are all identical in which case it is polynomially solvable; on the other hand,

the problem is strongly NP-hard even when all weights are identical and the precedence

�E-mail: chekuri@cs.stanford.edu. Supported by NSF Award CCR-9357849, with matching funds

from IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and Xerox Corporation.
yE-mail: rajeev@cs.stanford.edu. Supported by an Alfred P. Sloan Research Fellowship, an IBM

Faculty Partnership Award, an ARO MURI Grant DAAH04-96-1-0007, and NSF Young Investigator Award

CCR-9357849, with matching funds from IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and

Xerox Corporation.

1

graph is a collection of chains [5]. An approximation ratio of 5:33 is achievable even if there

are release times on the jobs [2]. Chekuri et al., [3] gave an algorithm which given an �

approximate schedule to the single machine problem converts it to a 2� + 2 approximate

schedule for the multimachine problem. This algorithm, based on a novel modi�cation to

list scheduling is combinatorial and extremely simple.

In this paper we give a simple combinatorial 2 approximation algorithm for the single

machine problem which matches the best ratio achieved in [9]. The advantage of our

algorithm is twofold. First, the algorithms in [9] are based on solving linear programming

relaxations and our simple combinatorial algorithm is more e�cient both in theory and

practice. Secondly, combining this with the conversion algorithm in [3], we get a simple

combinatorial algorithm for the multiple machine case as well.

2 Preliminaries and Notation

Let G = (V;E) denote the precedence graph where V is the set of jobs. We will use jobs

and vertices interchangeably. We say that i immediately precedes j, denoted i � j, if and

only if there is an edge from i to j in the graph. A vertex i precedes a vertex j, denoted

i
?

� j, if and only if there is a path from i to j. For any vertex i 2 V , let Gi denote the

subgraph of G induced by the set of vertices preceding i.

De�nition 1 The rank of a job Ji denoted by ri is de�ned as ri = pi=wi. Similarly, the

rank of a set of jobs A denoted by r(A) is de�ned as p(A)=w(A) where p(A) =
P

Ji2A
pi

and w(A) =
P

Ji2A
wi.

De�nition 2 A subdag G0 of G is said to be precedence closed if for every job Ji 2 G0, Gi

is a subgraph of G0.

De�nition 3 We de�ne G� to be a precedence-closed subgraph of G of minimum rank, i.e.,

among all precedence-closed subgraphs of G, G� is of minimum rank.

Note that G� could be the entire graph G.

3 A Characterization of the Optimal Schedule

Smith's rule for a set of independent jobs states that there is an optimal schedule that

schedules jobs in non-decreasing order of their ranks. We show that we can generalize this

rule for the case of precedence constraints in the following way. The following theorem has

been discovered by Sydney in 1975 [16] but the authors rediscovered it and we present our

own proof for the sake of completeness.

Theorem 1 There exists an optimal sequential schedule where the optimal schedule for G�

occurs as a segment which starts at time zero.

Proof: The theorem is trivially true for the case when G� is the same as G. We consider

the case when G� is a proper subdag of G. Let S be an optimal schedule for G in which G� is

decomposed into a minimum number of maximal segments. Suppose that G� is decomposed

into two or more segments in S. For k > 1, let A1; A2; : : : ; Ak be the segments of G� in

S, in increasing order of starting times. Let the segment between Ai�1 and Ai be denoted

2

by Bi. Note that B1 could be empty in which case we assume that p(B1) = w(B1) = 0.

Let r(G�) = � and Bj denote the union of the blocks B1; B2; : : : ; Bj . From the de�nition

of G� it follows that r(Bj) � � since otherwise the union of Bj and G� would have rank

less than �. Let Aj similarly denote the union of the blocks A1; A2; : : : ; Aj . It follows that

r(Ak
�Aj) � � for otherwise r(Aj) < �.

Let S0 be the schedule formed from S by moving all the Ai's ahead of Bi's while preserv-

ing their order within themselves. The schedule S0 is legal since G� is precedence closed.

Let � denote the di�erence in the total weighted completion times of S and S0. We will

show that � � 0 which will complete the proof. While comparing the two schedules, we

can ignore the contribution of the jobs that come after Ak since their status remains the

same in S0. Let �(Aj) and �(Bj) denote the di�erence in weighted completion time of Bj

and Aj respectively in S and S0. It follows that � =
P

j�k�(Aj) + �(Bj). It is easy to

see that

�(Aj) = w(Aj)p(B
j)

and

�(Bj) = �w(Bj)p(A
k
� Aj�1):

>From our earlier observations on r(Bj) and r(Ak
� Aj) we have p(Bj) � �w(Bj) and

p(Ak
� Aj) � �w(Ak

� Aj). Therfore

� =
X
j�k

�(Aj) + �(Bj)

=
X
j�k

w(Aj)p(B
j)�

X
j�k

w(Bj)p(A
k
�Aj�1)

� �
X
j�k

w(Aj)w(B
j)� �

X
j�k

w(Bj)w(A
k
� Aj�1)

= �
X
j�k

w(Aj)
X
i�j

w(Bj)� �
X
j�k

w(Bj)
X
i�j

w(Ai)

= 0:

The third inequality above follows from our observations about r(Bj) and r(A� Aj) and

the last equality follows from a simple change in the order of summation.

Remark 1 Note that when G� is the same as G this theorem does not help in reducing the

problem.

4 A 2 approximation

Theorem 1 suggests the following natural algorithm. Given G, compute G� and schedule G�

and G�G� recursively. Of course it is not clear that G� can be computed in polynomial time

but we will show that we can reduce this problem to solving a minimum cut problem. The

second and more important problem that needs to be solved before we have an algorithm is

take care of the case when G� is same as G. Since the problem is NP-hard, it is clear that we

have to settle for an approximation in this case for otherwise we would have a polynomial

time algorithm to compute the optimal schedule.

The following lemma helps us in taking care of the case when G� = G.

Lemma 1 If G� is the same as G, opt � w(G) � p(G)=2.

3

Proof: Let � = r(G). Suppose S is an optimal schedule for G. Without loss of

generality assume that the ordering of the jobs in S is J1; J2; : : : ; Jn. Observe that for any j,

1 � j � n, that Cj =
P

i�j pi � �
P

i�j wi. This is because the set of jobs J1; J2; : : : ; Jj form

a precedence closed subdag and from our assumption on G� it follows
P

i�j pj=
P

i�j wi � �.

Using this we can bound the value of the optimal as follows.

opt =
X
j

wjCj

�

X
j

wj

X
i�j

�wi

= �

0
@X

j

w2

j +
X
i<j

wiwj

1
A

= �

0
@(
X
j

wj)
2
�

X
i<j

wiwj

1
A

� �
�
w(G)2 � w(G)2=2

�

= �w(G)2=2

= w(G)p(G)=2

Lemma 2 Any feasible schedule with no idle time has a total completion time of at most

w(G) � p(G).

Proof: Obvious.

Theorem 2 If G� for a graph can be computed in time O(T (n)), then there is a 2 approx-

imation algorithm for computing the minimum weighted completion time schedule which

runs in time O(nT (n)).

Proof: Given G, we compute G� in time O(T (n)). If G� is the same as G we schedule

G arbitrarily and Lemmas 1 and 2 guarantee that we have a 2 approximation. If G� is

a proper subdag we recurse on G� and G � G�. From Theorem 1 we have opt(G) =

opt(G�) + p(G�) �w(G�G�) + opt(G�G�). Inductively if we have 2 approximations for

G� and G�G� it is clear that we have a 2 approximation of the overall schedule. To show

the running time bound, we observe that the G�� = G�. Therefore we make at most n calls

to the routine to compute G� and the bound follows.

All that remains is to show how to compute G� in polynomial time.

4.1 Computing G�

To compute G� we consider the more general problem of �nding a subdag of rank at most

� > 0 if one exists. We show how we can reduce the later problem to the problem of

computing an s � t mincut in an associated graph. The following de�nes the associated

graph.

4

De�nition 4 Given a dag G = (V;E), and a real number � > 0, we de�ne a capacitated

directed graph G� = (V [fs; tg; E0; c) where the edge set E0 is de�ned by E0 = f(s; i); (i; t) j

1 � i � ng [f(i; j) j j
?

� ig and the capacities are de�ned by

c(e) =

8><
>:

pi if e = (i; t)

�wi if e = (s; i)

1 otherwise

Lemma 3 Given a dag G, there is a subdag of rank at most � if and only if the s�t mincut

in G� is at most �w(G). If (A;B) is a cut whose value is bounded by �w(G), r(A�fsg) � �

and A� fsg is precedence closed in G.

Proof: Let (A;B) be an s � t cut in G� whose value is bounded by �w(G). We �rst

claim that A� fsg is precedence closed in G. Suppose not. Then there is a pair of vertices

(i; j) such that i
?

� j and j 2 A and i =2 A. But then c(j; i) = 1 which is a contradiction

since c(A;B) � �w(G). From this fact and the de�nition of G�, it follows that

c(A;B) =
X
i2A

pi +
X
i=2A

�wi

=
X
i2A

(pi � �wi) +
X
i2V

�wi

=
X
i2A

(pi � �wi) + �w(G)

Since c(A;B) � �w(G) it follows that
P

i2A(pi��wi) � 0 which implies that r(A�fsg) � �.

It is quite easy to see using similar arguments as above that a precedence closed subdag A

in G whose rank is less than � induces a cut of value at most �w(G) in G�.

Lemma 4 G� can be computed in time O(mn log(n2=m)).

Proof: Computing the minimum cut in G� for each � > 0 can be viewed as a parametric

max
ow computation. There are at most n values of � for which the minimum cut changes

in the graph and a result of Gallo et al. [6] shows that it is possible to obtain all the such

values of � in the time it takes to do one maximum
ow computation using the push-relabel

algorithm of Goldberg and Tarjan. The running time bound follows.

The algorithm to compute G� using a maximum
ow computation is present in Lawler's

book [13] where a binary search is performed to �nd the optimum �. The improved strongly

polynomial running time is due to the parametric
ow techniques of Gallo et al. based on

the push-relable algorithm of Goldberg and Tarjan.

5 Conclusions

In a recent paper, Chudak and Hochbaum [4] show a half integral linear programming

relaxation for the same problem. They achieve a similar approximation ratio of 2. The

half-integral program can be solved using a minimum cut computation, but the running

time obtained is worse than that of our algorithm, by a factor of n. It is possible to show

examples where the optimal solution to their linear programming relaxation is a factor of 2

away from the optimal integral solution. It would be interesting to show that the scheduling

problem we consider is hard to approximate within some absolute constant factor (Max-SNP

hard). We conjecture that this is the case.

5

References

[1] D. Adolphson. Single machine job sequencing with precedence constraints. SIAM

Journal on Computing, 6:40{54 (1977).

[2] S. Chakrabarti, C.A. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein, J. Wein. Improved

scheduling algorithms for minsum criteria. ICALP, Springer Verlag (1996).

[3] C. Chekuri, R. Motwani, B. Natarajan and C. Stein. Approximation Techniques for

Average Completion Time Scheduling. Proceedings of the Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 1997.

[4] F. Chudak and D. Hochbaum. A half-integral linear programming relaxation for

scheduling precedence-constrained jobs on a single machine. (submitted), August 1997.

[5] J. Du, J.Y.T. Leung, and G.H. Young. Scheduling chain structured tasks to minimize

makespan and mean
ow time. Information and Computation, 92:219{236 (1991).

[6] G. Gallo, M.D. Grigoriadis, and R. Tarjan. A fast parametric maximum
ow algorithm

and applications. SIAM J. on Comput., 18:30{55, 1989.

[7] M.R. Garey. Optimal task sequencing with precedence constraints. Discrete Mathe-

matics, 4:37{56 (1973).

[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-completeness, Freeman, San Francisco (1979).

[9] L.A. Hall, A.S. Schulz, D.B. Shmoys, J. Wein. Scheduling to minimize average com-

pletion time: O�ine and online algorithms. Journal submission.

[10] W.A. Horn. Single-machine job sequencing with treelike precedence ordering and linear

delay penalties. SIAM Journal of Applied Mathematics, 23:189{202 (1972).

[11] T.C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9:841{

848 (1961).

[12] E.L. Lawler. Sequencing jobs to minimize total weighted completion time. Annals of

Discrete Mathematics, 2:75{90 (1978).

[13] E.L. Lawler. Combinatorial Optimization. Holt, Rinehart, and Winston (1976).

[14] R. Ravi, A. Agrawal, P. Klein. Ordering problems approximated: single-processor

scheduling and interval graph completion. ICALP, Springer Verlag, (1991).

[15] W. Smith. Various optimizers for single-stage production. Naval Res. Logist. Quart.,

3:59{66 (1956).

[16] J. Sydney. Decomposition algorithms for single-machine sequencing with precedence

relations and deferral costs. Operations Research, 23(2):283{298 (1975).

6

