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Abstract

The adversarial queueing theory model for packet routing was suggested by Borodin et al.

[2]. We give a complete and simple characterization of all networks that are universally stable

in this model. We also show that a speci�c greedy protocol, SIS (Shortest In System), is stable

against stochastic adversaries with exponentially vanishing tails.

1 The Adversarial Model for Packet Injection

In traditional queueing theory, the source which generates network tra�c is typically assumed to

be stochastic. Adversarial Queueing Theory developed out of a recent need for more robust models

for these sources. The growing complexity of network tra�c makes it increasingly unrealistic to

model tra�c as, say, a Poisson stream. It is therefore desirable to have a general robust framework

which makes as few assumptions about the network tra�c as possible. Such a framework was

developed by Borodin et al. [2] in the context of packet routing and several very interesting results

in this model were proved by Andrews et al. [1]. We refer the reader to [2, 1] for a more thorough

motivation of the adversarial model. In this model, packets are injected into the network by an

adversary. To keep things simple, it is assumed that the route of each packet is given along with

the packet itself. The adversary is limited in the following way: over any w consecutive steps, the

adversary can inject at most dw(1 � �)e path packings into the network, where a path packing is

an edge disjoint collection of simple paths in a network. Each path can be looked upon as a route

that a packet needs to follow. A single path packing may, therefore, correspond to many packets.

The parameter w is called the burst size, and 1� � is the injection rate. Such adversaries are called

(w; �)-adversaries.

Once injected, packets follow their routes one edge at a time till they reach their destination.

Only one packet may cross an edge during one time step, so a protocol is needed to decide which

packet should cross an edge if more than one packets are waiting. A protocol is said to be greedy

if it always forwards a packet on an edge if there are packets waiting to cross that edge. Any non-

greedy protocol can be simulated by a (centralized) greedy protocol. Distributed greedy protocols

are the simplest to implement and reason about, and we limit ourselves to such protocols.
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De�nition 1.1 A protocol P is stable on network G (or equivalently, the pair (P;G) is stable) if

for all (w; �)-adversaries, the maximum number of packets in the system, as well as the maximum

delay a packet experiences, is bounded.

De�nition 1.2 A protocol P is universally stable if (P;G) is stable for all networks G. Similarly,

a network G is universally stable if (P;G) is stable for all greedy protocols P .

Some common greedy protocols are de�ned below. To de�ne a greedy protocol, it is su�cient to

specify how contention is resolved when more than one packets want to traverse the same edge.

FIFO: First In First Out.

SIS: Shortest In System { the packet which was injected last wins.

LIS: Longest In System { the packet which was injected �rst wins.

NTG: Nearest To Go { the packet nearest its �nal destination wins.

FTG: Furthest to Go { the packet furthest away from its �nal destination wins.

One of the most interesting results of Andrews et al. is that several natural greedy protocols

for packet routing are not universally stable. Speci�cally, FIFO is not stable! But fortunately,

several natural greedy protocols are stable on all networks { for example, LIS and SIS, which give

priority to the oldest and latest packet, respectively. Andrews et al. show a similar dichotomy for

networks. They show that all greedy protocols are stable on rings, trees, and DAGs. But they

do not characterize all universally stable networks. We give a complete characterization of such

networks in Section 2. Speci�cally, we show that a connected undirected graph is universally stable

if and only if it has at most one cycle. For directed graphs, we give a simple decision procedure to

determine universal stability.

Borodin et al. [2] introduced the notion of stochastic adversaries. The number of packet packings

injected by a stochastic adversary during time step i is Xi, where Xis are i.i.d. random variables

with mean less than 1. However, the path packings chosen by the adversary need not come from

a probability distribution. Hence stochastic adversaries are more powerful than traditional source

models, where packet injection is probabilistic for each source-destination pair. Borodin et al. give

some results for stability of protocols against stochastic adversaries on directed cycles. In Section

3, SIS is shown to be stable on all networks against all adversaries with exponentially vanishing

tails (A stochastic adversary is said to have an exponentially vanishing tail if the random variables

Xi have an exponentially vanishing tail.).

2 Universal Stability of Networks

Andrews et al. [1] prove that not all graphs are universally stable, by giving a counter-example.

They also attempt to characterize graphs that are universally stable. They claim that for undirected

graphs, the property of universal stability of a graph is closed under minor inclusion. Using the

results of Robertson and Seymour [3], it follows that universal stability can be decided in polynomial

time. While this approach does o�er a lot of insight, it is unsatisfactory for several reasons. First,

the results of Robertson and Seymour are non-constructive. We are guaranteed that there are
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only �nitely many minor-minimal graphs which are not universally stable, but there is no general

technique for �nding these forbidden minors. Moreover, the results of Andrews et al. hold only for

undirected graphs. Andrews et al. do observe that large classes of commonly used networks are

unstable.

A simple and constructive characterization of universally stable graphs is given in this section.

An undirected connected graph G with n vertices is shown to be universally stable i� it has at

most n edges (Theorem 2.7). For directed graphs, the set of forbidden minors is given (Theorem

2.5) along with a simple decision procedure (Theorem 2.6).

De�nition 2.1 For any directed graph G, the line graph L(G) of G is de�ned in the natural way:

the edge set of G forms the vertex set of L(G) and there is an edge in L(G) from e1 to e2 if, in the

graph G, the head of e1 coincides with the tail of e2.

Lemma 2.1 If digraphs G1 and G2 are universally stable, then so is any graph G formed by joining

them with edges that go only from G1 to G2.

Proof: Assume that the adversary we are working against has rate 1 � � and burst size w. Since

G1 is stable, any packets originating in G1 get out of G1 within T1 time steps, where T1 is some

function of w and �. Some of these packets may then enter G2. Now, during a time window T2 units

long, any new packets that enter G2 must have been introduced during T1 + T2 contiguous units.

The number of path packings introduced during this interval can be at most (T1 + T2 +w)(1� �).

Choose any �0 such that 0 < �0 < �. Now, set T2 = (T1 + w)(1� �)=(� � �0). During any window of

size t � T2 at most t(1� �0)� (T2(�� �0)� (T1+w)(1� �)) = t(1� �0) path packings are introduced

into G2. This implies that these packets could have been introduced by an adversary of burst size

T2 and rate �0. But by de�nition of universal stability, G2 is stable against such an adversary.

Therefore, the traversal time for a packet as well as the queue lengths are bounded in G.

Lemma 2.1 implies that all acyclic digraphs are universally stable. 2.1.

Corollary 2.1 A digraph is universally stable i� all of its strongly connected components are uni-

versally stable.

We now focus on graphs that are strongly connected. The following result by Andrews et al.

[1] will be useful:

Lemma 2.2 (Andrews et al.[1]) The directed cycle on any number of vertices is universally stable.

The same result holds for the undirected cycle, as the undirected cycle can be modeled as two

disconnected directed cycles. The next logical question to ask is the following: Does there exist a

strongly connected digraph that is more complicated than a cycle and is still universally stable?

The answer is no. Consider the following two simple digraphs, H1 and H2, also drawn in Figure 1.

H1: There are just two vertices u and v with two parallel edges e1 and e2 from u to v and an

edge f from v to u.

H2 : There are three vertices u, v and w with the following edges: e1 = (uv), e2 = (vu),

f1 = (uw), f2 = (wu).

Neither of these two simple graphs is universally stable. For now, we ignore the fact that the

paths speci�ed have to be simple. We will come back to it later in the section.
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Figure 1: The graphs H1 and H2.

Lemma 2.3 H1 is not universally stable.

Proof: To prove instability, the adversary and the greedy protocol are allowed to work in collusion.

Suppose there are s packets waiting to cross edge f , where s is larger than some large enough

constant. The adversary introduces packets at a rate r < 1, and operates in four rounds. At the

end of the fourth round, there will be more than s packets waiting to cross edge f . Our proof goes

along the lines of a similar proof in [1] for a larger graph.

The �rst round lasts for s steps: the adversary introduces sr packets of the form (fe2) and

delays all of these. At the beginning of the second round, there are sr packets of type (fe2) waiting

at edge f . During the second round (duration sr), sr2 packets of type (e2) and another sr2 packets

of type (fe1) are introduced. Further, all these packets are delayed. At the beginning of round

3, there are sr2 packets each of type (e2) and (fe1). The adversary now introduces (in sr2 steps)

sr3 packets each of types (e2) and (e1f), delaying each of these. At the beginning of the fourth

round, there are sr3 packets each of type (e2) and (e1f). During the fourth round (duration sr3)

the adversary introduces sr4 packets each of types (e2f) and (e1). The packets of type (e2f) are

delayed, whereas packets of type (e1) are allowed to pass through, delaying packets of type (e1f)

from the previous round. Notice that this is the only step when the greedy protocol di�ers from

LIS. At the end of the fourth round, there are sr4 packets each of types (e1f) and (e2f) waiting.

All these packets need to cross edge f .

During the above procedure, the number of packets waiting at edge f went from s to 2sr4. If

r > 0:51=4 � 0:84, then the number of packets goes up, and the adversary can use this procedure

over and again to make the number of packets in the system unbounded.

In the above proof, the number of packets at the end of round 4 will actually be 2sr4 minus

some constant. But since s was chosen to be larger than a large enough constant, this is not a

problem. To initially generate a constant number of packets at edge f , we can attach a large acyclic

graph at u, where the newly added acyclic portion is used to generate the initial packets. The new

graph (ie. H1 with an acyclic graph attached) is not universally stable. Corollary 2.1 now implies

that H1 is not universally stable.

Simple modi�cations to the above proof result in the following corollaries.

Corollary 2.2 The pair (FIFO,H1) is not stable.

Corollary 2.3 Any graph obtained by replacing the edges e1, e2 and f in H1 by disjoint directed

paths is not universally stable. In particular, such a graph is not stable for FIFO.

Lemma 2.4 H2 is not universally stable.
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Figure 2: The forbidden minors for a universally stable digraph.

Proof: The proof is similar to that for Lemma 2.3. The adversary again operates in four rounds.

Suppose there are s packets waiting to cross edge e1. In the �rst round (duration s), the adversary

introduces sr packets of type (e1e2f1f2) and delays them. In the second round (duration sr), the

avdersary injects sr2 packets each of types (e2) and (f2) and delays them. In the third round

(duration sr2), the adversary injects sr3 packets each of types (e2e1) and (f2) and again delays the

newly introduced packets. In the fourth round (duration sr3), the adversary introduces sr4 packets

each of types (e2) and (f2e1). During this round, the adversary delays packets of type (e2e1) from

the previous round and (f2e1) from the current round. Therefore, at the end of the fourth round,

there are 2sr4 packets that need to cross edge e1.

Corollary 2.4 The pair (FIFO,H2) is not stable. Any graph obtained by replacing the edges e1,

e2, f1 and f2 in H2 by disjoint directed paths is not universally stable. In particular, such a graph

is not stable for FIFO.

Any strongly connected digraph must either be a cycle, or it must consist of at least two cycles

which either share an edge or a vertex. If these cycles share an edge, this digraph would be unstable

by Lemma 2.3. If they share a vertex, this digraph would be unstable by Lemma 2.4. Imposing the

restriction that each packet must follow a simple path, the forbidden minors for universally stable

digraphs are given in Figure 2.

Theorem 2.5 A digraph G is universally stable i� it does not contain any of the forbidden minors

drawn in Figure 2.

There is an even simpler procedure to check universal stability of a digraph G. De�ne a feasible

line graph LF (G) of a digraph G as follows: the edge set of G forms the vertex set of L(G) and

there is an edge in L(G) from e1 to e2 if, in the graph G, the head of e1 coincides with the tail of

e2, and e1 and e2 do not form a directed cycle. The last condition captures the restriction that a

packet cannot traverse the same edge in two directions consecutively.

Theorem 2.6 A digraph G is universally stable i� in its feasible line graph LF (G), all strongly

connected components are simple cycles.

The above theorems completely characterize universally stable graphs, and give an e�cient (O(mn))

procedure for deciding universal stability.

For undirected graphs, the characterization is even simpler.

Theorem 2.7 A connected undirected graph with n vertices is universally stable i� it has no more

than n edges.
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3 Against Stochastic Adversaries

Borodin et al. [2] introduce the notion of stochastic adversaries. They show that several commonly

used protocols such as LIS and FTG are stable on a directed cycle against stochastic adversaries with

exponentially vanishing tails1. We show that SIS is stable on all networks against all exponential

adversaries (ie. stochastic adversaries with exponentially vanishing tails).

Theorem 3.1 SIS is stable against all exponential adversaries on all graphs. Further, the random

variables corresponding to queue lengths and packet delays have exponentially vanishing tails.

The proof of Theorem 3.1 is omitted from this version. Instead, we prove the same result against

0-1 adversaries, de�ned below. The proof of Theorem 3.1 is similar to that of Theorem 3.2 and

Corollary 3.3 but we need to use some Cherno� bounds to make the proof go through.

De�nition 3.1 A 0-1 stochastic adversary generates 0 path packings with probability � and 1 path

packing with probability 1� � during any single time step, for some constant � > 0.

We �rst de�ne a non-greedy protocol, SIS-NG, which takes at least as much time to route any

packet as SIS. SIS-NG is then shown to be stable against a 0-1 stochastic adversary.

De�nition 3.2 The non greedy protocol SIS-NG does the following: a packet p is blocked at each

edge in its path till the number of path packings introduced after p becomes less than the duration

for which p has been waiting at this edge.

Informally, SIS-NG assumes that each packet gets blocked once at each edge along its path by each

of the path packings introduced after it.

Lemma 3.1 Given the same sequence of requests, SIS takes at most as long to route any packet

as SIS-NG.

Theorem 3.2 SIS-NG is stable against all 0-1 stochastic adversaries on arbitrary graphs.

Proof: In this proof, the protocol will implicitly be assumed to be SIS-NG, and the mean number

of path packings injected by the adversary during a single step will be 1� �; 0 < � < 1.

Let Pi(�) represent the probability of � path packings being generated by the 0-1 adversary

between the time when packet p was introduced and when it crosses the ith edge on its path.

Clearly, P0(0) = 1, and P0(�) = 0 for all � > 0. If there are � packets in the system when p

crosses its ith edge, and there were � packets when p crossed its (i � 1)th edge, then during the

previous � steps, exactly ��� path packings must have been introduced, and no packet must have

been introduced during the current step. This argument can be formalized to obtain the following

recursive equation:

Pi(�) =
X
���

 
�

�

!
Pi�1(�)�

�+1(1� �)���

1These results were originally reported for adversaries with bounded variance, but the restriction that the input

process have an exponential tail is essential.
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The solution to the above equation is Pi(�) = �i(1� �i)�. This can be veri�ed inductively. Clearly,

this solution is valid for i = 1. Suppose the solution is valid for all i � j. Now,

Pj+1(�) =
X
���

 
�

�

!
�j(1� �j)���+1(1� �)���

= �j+1
X
���

 
�

�

!�
�(1� �j)

��
(1� �)���

= �j+1
�
1� �+ �(1� �j)

��
= �j+1(1� �j+1)�

, which completes the inductive proof. Let d be the maximum distance that a packet p needs to

cover (clearly, d � m). Let �d represent the number of path packings introduced after p but before

p completes its journey. Expected delay for packet p is at most

E(d+ d�d) = d

0
@1 +X

��0

��d(1� �d)�

1
A

= d

 
1 +

1� �d

�d

!

=
d

�d

This completes the proof of stability of SIS-NG against 0-1 adversaries.

Corollary 3.3 If SIS-NG is used against 0-1 adversaries, the distributions of queue lengths and

packet delays have exponentially vanishing tails.

Proof: Prob(delay > d+kd) � Prob(�d > k) � �d
P

�>k(1� �d)� = (1� �d)k+1, which proves that

packet delays have exponentially vanishing tails.

Prob(number of packets > dkm+ dm) < Prob(oldest packet is at least dk+ d units old). Now,

there can be at most m packets per time step, and incrementing k by one corresponds to d time

steps. Using the bound on delay obtained earlier in this proof, the above probability is at most

md
P

�>k(1� �d)� = (dm=�d)(1� �d)k, which has an exponentially vanishing tail.

The expected delay is exponential in d. But for a large class of networks, d can be logarithmic in

the network size, which would result in polynomial delays and queue sizes. Also, by Lemma 3.1,

all the above results hold for SIS as well.
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