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Abstract

This paper presents a detailed performance study of the associative caching scheme proposed

in [11]. A client cache dynamically loads query results in the course of transaction execution,

and formulates a description of its current contents. Predicate-based reasoning is used on the

cache description to examine and maintain the cache. The bene�ts of the scheme include local

evaluation of associative queries, at the cost of maintaining the cached query results through

update noti�cations from the server. In this paper, we investigate through detailed simulation

the behavior of this caching scheme for a client-server database under di�erent workloads and

contention pro�les. An optimized version of our basic caching scheme is also proposed and

studied. We examine both read-only and update transactions, with the e�ect of updates on the

caching performance as our primary focus. Using an extended version of a standard database

benchmark, we identify scenarios where these caching schemes improve the system performance

and scalability, as compared to systems without client-side caching. Our results demonstrate

that associative caching can be bene�cial even for moderately high update activity.

1 Introduction

1.1 Client-Server Databases with Smart Clients

A popular architecture for modern database management systems is the client-server con�guration.
This setup involves one or more server processes that manage a central repository of persistent data,
and handle requests for data retrieval and update from multiple client processes. The con�guration
is non-shared memory, so that the server and the clients have mutually disjoint local address spaces,
and communication between a client and the server occurs only through explicit messages across a
network. The server provides concurrency control, transaction management, and recovery facilities
for the shared database.

Server response is a critical factor in the performance of a client-server system. The resources
of the server are shared among many clients, and can become the bottlenecks in scaling the system
to large amounts of data or larger number of clients. Optimizing the performance of the server
has thus been a major focus of commercial systems. For example, the Oracle database [13] uses a
main-memory \bu�er pool" of cached pages to avoid disk tra�c at the server. For clients however,
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a common assumption in the past has been that they have very limited resources. Accordingly,
client functionality has been limited to transmission of queries and updates across the network to
the server and presentation of the received results to the user. In this type of system, known as a
query-shipping system, all query execution tasks occur at the server. Most relational client-server
databases available commercially fall under this category.

The revolution in computer hardware technology has made client resources relatively cheap and
plentiful. Today, clients processes often run on powerful desktop machines with substantial CPU
and memory. These smart or thick clients are capable of performing intensive computations on
their own, using the database as a remote resource that is accessed only when necessary. Better
utilization of client resources can o�oad the central server and improve system performance and
scalability. Client memory and CPU should therefore be taken into consideration for data caching
and query evaluation purposes. Despite the potential cost of maintaining data cached at client sites,
a number of recent studies [6, 18, 19] have demonstrated that inter-transaction reuse of cached data
can decrease network tra�c and query response times.

1.2 Associative Versus Navigational Caching

In contrast to the query-shipping strategy followed by relational databases, most object-oriented
databases assume smart clients, and are built using a data-shipping approach. In this model, the
client cache is essentially a pool of individual data items (either pages or objects), with a table of
contents that lists the unique identi�ers of cached items. Although the e�ectiveness of such data
caching has been demonstrated by several studies [2, 5, 6, 18], cache access based on identi�ers is
adequate only for purely navigational operations such as ReadObject and UpdateObject in object-
oriented databases. An associative query that speci�es a target set of tuples or objects using
predicates on the attributes of a relation or an object class, e.g., through a WHERE clause in a
SELECT-FROM-WHERE SQL statement, is not easily supported by these caching schemes.

Associative queries are widely used in relational and object-relational database systems, and are
indeed one of the major reasons for their success. Even in object-oriented databases, a common way
of data retrieval is by using predicates on one or more attributes of an object type, with navigational
access occurring subsequently as objects in the result set are traversed. Evaluation of associative
queries on locally cached data is therefore important for both relational and object-based database
systems, and can potentially improve cache reuse and client CPU utilization in both cases. To
address this problem, an associative caching scheme for client-server databases was proposed in
[11]. This caching strategy, now called A*Cache, is an example of the hybrid-shipping model [7],
and it attempts to exploit the resources of both the clients and the server in a 
exible way. The
aim of this paper is to evaluate the performance of this caching scheme through simulation of a
client-server database, focusing primarily on the e�ect of updates.

1.3 An Example

We use an example below to illustrate the use of associative caching and the issues in maintaining
an associative cache when updates are committed to the database. Consider a large software
company with a primary Development Center at a single site and many international Sales and
Support o�ces. Suppose that it has a BUG database to help track software defects encountered
by its customers. A bug logged in the database has an associated product, a customer, a problem
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description, and a current status, and is represented using the following relational schema:
BUG ( Bug#, Product#, Customer, Description, Status ),

where each row records the details of a particular bug.

Usage of this database is as follows. Development and Support personnel are assigned to speci�c
products, so that queries to the database typically retrieve a set of bugs satisfying a predicate such
as ( Product# = 100 AND Status='Open' ). Other queries include those that gather statistics
on bug activity for di�erent products or customers. Bugs may be updated after bug �xes or in
response to customer interaction.

Let us assume that the BUG database is implemented using the client-server model, and that the
central server is at the primary Development Center. Clients may be located at the Development
Center or at any Support site in the world. Clearly, client-side caching would be bene�cial in this
scenario, since latency to retrieve data from the central server would be substantial otherwise. Note
that clients of the database are accessing data in an associative way, e.g., based on the product
information and the status of bugs. Thus, for e�ective cache reuse at the client, associative access
to cached data is needed.

Suppose that a client C caches only the result of a query for open bugs in product number 100,
along with a predicate description P for these tuples:

P : ( Product# = 100 AND Status = 'Open' )
Assuming that none of these bugs are updated, a subsequent query at the client C for all open

bugs in product number 100 reported by customer X, i.e., those bugs that satisfy the predicate:
Q : ( Product# = 100 AND Status = `Open' AND Customer = `X' )

can be answered using containment reasoning to detect that the query predicate Q is a subset of
the cached predicate P . Cached data can also be updated locally without getting server locks, if
the client optimistically assumes that the data is current, and is not being updated elsewhere (in
this case, update con
icts would be detected later, e.g., at commit).

Now suppose that a bug satisfying the condition ( Product = 100 AND Status = 'Open' ) has
its status updated to 'Closed' by a di�erent client. This update potentially a�ects all caches that
have cached query results on the BUG relation. In the case of client C, there are three possible
ways to re
ect the update on its cache: (1) it can delete the tuple from the cache, since no cached
predicate is satis�ed by the updated tuple, (2) it can update the tuple and retain it in the cache, but
since the tuple does not satisfy predicate P any longer, it must also augment its cache description
to include the new tuple, and (3) it can purge the predicate P from its cache, which might be
preferable if it is known that the query result is not used frequently. For another client with a
cache description ( Customer = 'Y' ), updating the modi�ed tuple if it is present in its cache is an
appropriate maintenance action that preserves the validity of its cache.

1.4 The A*Cache Scheme

We brie
y review below the scheme presented in [11]. Queries submitted to the server are used
to dynamically load data into the client-side cache, and cache descriptions derived from the query
predicates are stored at the client as well as at the server to examine and maintain the cache
contents.
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When a transaction submits a query or update, it is intercepted locally by the client, and
compared against the cache description. If the cache is found to contain the required data, the
client executes the operation locally on the cache, following an optimistic concurrency control
protocol. If all the required data is not available locally, a request is submitted to the server to
fetch either the missing data only or all of it, depending on the costs involved. The returned results
may or may not be cached upon return to the client, based on the space availability and other
local conditions. A remote request is accompanied by any local (uncommitted) updates of which
the server has not yet been informed, since the transaction must be able to see the e�ect of its
own updates for all local as well as remote operations. As described in [11], A*Cache follows a
semi-optimistic concurrency control protocol that retains the serializability of transactions.

A commit 
ushes all local updates performed previously at the client to the server. In order
to ensure serializability, the server must ensure that the client has seen its most recent noti�cation
message before the commit is con�rmed, and the deferred updates are posted to the database. This
checking is done by assigning a sequential message number to every noti�cation.

1.5 Cache Consistency in A*Cache

An important concern in any caching scheme is consistency maintenance of the cached data| client
caches may become out-of-date as updates are committed on the central database at the server.
Handling updates is more complex for an associative caching scheme compared to a identity-based
one, since it is not su�cient to consider data items individually. Instead, predicate-based reasoning
must be employed to determine which client caches are a�ected by an update. For example, a tuple
that has been updated elsewhere might have to be inserted into the cache in order to satisfy a
cached predicate. Techniques for incremental maintenance of materialized views [9] are applicable
in this context.

The A*Cache scheme uses a noti�cation mechanism to maintain the validity of cached data, as
described in [11]. Each client must register with the server a subscription that describes the query
results cached by it. Using these subscriptions and incremental view maintenance techniques, the
server generates any required noti�cations for a client whenever an update is committed at the
central database. A client subscription at the server may be `liberal' [11] in nature, implying
that it represents a superset of the actual set of tuples and predicates cached at the client. A
liberal approximation in the client subscription and in the noti�cation procedure guarantees that
no relevant noti�cation will be missed, although some irrelevant noti�cations may be generated.

Several design issues are involved in A*Cache maintenance. An important point is that the
maintenance is performed at the level of predicates. Based on the maintenance policy, such as
data refresh or invalidate, tuples might need to be inserted, updated, or deleted from the cache
in order to maintain the validity of its description. Modi�cation of the cache description might
also be required, e.g., if data is invalidated or purged from the cache. Update noti�cations may
additionally a�ect a client transaction running at the time. Depending on its data consistency
requirement, a transaction may have to be aborted when a con
ict with its local reads or writes is
detected upon noti�cation of an update at the database.
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1.6 Outline of the Paper

Our focus in this paper is on evaluating the performance of the A*Cache scheme. Containment
reasoning is necessary on the cache description to determine if a query can be evaluated locally.
The generation and processing of update noti�cations at the server and at the client also requires
reasoning with query predicates to detect overlap of updated regions with client cache descriptions.
Predicate-based reasoning in a dynamic caching environment naturally raises questions of feasibility
and performance, which are addressed in this paper.

We develop a simulation model of the A*Cache system using queueing networks. The model
takes into account the client-side caching facilities and the associated retrieval and maintenance
costs, as well as the cost of noti�cation generation by the server. We also introduce an optimized
version, called A*Cache Opt, of the basic A*Cache scheme that considers partial containment of
a query in the cache and fetches only the missing data from the server. Simulation experiments
are performed for a variety of workloads with di�erent data usage and contention patterns, with a
no-caching system as the basis of comparison. We �rst investigate the e�ectiveness of A*Cache and
A*Cache Opt in a read-only scenario, and then explore their behavior in the presence of update
noti�cations and cache maintenance activity. Our results demonstrate that both the A*Cache
schemes can provide substantial performance bene�ts even under moderately high update loads.

The rest of this paper is organized as follows. Section 2 reviews related work. In section
3, we brie
y describe the components in an A*Cache system. The simulation environment with
the system model is described in Section 4. Section 5 de�nes the workload models, and reports
the results of simulation experiments for A*Cache and A*Cache Opt. Finally, we summarize our
conclusions in Section 6.

2 Related Work

Client-side data caching that is based on object or page identi�ers has been studied quite extensively
in [6, 18, 19]. However, associative caching has not been examined in any of these papers.

Recently, a couple of studies [3, 16] have examined associative access to a client cache. Both of
these studies are limited to read-only scenarios. The semantic caching study in [3] examines cache
replacement policies for no-update workloads. The design of an cache manager calledWATCHMAN
for caching read-only query results in data warehousing environments is reported in [16]. The
important issue of cache maintenance when there are database updates is not examined in these
papers.

Evaluation of queries from locally stored views is supported in the ADMS� system, which uses
the ViewCache technique and incremental access methods [15]. A simulation study [4] examined
the performance of this and related schemes. One major di�erence in A*Cache is that its update
propagation scheme is based on asynchronous noti�cation of committed updates, instead of on-
demand lookup of server update logs. Additionally, the concurrency control scheme in A*Cache is
semi-optimistic, and permits both local reads and writes with a commit veri�cation step.

A caching subsystem that can reason with stored relations and views is proposed in the BrAID
system [17] to integrate AI systems with relational DBMSs. Some aspects of BrAID that pertain
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to local query processing, such as query subsumption and local versus remote query execution, are
relevant for A*Cache. Unlike A*Cache, BrAID does not consider database updates.

Distributed and replicated databases are also related to the A*Cache scheme. However, the
A*Cache environment is di�erent in several respects: (1) Caching is dynamic in nature, unlike
static partitioning in replicated systems; (2) client caches are not full-
edged databases; e.g., they
do not provide local commit or recovery services; and �nally, (3) the central database is the single
`point of truth' for all persistent data, and the commit always takes place at the server. Therefore,
con
ict resolution issues for multiple copies of replicated data do not arise in A*Cache.

Maintenance of materialized views has been the subject of much research [9], and is relevant
for consistency maintenance of A*Cache. For example, the update noti�cation scheme in A*Cache
is related to the �ltering of updates that are irrelevant for a view [1]. However, performance issues
in handling large numbers of dynamic views in a client-server environment, as in A*Cache, have
not been considered in these papers. Query containment [10] is a topic closely related to the cache
containment question, and techniques developed in this area are directly applicable for A*Cache.

3 Architecture of an A*Cache System

We now describe the physical architecture of an A*Cache system. The persistent data store is
resident at the central server, and transactions are initiated by autonomous clients across a network.
Separate subsystems exist at each client site and at the central server for cache management. For
this paper, we assume that a client runs a single transaction at any given time. Thus, we do
not consider local concurrency control and lock management at the client, although they can be
incorporated within the A*Cache framework. Figure 1 shows the components in an A*Cache system
for a single client.

Reasoning

Cache
Containment

Notification
Processor 

Execution Engine 

Space Manager

DBMS

Notifier

Client Subscription Manager

Commit Verifier

NetworkClient Server

 Application
Queries

Updates

Results

Notifications

Cache Description Handler

Cache Manager

Figure 1: Components in an A*Cache System
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3.1 Client-Side Components

The client-side subsystem of A*Cache consists of six distinct components:

� A Cache Manager which is the interface to the client cache. This module serves as the
`dispatcher' component at the client. It intercepts database operations requested by client
transactions, as well as the update noti�cations received from the server, and routes the
request appropriately. It also participates in the commit veri�cation algorithm for our semi-
optimistic concurrency control scheme, to ensure that a committing transaction did not read
or write old data (Section 1.5).

� A Cache Description Handler for inserting and deleting cached predicates. Modi�cations
to the cache description may be required (1) when a new query result is stored, (2) when
a previously cached result is purged from the cache, and (3) during processing of update
noti�cations. This module also keeps track of usage information for predicates, which is used
for space management purposes.

� A Containment Reasoning subsystem for detecting cache containment. This module `conser-
vatively' [11] compares a query predicate against the cache description to determine whether
some or all of the required data is contained in the cache. This module is invoked when: (1)
a new query is submitted, and (2) a new noti�cation message arrives from the server, and it
must be checked if the cache is a�ected. Query containment algorithms [10] are employed in
this process.

� A Query Execution Engine that operates on the data in the cache. Queries and updates need
to be executed locally in the cache in three cases: (1) when there is a cache hit, (2) in response
to an update noti�cation message, and (3) for reclaiming space from the cache. For cache
hits, query execution plans are constructed at the client, and the query or update is executed
on the cached data. Note that the execution system must also provide local rollback and
abort facilities for local updates made in the cache, in case the transaction is later aborted
due to serializability considerations.

� An Update Noti�cation Handler for cache maintenance operations. Upon receiving an update
noti�cation from the server, the Noti�cation Handler �rst invokes the Containment Reason-
ing system to determine whether the cache is actually a�ected. This step is required since
noti�cation is liberal and involves network delays, and a noti�cation may be irrelevant for
the current contents of the cache.

Containment analysis on a noti�cation may have three outcomes: (1) the cache is not a�ected,
(2) only the cache, and not the current transaction, is a�ected, and (3) both the cache and the
current transaction are a�ected. For this paper, we assume that the cache is updated upon
noti�cation, and that a client transaction is aborted and restarted if a con
ict is detected
with local reads or writes.

� A Space Manager for loading and discarding query results. The Space Manager decides
whether a new query result should be cached, and implements a cache replacement policy
when the cache is full. When predicates and associated tuples are purged from the cache, the
cache descriptions at the client and the server must be changed accordingly. As described in
[11], reclamation of space is done using a reference counting scheme, so that a cached tuple is
purged only when it is not referred to by any cached predicate. Advanced functionality may
include de�ning local indexes on the cached data to improve the e�ciency of data retrieval.
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3.2 Server-Side Components

Special facilities also exist at the server for supporting and maintaining client-side caches. These
modules are described below.

� A Client Subscription Manager for registering client subscriptions. Before a query is cached
at the client, it must �rst be registered with this server module, so that the client is noti�ed of
all relevant updates. This module also handles requests for deleting predicates from a client
subscription when it has been purged from the cache for space reclamation.

� A Commit Veri�er to ensure serializability of transactions. The commit process is enhanced
to support serializability of transactions that evaluate queries locally at the client [11]. A
`handshake' may be required with the client to ensure all applicable noti�cations have been
processed by it, before the commit is �nally con�rmed by the server. The commit veri�er
interacts with the Cache Manager module at the client to enforce this additional check.

� A Noti�er to generate update noti�cations. The Noti�er is triggered whenever a transaction
commits updates on the database, and it uses the Client Subscription Manager to determine
which clients are a�ected by the updates committed. Generation of noti�cations requires de-
termining overlap of client subscriptions with updated predicates. Techniques for incremental
maintenance of materialized views [9] are applicable in this regard.

4 Simulation Environment

The sections below describe the setup for our performance analysis through simulation.

4.1 Caching Schemes for Performance Comparison

A client-server system with no client-side caching serves as a baseline for comparison of our results.
The model for this system is a reduced version of A*Cache, with the di�erences that queries are
always sent to the server, and there is no caching at client sites and no update noti�cation by the
server. Thus, no cost is incurred in cache maintenance and lookup, or in transaction aborts due to
update noti�cation.

For client-side caching, we consider two schemes that are based on the A*Cache model: (1) A
basic A*Cache scheme, simply called A*Cache; and (2) an optimized extension of A*Cache, called
A*Cache Opt. The basic A*Cache scheme does not consider partial cache hits. Thus, if some of
the tuples in the result set of a query are already in the cache, those tuples are still re-fetched from
the server. Tuples required for an update are �rst fetched into the local cache, updated locally, and
then 
ushed to the server at the next remote operation.

The A*Cache Opt scheme introduces two optimizations in the basic A*Cache model:

� An optimization for queries to utilize partial cache hits. This optimization consists of de-
tecting partial containment in the client cache, and fetching only the missing tuples from
the server. Considering partial hits on the client cache can reduce the data tra�c across the
network compared to the basic A*Cache scheme.
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� An optimization for updates on a cache miss. In this optimized scheme, a cache hit is handled
in the same way as in the basic A*Cache scheme, with updates being performed locally and

ushed to server with the next remote request. However, a cache miss is handled di�erently
| it is executed completely at the server, since a network round-trip is necessary in any case.
In contrast, the basic A*Cache scheme fetches all tuples required for the update, some of
which may already be present in the cache, and performs the update locally, subsequently

ushing these updates to the server.

This modi�ed update policy for a cache miss minimizes the chances of a transaction being
aborted upon noti�cation, since remote updates at the server acquire long-duration write
locks for the modi�ed tuples. It is therefore less optimistic about data writes than the basic
A*Cache scheme, and can result in fewer transaction aborts.

The A*Cache Opt scheme thus utilizes a cache miss as an opportunity to optimize network
tra�c for data reads, and also to reduce update con
icts for data writes.

4.2 Simulation Model

We have constructed a detailed simulation model of the A*Cache architecture as described in
Section 3 above. The model is based on queueing networks. We describe below the various system
resources, with the corresponding simulation parameter denoted in parenthesis.

The resources at the server consist of a CPU (ServerCPU) and a disk (DiskSpeed), along with
a main-memory bu�er (ServerBu�er) for avoiding disk tra�c. The CPU is modeled as a FIFO
queue. Disk pages are bu�ered in the server bu�er following a simple LRU page replacement
policy. Costs are assigned for lock and unlock actions on tuples (LockInst) and for detecting
deadlocks. The deadlock detection algorithm is invoked when a lock request on a particular tuple
fails DeadlockInterval-times, and it chooses a random victim among the deadlocked processes.

The database, the server bu�er, the disk I/O and the data shipping over the network are
organized in pages of size PageSize. The storage unit of the client cache is a tuple of size TupleSize,
with each tuple being associated to one or more cached predicates. The network is a simple
FIFO queue that models tra�c in both directions. The network costs of sending or receiving a
message include the actual wire time NetBw, a �xed CPU cost MsgInst, plus a per-page CPU cost
PerPageMI.

There are NumClients clients in the system. Each client has a CPU (ClientCPU) modeled as
a FIFO service and a main-memory cache of variable size (CacheSize). The storage unit of the
client cache is a tuple of size TupleSize, with each tuple being associated to one or more cached
predicates. The cost of comparing two predicates for overlap or containment is CompCost.

Table 1 lists the default values of the various system parameters. Values of some of these
parameters, such as Bu�erSize and CacheSize, are varied in our experiments. The table lists the
default parameter value that is used in an experiment unless noted otherwise.
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Parameter Value Description

ServerCPU 50 Server CPU speed in MIPS

LockInst 1000 Instructions to get/release a lock

DeadlockInterval 5 Deadlock detection interval

Bu�erSize 500,000 Server disk bu�er size in bytes (=25% of the database)

PageSize 4096 Size of a data page in bytes

DiskSpeed 6.5 Server disk speed in msecs.

DiskInst 5000 Instructions to read/write a page

NetBw 10 Network bandwidth in Mbit/sec

MsgInst 20,000 Instructions to send/receive a message

PerPageMI 12,000 Instructions to send/receive a page

NumClients 10 Number of clients

ClientCPU 25 Client CPU speed in MIPS

CacheSize 100,000 Client cache size in bytes

CompCost 1000 Instructions to compare two predicates

Table 1: System Parameters and their Default Settings

4.2.1 Cache Management Policies in our Simulation

The following policies are chosen for cache management in our simulation:

� Predicates in the cache descriptions at the client and at the server are not indexed, but are
placed on an unordered list. Thus, detecting overlap with a query or updated predicate
requires a sequential search through the list of cached predicates.

� The server assumes by default that each remote query result will be cached by the client.
Accordingly, a query predicate is inserted in the subscription of the associated client for each
query executed at the server. This step is completed before the query result is transmitted
to the client, so that its cache is noti�ed of all relevant updates.

� Cache replacement is done using an LRU policy at the level of predicates with reference counts
for tuples, so that a tuple is purged only when its reference count is zero.

� Local indexes on cached data are not considered at client sites.

It must be emphasized that these policies are a feature of our simulator, and not of the A*Cache
scheme in general. The above choices were made for simplicity of simulation logic, and for ease of
interpretation of experimental results. Note that each choice is biased against A*Cache, in that
A*Cache performance is not improved by it. A*Cache performance is only expected to be better if
an alternate scheme is chosen, for example, if predicates or data are indexed at the client. Exploring
alternate cache management policies, as well as extensions such as availability of client disks, is the
subject of future work.
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4.3 Workload Model

The workload characteristics are described below. We consider a single relation with 10,000 tuples
of 200 bytes each in a Wisconsin-style setting [8]. The relation has two indexed attributes unique1
and unique2 that are unclustered and clustered respectively. Each query is a linear range selection
either on unique1 or on unique2, and its length in terms of the number of tuples retrieved is 0.5%
of the database size. The predicates in a cache description are linear intervals corresponding to
query ranges. In order to make a large set of experiments feasible, we kept the database small and
scaled the client cache and the database bu�er sizes proportionately. Table 2 shows our workload
parameters.

Parameter Value Description

DBsize 10,000 Database size in tuples

TupleSize 200 Tuple size in bytes

QueryLength 0.5% Query length as a percentage of the database size

PrivateRatio 50% Private region as a percentage of database size

PrivateAccessProb 80% Access probability of the private region

SharedAccessProb 20% Access probability of the shared part (= 1� PrivateAccessProb)

PrivateWriteProb 0%|40% Percentage of update transactions in the private region

SharedWriteProb 0%|40% Percentage of update transactions in the shared region

Table 2: Workload Parameters and their Default Settings

The Wisconsin setup is extended with locality parameters [6] to model di�erent degrees of
shared data contention among clients. The database is logically split into a shared part and a non-
shared (i.e., private) one. Each client owns a section of the private region and does not access data
in another client's private region. The private section for client i is de�ned by the linear interval:

�
DBsize � PrivateRatio

NumClients
� (i� 1);

DBsize � PrivateRatio

NumClients
� i

�
:

For the private and shared regions of the database, we de�ne a data access probability (Pri-
vateAccessProb and SharedAccessProb respectively) and an associated update probability (Pri-
vateWriteProb and SharedWriteProb) for transactions in that region. These quantities are the
same for every client. Transactions consist of a single associative query or update, with an update
transaction reading and writing half of all tuples that it accesses. Writes do not modify the indexed
attributes unique1 and unique2. Contention of shared data can be controlled either by decreasing
the PrivateAccessProb, or by increasing the percentage SharedWriteProb of update transactions in
the shared region.

4.4 Validation of the Simulator

The simulator is implemented in C++/CSim [12], and consists of about 5000 lines of code. The
behavior of the simulator without client-side caching and for read-only workloads has been validated
by running experiments against a commercial relational database (Oracle 7.3.2). Query traces were
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generated for the workloads, and run on the database. The simulator was run in trace-driven mode,
and the results of the real and simulated runs were compared. The di�erence in query response
time was found to be with 5%, and number of disk reads to be within 10%. Details of the validation
experiments can be found in [14].

5 Simulation Experiments and Results

We conducted a variety of experiments to evaluate the performance of A*Cache under di�erent
conditions. Some interesting results are reported below. Our primary performance metric is the
query response time. We also tracked other important simulation output such as client cache and
server bu�er hit ratios, CPU utilization, number of disk reads and writes, network performance,
etc., in order to understand the details of system behavior. We use these quantities to analyze and
explain our results. Due to space constraints, detailed description of the behavior of each output
quantity is not possible in this paper. All experiments were performed for large number of queries
(5000 or more), so as to eliminate any transient e�ects of the warmup of client caches and the
server bu�er, and to ensure that we observe steady-state behavior.

5.1 Read-Only Performance Results

We discuss below the results of workloads in which there are no writes. These results best demon-
strate the bene�ts of A*Cache, since there is no cost of cache maintenance; they also help us
interpret the behavior of the system for read-write workloads.

5.1.1 E�ect of Varying Cache Size

Figures 2 and 3 show the e�ects of varying CacheSize for clustered and unclustered access respec-
tively. The PrivateRatio is set to 50% (5000 tuples) in these experiments, so that each of the 10
clients has 500 tuples in its private region. Thus, a cache of 100KBytes, i.e., 5% of the database,
is large enough to hold the entire private region of a client in the A*Cache schemes.

For both the clustered and unclustered cases, the query response time of the A*Cache schemes
drops as the cache grows larger, the gains being most signi�cant until the cache size reaches 5%
of the database, which is the size of the client-private region. The cache hit ratio (not shown
here) increases with cache size, and the response improves since remote accesses are fewer. Notice
that A*Cache Opt performs consistently better than the basic A*Cache scheme, due to reduced
network tra�c on partial cache hits. For cache size beyond 5% of the database the response time
saturates for both schemes, not showing any signi�cant improvement for cache sizes upto 40% of
the database. This behavior is expected, making the cache bigger than 5% holds data in the shared
region, which is accessed only 20% of the time (SharedAccessprob).

Now, comparing the A*Cache schemes against the no-caching system, we see that substantial
speedups are obtained for both clustered and unclustered access, with the improvement in response
time in the unclustered case being an order of magnitude larger than that of clustered access. The
reason for this behavior is that for unclustered disk reads by clients, the utilization of the server
bu�er is poor, and the bene�ts of local caching are enhanced.
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Figure 2: Varying CacheSize, Clustered Access
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Figure 3: Varying CacheSize, Unclustered Access

5.1.2 E�ect of Varying PrivateAccessProb

Figure 4 shows the result of varying PrivateAccessProb on the query response time. This experiment
also uses a CacheSize of 100 Kbytes with a PrivateRatio of 50%, so that the private region of each
client �ts entirely in its cache. A rather unexpected result is obtained in this experiment | the
query response time of the no-caching case remains almost invariant over the entire range 30% to
90% of PrivateAccessProb, while that of A*Cache falls substantially. The result can be explained as
follows. For no-caching, disk pages accessed by clients are placed in the server bu�er, which is 25%
of the database. Since PrivateRatio is set to 50%, the private regions of all the clients taken together
does not �t into the shared server bu�er. Therefore, even though the PrivateAccessProb increases,
the response time does not improve for the no-caching system. In contrast, for the A*Cache
schemes, increasing PrivateAccessProb causes a direct increase in the cache hit ratio for each client,
and a corresponding improvement in the query response time. A*Cache Opt out-performs A*Cache
again, because of less network data transfer on partial cache hits.
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Figure 4: Varying PrivateAccessProb
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5.1.3 E�ect of Varying the Predicate Comparison Cost

The e�ect of varying CompCost for the basic A*Cache scheme is displayed in Figure 5. For this
experiment, PrivateRatio is set to 50%, and two di�erent settings, 5% and 10%, of CacheSize
are used. For small values of CompCost, A*Cache performs better than no-caching. However,
when CompCost is increased beyond 40,000 instructions, A*Cache performance starts to decrease
substantially. The crossover in performance happens at about 85,000 instructions for a relative
CacheSize of 5%, and at about 75,000 instructions for a relative CacheSize of 10%. In interpreting
this result, it must be kept in mind that our simulator does not employ predicate indexing (Sec-
tion 4.2.1), so that in the worst case (a partial or whole cache miss), all predicates are compared
in checking a query against the cache for containment. Therefore, as CacheSize is increased, more
predicates are compared and the cost of containment checking rises, causing an earlier crossover
with the no-caching response. The performance of A*Cache can be signi�cantly enhanced with
predicate indexing, and the impact of the cost of predicate comparison will also be diminished in
that case.

5.1.4 Summary of Read-Only Results

We summarize the results of our read-only experiments. For cache hits, A*Cache performance is
independent of the data clustering on server disk, since the server is bypassed entirely. Thus, the
bene�ts of A*Cache are better realized for unclustered workloads, since the utilization of the shared
server bu�er is quite sensitive to the pattern of disk reads. As expected, large cache sizes cause more
cache hits and local query evaluation, and thus improve the query response. The A*Cache schemes
also demonstrate other bene�ts expected from caching systems, such as decreased sensitivity to
shared resources like the server bu�er and CPU, disk speed, and network speed. Therefore, these
systems scale better than the no-caching system for larger number of clients. The performance
of A*Cache Opt is consistently better than A*cache, since it minimizes network tra�c on partial
cache hits.

5.2 Read-Write Performance Results

Below, we report the results of our experiments with update transactions. For low-contention
environments, the general trends exhibited by the read-only experiments also carry over to the
read-write scenario. For example, for small values of SharedWriteProb, the A*Cache schemes
perform better with increasing cache size, since most updates are to client-private regions and the
cost of noti�cation is small. However, higher contention increases the noti�cation processing cost
for a large cache, and can cancel the performance gains obtained from the local evaluation of larger
number of queries, as shown below.

5.2.1 E�ect of Varying Cache Size

Figure 6 shows the e�ect of varying the cache size for clustered access. In this set of experiments,
the PrivateWriteProb is 0, and the SharedWriteProb is 20%. The response of both caching schemes
improves at �rst as the cache size is increased, but then rises as the cache size grows beyond 5% of
the database (size of the client-private region). However, for the unclustered case shown in Figure 7,
the response time decreases consistently with increasing cache sizes. This behavior is due to the
fact that for the unclustered experiments, the cost of a remote operation is higher, and the gains
from query local evaluation out-weigh the cost of noti�cation processing. It can be seen from these
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results that the A*Cache schemes perform substantially better than the no-caching system for both
clustered and unclustered scenarios, the bene�ts of caching being more enhanced for unclustered
access.
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Figure 6: Varying CacheSize, Clustered Access
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Figure 7: Varying CacheSize, Unclustered Access

5.2.2 Updates via Clustered Index

We now investigate the e�ect of varying write probabilities and PrivateAccessProb for both clus-
tered and unclustered access by update transactions in the basic A*Cache scheme. First, we
consider data access and update via the clustered index unique2. Figure 8 shows the e�ect of vary-
ing the ratio of update transactions, called UpdateRatio (PrivateWriteProb and SharedWriteProb

jointly) over a 0% | 40% range for two di�erent settings of the pair of parameters PrivateRatio
and PrivateAccessProb.
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In one set of experiments, PrivateRatio was kept constant at 20% (2000 tuples), so that 200
tuples were present in the private region of each of the 10 clients. The remainder of the database
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with 8000 tuples was shared among all the clients. PrivateAccessProb was set to 20% so that most
of the data accesses were directed to the shared region of the database.

In another set of experiments, PrivateRatio was set to 80%, so that each client had 800 tuples
in its private region and shared access to the 2000 common tuples with the other 9 clients. Pri-

vateAccessProb was set to 50% so that data accesses were equally divided between the shared and
private regions of a client.

In both sets of experiments, query response time of the A*Cache scheme is seen to increase as
the update ratio is increased from 0. This behavior is corroborated by the fact that the number of
noti�cations increases for higher update loads, causing more con
icts and transaction aborts. In
contrast, the cache hit ratio remains nearly constant over the entire range of update ratios; this
behavior is explained by the fact that in our simulation, the cache is always updated, and not
invalidated, upon a noti�cation. In this case, cache hit is determined by the data access pattern
and not by the amount of writes.

Now comparing A*Cache performance with no caching, the response times for A*Cache is seen
as better in each of the two experiment sets. The reason for this result is that under the conditions
given in each case, the cache maintenance cost for A*Cache is not large enough to o�set the
savings in local data reuse. It is found that the performance with no caching for 80% PrivateRatio

and 50% PrivateAccess is comparable with the A*Cache scheme for 20% PrivateRatio and 20%
PrivateAccess, when noti�cation processing costs are higher for A*Cache due to frequent access to
the shared region.

Figure 9 presents the results of varying the PrivateAccessProb over a range of 10% to 90% for
a �xed 40% ratio of update transactions. The PrivateRatio parameter is kept constant at 20% in
one set of experiments and at 80% in the other. In both cases, the query response times for the
A*Cache and the no-caching schemes are found to �rst increase and then decrease as more accesses
occur in the private regions. This behavior seems rather unexpected at �rst, but can be explained
as follows.

For the 10% initial setting of PrivateAccessProb, most data accesses occur in the shared region
of the database, and the server bu�er is therefore e�ectively reused by all clients. However, as
PrivateAccessProb is increased, more accesses occur on client-private data, so the server bu�er
utilization falls due to less sharing of bu�er space among di�erent clients. Although the number of
con
icts and noti�cations also decreases with higher PrivateAccessProb, the drop in server bu�er
sharing dominates, resulting in a net e�ect of higher query response times over the 10% to 30% range
of PrivateAccessProb. As the ratio of access to client-private data is increased further beyond 30%,
fewer con
icts and higher cache hit ratios produce a drop in query response, with better A*Cache
reuse and utilization. In the no-caching case, the data used by each client �ts better into the server
bu�er, so disk tra�c is reduced. This way of using the server bu�er is dependent on the number
of clients. The bene�ts are more pronounced for A*Cache, as the local cache reuse also reduces
network tra�c; and A*Cache is also less dependent on the number of clients (as is evident in the
later discussion on Figure 12 below).

Varying the private access probability has somewhat di�erent e�ects for the A*Cache and the
no-caching cases. When the private access probability is low, most access is to the shared portion
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of the database. In the 20% private case, the shared portion is large (80%) and does not �t in the
server bu�er. But contention is low also, so what does �t in the A*Cache is e�ectively used. Hence
the A*Cache does better. In the 80% private case, the shared portion is small (20%) and does �t
into the server bu�er. So overall performance is improved. The A*Cache performs worse because
of the high contention. When private access probability is high, most access is to a di�erent private
section of the database for each client. With low contention and a local cache reducing network
tra�c, A*Cache performs better than no-caching. When the private access probability is very high,
having the private portion be small means it to �t better into memory at the client or the server,
and hence performs better than large private portions.

5.2.3 Updates via Unclustered Index

Next, we considered updates via the unclustered index unique1 for the basic A*Cache scheme.
Figure 10 shows the experiments corresponding to Figure 8 but for unclustered writes. We note that
the query response times are an order of magnitude larger than those in clustered case. Unclustered
disk access and poor server bu�er utilization are reasons for this behavior. For A*Cache, the
performance is always better than no-caching; for cache hits, the lookup is by query predicates,
which is independent of the data clustering on disk. This savings in data access o�sets the update
noti�cation costs.
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Figure 11 is the counterpart of Figure 9 for unclustered updates. Again, response times are
much higher compared to the clustered case, due to unclustered disk access and low server bu�er
reuse. Because of this, the query response time for no-caching remains relatively constant even
though the PrivateAccessProb rise to 90%. In contrast, the performance of A*Cache improves as
the PrivateAccessProb is increased to access more data in client-private regions, which results in
a higher A*Cache hit ratio and reduces network trips to the server. For each of the two settings
of PrivateRatio, the A*Cache scheme performs better or as well as no-caching because of e�ective
client cache reuse.

5.3 Sensitivity Analysis

17



0

1

2

3

4

5

6

7

8

5 10 15 20 25

Q
ue

ry
 R

es
po

ns
e 

T
im

e[
se

c]

Number of Clients

A*Cache
No Caching

Figure 12: Varying Number of Clients

0

50

100

150

200

50 100 150 200 250 300

Q
ue

ry
 R

es
po

ns
e 

T
im

e 
[s

ec
]

Querylength in [tuples]

A*Cache
No Caching

Figure 13: Varying Query Length

We ran numerous experiments to determine the sensitivity of the system with respect to the var-
ious simulation parameters. For example, the cache size, query length, network bandwidth, write
probabilities, number of clients, etc., were varied. The results of two sensitivity experiments are
presented here. To determine the scalability of A*Cache, we enlarged the database size to 100,000
tuples (20 MBytes) and increased the number of clients to 25. Figure 12 shows the A*Cache bene-
�ts gained when the system is scaled up. The number of clients is varied from 5 to 25 while other
parameters, such as the bu�er size at the server, remain the same. Here, 50% of the queries are
within the private region, which is 80% of the database, and the UpdateRatio is 20%. Although
A*Cache has a large number of noti�cations with more clients, the query response time increases
almost linearly, whereas in the no-caching scheme it increases exponentially. This behavior is due
to utilization of the CPU and memory of the additional clients by A*Cache. It shows that A*Cache
is highly scalable with respect to the number of clients in the system.

In the second experiment, we demonstrate the sensitivity of A*Cache to the query length. The
results are shown in Figure 13. We varied the query length from 50 tuples (1KByte) to 300 tuples
(6KBytes). Other parameters are the same as in Figure 12. This is another example of the good
scalability properties of A*Cache. Although we increase the number of noti�cations by enlarging
the query length, A*Cache performs better than the no-caching scheme. The reason for the linear
increase in the no-caching query response time is the almost linear increase in execution time at
the server, which causes the server CPU and bu�er utilizations to increase, but also increases the
query response time. In the case of A*Cache, local data is used e�ectively (CacheHitRatio is about
63%), so that the server is not contacted very often; therefore, the query response time for A*Cache
increases less than linearly with the query length.

6 Conclusions and Future Work

Associative caching is an important technique to improve the performance and scalability of a
client-server database by better utilization of client CPU and memory. This paper investigates the
performance of A*Cache, which is an associative caching scheme introduced in [11]. We investigate
both read-only and read-write workloads, and focus on the e�ect of updates on cache maintenance in
particular. Through detailed simulation, we investigate the behavior of the system under di�erent
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contention and update loads, and compare it to a no-caching scheme. Our results demonstrate that
A*Cache performance can be good even for fairly large number of updates.

Our results show that A*Cache performance exceeds that of the no-caching approach when
there are no updates, unless the cost of cache containment reasoning is high. When updates are
few, noti�cation and contention are infrequent, so A*Cache still performs better. It is only when
updates are high that A*Cache does not always dominate no-caching schemes. Therefore, this
paper has focused on mostly on high update cases (40% of transactions perform updates). Here,
A*Cache performs at least as well as no-caching except when there is very high contention on a
small portion of the database by all clients. This situation happens when most of the access is
to a small shared portion of the database, which �ts in the server bu�er. In this case, the server
e�ectively uses its bu�er for no-caching, while the need for noti�cations reduces performance in the
A*Cache case.

An important bene�t of A*Cache is that the only contention possible is on data; indexes are
created independently by clients, if necessary for local query execution. A*Cache reuse and lookup
is therefore also independent of the data clustering on the server disk.

Future work includes the investigation of advanced cache maintenance policies, such as invalida-
tion of infrequently used query results and update of frequently used ones. Additional knowledge
or learning ability of data usage patterns of clients is required for such intelligent maintenance.
Data caching on client disks has not been examined in this paper, but is possible in the A*Cache
scheme as proposed in [11]. An LRU-based predicate replacement algorithm is adopted in our
simulation; examining more sophisticated cache replacement algorithms, such as extended LRU
schemes, or those that consider both spatial and temporal localities of cached predicates [3], are
other interesting research issues.

Limited associative access may be supported in an identity-based client cache by using indexes
de�ned at the server database. If the query uses an indexed attribute, then the relevant indexes
can be examined to determine which objects satisfy the query. However, unlike A*Cache, reference
to server indexes is required, which may be a bottleneck. Comparison of the performance of such
schemes with A*Cache is another interesting area to be explored.
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