
Responsive Interaction for a Large Web
Application

The Meteor Shower Architecture in the WebWriter II Editor

Arturo Crespo
Stanford University

crespo@cs.stanford.edu

Bay-Wei Chang
Xerox Palo Alto Research Center

bchang@parc.xerox.com

Eric A. Bier
Xerox Palo Alto Research Center

bier@parc.xerox.com

Abstract

Traditional server-based web applications allow access to server-hosted resources, but often
exhibit poor responsiveness due to server load and network delays. Client-side web
applications, on the other hand, provide excellent interactivity at the expense of limited
access to server resources. The WebWriter II Editor, a direct manipulation HTML editor
that runs in a web browser, uses both server-side and client-side processing in order to
achieve the advantages of both. In particular, this editor downloads the document data
structure to the browser and performs all operations locally. The user interface is based on
HTML frames and includes individual frames for previewing the document and displaying
general and specific control panels. All editing is done by JavaScript code residing in
roughly twenty HTML pages that are downloaded into these frames as needed. Such a
client-server architecture, based on frames, client-side data structures, and multiple
JavaScript-enhanced HTML pages appears promising for a wide variety of applications.
This paper describes this architecture, the Meteor Shower Application Architecture, and its
use in the WebWriter II Editor.

1 Introduction

1.1 The WebWriter application builder

The WebWriter system [Crespo96] supports the construction of simple interactive web applications
without the need to learn HTML or CGI programming. Modeled after HyperCard [Apple87], WebWriter
allows the user to build an application as a stack of pages, where each page can contain text, images,
buttons, and other form elements, as well as content computed on the fly by executing scripts. The user
constructs the layout of each page of an application using the WebWriter II Editor, an interactive editor
that runs in any browser that supports frames and the JavaScript language [Netscape96a].

The user adds application behavior using the WebWriter II Editor by writing scripts that will be run
either on the server or in the browser. Users without programming experience can add behavior by
selecting a built-in program and filling in details for that program. For example, the user can select the
built-in file listing program and fill in a form to specify how to determine which files to list.

In addition to the Editor, the WebWriter system includes the WebWriter Page Generator, a server-based
CGI service that creates new pages as a WebWriter-built application runs. Because they use the Page
Generator, applications produced by WebWriter run as CGI programs on a web server and hence can be
used from many platforms and in many web browsers.

1.2 Increasing interactive performance

The original WebWriter Editor was a CGI program so that every interaction with the user had to go to
the server for processing. The interactive speed of the program was poor due to network delays, startup
time of the server-side script, and whole screen redraws at the client after each interaction. In addition,
this solution was not scalable: as the number of users of the editor increases, the server becomes a
bottleneck. This paper describes the architecture of a new version of the editor (the WebWriter II Editor)
that overcomes these limitations. In this architecture, which we call the Meteor Shower Application
Architecture, both the web browser and the web server collaborate in the execution of the WebWriter II
Editor. Operations that need high interactive speed are performed in the web browser using JavaScript,
while the server executes only the operations that need server resources or that otherwise cannot be
performed by JavaScript in the browser.

The rest of the paper is organized as follows. First, we review related work. Then, to give context to the
architecture discussion, we present the user interface of the WebWriter II Editor. We then describe what
happens behind the scenes during a typical session with the editor, from starting the editor, to loading
and modifying a web page, to finally saving the page. Having described the way the WebWriter II
Editor works, we generalize these ideas and introduce the Meteor Shower Application Architecture.
Finally, we discuss the advantages and disadvantages of the model and give our conclusions and plans
for future work.

2 Related Work

There are many systems that divide an interactive application between a web server and a web browser.
One way to do this is to use a Java applet [JavaSoft96a, Arnold96]. In this case, very general programs
written in the Java language are downloaded to a browser where they can interact at high speed with the
user. We chose JavaScript over Java in the WebWriter II Editor for several reasons, including:

1. Browsers can already display formatted HTML. We did not want to duplicate this functionality in
Java. In the first place, it would be more work. In the second place, by using the browser’s
formatting we take advantage of any improvements in that formatting without having to update our
code. Finally, for users who want to preview their HTML page in a particular browser, our
implementation allows them to do this just by running WebWriter in the browser in question.

2. We anticipated that building our control panel components as fragments of HTML would be less
work than building them as calls on the java.awt toolkit (Java’s Abstract Window Toolkit)
[JavaSoft96b] or the subArctic user interface toolkit [Hudson96].

3. Java applets must specify a fixed rectangle as their size. We wanted to allow the user to resize the

WebWriter editing region just by resizing the browser. This is easily done using frames.
4. By using JavaScript, we avoid the need to compile our code as we change it, so we can try out new

versions of WebWriter very quickly.

Our architecture is similar in some respects to that used by the Krakatoa Chronicle [Kamba95]. Like the
WebWriter II Editor, the Krakatoa Chronicle downloads a document (in this case a set of newspaper
articles) to the browser which is then formatted at the browser for reading. Unlike the Krakatoa
Chronicle, our system uses the native formatting capabilities of the browser, is implemented as a set of
JavaScript-containing HTML pages, that are loaded into frames on demand.

Also similar is Netscape’s PowerStart [Netscape96b], a multiple page, multiple frame JavaScript
application for creating a home page. The constructed page, based on a small set of templates, is saved
as a set of preferences in a browser cookie, and is recreated from that cookie on subsequent visits.
Unlike PowerStart, the WebWriter II Editor provides direct manipulation editing, can create general web
pages that can include forms and behavior, and uses the server for file operations and large processing
tasks.

Other ways to provide interactive applications accessible from the web include helper applications and
plug-ins, using, for example Mosaic CCI, the Netscape plug-in API, or Microsoft Active X. As with
Java applets, we rejected these methods because we wanted to take advantage of the HTML formatting
capabilities of the browser itself. In addition, plug-ins and helper applications must, in general, be
written for a particular platform or browser; we wanted a system that would work on many browsers and
platforms.

3 The WebWriter II Editor user interface

Before describing the architecture, we briefly present the main user interface elements of the new
WebWriter II Editor. Figure 1 shows a typical screen.

Figure 1: The WebWriter II Editor.

The editor consists of five frames tiling the browser window (see Figure 2). The top level page is
invisible to the user; it contains the frameset (the HTML description of the sizes and positions of the five
frames inside the browser window), the global JavaScript functions and data structures of the editor. The
title frame holds the WebWriter logo. The preview frame contains the page that is being edited. The
general controls frame provides file and stack operations and cut/copy/paste editing. The object
insertion controls frame contains controls for inserting HTML elements. We refer to an HTML element
in the preview frame as an "object." The object properties frame contains commands that are specific to
the currently selected object.

Figure 2: WebWriter II Editor frames.

In editing mode, the WebWriter II Editor displays the current page as interpreted HTML together with
additional images, called handles, as shown in Figure 3. Handles are used to select an object; red
handles indicate the currently selected object, and the blinking black bar next to the red handle is the
insertion point. Selecting an object causes that object’s properties to appear in the object properties
frame, where they can be examined and changed. To insert an object, the user selects it in the insertion
control frame and fills in its properties.

Figure 3: Handles (grey and red shapes) and the insertion point
(vertical black bar to the right of the word "Editor").

There are many more facilities available in the WebWriter II Editor, including those for copying and
pasting HTML, managing multiple page applications ("stacks"), and specifying behavior to execute
when buttons are pressed on the page. For a detailed description of the original WebWriter Editor from
the user’s point of view, see [Crespo96].

4 The WebWriter II Editor architecture

The WebWriter Editor was re-designed in order to improve its interactive performance and to reduce
screen clutter. As mentioned earlier, the original WebWriter Editor was implemented as a CGI script, in
which every handle selection and button press was handled by the server. The user then had to wait for
network travel, CGI startup, and complete re-layout and redrawing of the browser window. Since the
WebWriter Editor was designed as an interactive, direct manipulation application, nearly every click of
the mouse incurred this delay. Exacerbating the situation is the use by WebWriter Editor of many
control elements surrounding the actual page elements being previewed -- handles and insertion points
approximately tripled the number of non-text elements involved in layout and display. Even when
WebWriter was running on a local web server on a very fast machine, the delay caused by a simple
interface operation (selecting a handle, for example) was still several seconds long. Although several
seconds is acceptable for operations that users expect to require some computation, this is much slower
than the near-instantaneous response for interface-level operations in typical non-web graphical
applications.

To make the WebWriter II Editor more usable, we focused on improving response time for interface
operations, as well as improving the interface itself. We accomplished this in three parts: dividing
processing, as appropriate, between a CGI script running on the web server and JavaScript functions
running on the client browser; segmenting the interface into individually reloadable pages using multiple
frames; and replacing images in place to reflect changes in state. The result is an editor in which
response times for many operations are nearly instantaneous, and are comparable to those of standalone,
non-web applications.

4.1 Selectively dividing processing between server and client

Browser scripting languages like JavaScript enable dynamic behavior without the overhead of traffic
over the network. The new WebWriter II Editor was designed to use JavaScript to provide fast
interactive behavior, resorting to the overhead of a CGI call only when server resources are needed, or
when JavaScript cannot reasonably provide the behavior required. For example, computationally
intensive operations may be technically feasible in JavaScript but run very slowly. In that case, the
overhead of a CGI call (including network traffic and page redisplay) is worth the savings in processing
time.

Of the 23 modules composing the WebWriter II Editor, four of the modules are CGI scripts written in
the Python programming language [Watters96] and run in the server. The remaining 19 modules are
HTML pages enhanced with JavaScript. Only five of the HTML modules are active at once, one in each
of the WebWriter frames.

The CGI modules provide server-side services such as loading files, parsing HTML, saving files, and
setting up the environment for the HTML modules at start up. The JavaScript modules handle displaying
the edited page in the preview frame, selecting the current object, editing and insertion of HTML
objects, and copying and pasting of objects.

In the following sections, we will show how processing is directed to the server and to the client as these
basic tasks are performed: starting the WebWriter II Editor, loading and saving an HTML pages, and
displaying and modifying the page.

4.1.1 Startup: Using the server to create the HTML environment

The user starts the WebWriter II Editor by invoking a CGI script at the server. The server-side CGI
script creates an HTML page with three components: global JavaScript functions, calls to build the
JavaScript global data structures, and the definition of the frameset, as shown in Figure 4. The global
functions provide an interface to the global data structures, and provide common functionality needed by
all modules. The global data includes the document tree, which holds the elements of the page that the
user is editing, and global status information such as the position of the insertion point. The frameset
defines the position and properties of the frames, as well as the URLs of their initial contents.

Figure 4: The server downloads functions, global data structures,
and the component frames to the browser.

When the browser receives the HTML page generated by the server, it interprets the page by running the
JavaScript function definitions, creating the JavaScript document tree and storing it at the top-level
browser window. Then, it creates the frames and requests from the server the content of each frame,
starting a "meteor shower" of HTML pages from the server to the browser, as shown in Figure 5.

Figure 5: The server startup meteor shower.

The HTML page sent to a frame could be static HTML (such as the one used in the title frame) or an
HTML page that includes JavaScript code. Pages with JavaScript code can collaborate with one another
via global data structures and functions placed in the top level page of the browser. For example, the
HTML page loaded in the preview frame contains a script that translates the document tree stored at the
top window level into an HTML representation with handles.

4.1.2 Loading and saving pages: Using the server to access files

Figure 6: The general controls frame.

The general controls frame usually contains a module, general.html , for operations such as loading
and saving files or cutting and pasting objects. This module defines routines to perform these commands
and then describes the buttons in HTML. Each button contains a small piece of JavaScript that calls the
associated function. For example, general.html , includes these two pieces, in JavaScript and HTML
sections, respectively:

 function Load() { ... }
 ...
 <input type="button" value="Load" onClick="return Load();">

When the user clicks on a button, the JavaScript code associated with it is executed. The code can either
execute locally, or it can ask the server to perform some service. For example, the "Hide Handles"
button executes locally; first, a global variable is modified to change the display mode and then the
preview frame is redisplayed to reflect the new mode.

The "Load" button is an example of an operation that requires the help of the server. We need to access
the server for this operation because files are located in a server accessible file system. When the user
clicks the "Load" button, the browser pops up a dialog box asking the user to supply the URL of a file to
load. The information entered by the user is sent to a CGI script that runs on the web server.

The server tries to read and parse the URL specified by the user. If this succeeds, the server sends a new
frameset as in the startup process; but this time, instead of sending an empty document tree, it sends a
representation of the document tree for the requested document. In fact, because the server is a Python
program and the client is running JavaScript, the server encodes the document as a set of nested
JavaScript calls to be interpreted by the client. These calls look like this:

 tree =
 new CreateChild(new CreateObject(
 new CreateState(’h1’,’h1’),
 ’<h1>’, ’</h1>’,
 new CreateChild(new CreateObject(
 new CreateState(’text’, ’’, ’text’, ’One Header’, ’italics’, 0, ’bold’, 0, .
 ’One Header’, null, null,
 ’text’
)),
 "h1"
));

where each CreateObject call adds a new object to the tree, and each object, in turn, may have children.
The fragment above builds the tree for the document "<h1>One Header</h1> ". The reader need not
understand this code in detail, but can simply note its nested form.

Saving a page is similar to loading a page. The user clicks in the Save button, which causes a JavaScript
routine to execute. The script asks the user for the URL in which the file will be saved. Then, the
document tree is transformed into standard HTML and, with the URL, is sent to the server. The server
does two operations when saving a file. First, it translates the URL into a filename, and then it stores the
HTML as a file at that location.

4.1.3 Displaying the HTML page: Using the client to construct modified pages

As described in the previous section, the document tree is a JavaScript data structure built when a page
is loaded into the editor and stored in the root window. The preview frame generally contains module
preview.html , which has three parts:

1. Definitions of JavaScript functions to walk the document tree and translate it into HTML that
includes editing handles around each object. Using a tree data structure to represent the document
improves program speed, because traversing this structure is faster than processing a linear string
of characters in HTML format.

2. Definitions of JavaScript functions that are called when the user clicks on a handle.
3. A call to the JavaScript functions of part 1, which actually causes the new HTML to be written

into the preview frame.

So for example, preview.html includes:

 function DocumentToHTML(framedoc, userdoc, showHandles) { ... }
 function OnClick (nodeID, objectPropURL) { ... }
 ...
 DocumentToHTML(document, parent.userDocument, parent.showHandles)

and the generated HTML includes handles such as:

 <a ... onClick="OnClick(264, ’text.html’);">

where the number "264" identifies the object being selected, and "text.html" is the name of the module
to load into the object properties frame in order to edit the newly selected object.

After the user makes an edit to the document, the screen is redisplayed by calling the JavaScript
reload() method on the preview frame. This updates the display without requiring any significant
interaction with the server (because preview.html is cached at the browser and the document tree is
converted to HTML as the browser interprets preview.html).

4.1.4 Selecting an object and modifying its properties: Using the client for
interactive response

The first step for modifying an object is selecting it; to do this, we click on the handle that surrounds the
object. This click triggers a JavaScript function that highlights the handles in red and updates global data
structures to reflect the new current selection. The JavaScript code also loads into the object properties
frame the appropriate HTML file for the class of the selected object.

The selection of an object is a small-scale meteor shower. Figure 7 shows how the process is initiated in
the preview frame, requesting the server to send the appropriate HTML file to the object properties
frame.

Figure 7: Editing an object.

The final step of modifying an object is changing its properties. This is done through an interface that is
object-specific. Similar objects can share the same interface, but the programmer can develop
specialized interface for some objects. For example, the text object has a specialized interface that
allows the user to insert text and at the same time change the appearance of the text (see Figure 8).

Figure 8: Text object interface.

The text object interface is a form that is initialized with the current properties of a text object. The user
can modify those properties and then click the Done button. This triggers a client-side update of the
document tree, generation of the new document view by reloading the preview frame, and replacement
of the contents of the object properties frame with a blank page.

4.2 Segmenting the interface

The multiple frames that make up the WebWriter II Editor interface serve several purposes. Most
importantly, frames separate the interface into areas that can be updated independently. One part of the
interface can change by reloading its page without requiring other parts to be reloaded as well. For
example, clicking on a handle to get its object properties causes a new page to be loaded in the object
properties frame, but requires none of the other frames to reload. Reloading the minimum necessary is
an important factor in reducing response times during user interaction.

Frames also play a role in making the editor more usable in realms other than responsiveness. Since
reloading a frame usually causes it to become blank before the new page is displayed, the frames which
do not change provide continuity of context. The editor behaves more like a standard desktop
application which has selective control over what changes in the interface. In addition, placing the
preview area in its own frame allows very long pages to be edited conveniently. Since the frames scroll
independently, the preview frame can be scrolled without affecting the layout of the other controls in the
interface.

Finally, from an implementation point of view, segmenting the interface modularizes the program. Each
possible "state" of a frame is a JavaScript-enhanced HTML file. As illustrated in previous sections,
active modules (those that are currently loaded in the frames) communicate with one another via global
data, and cause other modules to be loaded and unloaded into the interface.

4.3 Replacing images in place

Making a new selection or changing the position of the insertion point are extremely common operations
when editing a document, and thus should be performed as fast as possible.

Handles in the preview frame are grey if unselected, and red if selected. Clicking on a handle
simultaneously selects it and deselects the old selection. In the original WebWriter Editor, this required
a server round-trip to redraw the page appropriately. In the JavaScript-enhanced WebWriter II Editor,
this could be handled by the client recreating the page. However, we made use of an even faster
technology that exists in the current Netscape browser: replacing images of the same size in place,
without a reload. This allows the highlighting to occur with no perceivable time lag.

The technique for displaying the insertion point also benefited from this technology. The original
WebWriter Editor placed a radio button at every valid insertion point within the previewed page. Radio
buttons are controlled by the browser, so selecting one is essentially an instantaneous operation that does
not require a trip to the server. However, making all possible insertion points visible as radio buttons
clutters the display considerably. Additionally, it was sometimes confusing to have radio buttons serving
as insertion points mixed in with bona fide uses of radio buttons in the web page being constructed.

To minimize clutter, this scheme was replaced with one in which possible insertion points are no longer
explicit. Instead, the selected element determines the insertion point. Now when the user clicks on a
handle, that handle and its companion handle are replaced by red handles; in addition, one of those
handles has a small bar next to it indicating the position of the cursor. To make the cursor more visible
and also more like a traditional text editing cursor, we used animated GIFs to make it blink (one of the
only tasteful uses we’ve seen of blinking on a web page).

5 The Meteor Shower Application Architecture

The architecture of the WebWriter II Editor -- multiple frames collaborating with one another via a
browser scripting language and with the web server via CGI scripts -- can produce web applications that
"in spirit" remain server-based, yet are highly responsive. This model we call the Meteor Shower
Application Architecture, after the meteor shower of pages that the initial CGI script places into the
browser’s frames.

The Meteor Shower Architectures relies in the functionality of the client browser and the server. The
client browser provides processing for all interface operations, thereby ensuring short interactive
response times. Since a Meteor Shower application is segmented into many frames, collaboration occurs
among the frames as user operations in one frame cause other frames to update. Having many frames
also limits updates to only those parts of the interface that require updating, potentially a significant
savings because reload times can be relatively lengthy compared to the timeframe of individual
interactions. Furthermore, the client can use in-place replacement of images to indicate state changes,
wholly bypassing the need to reload or regenerate pages.

The server has three functions. First, it sets up the state of the client. Second, it provides the client with
the programs it needs to run. And, third, it provides additional functionality (via CGI scripts) to the
clients for operations that are either inefficient or impossible to do at the client side. This includes access
to server resources as well as computations inappropriate for relatively slow scripting languages.

The distribution of work in the Meteor Shower Architecture has the following potential advantages and
disadvantages.

5.1 Advantages

Improved performance. Because the code dealing with user interaction is in the client, we don’t
incur any network delay communicating with the server. Additionally, because each client handles
most operations locally, the contention for the server is not as severe as in the case of the pure CGI
approach.
Economics. There are two economic perspectives involved. First, by using the server for only the
operations that are inefficient or impossible to perform on the client, we reduce the cost of
maintaining the server. Second, by reducing the amount of communication between the browser
and the server, we reduce the cost of communicating through the network.
Scalability. The Meteor Shower Architecture makes supporting a large number of clients easier
than a traditional CGI approach. Again this is related to the available resources of the server and
the bandwidth of the connection between the server and the browser.
Faster development. The Meteor Shower approach can allow for faster development than writing
applets since it can make use of the browser’s built-in capabilities, primarily the capability to
display HTML. In the case of the WebWriter II Editor, not only does the browser handle layout of
all control areas, it also handles layout of the preview of the HTML page being edited.
Debugging. Because only a small number of modules are running at the same time, and there is a
very clear interface between them, finding a faulty module is easy. Additionally, the use of an
interpreted language allowed us to test the modifications faster than with a compiled language.
Security. A well defined CGI interface the server and the browser, allows a secure environment to
be maintained at the server side. Similarly the security safeguards in the browser maintain a secure
client environment.
Caching. Because browsers cache pages, both the appearance of user interface components (as
HTML) and their behavior (as JavaScript) is cached, reducing still further the demands on server
and network load. The client expect to incur a network delay for loading the HTML pages only the
first time they are accessed; afterwards the pages should come from the cache.

5.2 Disadvantages

These advantages trade-off with problems arising from the distributed and interpreted nature of the
Meteor Shower Architecture.

Intellectual property. All of the JavaScript code is shipped to the client, potentially giving away a
significant portion of the source code. A competitor may copy this code and do reverse
engineering to write the missing server-side code.
Complexity. The Meteor Shower Architecture is inherently more complex than the CGI model as it
includes the challenge of a distributed architecture.
Dependence on caching. As noted above, the HTML modules of this architecture are cached. This
can obstruct software development if the client holds on to a stale version of a module the
developer is trying to modify and test. We work around this problem by using the cache flushing
capabilities of our browser.

6 Future work

We plan to incorporate the Meteor Shower Architecture into the WebWriter Page Generator. This will
allow programmers to quickly develop powerful, highly interactive web applications. For example, such
a system could allow a programmer to develop an application like WebWriter using WebWriter itself.

We have improved the interactive speed by reducing the number of times that the application needs to
go to the server. However, for those times when the application does have to go to the server, speed can
still be a problem. We will explore ways to improve interactive speed between the client and the server.
One way of doing this is to reduce the time for starting up the server. This can be achieved by running a
daemon that provides the services. The CGI script could then be a very simple program that simply
opens a socket connection with the daemon and requests it to perform the services on its behalf.

7 Summary

We have taken PARC’s WebWriter Editor, an editor for HTML-based applications, and re-designed it to
get improved interactive speed, reduced server load, and reduced screen clutter. While the old system
used only server-side CGI scripts, the new architecture uses a combination of CGI and client-side
JavaScript. The server downloads to the browser a parsed version of the HTML page to be edited; the
browser executes JavaScript code to handle editing operations on that page. The JavaScript code itself is
structured according to the editor’s new frame-based interface, which divides the screen into areas for
previewing the page and holding control panels. One or more JavaScript-enhanced HTML modules
correspond to each frame, and are downloaded when needed. Updating the screen after a user action
often requires only redisplaying a sub-part of the window, such as a frame or a GIF image. The server is
only used for fetching and saving files, parsing HTML, and starting up the system.

This architecture, which we call the Meteor Shower Application Architecture, improves interactive
performance by generating new pages on the client, thus avoiding network and server-startup delays.
The reduced number of accesses to the server also reduce server load. Finally, screen clutter is reduced
by using JavaScript image replacement instead of radio buttons to display the current cursor.

Acknowledgments

The authors are grateful for the comments and suggestions of those in the Information Sciences and
Technologies Lab at Xerox PARC who tested early versions of the WebWriter II Editor. We also would
like to thank the Stanford Digital Library Project and Xerox Corporation for supporting this project.

Author contact information

Arturo Crespo
[http://www.stanford.edu/~crespo]
crespo@cs.stanford.edu
Stanford University
Computer Science Department
Gates Bldg. Office 420
Stanford, CA 94305
Bay-Wei Chang
[http://www.parc.xerox.com/istl/members/bchang/]

bchang@parc.xerox.com
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
Eric A. Bier
[http://www.parc.xerox.com/istl/members/bier/]
bier@parc.xerox.com
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

References

[Apple87] Apple Computer, Inc. HyperCard User’s Guide. Apple Computer, Inc., Cupertino, CA, 1987.

[Arnold96] Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley for Sun
Microsystems, 1996.

[Crespo96] Arturo Crespo and Eric A. Bier. "WebWriter: A browser-based editor for constructing web
applications." Fifth International World Wide Web Conference (Paris, France, May 1996). Computer
Networks and ISDN Systems, Vol. 28, 1996, pp. 1291-1306.

[Hudson96] Scott Hudson, Ian Smith. subArctic Home Page. At URL
http://www.cc.gatech.edu/gvu/ui/sub_arctic/.

[JavaSoft96a] JavaSoft. The Java Series. At URL http://java.sun.com/Series/.

[JavaSoft96b] JavaSoft. java.awt Documentation. At URL
http://java.sun.com/products/JDK/1.0.2/api/Package-java.awt.html.

[Kamba95] Tomonari Kamba, Krishna Bharat, and Michael C. Albers. The Krakatoa Chronicle - An
interactive, personalized, newspaper on the web. In Proceedings of the 4th International Conference on
the World Wide Web (Boston, December), the World Wide Web Journal, O’Reilly & Associates, Inc.
1995, pages 159-170. At URL http://www.w3.org/pub/Conferences/WWW4/Papers/93/.

[Netscape96a] Netscape Communications Corporation. Netscape JavaScript. At URL
http://home.netscape.com/comprod/products/navigator/version_3.0/.

[Netscape96b] Netscape Communications Corporation. PowerStart. At URL
http://personal.netscape.com/custom/page/show_page.html.

[Watters96] Aaron Watters, Guido van Rossum, and James Ahlstrom. Internet Programming with
Python. MIS Press/Henry Holt Publishers, 1996.

