Archival Storage for Digital Libraries

Arturo Crespo
Department of Computer Science
Stanford University
E-mail: crespo@cs.stanford.edu

ABSTRACT

We propose an architecture for Digita Library Repositories
that assureslong-termarchival storage of digital objects. The
architectureisformed by afederation of independent but col-
|aborating sites, each managing acollection of digital objects.
The architecture is based on the following key components:
use of signatures as object handles, no deletions of digital
objects, functional layering of services, the presence of an
awareness service in all layers, and use of disposable aux-
iliary structures. Long-term persistence of digita objectsis
achieved by creating replicas at several sites.

KEYWORDS: Digita Library Repository, Archival, Long-
term Preservation of Data.

1 INTRODUCTION

A digita library repository (DLR) stores the digital objects
that constitute the library. The two key requirements that
distinguish DLRs from other information stores are archival
storage and intellectua property management. The archival
nature of a DLR means that the digital objects (e.g., docu-
ments, technical reports, movies) must be preserved indefi-
nitely, as technol ogies and organizations evolve. Intellectual
property management is required because digital objectswill
be served beyond the organi zation that runsthe repository or
that owns the information. This means that the repository
must understand and enforce intellectua property laws, and
must offer itsclientsavariety of access and payment options.
In this paper we focus on the archival requirement.

There are two interrelated factors in the archiva of digital
objects: data and meaning preservation. To illustrate, con-
sider the Mayainscriptionson their temples. For usto “read”
them, first the carvings and paintings had to be preserved
(data preservation) over the centuries. Second, the mean-
ing of their hieroglyphshad to be decoded, say into English.
Thus, to preserve the meaning there needsto be sometranda-
tion machinery, which can be based on alot of guesswork (as

Hector Garcia-Molina
Department of Computer Science
Stanford University
E-mail: hector@cs.stanford.edu

inthe case of Mayawritings), or aids|eft behind (which are of
courseextremely hardto providein advance). Thetrandation
could be done gradually and continuously, to avoid spanning
large differences in representations (e.g., trandating a docu-
ment in MS Word 4 to Word 5 to Word 6).

In this paper we focus on data preservation only. Thisis ad-
mittedly the much simpler of the two problems, but clearly,
without data preservation as a first step, meaning cannot be
preserved. Thus, we view a digital object as a bag of bits
(with some simple header information, to be discussed). We
will not concern ourselves here on whether this object is a
postscript file (or any other format), the document that ex-
plains how postscript isinterpreted (an aid for preserving the
meaning of the postscript file), or an object giving the meta
data for the postscript file (e.g., author, title). However, we
do wish to preserve relationships among objects. That is,
we will develop an identification scheme so that one object
can “point” or “reference’ another one. This way, for in-
stance, the metadata object we just discussed can identify the
postscript file it is describing.

Given our problem definition, thereader may wonder if thisis
a solved problem. After all, a database system can very reli-
ably storeobjectsand their rel ationships. Thismay betrue, as
long asthe same or compati bl e softwareisused to manage the
objects, but is not true otherwise. For instance, suppose that
the Stanford and MIT libraries wish to store backup copies
of each other’stechnical reports, but they each use different
database systems. Itisnot possible (at least with current sys-
tems) to tell the Stanford system that an object is managed
jointly withMIT. Similarly, say that Stanford’sdatabase ven-
dor goes out of business in 500 years, or Stanford decides
to use another vendor. Then migrating the objects el sewhere
can be problematic, since database systems typicaly repre-
sent reliable objects in ways that are intimately tied to their
architecture and software.

The goal of this paper is to present an architecture for the
archival of digital objects. The objective is not to replace
database systems, but rather to allow existing and future sys-
tems to work together in preserving an interrelated collection
of digital objects (and their versions) in the simplest and the
most reliable possibleway. Also, keep in mind that what we
are describing is the lowest layer(s) of a DLR; higher layers
(not discussed here) would deal with intellectual property,

metadata, security, and so on.

In Section 2 we present the key components of our architec-
turethat make longterm archival feasible. Thenin Sections3
through 6 we describe the functional components of the ar-
chitecture. In Section 7, we present a compl ete exampl e that
shows how those componentswork together. Finally, in Sec-
tion 8 we discussrelated work. Because of space limitations,
we cannot provide full details of the architecture, nor ex-
plain how all failuresand situationsare handled. Instead, we
focus on explaining the main features and on representative
examples.

2 KEY COMPONENTS

Under our architecture, aDigital Library Repository (DLR) is
formed by acollection of independent but collaborating sites.
Each sitemanages a collection of digital objectsand provides
services (to be defined) to the other sites. Each site uses
one or more computers, and can run different software, as
long asit follows certain simple conventionsthat we describe
in this paper. Our architecture is based on following key
components.

2.1 Signatures as Object Handles

EachobjectinaDLR hasahandleusedtoidentify andretrieve
it. Handles are internal to the DLR and are not used by end
users to identify documents, movies, and so on. (Example:
If auser issearching for report STAN-1998-347-B, anaming
facility not discussed here will translate into the appropriate
handle, or handles if the report has multiple components.)

Given an object, we define itshandle to be a (large) signature
computed exclusively from its contents, using a checksum
or a Cyclic Redundancy Check (CRC). If the contents are
smaller than the size of the signature, the object (at creation
time) is“padded” with arandom stringto makeitssizelarger
than the size of a signature. This scheme has the following
properties, which are important in an archiva environment:

e Each site can generate objects and their handles without
consulting other sites. This makes it possible for sites to
operate independently. Furthermore, sites only need to agree
on the signature function, not on software versions, character
sets, timestamp services, and so on.

e The handle for an object can be reconstructed from the
object itself. As we will see, thisis an extremely useful
property, since we do not need to reliably save any handle-
to-object mappings.

o If copies of an object are made at different sites, all copies
will have identical handles. This may seem disconcerting at
first, but if the contents are identical, it makes management
simpler to call “a spade a spade”

o Objects with different contents will, with extremely high
probability, have different handles.

The last item requires some discussion, since it may be pos-
sible that two different objects share a handle, which would
be disastrous. However, by making the signature large (e.g.,

128 bits or more), thelikelihood of thisdisaster happeningis
so extremely low that it is not rational to worry about it. To
illustrate, in Appendix 1 we derive abound for the probability
p that there is no disaster in a DLR with n objects and sig-
natures of size b bits. The bound is extremely conservative,
but yet we see that, say, a 256 bit signature can make even a
DLR with 10 billion objectsincredibly safe.

Collection | Probability of Signature

Size no collisions Size

(n) () (b)

107 1—107° 76 bits (10 bytes)
108 1—-107° 83 bits (11 bytes)
10° 1—-107° 89 bits (12 bytes)
107 1—10-19 78 bits (10 bytes)
107 1—10—1 83 bits (11 bytes)
107 1—10"12 85 bits (11 bytes)
107 1—1072% | 128 bits(16 bytes)
107 1—1075 | 256 hits(32 bytes)
1019 1—10~"® | 128 bits(16 bytes)
100 1 —10757 | 256 bits (32 bytes)

Figure 1: Number of bits required for typical n, p

If some applications(or paranoid users) need an absol ute cer-
tainty that each signatureisunique, then we offer the follow-
ing enhanced identification scheme. Handles are extended to
have two fields: aunique publisher field and the signature of
the object. The publisher field is the unique code of the site
that first publishesthe object; this publisher codeis assigned
to the site by some authority. The publisher field of an object
does not change when the object migrates to other reposito-
ries. The second field is the same as the signature described
earlier. When a site creates a new object, it first stores its
publisher field in the object header. Then it computes the
signature of this extended object and checks if any other 1o-
cal object has the same signature. In the extremely rare case
thereisaconflict, we add a discriminator, a random string of
bytes, a the end of the new object. The discriminator isin-
cluded inthe computation of the signature (and therefore will
make the object map to adifferent signature), but it isfiltered
out when the object is returned to a user. From then on, the
handle of an object is computed (at any site) by reading its
publisher value and adding to it the object signature.

2.2 No Deletions

Because of our handle scheme, objects cannot be updated in
place. That is, if the contents of an object are modified, it
automatically becomes a new object, with adifferent handle.
This is actually an important advantage, since it eliminates
many sources of confusion. For instance, one cannot correct
atypo in areport and make it pass as the same object. (We
do provide a higher level mechanisms for tracking versions
of an object; see Section 5) Similarly, if a stored object is
corrupted due to adisk error, the corrupted object will not be
confused with the original.

Another fundamental rule in our architecture is that objects
are never (voluntarily) deleted. Allowing deletionsisdanger-
ous when sites are managed independently; in particular, it
makes it hard to distingui sh between a del eted object and one
that was corrupted (“morphed” into another) and needsto be
restored. Ruling out deletionsis natura in a digital library,
whereitisimportant to keep ahistorical record. Thus, books
are not “burned” but “removed from circulation” if neces-
sary. We can provide an analogous high level mechanism for
indicating that certain objects should not be provided to the
public.

Having immutabl e objects presents some management chal-
lenges. For example, say we create anew version Y of some
object (say avideo clip) X. We cannot mark directly X to
indicate there is a new version Y that should be accessed,
because thiswould be an in-place update to X. In Section 5
we show how we can “indirectly” record such changes. Of
course, having no deletions increases storage requirements.
We do not believe thisis an important issue because (1) stor-
age costs are so low, and (2) we are only archiving in this
fashion library objects, not al possible data.

2.3 Layered Architecture

Since each DLR site may be implemented differently, it is
important to have well defined and as simple as possible site
interfaces. Furthermore, it is aso important to have clean
interfaces for serviceswithinasite, so that different software
systems could be used to implement individual components.
We achieve thisin our architecture by defining service layers
a each site. Thelayersinclude:

1. Object Sore Layer: The Object Store layer uses a Data
Sore (e.g., file system, database management system) to
persistently save objects. This layer may use its own
scheme to identify objects (e.g., file names, tuple-ids).
We refer to these locdl identifiersas disk-ids.

2. ldentity Layer: Thislayer has two main functions: (i) it
provides access to objects via their handles (signatures);
and (ii) it providesbasic facilitiesfor reporting changes to
its objects to other interested parties.

3. Complex objects: This layer manages collections of re-
lated objects. Its services could be used to maintain the
different versions (or representations) of a document, or
the set of scanned pages that make up atechnical report.

4. Reliability layer: Coordinates replication of objects to
multiple stores, for long term archival. The assumption
is that the Object Store layer makes a reasonable effort
at reliable storage, but it cannot be counted on to keep
objects forever

5. Upper layers: Providemechanismsfor protectingintellec-
tual property, enforcing security, and charging customers

under various revenue models. It can also provide asso-
ciative search for objects, based on metadata or contents
of objects, aswell as user access.

() ()
’ User Access } { User Access ‘
| |
’ Indexing } { Indexing ‘
| |
’ Security } { Security ‘
| |
| Relisvility | | Reiability |
| |
’ Complex Objects ‘ ’ Complex Objects ‘
’ Identity Layer ‘ ’ Identity Layer ‘
| |
’ Object Store ‘ ’ Object Store ‘
1 Data 1 Data l
\Sﬂe/ \Sﬂe/
- J - J
Sitel Site 2

Figure 2: Layers of a Cellular Repository.

In Figure 2 weillustratethelayers of aDLR. Each “column”
inthefigurerepresentsasite, and each “row” asoftwarelayer.
We call theimplementation of alayer at asiteacell, and the
complete repository a cellular DLR. Cells can collaborate
with othersto achieve their goas. For example, therdiability
cell at Site 1 communicates with the reliability cell at Site 2
Cdlshelow therdiability layer only ded withtheir locd site.
In this paper we only study the grayed-out cells.

2.4 Awareness Everywhere

Awareness services (standing orders, subscriptions, aerts)
areimportant in digitd libraries. They are also important for
our reliability and indexing layers: if one site is backing up
another, it must be aware of new objectsor corrupted objects
to take appropriate action. Similarly, to maintain an index
up-to-date, changes need to be propagated. In many systems,
awareness services are added as an afterthought, once the
base storage system is developed, and this makes it hard to
detect all changes. In our architecture, awvareness services
are an integral part of every layer. This makesit possible to
build very reliable awareness services, that can be used for
replication and indexing.

2.5 Disposable Auxiliary Structures

Layers typically maintain auxiliary structures for improving
performance. Inour architecturethesestructuresare designed
to be disposable, so they can bereconstructed from the under-
lying digital objects. Toillustrate, consider the [dentity |ayer.
For efficient lookup, it needs an index structure that maps a
handle (signature) intothelocal disk-id (e.g., filename). One
optionwould beto store thisindex asadigital object, making
it part of the DLR. However, this opens the door for incon-
sistencies. For instance, the index may say that the object
with handle & can be found at disk-id D, but the signature
of the object at disk-id D isnot H. Instead, we say that no
auxiliary structures are part of the DLR. (The structures may
be on secondary storage that in not part of the DLR.) If the
structures become corrupted or inconsistent with the DLR,
they should be deleted and reconstructed from scratch.

In addition to avoiding potential inconsistencies, this ap-
proach also makes it easy to migrate objects to a new store,
when the old one becomes obsolete. Auxiliary structures,
which are typically intricate, do not have to be migrated to
the new system. The new system can simply obtains the
digital objects, and buildsits own structures, using whatever
implementation it desires.

3 OBJECT STORE LAYER

The Object Storage Layer isthelowest DLR layer. Thislayer
treats objects as sequence of bytes and uses a local disk-ids
to identify objects. The disk-ids are meaningful only to a
specific Data Store and their format varies from data store to
data store. For example, if the Data Store is a standard file
system and each object is saved in adifferent file, the disk-id
could be the file name. On the other hand, if all objects are
saved in asingle sequentia file, then the disk-id could be the
name of that file, the offset into that file, and the length of the
object.

3.1 Object Store Interface
The interface of the Object Storage Layer has the following
functions:

o OS_Get (disk.id):

Read an object given itsdisk-id.

e OS_Put (bag-of _bits):disk.id:

Insert a new object in the repository and return the disk-id
associated withiit.

e OS_Awareness():|ist_of di sk.ids:

List al disk-ids.

Thelast function, OS_Awar eness() , letsaclient perfforma
“scan” of theentirecollection. Thisisthemost primitivetype
of awareness service one can envision. Itssimplicity makesit
easier to implement an Object Store that isvery robust. This
awareness service is used by higher layers when they have
lost their state, or when they wish to verify their state.

For building areliable system, one must not only define the
desired events (what we have done so far in this section),

but aso the undesired expected events [Koh81]. The later
are those events that may occur because of failures, but that
recovery mechanisms (at higher layers) will handle. For this
layer, the undesired expected events include: (i) OS_Get ()
returning a corrupted object; (ii) OS_Put () failing to insert
an object (and returning an error); (iii) OS_Awar eness()
not returning the disk-ids of all objects ever inserted with
OS_Put ()).

3.2 Object Store Implementation

Having an extremely simpleinterface (e.g., no deletes, prim-
itive awareness) reduces the number of undesired events that
one needs to consider, and makes it possible to build a rock-
solid store, with few “moving parts’ and few thingsthat can
break. In addition, this simple interface alows us to us to
use almost any secondary storage system as a Data Store,
including legacy systems.

Toillustrateapossibleway to build asolid storethat supports
thisinterface, consider the following design. Objects can be
placed sequentially on adisk (or tape), with a unique pattern
separating them. Thedisk-id would bethe disk address of the
first byte. Tolistal handles, wejust scanthedisk sequentially
looking for the special start-of-object pattern. Sincethereare
no deletes or updates, any object found during the scan isan
object to report. Since there are no auxiliary structures (e.g.,
no i-nodetabl es, no free space tables), there are no structures
that can be corrupted. To migrate this collection of objects
to adifferent site, we simply must move this single stream of
objects, and nothing else. We stress that thisis not the only
way to build acell for thislayer, but it isthe way we expect
it to be built in agood, reliable repository.

4 IDENTITY LAYER

The Object Identity Layer provides access to objectsthrough
their globally unique handles, provides an avareness service
based on handles, and attemptsto correct some of thefailures
of itsunderlying Object Storecell. Inaddition, thislayer adds
aclassfield to objects, so that awareness can be provided on
a per-class basis. This logically partitions storage, making
it possible for example, for a single Identity cell to service
severd clients.

Figure 3 illustrates how a class field is added to an object.
The gray box represents bits given to an Identity cell for
storage. Thecell addsaclassfield, and possibly other system
data (e.g., size of object), and then stores the larger object,
represented by the larger rectangle. Unknown to this layer,
the gray area may contain headers added by higher layers
(e.g., thet ype field discussed in Section 5). This analogous
to how packets move between network layers, with lower
layers adding their own headers. However, unlike network
layers, our lower layersdo not remove headerswhen returning
an object to upper layers. The complete headers, as recorded
in the Data Store, must be preserved, so that any layer can
compute the signature and verify it is the correct object. Of
course, each layer only interpretsits own headers, not those

of lower or higher layers.

Class
System data

Data

Figure 3: Structure of a Digital Object

4.1 Identity Interface
The Object Identity Layer implements the following func-
tions, analogous to the Object Store functions:

e | L_Put (bag-of _bits, class):handl e:

Creates an object of the given class and returns the global
handle associated withit.

e | L_Get (handl e): bag-of _bits, class:

Gets an object (and its class) givenits handle.

o | L_Awar eness(cl ass): |i st _of _.handl es:

Returns al handles (of objects of the given class) in the
repository.

e | L Latest(class, client):list_of_handl es:
Lists al handles (of given class) created in the repository
sincethelast timethecl i ent invoked thisfunction.

Thel L_Put functionis used to create an object. The func-
tion receives the data and its class (assume the class is sm-
ply a fixed length string), and calls the Object Store layer
OS_Put () function to save the data on secondary storage.
The handle for the new object is computed and returned to
theclient. Thel L_Get () function returns the object given
itshandle. We discuss below how thisfunction can beimple-
mented.

The | L_Awar eness(cl ass) function lists the handles
of dl objects, of the given class, in the loca store. The
I L_Latest(class, client) functionisa specialized
awareness service. We do not explain here in detail how
it operates, but intuitively, it reports objects created since
the last time the cl i ent invoked this function. It is pro-
vided to improve efficiency, since with it clients do not have
to be informed of objects they have seen before. Since
I L_Lat est () must rely on auxiliary structures (somehow
recording what new objects have not yet seen by clients) itis
not asreliableasthel L_Awar eness() functionthat ssmply
scans the Object Store for al objects. Reference [CGM97]
discusses options for implementing such an avareness ser-
vice.

Undesired expected behavior of this layer includes (i) los-
ing some object; (ii) | L_Put () returning an error; (iii) the
awareness functionsnot returning all of therequired handles.

The Identity layer should attempt to make the probability of
these and other undesired events as low as possible. Oneway
to do thisisto check for undesired events of the Object Store
layer. Again, noticethat our architecture significantly reduces
the number of undesired events. In particular, the “wrong”
object can never be returned by al L_Get call because it
can betrivialy checked that the object matches the requested
handle. Similarly, we never return a “deleted” object since
there are no deleted objects!

4.2 Identity Implementation

There are two ways to implement the | L_Get (handl e)

function. The first isto obtain al disk-ids from the Object
Layer, and then retrieve each object in turn and compute its
signature, until we find an object whose signature matches the
requested handle. The second way is by having the Identity
layer keep an index mapping handles to disk-ids. The index
can be initialized with a complete scan of the Object Store,
and then can be incrementally maintained as new objects are
created. The | L_Get (handl e) function can then simply
lookupthedisk-idfor thegivenhandl e, and fetch the object
from the store.

Notice that indeed this index is disposable, as discussed in
Section2.5. Asamatter of fact, in agood implementation, the
index will be periodically discarded and rebuilt from scratch,
to ensure that its structures have not been corrupted, i.e., to
reduce the likelihood of undesired events at thislayer.

Similarly, the | L_Lat est () function uses auxiliary struc-
tures to track the objects not yet seen by a client. This
structure should also be disposable. It should periodically
be deleted, in order to force clients to use the more general
| L_.Awar eness. This causes theclient to check if it indeed
hasall theobjectsknowntotheldentity layer, and re-initiaize
the auxiliary structure used for future| L_Lat est cdls.

Asdiscussed earlier, theldentity layer should try to handle as
many undesired eventsof thelower cell. Specificaly, suppose
that theldentity layer isservicingal L_Get (handl e) cdl,
and that through its structures has determined that the object
is a di sk-id. Since the cal OS_Cet (di sk.i d) may
return a corrupted object, the Identity cell must check that
the fetched object indeed has handle handl e. If thereisa
discrepancy, the Identity Layer reports that the object is not
found. However, it cannot restore the object; this service
will be provided by the Reliability Layer, discussed later on.
(Actually, we cannot be sure the problem was caused by the
Object Store; it could be the case that the auxiliary structure
that toldusthat di sk- i d wastheplacetolook for the object
was incorrect.)

5 COMPLEX OBJECT LAYER

In a DLR, multiple digital objects may be interrelated. For
example, atechnical report may have several renditions(e.g.,
plain ASCII, postscript, Word97), where each of these is a
simpleobject. Similarly, areport may consist of asequence of

versions, representing the state of the report over time. The
Complex Object layer implements three useful constructs,
tuples, version, and sets (among others), that can be used for
implementing higher level notionssuch as “technical report,”
and “access rights for a movie” In this paper we do not
address the details of the high level concepts, which would
be implemented by higher layers. References [Doc98] and
[RDL97], among others, propose specific organizations for
“documents’ and other high level constructs.

Traditiona methods for building complex structures do not
work in our DLR environment because objects cannot be
deleted or modified. For instance, we cannot implement a
set as an object containing pointersto other objects, sincethe
membership could never be modified. (If the set represents
therenditionsof areport, it would mean that a new rendition
could never beadded, for example.) The schemes we propose
in this section alow the structuresto evolve.

A particular Complex Object cell interactswith asinglelden-
tity cell, so al the components of a complex object are as-
sumed to reside in the same I dentity cell. (A complex object
may be replicated at another site; thisis discussed in Sec-
tion 6.) Furthermore, a Complex Object cell restricts itself
to a particular partition of the lower cell by using a specific
cl assvaueinadl of itscallstotheldentity cell. Thecl ass
value to use is set initialy by the client using the Complex
Object cdll, through an interface we do not discuss here.

The Complex Object layer addsat ype fieldtoal objects, as
it hands them to the Identity Layer. (Thisfield would appear
within the gray area in Figure 3.) The type field is used to
record how the object is used by this layer. The Complex
Object layer offers its clients an interface (not shown here)
for accessing objects, analogousto that of the Identify Layer.
For instance, the call COPut (bag_of _bits) is handled
by adding the type base tothebag_of _bits, and caling
| L_Put (new.bag_of bits, class),wherecl assis
the partitionthiscell worksin. Thebase typeindicates that
this object is not one of the structural objects generated by
the Complex Object layer.

5.1 Tuples

The basis for implementing any complex object is the tuple
structure. A tupleis simply an object (of typet upl e) con-
taining an ordered list of object handles. The interface for
tuplesis:

e COCreateTupl e(list_of _handl es): handl e:
Creates a tuple containing the handles passed as parameters,
returns the handl e of the new tuple object.

e COGet Tupl e(handl e): |i st _of _handl es:
Returnsthelist of handlesin the given tuple.

Figure 4 illustrates two tuples. Tuple 7} (created first) con-
tainsthe handles of objects O, and O,. We can represent this
as Ty = (01,05). The second tuple 75 is ({01, O2), O3).
Notice one could aso creste thetuple (O1, O2, O3), butitis

different from 75.

Tuple Tl
Base
Tuple Object O1
Data
\ Base
Tuple T2 Object 02
Data
Tuple
Base
Object O3
Data

Figure 4: The tuple << 01,02 >,03 >

5.2 \Versions

Versions are a way of implementing updateable objects in
an environment where direct updates are not allowed. When
using versions, we update an object, by creating a “new”
version of it. Versions support these functions:

e COCreateVersionObject(nane): handle :
Creates anew version object (withthegiven nane asitsdata)
and returnsits handle.

e COUpdate(handl e, newversion):

Creates anew version of the object with the given handle.

e CORead(handl e):|ist_of _handl es:

Returnsthe list of handles that are the current version of the
object.

e COVersions(handl e): i st_of _handl es:
Returnsthelist of al versions of the object.

e CO.Get Ver si onNane(handl e) : nane:

Returnsthe nane used to create the given version object.

Figure 5 illustrates how versions can be implemented using
tuples. Object V; (typever si on obj ect)isthe“anchor”
for the sequence of versions. Version 1 is recorded by the
lower t upl e object inthefigure. Itslist of handles contains
(a) the handle of the anchor version object; (b) the handle of
the object that constitutesthisversion; and (c) the handle for
the previous version. (If thisis the initia version, this last
handle is null.) The upper t upl e object records a second
version. Notice that because objects cannot be updated, the
version “chain” goes from more recent to earlier version.
Also, the anchor version object, which identifies this chain,
cannot containalist of all versions. (Wewould need to update
it as new versions are generated.)

The structure of Figure 5 was created by the following se-
guence of cals:

e COCreateVersi onChject(nane): Vi,

wherenane isthestring" sanpl e" . Thisreturnstheanchor
V1. The name is extended with a random string to make it
unique and stored in V1. However, the name is smply a
“comment” and isnot used as an identifier.

e CO.Update(Vi, O1),

where OL isthe handle of thefirst version.

e CO.Update(Vi, @),

where Q2 is the second version.

Toread thelatest version of V1,weusethecall CO.Read(V1) ,
which returnsahandleto Q2. In our example thereisonly a
singlelatest version, but aswedi scussin Section 6, replicating
achain at severa sitesand independently updatingit may lead
to multiplelatest versions.

Version 2 (current)
Tuple
P Base
| __—=| Daa
/
Vi Object 02
Version Object
Sample <
< Tuple Base
Data
//
Object O1
o
Version 1

Figure 5: A document with versions v; and v»

The Update, Read, and Versions functionsneed to determine
thelatest version, given an anchor object V. Thismust bedone
indirectly. One way isto scan dl t upl e objects, looking
for any that reference anchor V. The one(s) that are not ref-
erenced by other tuples are the latest versions. Another way
is to build a disposable structure that maps anchors to their
member objects. Such astructure can be built by scanning all
t upl e objects, and then incrementally maintained as new
CO.Updat e cdls are made. Our design ensures that this
disposablestructureis not essentid for thelong term survival
of the DLR.

To record that a version chain has “ended” (e.g., it isinac-
cessible), we can generate a new version that pointsto dis-
tinguished nul | object. The CO_Updat e call will refuseto
create new versionsbeyond thisfina one. (We could actually
defineseveral “ending” object to indicatedifferent semantics,
e.g., theversion chainisfrozen, it should not be accessed.)

In summary, version objects provide a mechanism “updat-
ing” and “deleting” DLR information. Since thismechanism
builds upon our immutable objects, it still provides very reli-
able and long term storage.

5.3 Sets

Other structures can be implemented in a similar fashion.
For example, Figure 6 illustrates how a set of objects can
be implemented. Each member is a tuple that pointsto the
set anchor (type set), and the actua member object. The
interface for sets may include the functions:

Member M1 Object O1
Tuple Base
Data
Set
Sample |~ — Object 02
< uple
Set i Base
Data
Member M2

Figure 6: A set with two members

e COCreateSet (set_nane): handl e:

Returns the handle of an empty set with the given set name.
e COGet Set Nane(handl e) : set _nane:

Returns the set name of the set with the given handle.

e COl nsert Menber (set _handl e, handl e):

Inserts amember into a set.

e COMenber (set _handl e, obj _handl e): bool ean:
Returns TRUE if the object obj _handl e isamember of set
set _handl e.

We can have additiona functions for sets such as Union,
Intersection, and Difference, but these are not discussed here.
Aswithversions, set membership can only be determined by
scanning all objects, and looking for those with a given set
anchor. Disposable structures can be implemented to make
thisprocess efficient. Aswe discussinthe next section, when
sets are replicated at different sites, there may be temporary
inconsi stenci es regarding membership.

6 RELIABILITY LAYER

The Replication Layer copies objects from one site to an-
other, in order to increase the probability that objects persist
for extremely long times. This is achieved by establishing
replication agreements between multiple sites to mutualy
maintain replicas of objects of agiven replication group. For
example, if the Reliability layer at Site 1 establishes arepli-
cation agreement with Site 2 for objects of group G4, then
every time an object belongingto G; iscreated at one of the

sites, a copy must be propagated to the other site. Note that
agreements are multilateral: all members are responsible for
backing up objects at the other members.

The Reliability layer adds two header fields to al objects, as
it hands them to lower layers for storage. The gr oup field
records the replication group this object belongs to, i.e, it
setsthe desired level of replication. The group is selected by
the client that creates the object in thefirst place. The second
field, agrnt, is used to distinguish objects that represent
agreements from those that do not.

Each replication agreement isrecorded in a version complex
object. The agrmt field is set to True, and the group field
is set to the identifier for this group. The content is a list
identifying al the sites participating in the agreement. If
the agreement changes, a new version is generated, with the
new participants (and same agr nt and gr oup fields). Note
that all the objects that make up the version agreement for
group G; are themselves in group ;. Hence, they will
also be backed up to participating sites. Also note that the
replication functionswe describe here can be used to migrate
acollectionfrom onesite X to another siteY” (by first adding
Y to areplication group, and then dropping X).

6.1 Reliability Interface
The interface of the Reliability Layer includesthe following
functions:

o RL_NewAgreenent (): gr_hdl

Creates a new replication agreement, identified by the re-
turned gr _hdl handle. This handle is the group identifier,
and should be given to all object in the group.

e RL_Participants(site_list, gr_hdl):

Makesthesi t e_| i st thecurrent set of participantsingroup
gr _hdl .

o The interface aso includes the functions in the Complex
Object interface. For the functionsthat create objects, an ad-
ditiona parameter gr _hdl isadded, to indicate the replica
tion group they belong to. Awareness functionsare extended
so that objects belonging to a given replication group can be
requested.

6.2 Implementation

When RL_NewAgr eenent () cal is received, the Relia-
bility cell simply calls CO.Cr eat eVer si onObj ect (),
receiving a handle Gthat will be used as the group identifier.
Next, thefunction CO.Updat e(G O1) iscalled to create
theinitial version of the agreement. Object OL hasitsagr nt
fieldsetto True, itsgr oup field set to G and itscontentsto an
empty set of sites. Theresult of the RL_NewAgr eenent ()
cal isG which can then be used by theclient to create objects
inthisclass.

A DLR Adminigtrator can thenissueaRL_Par ti ci pants
call torecord theparticipating sites. That call isissued a only
one of the participating sites, since the site will immediately
propagate the news to the other sites. The call generates a

new version of the agreement (in the version chain anchored
by G, containing the new list of participants.

Once an agreement isin place, the Replication layer can en-
force it in avariety of ways. Here we illustrate one simple
way, assuming Replication cell A isthe oneactively ensuring
Replication cell B has copies for group G (Cell B would
perform a similar process concurrently.) Periodicaly, A re-
quests from B its complete list of handles corresponding to
objectin group G To comply, cell B usesitslower avareness
servicesto get al object handles (inits storage partition), and
forwards those in group Gto A. Cell A performsa similar
scan at its own site, and then compares the handles. If a
handleisseen locally but not at B, that object must be copied
to B. (Cell A askscell B to create a new identical object.
The object may have existed at B before, but it may have
been corrupted.) Similarly, if an object is missing localy, it
isreguested from B and created at theloca site.

Note that when asked to replicate objects of acomplex type,
the reliability layer creates shallow duplicates. For example,
suppose that a version object V1 is created, together with a
first version, of say a PostScript technica report. Assume
that all these objects are defined to be in group GL. Next,
asecond v1 version is created (e.g., an updated report), but
for some reason its group is defined to be G2. A sitethat is
only insay G1 will only receive thefirst version of thereport,
and not the second one. Thus, to ensure that a complex
object isfully replicated, al of itscomponents must be in the
same group. Note that auxiliary tuple objects created by the
Complex Object Layer do not have areplication group field,
since are generated implicitly by the Complex Object layer.
However, those objects still need to be replicated, as part of
the complex structure they participate in. To achieve their
replication, we implicitly assume that the replication group
of atuple object isthe union of the replication groups of the
base objectsit pointsto.

The stored replication agreement is used by a Reliability cell
to “remember” its agreements in case of problems. Let us
consider a few sample problems to illustrate. (It is beyond
the scope of this paper to do a detailed case-by-case failure
analysis.) In our fist scenario, Reliability cell A failswhile
participating in group G, loses its state, but the latest agree-
ment for G was not lost at the local site. Cell A restarts
by scanning the local site for all objects' with their agr nt

field set, eventudly finding the latest version of agreement
G >From that point on, it resumes its backup work with the
other participants. Any Gobjectslost during the failure, will
be reconstructed from the other participants.

In our second scenario, say that when cell A recovers, no
record of agreement (& isfound locally. Hence, cell A does

1This assumesthat Cell A knowswhat its local site and partition (class)
is. We can agreein advanceon, say, fixed portsfor thelocal layer interfaces,
and a default fixed class. Information on other classes can be saved in the
default one.

not know it is participating in G. However, other G sites are
hopefully active, and they will realize that A haslost objects,
and will restore them. Since the agreement for Gisin the
group, it will also be restored.? Eventualy A redlizes there
isan agreement it is participatingin, and resumesits activity.
(Cell A needs to periodically scan itslocal object to ensureit
has accurate information.)

In our third scenario, the latest version of agreement Gis
lost, but some older version survives. When A recovers,
its starts its activity with an out of date list of participants.
This may cause it to temporarily miss some of the sites that
contain replicas, and may cause it to send object copies to
sites that are no longer participants. However, the latest
version of agreement Gwill eventually makeitto A, and A
will eventually operate correctly. We emphasi ze that theonly
“damage’ donein thisscenario isthe creation of non-needed
replicasat sitesthat had dropped out of the agreement. While
un-needed copies may waste some space, they in no way
compromise the objectsthat are already stored.

The reliability layer guarantees an “epidemic” [DGHT 88]
propagation of copies. If we look at a given object X in
group G, with extremely high probability X will be at all G
sites. There may be periods of time when X is missing at
some sites (e.g., an copy was corrupted), but it would take
an unlikely sequence of failuresto makeit disappear fromall
Gsites. Note there is no notion of a distributed commit for
X. Object X is committed when it is created at one site, and
its probability of long term existence increases as the copies
are propagated. The fact that our objects are immutable,
simplifies the protocol and increases the chances it works
correctly. In particular, thereisno danger that the distributed
X copies become “inconsistent.”

When aclient creates an object X, it may wish to know when
it has been replicated at al Gsites, so it knowsit has reached
its “extreme safety” mode. For this, we can add a function
to the Reliability layer that checks if an object isfound at all
participating G sites.

When complex objects are in the same group, they get repli-
cated and their copies converge. Sites may temporarily have
incomplete information, but we do not view this as an strict
inconsistency. For example, site A may think that atechnical
report isavailablein ASCII and Postscript, whilesite B may
think itisavailablein ASCII and Word97. If thisinformation
isencoded as a set, eventually both sites will know about all
three formats.

7 A COMPLETE EXAMPLE

Inthissection we give an example of how thelayers described
in the previous sections work together. In this example, we
will have two repositories contai ning technical reports, one at

2 Object G, the anchor for the version chain, is not in group Gsinceit was
created beforethe group existed. However, the versionsin Garein the group
and are sufficient to reconstruct the latest version.

Stanford and another oneat MIT. These two siteshave arepli-
cation agreement for all objects belonging to the replication
group G

Let us suppose that an upper cdl at Stanford wants to pub-
lish atechnical report at Stanford. The publisher anticipates
that several version of this document may be generated and
decides to use a “Version” complex object. (For the sake
of simplicity, we are assuming that each version of a tech-
nical report is just one object). First, the publisher asks
the Reiability Cell At Stanford to creste a new version ob-
ject V' belonging to the replication group G. Recall that
the version object does not contain the data for the techni-
cal report (we will save this data as its first version). The
Reliability Layer calls the Complex Object Layer function
COCr eat eVer si onQbj ect (). In turn, the Complex
Object cell generates the version object and saves it by call-
ing the Identity cell, which calls the Object Store cell. Asa
result of these calls, the Reliability Layer obtainsthe handle
of the version object V.

After creating the version object, the client is now ready to
generate the first version of the technical report. First, the
client creates the technical report object, 7'R, by cdling
the Put () function in the Reliability cell at Stanford. The
reliability cell sets the group field to G and asks the lower
layerstosavethereport. After creating 7' R, theclient makes
TR, aversionof V by calingtheUpdat e() functioninthe
Religbility Layer. The Reliability Layer will pass the request
ontotheComplex Object Layer whichwill generatean object,
V1, containing apointerto V', 7Ry, and the previous version
(which is a NULL pointer in this case as this is the first
version). At theright of Figure 7 we show the state of the
Stanford site (at this moment, the MIT repository would be

empty).

v Version v Version
Object Object
Vi Vi1
[} []
TR TR1 TR TR1
Version 1 Version 1
Stanford MIT

Figure 7: The repositories after replication.

Asthereisareplication agreement between MIT and Stanford
for the objectsin the Technica Report group, theMIT (or the
Stanford) Reliability Cdl will try sometime later to enforce
the agreement by querying the other reliability cell (using

the Awareness algorithms) and finding out that the newly
created objects, TRy, V, and Vi, are missing in the MIT
site. Asdescribed in Section 6, the simple way of doing this
query is to use the IL_Awareness() function to obtain all
the handles in the other site and then compare those handles
with the handles on our own site. A more efficient way of
doing this query is to use the I L_Latest() function to find
which handles have been added to the repository since the
last time it was visited. There are more efficient awareness
algorithms that are outside the scope of this paper. After
finding the handles of the missing objects, the replication
process will create replicas of those objectsin the MIT site.
At this moment, the content of the repository is shown in
Figure 7. (We are not showing the Rdiability Agreement
Object that we are assuming was created earlier.)

Notethat at this point we could have a synchronization prob-
lem if we concurrently add two new versions, one at MIT
and the other at Stanford. Figure 8 illustratesthis by show-
ing the state after Stanford generated Version 7'R,, and MIT
independently created Version 7'R3. When the replication
process copies the new objects to the other sites, we end up
with multiple latest versions, as shown in Figure 9. That is,
the cal CO.Read(V) will return both T'R, and T'Rs. We
view thisas an application “problem.” Perhapsit wasthein-
tention to have multiple current versions for this report, i.e.,
the Stanford and MIT versions of a jointly authored paper.
If this was not the intention, then the “report creation” layer
should ensure that only one author at a time creates new ver-
sions of areport. This type of sequencing could be enforced
by a synchronization service that is not discussed here.

Version | Version |
Object Object
! !
Vi — 1 V2 Vi — 1 V3
]] 1
TR R1 TR TR R1 TR 3
Version1 Version 2 Version1 Version 3
Stanford MIT

Figure 8: New versions created at Stanford and MIT.

Let us return to the state of the repository of Figure 7 and
let us suppose that the Stanford Repository has a failure that
completely destroysall itsinformation. After thisfailure, the
reliability process at Stanford cannot recover its data, since
its Reliability Agreement Objects (that indicate where the
replicas are) have been lost. However, some time later, the
Reliability cell a MIT will visit Stanford and it will find out
that some objects, including the Replication Agreement Ob-
jects have been lost at Stanford. The Reliability Cell at MIT
will restore those objects (and potentialy some others), a-
lowingtheReplicationcell at Stanford to also start recovering
its destroyed digital objects.

10

T
V3 V1 V2
[)
v v v
tr3| R TR mra| TR I1R2
Version 3 Version 1 Version 2
Stanford/MIT

Figure 9: Inconsistent State.

8 RELATED WORK

Severa architectures have been proposed and implemented
for digital libraries [Arm95, KW95]. These architectures
focus on interoperability and distribution, but are not directly
concerned with the problem of long-term rdiability.

At the secondary device level, the Petal [Lee95, LT95] and
Frangipani [TML97] projectshavedesigned highly-available,
scalable block-level storage systemsthat are easy to manage.
The availability of the system isachieved by using data strip-
ing and redundancy. Although these projects consider the
problem of long-term data reliability, their aim isa“file sys-
tem” replacement. They allow in-place updatesand del etions,
and use application generated filenames (handles).

In the business world, COLD systems have been very suc-
cessful in solving the problem of long-term archiving of data
that is not frequently accessed. COLD is an acronym for
Computer Output to Laser Disk. COLD systems were orig-
inally designed to replace microfiche and paper archival ap-
plications with online computer systems. A typica COLD
system captures the output of a computer program and stores
it. Typically, the storage media are CD-ROMs but nowaday
other types of storage media (magnetic disks, RAID, mag-
netic tape, re-writable laser disks, and CD-ROM) are also
used [Gaw90]. COLD system are monolithic with very few
computers running exactly the same software, which is dif-
ferent from the environment we consider. Storing data on a
write-once COLD device forces the data to be immutable, as
in our design. However, COLD systems always assume that
some persistent storage is available on a write-many device,
which can be used for some structures. We assume all DLR
storage isimmutable.

Systems based on software layering have proven effective
especialy in the area of networking. Specifically, the Open
System Interconnectionmodel (OSl) providesadetailed stan-
dard that dividesanetwork in seven layerswith clear respon-
sibilities[Ste90].

9 CONCLUSION

In this paper we have studied an architecture for long-term
archival storage of digital objects. We have argued that we
can build asimple, yet powerful, archival repository by using
signatures as object handles, not allowing deletions, having
awareness services in al layers, and using only disposable
auxiliary structures. Webelievethisarchitectureiswell suited
for a heterogeneous and evolving environment because each
site only needs to agree on some very simple interfaces, on
asignature computation function, and on some simple object
harder structure (e.g., for type and group fields). Although
sites may use auxiliary structures, they need not agree on
their details and use. There are no i-node tables, out-of-
synch clocks, inconsistent indexes that can cause us to lose
or corrupt information. Since objects are never deleted or
modified in-place, many sources of confusion are eliminated,
yielding an extremely safe DLR. Migration of information
from an obsolete site to a new one is simple, and can be
performed by the replication services.

ACKNOWLEDGMENTS

Some of the early ideasin this papers were devel oped in talks
with Jerry Saltzer. We would & so want to thank Carl Lagoze
for several useful suggestions.

REFERENCES

Armo5. William Y. Arms. Key conceptsin the architec-
ture of the digital library. D-Lib Magazine, July
1995. At http://www.cnri.reston.vaushome/-
dlib/July95/07arms.html.

CGM97. Arturo Crespo and Hector GarciaMolina
Awareness services for digital libraries. Lecture

notes in computer science, 1324:147-71, 1997.

DGH*88. A. Demers, D. Greene, C. Hauser, W. Irish,
J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic adgorithms for repli-
cated database maintenance. Operating Systems

Review, 22(1), January 1988.

Doc98. DMA

At

Document Management Alliance.
1.0 Specification Draft, January 1998.
http://www.aiim.org/dma/.

Gaw90. P. Gawen. Computer output to optical disk and
its application. In Proceedings of the Seventh
Annual Conference on Optical Information Sys-

tems, pages 102-106, July 1990.

Koh81. W.H. Kohler. A survey of techniques for syn-
chronization and recovery in decentralized com-
puter systems. Computing Surveys, 13(2), June

1981.

KW95. Robert Kahn and Robert Wilensky. A frame-
work for distributed digital object services.

Technica Report tn95-01, Corporation for

11

National Research Initiatives (CNRI), May
1995. At http://WWW.CNRI.Reston.VA.US/-
home/cstr/arch/k-w.html.

L eeds. Edward K. Lee. Highly-available, scalable net-

work storage. COMPCON, 1995.

LT95. Edward K. Lee and Chandramohan A. Thekkath.

Peta: Distributed virtual disks. ASPLOS, 1995.

RDL97. Jr. Ron Daniel and Carl Lagoze. Extending the
warwick framework: From metadata contain-
ers to active digital objects. D-Lib Magazne,
November 1997. At http://www.dlib.org/dlib/-

november97/danigl/11daniel .html.

Sted0. W. Richard Stevens. UNIX Network Program-

ming. Prentice Hall, 1990.

TML97. Chandramohan A. Thekkath, Timothy Mann,
and Edward K. Lee. Frangipani: A scdable

distributed file system. SOSP, 1997.

APPENDIX 1

The probability of having asignaturecollision, namely differ-
ent objects being assigned the same signature, dependson the
size of the collection, n, and the number of bits, 4, used inthe
signature. When we insert the first document the probability
of not having a collision is 1 (as there are no documents to
collide with), for the second document the probability of not

having acollisionis 21’2;1 asthere are 2° possible signatures
that can be generated and all of them, except 1, will not create
acollision. In general, when we have inserted & documents,
the probability that the next document will not creste a col-
lisionis £5% if k <= 27, or 0 otherwise. In conclusion, if
we assume that the signature function uniformly distributes
documentsin the signature space, and that the computation of
the signature of a document isindependent of any other, then
the probability that we will not have acollisioninacollection
of n documentsis:

n—1

=11

k=0

24
(20 — n)t2om

2" —k
20

@

Equation 1 is impractical to use when & and n are large

numbers as the factorials will produce an overflow. We
can derive an approximation by making p = [[{Z) 2% =
7y 1— L. TheTaylor expansion for the exponential func-
tionise™® =1—z+22/2!' —23/3! + ..~ 1 — z. There-
_k _LG_l 3
2t = ¢ 2b k=0 =

and therefore we can approximate p by:

1 _x n—1

forEp I~ Z—Oe 20 — eZk:u
1 n(n—1) -

e 26 2

n(n—1

pre P 2

