
1

Stanford Digital Library Interoperability Protocol
Stanford Digital Library Group

{hassan,paepcke}@cs.stanford.edu
http://www-diglib.stanford.edu

1 Introduction

This document describes and specifies Stanford’s Digital Library Interoper-
ability Protocol (DLIOP). This initial version of the protocol specifies inter-
actions that allow clients to request and asychronously receive information
from other objects that in turn may access information services on the
Internet. All components involved in the protocol are objects distributed
arbitrarily across machines, possibly of varying computer architectures,
and potentially written in different programming languages.

An example of a simple arrangement is shown in Figure 1.

The main goal of a DLIOP interaction between a client and an external ser-
vice proxy is to submit a query to the proxy, have the proxy interact with the
external service to retrieve information, to have that information transferred
to the service client, and to have the results presented there as objects.

What is special about the DLIOP is that it makes use of CORBA’s distrib-
uted object technology and can therefore more easily serve as a testbed
for protocol features other protocols cannot address as easily.

For example, the protocol combines advantages of stateless protocols

External
 ServiceService

 Client
Proxy to

External
Service’s
Protocol

DLIOP

External
Service

Ex: HTTP, Z39.50 Ex: Lycos, Public Library
Described in this

Document

Figure 1: Focus of this Document
(Ovals are objects)

2

such as http (e.g. optimization for short-lived resource usage) with the
advantages of session-based protocols such as Z39.50 (e.g. interaction
efficiencies for multiple, related interactions)[ansi95].

The distributed object capabilities afford use of the DLIOP as a testbed for
experimenting with dynamic resource reallocation to achieve load balanc-
ing. The protocol allows documents and computation to be moved among
machines while interactions between clients and services are in progress.

The protocol also enables experimentation with different caching strategies
in contexts where clients sometimes request follow-up information quickly,
sometimes after several days have elapsed.

A more descriptive motivation and explanation of rationale is provided in
[paep96a]. In the following section we present an overview of the protocol.
In section Section 3 we go through each method and explain the parame-
ters. The appendix contains the COBRA Interface Definition Language
(IDL) specifications of the protocol.

2 Overview

The protocol specifies methods invoked among two basic kinds of compo-
nents: Client objects, and collection objects. When we speak of ‘objects’,
we always use the term in the sense of object-oriented programming.
Therefore, by client objects we mean objects that implement some client
application attempting to access information. Furthermore, the objects that
are players in the interop protocol are distributed CORBA objects. This
means that even though they invoke methods on each other, they may
reside on different machines and may be implemented with different pro-
gramming languages.

CORBA interfaces do not include object instance variables. Instead, a sep-
arate ‘Property Service’ is defined for attaching properties to objects, for
accessing them, deleting, etc. When we speak of object properties, we
mean the CORBA Property Service facilities.

Collection objects conceptually hold result objects which contain the infor-

3

mation clients are looking for. These could, for instance, be objects con-
taining the text of documents. Collections have a simple interface, which
includes methods such as GetTotalItems() which returns the number of
items in the collection, or AddItems() which puts new items into the collec-
tion if possible. In Figure 1, the proxy representing the external service is
implemented as a special kind of collection object, a contrainable collection
which is a collection that may be queried.

Constrainable collections are an important subclass of collections. They
may be asked to produce a result collection which contains a subset of
their contents. We use these constrainable collections as proxies for infor-
mation providers out on the net. We can do this by allowing collections that
do not really contain any objects, but that ‘pretend’ they do. Then, when
such a collection receives a request to constrain itself, it issues a query to
the outside information provider, retrieving information from it. This infor-
mation, which is usually not in the form of objects, may then be material-
ized into objects and held in the collection for delivery to the client.

2.1 Basic Search Interaction
Figure 2 shows an example of a basic search interaction. The client wishes

to search over some external service for which a constrainable collection

External
 ServiceService

 Client

Constrainable
Collection

“Title and abstract of first 10

1

Collection

2

Create a
result collection

“select au=’Smith’”
3

4

“Give me the
first 5 result objects”

5

Figure 2: A Basic Search Interaction

“Found 105 items”

items with ‘Smith’ in author”

6
add results as the
become available

Acts as proxy to service

Site 1 Site 2

Search for:

4

object acts as a proxy. Note that while the steps in the figure are numbered
for reference, most of them occur asynchronously. Arrows in Figure 2 rep-
resent method calls.

As a first step, the client creates a local collection object which will hold the
results. Then it issues a query to the constrainable collection which acts as
the external service’s proxy. The query contains information on which
objects are to qualify in the query (authors must contain the word ‘Smith’).
It also contains instructions on how many results should be returned as
soon as they become available (10), and which parts of those results
should be included (only abstract and title of each result). In addition, the
query request includes a pointer to the client’s local result collection. The
proxy collection will use this pointer to deliver results.

Once the query has been delivered, the client is free to perform other work
while the query is processed: the query call to the proxy collection is asyn-
chronous. Alternatively, the client may immediately ask its local result col-
lection for the total number of results, and/or for some or all of the result
objects. These calls could block until the required information is actually
available.

Meanwhile, the proxy collection delivers the query to the external service
by whatever means are appropriate: http, Z39.50, a telnet connection, its
local file system. As soon as the proxy collection knows how many hits to
expect, it notifies the client’s result collection. In (possibly) multiple calls to
the client’s collection object, the proxy collection subsequently delivers
results. Each call (step 6) to the client’s collection delivers some number of
title/abstract values as lists, each list being the desired (title/abstract)
excerpt from one result. The client collection creates a local object for each
result, filling its title and abstract properties with the corresponding values1.
It is up to the proxy collection to decide whether to wait for all 10 results to
arrive from the external service before delivering them to the client’s result

1. Note that DLIOP could have had the proxy collection materialize the raw information
into objects. Pointers to these objects would then be passed to the client. This would
have had two disadvantages: the proxy collection would have had to maintain these
objects indefinitely, and every object property access by the client would have involved
a remote method call.

5

collection, or whether to collect a few, and to deliver them as early as pos-
sible.

2.2 Getting More Result Objects of the Same Query
At some point, the client will have received and examined the initial 10
results it asked for in its original request. Whenever the service client
requests more results from its local result collection than is currently sched-
uled to arrive there, the result collection contacts the proxy collection at the
server side for more of the hits. These are then delivered just like the origi-
nal results. Notice that in order to do this, the proxy collection needs to let
the client’s result collection know the proxy collection’s object ID. This is
done as one of the parameters in each of the (partial) result deliveries.

2.3 Getting More Properties of a Result Object
In our example, the client asked that each result object contain title and
abstract properties. After examining some of the result objects, the client
might want to see some more properties of one of the result objects. This
might be the publication date, the journal in which the publication
appeared, or the full content of the document.

This is done simply by asking the result object for the desired additional
properties. The result object experiences a ‘property fault’ and contacts the
proxy collection for the additional information.

2.4 Freeing Proxy Collection Resources
The client may take a long time to ask its local result collection for more
result objects, or for more properties of the result objects already partially
retrieved. What if the proxy collection does not want to keep the resources
associated with a given query indefinitely? It may want to use these
resources for other requests, or the external service could be a for-pay ser-
vice which is very expensive to stay connected to. The DLIOP allows the
proxy collection to discard its resources at any time, although of course the
intent is to have pending requests serviced.

Allowing proxy collections to shut down the resources associated with a
particular query raises two issues: What does a result object at the client
result collection do if it is asked for properties it did not yet pull over from

6

the proxy collection? And what does the client’s result collection do if the
client asks it for more hits of the same query? The first issue is handled by
what we call access capabilities. Each result object contains an access
capability which contains the information needed to obtain values for the
object’s properties. The access capability for each result object is passed
as a parameter from the proxy collection to the client’s result collection
when results are delivered. An access capability in turn may contain multi-
ple access options which each represent one way of getting the property
values. When a result object needs to retrieve additional properties for
itself, it initially tries to request them through the first access option in its
access capability. If that fails, it tries the next one, and so on. Refer to Fig-
ure 3 for an informal illustration of access capabilities. Each access option

contains the object identifyer of an object that can provide the additional
properties, and a cookie to pass along with the request when contacting
that object1. For example, the first access option may contain the OID of
the proxy collection. The associated cookie tells the proxy collection the ID
of the result set it is maintaining within its memory and which it will get the

1. A cookie is a data structure that is passed uninterpreted to its final destination. Only
that final destination knows how to interpret and use the data structure.

External
 Service

Service
 Client

Constrainable
Collection

Collection

Acts as proxy to service

ResultObj1

ResultObj2

ResultObj3

AccessCapability

AccessOption1: Tell () to ‘get item 5 from cache buffer 8’

AccessOption2: Tell () to ‘ask service for item 369245’

Figure 3: Access Capabilities Provide Flexibility for Resource Management

7

requested property values from. If the proxy collection has already dis-
carded this result set, it will raise an error in response to the request for
property values. The client’s result object then attempts this operation
again, this time with the second access option of its access capability. The
OID may again be the proxy collection. But now the cooky will contain an
indication to the proxy collection that a new query is to be performed, with
the required information being retrieved (again) from the external service.
This is, of course, more expensive than if the first access option had
worked, but it allows the DLIOP to avoid sessions which tie up the server
side indefinitely.

The second issue, of client collections being asked for more hits after the
proxy collection has discarded its resources associated with the query is
solved similarly: Every time new results are added to the client’s collection,
a ‘moreCookie’ is passed along. Analogously to access capabilities for indi-
vidual result objects, this data structure provides the client collection with
one or more contacts for requesting additional hits. The first will generally
be the proxy collection’s OID with a cookie that contains the proxy collec-
tion’s cache pointer to its cached hits, or a handle for getting more informa-
tion from the external service connection that is kept open. A second
contact option could again be the OID of the proxy collection. But this time
the cookie would contain instructions for the proxy collection to repeat the
entire query.

2.5 Load Balancing at the Server Side
Sometimes it may be desirable to free the object that acts as proxy to the
external service for accepting new requests from other clients even before
one request’s query has been processed to completion. Figure 4 shows
how this requirement can be accommodated.
Instead of interacting with the external service itself, the constrainable col-
lection immediately creates a ‘delegate’ object which takes over the
remaining processing of the query request. It then returns to accepting
more requests. Note that the request processor object created as the dele-
gate may be created on a machine other than the one running the con-
strainable collection. The client is unaware of the origin of calls in steps 6
and 7.

8

2.6 Load Balancing During Result Delivery
The DLIOP allows server-side objects to perform load balancing even while
results are being delivered to the client. This is easy because, as pointed
out in Section 2.2, the OID of the proxy collection is passed to the client’s
result collection every time a set of results are delivered. Before delegating
further work to a new object, the proxy collection can issue a call to the cli-
ent’s result collection, adding an empty set of results, and specifying a new
OID as the target for future requests for additional result hits.

3 Technical Details

In this section we describe each of the methods involved in the DLIOP. We
use as an example the proxy for Knight-Ridder’s Dialog Information Ser-
vice. In all cases of doubt, the interface specification file available at the
testbed Web page reachable from http://www-diglib.stanford.edu has final
authority.

3.1 Syntax Conventions
The following examples illustrate the syntax used to describe the argu-
ments to methods and return results. We use this convention to be lan-
guage-independent. There are straight-forward mappings from this
convention to the major programming languages.

• [] - an empty list (or sequence)

• [1,2,3] - a list of integers 1, 2, and 3. Lists may have arbitrary lengths.

External
 ServiceService

 Client
Constrainable

Collection

“Only items with
‘Smith’ in the title”

1

2

Create a
‘delegate’

3

4

5

Figure 4: A Search Interaction with Server-side Off-Loading
(Interactions 1, 2, 4, 5, 6, and 7 are as in Figure 2)

Client

Collection
Result

Request
processor

6

7

9

• [[], “the”, “an”] - a list containing an empty list, the words “the” and
“an”.

• {} - an empty record (with no fields)

• {aSize : 20} - a record with one field “aSize” with a value of 20.

• {aSize : 20, aHandles : [“a”, “b”, “c”]} - a record with two fields,
“aSize” with a value of 20, and “aHandles” with a value of a list of words
“a”, “b”, and “c”.

• *aResult* - denotes an instance object.

• *Result*.AddItems(5) - Call the AddItems method on *Result* with an
integer argument 5.

• In order to make it easier to match the method calls in the pseudo-code
examples below with the corresponding method definitions in the IDL
interface definition of Section 4, we name the parameters for which we
provide values. For example: for a method defined as:

PropertyNamesList GetItemsPropertyNames(in TCookies pCookies)

a example call might be written as:

GetItemsPropertyNames(pCookies: [‘foo’, ‘bar’])

3.1.1 Symbol Prefixing

Parameter names, record field names, class names, and other interface
elements are prefixed with one-letter tags. This is done to allow determina-
tion of a symbol’s type simply by inspection, without needing to know the
context in which it appears. .

By this convention, ‘CItem ’ is a class, ‘pItems ’ is a parameter to a method,
‘aItem ’ is a local variable, and ‘fItem ’ is an instance variable for an object
instance.

Table: Symbol prefixing

T Non-class
Type

k constant I Interface
Module

g global
variable

C Class
Interface

a llocal variable E Enumeration
Type

p parameter to
a method

f instance
variable

10

3.1.2 Graphical Conventions

We use the following graphical conventions.

3.1.3 Query Format

DLIOP currently uses Z39.50’s RPN structure with type 101 format for
delivering its queries. This means that the query is delivered fully parsed.
See the accompanying IDL file in Section 4 for definitions of the associated
data structures, and the Z39.50 documentation for a grammar. Since
Z39.50 conventions allow specification of non-101 queries (type 0 queries),
clients may choose instead to send query strings or structures of their
choice, if the corresponding target objects understand. When using such
type 0 queries, the structure used to pass the query itself contains two
fields: a query subtype, and a structure holding the query itself, which may
just be a string. Within type 0 queries, the DLIOP thus allows callers to
identify the particular query language they use. In particular, subtype 0 is
the DLIOP front-end query language which InfoBus facilities can translate
to a variety of other query languages.

Generating the RPN structure of a type 101 query by reading the IDL spec-
ification is not trivial. Conversion code is available in Python and C++ to
make this easier.

The property names used in DLIOP are USMARC tags, although in the fol-
lowing we use English names for clarity.

3.1.4 Synchronous vs. Asynchronous Methods

A single process’ address space

An instance of a class.

A single process’ address space

Result.AddItems()
Result Call the AddItems method on *Result* .

11

The names of all asynchronous methods begin with Request , as in
RequestConstrain . These methods return immediately with no result. The
protocol describes how these methods subsequently contact the caller to
deliver their results.

All methods starting with Get are synchronous. The result types of sychro-
nous methods are described below.

3.1.5 Stoppping Asynchronous Requests

When it is necessary to stop a running request, the call CancelRequest will
do the trick.

3.1.6 Error Signaling

For synchronous calls, CORBA handles error signalling. The interface file
contains a declaration of the errors that may be raised by each method of
the protocol. The language binding determines how an error is signalled by
the callee, and how it is delivered to the caller. In general, this is done in
the way most natural to the particular programming language.

Since asynchronous methods immediately return with no argument, a dif-
ferent mechanism must be used. The DLIOP protocol specifies that each
client have the method RaiseError . It takes a message ID and a record
describing the error. The message ID links the error to a previous asyn-
chronous request. If a service encounters an error while servicing an asyn-
chronous request, it calls RaiseError instead of the regular response
method.

3.1.7 Submitting a Query

A query is delivered by calling method RequestConstrain on the proxy col-
lection which is labelled *Dialog* Collection in Figure 5 below. In addition
to the object that performs the call, the client side may contain two other
objects when the call is made. One is the local result collection object dis-
cussed in Section 2.1. The other is a query object.

Query objects may contain many aspects of the query, in addition to the
query string itself. This might include processing time limits, or other addi-
tional limiters and service instructions not expressed in the query. The

12

exact properties are not specified. The purpose of the query object is to
allow servers to learn more about a query than is passed in the Request-

Constrain call, if appropriate. The information passed in that call is, how-
ever, sufficient for most purposes.

The following Figure 5 shows a query being delivered. It shows the request

for a search on Dialog for documents with the words “color” and “printers”
occurring right next to each other in the abstract. Title and author of 10 doc-
uments are to be returned to the collection *MyResult*1.

1. Knight-Ridder’s Dialog service actually contains multiple data files. For simplicity, we
assume that this proxy accesses a single such file.

Dialog
Collection

MyResult
Collection

Client

Service

Dialog.RequestConstrain()

MyQuery
[“ab color(w)printers”]

RequestConstrain(
pMessageID : 24601,
pQuerySummary : {

aQuery : *MyQuery*,
aQueryDescription : {

querytype : 0
query : “ab color(w)printers”}

aQueryItemProperties : [“Title”, “Author”],
aMoreSummary : []},

pServicePrefSummary : {
aServicePreferences: NULL,
aNumberOfItems: 10,
aMoreSummary : []},

pResultTarget : *MyResult*)

Client App

Figure 5: Delivering a query to a proxy collection

13

The RequestID is a message identifier invented by the client. It allows sub-
sequent interactions between the proxy collection and the client to identify
the query that stood at the start of the exchange.

The query summary contains three components: a pointer to the query
object (see above), the query, and any other information extracted from the
query object to save the proxy collection a call back to the query object.
Since in this case we are passing all necessary information in this sum-
mary, the query pointer (*MyQuery*) could be set to NULL. In fact, the cli-
ent is not even obliged to create a query object. The aMoreSummary

summary field is a possibly empty list of property/value pairs.

The service preferences summary part is for communicating general pref-
erences the client might have in dealing with the service. It includes an
optional pointer to a preference object which could contain any number of
properties the proxy collection might understand. Examples are shortcut
definitions, global format preferences, billing, or authentication information.
The aMoreSummary summary field is a possibly empty list of property/value
pairs.

The result target is a pointer to the client’s result collection where the proxy
collection is to deliver the results. Note that while in this exposition we are
using separate result collection objects for this purpose, one could write an
object which calls RequestConstrain , and names itself as the recipient of
the results. The only requirement is that this object support the client meth-
ods explained below.

The search is now performed, and we assume that 59 hits are returned.
The client’s result collection is informed immediately about the total number
of hits to expect (Figure 6). The client can now display the total number of
items in the result set collection, even though they are not yet available at
the client.

Next, the Dialog proxy collection optionally creates a result collection on its
site to handle all subsequent interactions on behalf of this query. It could
instead choose to do this work itself. *Result1* in Figure 7 will request at
least the title and author of the first 10 hits from the Dialog service,

14

although it may choose to request more in anticipation of follow-up
requests from the client.

Once the titles and authors of at least some of the first 10 hits are available,
Result1 calls AddItems on the client’s result collection. If retrieval from
the external service (i.e. Dialog in our example) is slow, the proxy collection
may decide to call AddItems several times with a few results. Figure 7
shows how the information is delivered to the client. The AddItems method
takes three main parameters: a message ID tying the items being delivered
to the previous query they are the results of, properties and access capabil-
ities of the results being delivered, and the contacts for the client to use
when requesting additional hits for this query.

The message identifier matches the identifier supplied by the client in its
original RequestConstrain call. If the client’s result collection merges the
results of multiple queries, this ID allows it to keep track of progress for
each query.

The second parameter, the core of the information, is partitioned into two
parts: one access capability for each of the 10 hits, and the requested
property values (title and author) for each hit. As explained in Section 2.4,
an access capability may contain more than one access option. In Figure 7
we see an example. Both access capabilities contain two access options.
The first option in the figure indicates that the kind of object to which the
properties belong is “document”. The object to request more properties
from is *Result1* which is the proxy collection’s result collection work-

Dialog
Collection

MyResult
Collection

Client Service

MyResult.SetTotalItems()

MyQuery

* MyResult*.SetTotalItems(pTotalSize : 59)

Figure 6: Letting the client collection know the total number of hits found

15

Dialog
Collection

MyResult
Collection

Client Service

MyResult.AddItems()

Result1
Collection

MyQuery

MyResult.AddItems(pMessageID : 24601,
pItems : {

aACs: [
[{anItemClass : “document”,

 aTarget : *Result1*,
 aCookie : “S1: 1”, aHints: []},
{anItemClass : “document”,
 aTarget : *Dialog*,
 aCookie : “an=3424601”, aHints: [] }],

[{anItemClass : “document”,
 aTarget : *Result1*,
 aCookie : “S1: 2”,
 aHints: []},
{anItemClass : “document”,
 aTarget : *Dialog*,
 aCookie : “an=4310642”,
 aHints: [] }],

... 8 more Access Capabilities ...],
aState : {

aNames : [“title”, “author”],
anItemsState : [

[“Printer and painter primary colors”, “Smith J”],
[“Color Printers”, “Todd W”],
... 8 more records ...] },

},
pNewMoreCookie: [

[anItemClass : NULL,
 aTarget : *Result1*,
 aCookie : “S1: 11”,
 aHints : []],
[anItemClass : NULL,
 aTarget : *Dialog*,
 aCookie : “Query(color and printers),#11”,
 aHints : []]
])

Figure 7: Delivering title and author of the first 10 hits to the client

16

horse. The cookie to pass back with the request for more properties is
“S1:1”. This cookie makes sense in the context of Dialog interactions: “S1”
refers to a set ID returned by that service. The “1” indicates that the prop-
erty values come from the first hit in the S1 set. Again, this is a cookie, so it
only makes sense to the proxy collection or its workhorse result collection.

The second access option will be used when the first one fails. This will be
the case when *Result1* has been discarded. Notice that the target now is
the *Dialog* proxy collection itself, and the cookie is an accession number
to use when retrieving pieces of this item from Dialog.

The aHints field can be used for any other necessary information.

The data structure used for transmitting the property values themselves is
simple. It contains the list of property names to deliver, followed by a list of
lists with the values.

The contact information parameter is similar to the access capabilities. In
this case, the first option’s cookie is a pointer into the proxy collection’s
cache where the next set of properties to be retrieved is stored, or enough
information to get the next set from Dialog itself. The second option con-
tains enough information to re-issue the query.

Finally, in Figure 8, the service informs the client that no more results will
be delivered.

Upon receipt of the property values, the client collection creates one object

Dialog
Collection

MyResult
Collection

Client Service

MyResult.CompletedRequest()

Result1
Collection

MyQuery

MyResult.CompletedRequest(pMessageID : 24601)

Figure 8: Signalling the end of result delivery

17

(of class CItem) for each result, and fills the Title and Author properties with
the correct values (Figure 9). It remembers the NewMoreCookie passed in

the AddItems call in case it needs to request more results later. Each CItem

object also remembers its access capability, although these structures are
omitted from Figure 9 for clarity.
The client’s result collection can now display these result objects. At some
point, it may receive a request for some of the additional hits. It then needs
to communicate with the service side to obtain the Title and Author proper-
ties of those additional results. This is shown in Figure 10. The example
shows a request for the titles and authors of 20 additional results. Note that
this method call is again asynchronous. Notice also that the client collec-
tion uses a different request ID for this call, because the previous request
(the original query) has been serviced to completion.

In response, the proxy collection’s workhorse requests the 20 additional
hits from the external Dialog service (if it did not already cache these in
anticipation of this request). The delivery of the title/author property values
proceeds just as after the original query request (Figure 11).

After delivery, the completedRequest is sent to indicate that all additional
results have been delivered (Figure 12)

Dialog
Collection

MyResult
Collection

Client

Service

Result1
Collection

Title: Printer and Painter primary colors
Author: Smith J

CurrentSize: 10
MoreCookie: “S1: 11”

Title: Color Printers
Author: Todd W

TotalSize : 59

MyQuery

Figure 9: Client collection creates objects and fills them with query results

18

Again, as in the first round, the result collection builds CItem instances to

Dialog
Collection

Service

Result1.RequestItems()

Result1
Collection

MyResult
Collection

Client

CurrentSize: 10
MoreCookie: “S1: 11”
TotalSize : 59

MyQuery

Title: Printer and Painter primary colors
Author: Smith J

Title: Color Printers
Author: Todd W

Figure 10: Requesting property values of additional results

Result1.RequestItems(
pMessageID : 24602,
pPropertyNames : [“title”, “author”],
pMoreCookie : “S1: 11”,
pNumberItems : 20,
pResultTarget : *MyResult*

)

Dialog
Collection

Service

MyResult.CompletedRequest()

Result1
Collection

MyResult
Collection

Client

CurrentSize: 10
MoreCookie: “S1: 11”
TotalSize : 59

MyQuery

Title: Printer and Painter primary colors
Author: Smith J

Title: Color Printers
Author: Todd W

MyResult.CompletedRequest(pMessageID : 24602)

Figure 12: Signal that properties for all additional results have been delivered

19

hold the properties, as shown in Figure 13.

Dialog
Collection

Service

MyResult.AddItems()

Result1
Collection

MyResult
Collection

Client

CurrentSize: 10
MoreCookie: “S1: 11”
TotalSize : 59

MyQuery

Title: Printer and Painter primary colors
Author: Smith J

Title: Color Printers
Author: Todd W

MyResult.AddItems(pMessageID : 24602,
pItems : {

aACs: [
[{anItemClass : “document”,

 aTarget : *Result1*,
 aCookie : “S1: 11”,
 aHints: []},
{anItemClass : “document”,
 aTarget : *Dialog*,
 aCookie : “an=573638”,
 aHints: [] }],

... 19 more Access Capabilities ...],
aState : {

aNames : [“title”, “author”],
anItemsState : [

[“HP Color Printers”, “Farmer D”],
... 19 more records ...] },

},
pNewMoreCookie: [

[anItemClass : NULL,
 aTarget : *Result1*,
 aCookie : “S1: 31”,
 aHints : []],
[anItemClass : NULL,
 aTarget : *Dialog*,
 aCookie : “Query(color and printers),#31”,
 aHints : []]

])

Figure 11: Delivering properties of additional results

20

Now, the user requests the abstracts of items 1, 5, and 9. Since these are
properties not originally requested, the CItem instances do not have those
property values filled in. The client’s result collection can gather all of these
property values in one call of the method RequestItemsProperties on the
object it is supposed to ask for additional information. In this case that is
the proxy collection’s *Result1* Collection . The request for additional
properties is shown in Figure 14. The pClientCookie parameter will be
passed back to the client result collection when the service provides the
abstracts. These cookies will then allow the client collection to match
incoming abstracts with the correct objects. The client result collection can
use any scheme it wishes for these client-side cookies.

As is apparent from the “Request” part of the method name, the Request-

ItemsProperties call is asynchronous. At some later point, after the ser-
vice has retrieved the requested abstracts, the service needs to deliver
them to the client. This happens via the SetItemsProperties call as shown
in Figure 15.

As promised, the client-side cookies (42, 43, and 44) are included as a
parameter in the call. In this case, the client only requested the abstract

Dialog
Collection

Service

Result1
Collection

MyResult
Collection

Client

CurrentSize: 30
MoreCookie: “S1: 31”
TotalSize : 59

MyQuery

Title: Printer and Painter primary colors
Author: Smith J

Title: Color Printers
Author: Todd W

Title: HP Color Printers
Author: Farmer D

Figure 13: Client materializes objects for additional results

21

property of these three results. It could instead request multiple properties
at the same time. In that case, the aNames list would contain the names of
all the requested properties, and the anItemsState parameter would con-
tain a list of lists whose lengths were greater than 1.

As always, the service calls the CompletedRequest on the client collection
when it is done sending properties (Figure 16). Remember why this is nec-
essary: If it takes a long time to gather all the requested properties for all
the results indicated in the RequestItemsProperties , the service may
decide to call SetItemsProperties multiple times with partial results. This
ensures that data is moved as quickly as possible. If the client wants to
abort work being done on behalf of a request, a CancelRequest call may be

Dialog
Collection

Service

Result1.RequestItemsProperties()

Result1
Collection

MyResult
Collection

Client

CurrentSize: 30
MoreCookie: “S1: 31”
TotalSize : 59

MyQuery

Title: Printer and Painter primary colors
Author: Smith J

Title: Color Printers
Author: Todd W

Title: HP Color Printers
Author: Farmer D

Result1.RequestItemsProperties(
pMessageID : 24603,
pPropertyNames : [“abstract”],
pServerCookies : [“S1: 1”, “S1: 5”, “S1: 9”],
pClientCookies : [42, 43, 44],
pResultTarget : *MyResult*

)

Figure 14: Requesting abstracts for items 1, 5, and 9

22

issued.

In the following appendix, we include the formal CORBA IDL interface defi-
nitions for the DLIOP. This includes type definitions for all the data struc-
tures used (including the query structures), definitions for all the classes,
the signatures of the methods they support, and all exceptions.

Dialog
Collection

Service

MyResult.SetItemsProperties()

Result1
Collection

MyResult
Collection

Client

CurrentSize: 30
MoreCookie: “S1: 31”
TotalSize : 59

MyQuery

Title: Printer and Painter primary colors
Author: Smith J

Title: Color Printers
Author: Todd W

Title: HP Color Printers
Author: Farmer D

Abstract: This paper discusses the...

MyResult.SetItemsProperties(
pMessageID : 24603,
pItems : {

aClientCookies : [42, 43, 44],
aState : {

aNames : [“abstract”],
anItemsState : [

 [“This paper discusses the basics of color
 and the relation to the systematics of painting...”],
... 2 more records ...] },

}
})

Figure 15: Additional abstracts are delivered to client

23

Dialog
Collection

Service

MyResult.CompletedRequest()

Result1
Collection

MyResult
Collection

Client

CurrentSize: 30
MoreCookie: “S1: 31”
TotalSize : 59

MyQuery

Title: Printer and Painter primary colors
Author: Smith J

Title: Color Printers
Author: Todd W

Title: HP Color Printers
Author: Farmer D

Abstract: This paper discusses the...

MyResult.CompletedRequest(pMessageID : 24603)

Figure 16: Signal that all abstracts have been delivered

24

4 Appendix A

Here is an overview of the classes and their methods:

CItem - both result objects, and collections are CItems

GetAccessCapability()

AddAccessOptions()

RequestItemProperties()

SetItemProperties()

CCollection

GetTotalItems()

SetTotalItems()

GetItems()

RequestItems()

AddItems()

GetItemsProperties()

CConstrainCollection

Constrain()
RequestConstrain()

CQuery

GetSummary()
GetQueryDescription()
SetQueryDescription()

CServicePreferences

SetNumberOfItems()

Figure 17: Class Hierarchy of DLIOP Interface
(Indentation indicates inheritance)

GetStatus()

CompletedRequest()

CancelRequest()

RequestItemsProperties()

SetItemsProperties()

GetItemsPropertyNames()

RequestItemsPropertyNames()

SetItemsPropertyNames()

PropertySet

define_property()
define_properties()
get_number_of_properties()
get_all_property_names()
get_property_value()
delete_all_properties()

get_properties()
get_all_properties()
delete_property()
delete_properties()
is_property_defined()

25

/* --- */
/* DLInterchange.idl
/* last update: 9/19/95 hassan */

#include "CosPropertyService.idl"
module IDLInterchange
{

/* -- */
/* some simple types */

typedef string TString;

typedef unsigned long TOptionalSize;

/* this typedef breaks the generated C++ code */
/* typedef CosPropertyService::Any Any; */

/* Forward references */
interface CItem;
interface CServicePreferences;
interface CQuery;
interface CCollection;
interface CConstrainCollection;

/* -- */
/* define a cookie. */

typedef CosPropertyService::Any TCookie;
typedef sequence<TCookie> TCookies;

/* -- */
/* TMessageID is a client-side identifier for all the responses to
 a particular request. */

typedef TCookie TMessageID;

typedef TString TItemClass;

26

/* -- */
/* define Status - for use with CItem::GetStatus call. */

enum EStatus {
IN_PROGRESS, /* the request is being worked on. */
UNKNOWN_MESSAGE_ID, /* never heard of it. */
COMPLETED /* that request has completed. */
};

/* -- */
/* define Access Capability */

struct TAccessOption
{
 CItem aTarget;
 TCookie aCookie;
 TItemClass anItemClass;
 CosPropertyService::Properties aHints;
};

typedef sequence <TAccessOption> TAccessCapability;
typedef sequence <TAccessCapability> TAccessCapabilities;

/* ItemState */
/* -- */
/* define item state */

/* Three types for transferring state for multiple items:
 1. Simplest case: only the state information is transmitted.
 2. Service provides access capabilities and associated state
 for multiple items. Typical use: Initial response to a query.
 3. Client asked for more properties of items via their access
 capabilities, providing a set of associated client cookies.
 The service now returns the requested properties, each with
 the associated client cookie.

 Note: this trades off interface beauty for minimizing informa
 tion transfer. :)

*/

/* This is what a CosPropertyService::PropertyValuesList would be
*/
typedef sequence <CosPropertyService::Any> TPropertyValues;
typedef sequence <TPropertyValues> TPropertyValuesList;

27

/* swh 9/19/95 */
typedef sequence<CosPropertyService::PropertyNames> Proper-
tyNamesList;

struct TItemsState
{
CosPropertyService::PropertyNames aNames;
TPropertyValuesList anItemsState;
};

/* note: aNames and anItemsStates[i] must be of the same length. */

/* ItemsCookieState */

struct TItemsCookieState
{
TCookies aClientCookies;
TItemsState aStates;
};

/* note: aClientCookies and aStates.anItemsState must be of the
same length. */

/* ItemsACState */
struct TItemsACState
{
TAccessCapabilities aACs;
TItemsState aState;
};

/* note: aACs and aStates.anItemsState must be of the same length.
*/

/* -- */
/* Exceptions - some possible exceptions. Needs work. */

exception InvalidRequest{TString aReason;}; /* swh 9/19/95
*/
exception InvalidQuery{TString aReason;}; /* swh 9/19/95
*/
exception InvalidAuthenication{TString aReason;}; /* swh 9/19/95
*/

28

exception InvalidPayment{TString aReason;}; /* swh 9/19/95
*/
exception UnableToCompleteRequest{TString aReason;}; /* swh 9/
29/95 */
exception InvalidProperties{CosPropertyService::PropertyNames
aPropertyNames;};
exception InvalidMoreCookie{};
exception InvalidCookies{TCookies aCookies;};
exception InvalidMessageID{TString aReason;}; /* swh 3/21/96
*/

enum EExceptionReason
{
kInvalidRequest,
kInvalidQuery,
kInvalidAuthenication, /* swh 9/19/95 */
kInvalidPayment, /* swh 9/19/95 */
kInvalidProperties,
kInvalidMoreCookie,
kInvalidCookies,
kUnableToCompleteRequest, /* swh 9/29/95 */

kInvalidMessageID
};

union TException switch (EExceptionReason)
{
case kInvalidRequest : TString aRequestReason; /* swh 9/19/95 */
case kInvalidQuery : TString aQueryReason; /* swh 9/19/95 */
case kInvalidAuthenication : TString aAuthenicationReason; /* swh
9/19/95 */
case kInvalidPayment : TString aPaymentReason; /* swh 9/19/95 */
case kInvalidProperties : CosPropertyService::PropertyNames aProp-
erties;
case kInvalidCookies : TCookies aCookies;

case kUnableToCompleteRequest : TString aUnableReason; /* swh
3.21.96 */
case kInvalidMessageID : TString aMessageIDReason; /* swh 9/
19/95 */
};

typedef sequence<TException> TExceptions;

exception MultipleExceptions{TExceptions aExceptions;};

29

/* -- */
/* ## */
/*
 CItem
*/
/* ## */
/* -- */

/* -- */
/* CItem holds all or part of the state of an information object.
*/

interface CItem
 : CosPropertyService::PropertySet
{

 /* return all of the item handles related to this item. */
TAccessCapability GetAccessCapability();

 /* add a list of item handles to this item */
void AddAccessOptions(in TAccessCapability pOptions);

 /* remove this list of item handles from this item. */
void RemoveAccessOptions(in TAccessCapability pOptions);
 /* -- */
 /* RequestItemProperties()

 Request to be sent certain properties for this item. Sometime
 later, one or more SetItemProperties messages will be sent to
 pResultTarget and finally a CompletedRequest() or
 RaiseException() will be sent to signal the end of the request.
 o pMessageID is the client-side data to pass back in order to
 identify the resulting callback messages.
 o PropertyNames are the list of fields desired.
 o pResultTarget is the target result CItem.

 Note: this simply adds a asynchronous option to the ICosProperty
 interface: get properties from a single item.
 */

30

oneway void
RequestItemProperties(in TMessageID pMessageID,

 in CosPropertyService::PropertyNames
 pPropertyNames,
 in CItem pResultTarget);

 /* --- */
 /* SetItemProperties()

 Sets properties of this item.
 o pMessageID is the client-side data that matches the
 pMessageID of the initial request (a
 RequestItemProperties call)
 o pItem contains the state information requested.
 */

oneway void
 SetItemProperties(in TMessageID pMessageID,

 in CosPropertyService::Properties
pItem);

 /* --- */
 /* GetStatus()

 returns the status of a particular message request.
 */

 EStatus GetStatus(in TMessageID pMessageID);

 /* --- */
 /* CompletedRequest()

 Signals to the client that the request with pMessageID
 has completed successfully. No other messages with pMessageID
 shall be sent.
 */

 oneway void
 CompletedRequest(in TMessageID pMessageID);
/* -- */
 /* RaiseException()

 Signals to the client that the request with pMessageID
 has encountered an exception. No other messages with
 pMessageID

31

 shall be sent.
 */

 oneway void RaiseException(in TMessageID pMessageID,
 in TException pException);

 /* -- */
 /* CancelRequest()

 Signals to a requestee that the pending request with
 pMessageID shall be cancel. No other messages with
 pMessageID shall be sent to the requestor.
 */

 void CancelRequest(in TMessageID pMessageID) /* swh 3.21.96 */
 raises(InvalidMessageID);
};

/* -- */
/* ## */
/*
 CCollection
*/
/* ## */
/* -- */

/* CCollection contains a set of items (maybe documents) and
 efficently allows for the retrieval and setting of the items'
 properties in bulk.

 All of the Request methods are asynchronous in nature.
 The results should come back sometime later with the SetItems
 or SetItemsProperties methods.

 The cookies are generated by the server collection and given
 to the client to hand back when more items are needed. They
 may be used as an index into an array on the server side.
 Other schemes are allowed. This protocol does not require items
 to be stored in a sequencial manner.
*/

32

interface CCollection : CItem
{
 /* -- */
 /* GetTotalItems()

 Returns the total expected size of this collection.
 If NULL, then the expected size is unknown.
 */
TOptionalSize GetTotalItems();

/* -- */
 /* SetTotalItems()

 Sets the total expected size of this collection.
 o pTotalSize is the expected total size of the collection.
 If NULL, then the expected size is unknown.

 */
oneway void SetTotalItems(in TOptionalSize pTotalSize);

/* -- */
 /* GetItems()

 Get 'pNumberOfMoreItems' more Items.
 o pPropertyNames are the list of fields desired.
 o pNumberItems represents the maximum number of Items
 to send back. If NULL, then return all of the items in
 this collection.
 o pMoreCookie was returned by AddItems that represents
 how to get more Items in the collection. A value of
 NIL means to start from the beginning of the collection.
 o pNewMoreCookie is a new handle to get more Items.
 */
TItemsACState GetItems(in CosPropertyService::PropertyNames
 pPropertyNames,

 in TCookie pMoreCookie,
 in TOptionalSize

 pNumberOfItems,
 out TAccessCapability pNewMoreCookie)

raises(InvalidRequest,
 InvalidProperties,

 InvalidAuthenication,
 InvalidPayment,
 InvalidMoreCookie,

 MultipleExceptions);

33

 /* --- */
 /* RequestItems()

 Request to be sent pNumberItems more Items to pTarget.
 Sometime later, one or more AddItems messages will be
 sent to pResultTarget and finally a CompletedRequest()
 or RaiseException() will be sent to signal the end of
 the request.

 o pPropertyNames are the list of fields desired.
 o pMoreCookie was returned by AddItems that represents
 how to get more Items in the collection. A value of
 NIL means to start from the beginning of the collection.
 o pNumberItems represents the maximum number of Items
 to send back. If NULL, then return all of the items in
 this collection.
 o pTarget is the result collection to send the Items to.
 */

oneway void RequestItems(
in TMessageID pMessageID,
in CosPropertyService::PropertyNames

 pPropertyNames,
in TCookie pMoreCookie,
in TOptionalSize pNumberItems,
in CCollection pResultTarget);

 /* --- */
 /* AddItems()

 Add additional Items to this collection.
 o pMessageID is the client-side data that matches the
 pMessageID of the initial request (a RequestConstrain or
 RequestItems call.)
 o pItems contains the state information requested.
 o pNewMoreCookie should be passed to collection to request
 more Items. A NIL value means there are no more Items.
 */
oneway void AddItems(in TMessageID pMessageID,

 in TItemsACState pItems,
 in TAccessCapability pNewMoreCookie);

34

/*-- */
 /* GetItemsProperties()

 Get properties of items given their service-side cookies.

 o pPropertyNames are the list of fields desired.
 o pServerCookies is a list of server-side cookies
 of the items requested.

 Note: order and size of result TItemsState must match the
 order and size of the pServerCookies parameter.
 */

TItemsState GetItemsProperties(
in CosPropertyService::PropertyNames pPropertyNames,
in TCookies pServerCookies)
raises(InvalidRequest,
 InvalidAuthenication,
 InvalidPayment,

 InvalidCookies,
 InvalidProperties,
 MultipleExceptions);

 /* -- */
 /* RequestItemsProperties()

 Request to be sent properties of items given their
 server-side cookies.

 Sometime later, one or more SetItemsProperties messages
 will be sent to pResultTarget and finally a
 CompletedRequest() or RaiseException()
 will be sent to signal the end of the request.

 o pMessageID is the client-side data to pass back
 in order to identify the resulting callback messages.
 o pPropertyNames are the list of fields desired.
 o pServerCookies is a list of server-side cookies
 of the items requested.
 o pClientCookies is a list of client-side cookies
 to be returned in conjuction with the items'
 state information. The client can
 place anything in these cookies and is guarateed
 to be matched up with the resulting items.

35

 o pResultTarget is the target result collection to
 send the Items to.
 */
oneway void RequestItemsProperties(

in TMessageID pMessageID,
in CosPropertyService::PropertyNames pProper-

tyNames,
in TCookies pServerCookies,
in TCookies pClientCookies,
in CCollection pResultTarget);

 /* --- */
 /* SetItemsProperties()

 Set properties of existing Items in this collection.
 If a item does not exist in this collection, raise an
 exception.
 o pMessageID is the client-side data that matches the
 pMessageID of the initial request
 (a RequestItemsProperties call)
 o pItems contains the state information requested.
 */
oneway void SetItemsProperties(in TMessageID pMessageID,

 in TItemsCookieState pItems);

 /* -- */
 /* GetItemsPropertyNames()

 For a list of items, return a list of valid property names.

 */

PropertyNamesList
 GetItemsPropertyNames(in TCookies pCookies)

raises(InvalidRequest,
 InvalidCookies,
 InvalidAuthenication,
 InvalidPayment,
 MultipleExceptions);

36

 /* -- */
 /* RequestItemsPropertyNames()
 */

 oneway void RequestItemsPropertyNames(in TMessageID
 pMessageID,
 in TCookies
 pCookies,
 in CCOllection
 pTarget);

 /* -- */
 /* SetItemsPropertyNames()
 */

oneway void SetItemsPropertyNames(in TMessageID pMessageID,
 in PropertyNamesList

pNamesList);

 /* -- */
 /* RaiseExceptions()

 Signals to the client that the request with pMessageID
 has encountered multiple exceptions. No other messages with
 pMessageID should be sent.
 */

 oneway void
 RaiseExceptions(in TMessageID pMessageID,
 in TExceptions pExceptions);

 /* -- */
 /* RemoveItems()

 Remove the following items from the collection.
 */
 void
 RemoveItems(in TCookies pCookies)
 raises(InvalidRequest,

 InvalidAuthenication,
 MultipleExceptions);

};

37

/* -- */
/* ## */
/*
 CServicePreferences
*/
/* ## */
/* -- */

struct TServicePrefSummary
{
CServicePreferences aServicePreferences;
TOptionalSize aNumberOfItems;
CosPropertyService::Properties aMoreSummary;
};

interface CServicePreferences
:
CosPropertyService::PropertySet
{
TServicePrefSummary GetSummary();
TOptionalSize GetNumberOfItems();
void SetNumberOfItems(in TOptionalSize pNumberOfItems);
};

/* -- */

/* proximity */
enum RPNNumericRelationType {kRPN_PROX_LESSTHAN,

 kRPN_PROX_LESSTHANOREQUAL,
 kRPN_PROX_EQUAL,
 kRPN_PROX_GREATERTHANOREQUAL,
 kRPN_PROX_GREATERTHAN,
 kRPN_PROX_NOTEQUAL};

enum RPNProximityUnitCode {kRPN_CHARACTER,
 kRPN_WORD, kRPN_SENTENCE,
 kRPN_PARAGRAPH,
 kRPN_SECTION, kRPN_CHAPTER,

 kRPN_DOCUMENT,
 kRPN_ELEMENT, kELEMENT,
 kRPN_SUBELEMENT,
 kRPN_ELEMENTTYPE, kRPN_BYTE};

38

struct RPNProximityOperator {
 boolean exclusion; /* not within x words. */
 short distance;
 boolean ordered;
 RPNNumericRelationType relationType;
 RPNProximityUnitCode unitcode;
};

/* attributes */

struct RPNAttributeElement {
 unsigned long aAttributeSet;
 unsigned long aType;
 unsigned long aValue;
};

typedef sequence<RPNAttributeElement> RPNAttributeList;

/* operators */

enum RPNRelationOperator {kRPN_LESSTHAN,
 kRPN_LESSTHANOREQUAL,
 kRPN_EQUAL,
 kRPN_GREATERTHANOREQUAL,
 kRPN_GREATERTHAN,
 kRPN_NOTEQUAL,
 kRPN_PHONETIC, kRPN_STEM,
 kRPN_RELEVANCE,
 kRPN_ALWAYSMATCHES,
 kRPN_CONTAINS};

enum RPNBooleanOperator {kRPN_AND, kRPN_OR, kRPN_NOT};

enum RPNOperatorKey {kRPN_BOOLEAN, kRPN_PROXIMITY,
 kRPN_RELATION};

union RPNOperator switch (RPNOperatorKey) {
 case kRPN_BOOLEAN : RPNBooleanOperator bool_oper;
 case kRPN_PROXIMITY : RPNProximityOperator prox;
 case kRPN_RELATION : RPNRelationOperator rel_oper;
};

39

/* term */

enum RPNTermValueKey { kRPN_STRING, kRPN_NUMERIC, kRPN_REAL }; /*
swh 3.21.96 */

union RPNTermValue switch (RPNTermValueKey) { /* swh 3.21.96 */
 case kRPN_STRING : TString string_term;
 case kRPN_NUMERIC : long int_term;
 case kRPN_REAL : double real_term;
};

struct RPNTerm { /* swh 3.21.96 */
 RPNTermValue term;
 RPNAttributeList attributes;
};

/* operand */

enum RPNOperandKey {kRPNTERM, kRPNCOLLECTION, kRPNATTRIBUTE};

union RPNOperand switch (RPNOperandKey){
 case kRPNTERM : RPNTerm term;
 case kRPNCOLLECTION : CCollection coll;
 case kRPNATTRIBUTE : RPNAttributeList attrs;
};

/* rpn structure */

enum RPNStructureKey {kRPNTREE, kRPNLEAF};

union RPNStructure switch (RPNStructureKey) {
 case kRPNLEAF : RPNOperand op;
 case kRPNTREE : struct RPNNode {
 RPNOperator op;
 sequence<RPNStructure> operands;
 } rpnRpnOp;
};

/* rpn query 101 */
struct RPNQuery101 {
 unsigned long attributeSetId;
 RPNStructure rpn;
};

40

/* rpn query 10 */
struct RPNQuery0 {
 long querytype;
 CosPropertyService::Any query;
};

enum QueryType {kQTYPE0, kQTYPE101};

union TQueryDescription switch (QueryType) {
 case kQTYPE0 : RPNQuery0 QueryType0;
 case kQTYPE101 : RPNQuery101 QueryType101;
};

/* -- */

/* Query */
struct TQuerySummary
{
CQuery aQueryObject;
TQueryDescription aQueryDescription;
CosPropertyService::PropertyNames aItemPropertyNames;
CosPropertyService::Properties aMoreSummary;
};

/* -- */
/* CQuery represents the type, keywords, and other data needed to
 perform a constraint on a collection.
*/
interface CQuery
:
CosPropertyService::PropertySet
{
TQuerySummary GetSummary();

TQueryDescription GetQueryDescription();
void SetQueryDescription(in TQueryDescription pQueryDescription);

/* if this inherits from PropertySet, are these two necessary? --
dlk*/
CosPropertyService::PropertyNames GetItemPropertyNames();
void SetItemPropertyNames(in CosPropertyService::PropertyNames
pItemPropertyNames);
};

41

/* -- */
/* ## */
/*
 CConstrainCollection
*/
/* ## */
/* -- */

/* -- */
/* CConstrainCollection is a constrainable collection meaning that
 constraints can be placed on it (like a query or search.) It is
 up to the implementation whether it wants to create a new col-
lection
 to constrain or constrain this collection even further. The
pMoreCookie
 is returned to allow for both of these implementations.
*/

interface CConstrainCollection
:
CCollection
{
 /* --- */
 /* Constrain()

 Constrain Collection with pDesignator and return
 pNumberOfItems Items back with properties of
 pPropertyNames.

 o pQuerySummary is the constraints to place on this
 collection.
 o pServicePrefSummary are miscellaneous preferences
 like quality of service, passwords, flow control, number
 of items to send now.
 o pTotalSize is the total expected size of this
 collection. If NULL, then the total size is unknown at
 this time.
 o pMoreCookie should be passed to collection to request
 more Items. A NIL value means there are no more Items.
 */

42

TItemsACState Constrain(in TQuerySummary pQuerySummary,
in TServicePrefSummary pServicePrefSummary,
out TOptionalSize pTotalSize,
out TAccessCapability pMoreCookie)

 raises (
 InvalidRequest,
 InvalidQuery,
 InvalidAuthenication,
 InvalidPayment,
 MultipleExceptions);

 /* -- */
 /* RequestConstrain()

 Request to constrain Collection with pDesignator and
 send results to pTarget.

 Sometime later, one or more AddItems messages will be
 sent to pResultTarget and finally a CompletedRequest()
 or RaiseException() will be sent to signal the end
 of the request.

 o pMessageID is the client-side data to pass back in order
 to identify the resulting callback messages.
 o pQuerySummary is the constraints to place on this
 collection.
 o pServicePrefSummary are miscellaneous preferences
 like quality of service, passwords, flow control, number
 of itmes to send now.
 o pPropertyNames are the list of fields desired.
 o pTarget is the result collection to send the Items to.

 */
oneway void RequestConstrain(

in TMessageID pMessageID,
in TQuerySummary pQuerySummary,
in TServicePrefSummary pServicePrefSummary,
in CCollection pResultTarget);

};
};

