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1.0 Introduction

The Stanford Digital Libraries project is one of the six participants in the 4-year, $24
million US “Digital Library Initiative,” started in 1994 and supported by NSF, DARPA,
and NASA together with a set of industrial partners. Rather than addressing issues
related to a specific content collection, the Stanford project focuses on developing a set
of service protocols by which different information resources and services can be
“glued” together.1 This set of service protocols is referred to collectively as the “Stan-
ford InfoBus.” The InfoBus is a prototype infrastructure that is designed to provide a
bottom-up way of extending the current Internet protocols with a suite of higher-level
information management protocols that the Internet currently lacks. 

In this paper, we survey the design of the Stanford InfoBus and its five service layers:
protocols for managing items and collections (DLIOP), metadata (SMA), search
(STARTS), payment (UPAI), and rights and obligations (FIRM). 

1. In other words, despite its possibly misleading name, the “Stanford Digital Libraries Project”
is not about any specific “digital library.” (The testbed of the project relies on content collec-
tions and services maintained by industrial partners and on the information and services on the
Web.)
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Also part of the Stanford project but not the focus of this paper is work that leverages the
InfoBus middleware to experiment with novel user interfaces (DLITE [6], SenseMaker
[2]) and services (GlOSS [8], SCAM [13], Fab [12], InterBib [11]).

2.0 The Stanford InfoBus Architecture

The Stanford InfoBus is an architecture that gives clients uniform access to distributed,
heterogeneous information resources and services. A collection or a service is “on” the
InfoBus if it either uses one of the InfoBus protocols natively or if there exists an Info-
Bus proxy for this service. 

InfoBus proxies are wrappers that can be operated either by a service itself or by some
other service provider (e.g., a “digital library”). This flexibility makes it possible to
enrich the information infrastructure and to achieve interoperability in a bottom-up way:
It is not “imposed” (top-down) that services directly follow the InfoBus protocols; any
third party can “plug” its favorite services into the InfoBus. For example, InfoBus clients
can easily make use of the power of standard Web search engines such as Digital’s
AltaVista as soon as someone implements an InfoBus wrapper to AltaVista and pub-
lishes its availability. However, it is not required that this wrapper necessarily be run by
Digital itself; it can be autonomously maintained by third parties (with the use of proper
rights management). 

Note that it is of course usually advantageous for a service provider to be also directly
the operator of a corresponding InfoBus proxy. This allows them to make sure that the
proxy implementation exploits the service’s native features in the best possible way
(making the service “look good” in the uniform InfoBus world); it allows them to guar-
antee quality of service, etc. In other words, there is a built-in incentive (a social push)
for proxies to be moved out further to the sources–thus effectively leading to the adop-
tion of the InfoBus protocols without the necessity to formally standardize on them.

FIGURE 1. The Stanford InfoBus and Its Service Layers: Clients and services access InfoBus
services either directly or via InfoBus-compliant proxies. The InfoBus provides services
for managing items and collections (DLIOP), metadata (SMA), search (STARTS),
payment (UPAI), and rights and obligations (FIRM).

The Stanford InfoBus is designed to make it easy to provide such wrappers for an
increasing number of clients and services. Ideally, clients and services would freely
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interact, simply by plugging themselves into ‘the system’, just as hardware devices can
be plugged into a bus. We therefore call our vision the InfoBus. (Cf. Figure 1.)

Clients use InfoBus resources to accomplish complex tasks such as writing papers, pub-
lishing newsletters, and tracking the development of industrial product lines. Informa-
tion resources include information repositories such as online catalogs, stock feeds,
census data, newspapers, and so on. Resources also include services that operate on
information such as document translation, document summarization, remote indexing,
and payment services and copyright clearance.

At an implementation level, the architecture of the InfoBus clearly melds well with
technologies such as CORBA and DCOM that support object-oriented design in a dis-
tributed environment (although there is no reason why one could not implement the
InfoBus protocols, say, on top of HTTP–in fact, our specifications are independent of
any such implementation choices). 

In our testbed, we have experimented with the use of CORBA as a prototyping environ-
ment for developing the InfoBus. Specifically, we have used the CORBA implementa-
tion of one of our industrial partners: Xerox PARC’s ILU system [28]. Each
participating entity (clients, information resources, documents, attribute models, con-
tracts, etc.) is then either directly implemented as an object, or an object is created to act
as a proxy to the entity. These objects can be placed on any machine on the network and
can be accessed remotely from anywhere. The CORBA infrastructure makes it possible
to implement proxies on different platforms and in different languages. In our case, we
have used a mixture of Python, Java, and C++ to implement the various objects of the
infrastructure.

InfoBus proxies communicate with the services they represent via the native service
access protocols such as telnet, Z39.50, or HTTP. InfoBus clients that are interacting
with the proxies do not need to be aware of these differences; they can simply use proto-
col calls to access the proxies. Examples of services that we have linked up to the Info-
Bus by wrapping them with proxy objects include Knight-Ridder’s Dialog Information
Service, Web search engines, automatic document summarizers, bibliography mainte-
nance tools, OCR services, and others. InfoBus services also take care of any remaining
translation tasks (e.g. translation of queries). For examples of other InfoBus services,
see [3], [5]. More detail about the InfoBus and its implementation can also be found in
[1]. 

In the process of designing the InfoBus protocols, we have considered a number of
design guidelines that have been broadly applicable to several different parts of the
project:

• Keep the common case fast and simple. One of the potential pitfalls in designing
higher-level protocols is that generality is achieved at the expense of making previ-
ously simple cases more complicated. In our designs, we have taken care to keep
simple cases simple, and to use higher-level protocols to offer conceptual unification
and a way of uniformly covering more sophisticated cases in addition to simpler
cases.

• Build in extensibility. While designing a protocol, it is useful to think about how its
evolution will be managed over time, and how this process can be facilitated at the
outset. By explicitly considering sources of possible change and by modularizing the
design in a way that reflects these forces, we can incorporate the evolution process
into the technical infrastructure (and minimize the amount of coordination that
change would entail).
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• Provide toolkits in addition to services. A corollary of extensibility is that rather than
building a solution, it is often more useful to build toolkits that allow qualified other
people (e.g. librarians) to build solutions for specific circumstances. 

• Design for interoperability beyond the “least common denominator.” The commonal-
ities among different native protocols are often not sufficiently rich to accommodate
usages that users might care about in certain situations. We have generally ensured
that it is possible for sophisticated clients to gain access to more advanced features in
a structured way.

• Design for resource unavailability. In a widely distributed system, there will always
be some part of the system that is unavailable or vastly slower. The protocols need to
be able to handle such failures gracefully, even in cases where the missing resource
(information source, printer, network) provides no helpful diagnostics or recovery. 

• Do not limit implementors unnecessarily. Implementors of specific applications often
have a better sense of the trade-offs that exist for their designs than it is possible for
protocol designers to have. It is therefore useful to give implementors as much flexi-
bility in their choices as possible given a protocol of a certain complexity.

In the following, we survey each of the five service layers of the Stanford InfoBus. In
Section 3, we describe the DLIOP service layer for managing items and collections in a
networked environment. In Section 4, we describe our metadata protocol. In Sections 5,
6, and 7, we then describe the Stanford InfoBus service layers for managing search
(STARTS), payment (UPAI), and rights and obligations (FIRM), respectively.

3.0 DLIOP: Managing Items and Collections

The Digital Library Interoperability Protocol (DLIOP) is a protocol layer that provides
basic services for managing items (e.g. documents) and collections in a networked envi-
ronment. It allows InfoBus clients to communicate with information repositories, and to
request and receive information asynchronously from InfoBus proxies. Proxies obtain
this information natively from the information services they represent. Cf. Figure 2 for
an example of a simple arrangement. 

DLIOP combines advantages of stateless protocols such as HTTP (e.g., optimization for
short-lived resource usage) with the advantages of session-based protocols such as
Z39.50 (e.g. interaction efficiencies for multiple, related interactions) [27]. The protocol
provides a testbed for experimenting with dynamic resource reallocation to achieve load
balancing. It allows documents and computation to be moved among machines while
interactions between clients and services are in progress. Furthermore, DLIOP enables
experimentation with different caching strategies in contexts where clients sometimes
request follow-up information quickly and at other times only after several days have
elapsed. 

The DLIOP protocol specifies methods invoked among two basic kinds of components:
Clients and collections of items. “Clients” are any kind of application programs that
want to access an information collection. “Items” are the most general form of an Info-
Bus information object; subclasses of items include documents, services, attribute mod-
els, rights, contracts, etc. “Collections” are objects (in the sense of object-oriented
programming) that manage a set of items. 

The basic goal of DLIOP is to provide a flexible transport mechanism by which collec-
tions of items at the server end can be made available at the client side without the over-
head of having a client request each item individually across the network whenever an
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item is needed. DLIOP facilitates the interaction between a client and an external ser-
vice proxy by managing the way in which proxies to external services can return collec-
tions of items to an InfoBus client in response to a service request (e.g. a search query).
In this section, we outline key aspects of the DLIOP service layer. Additional motiva-
tion, comparisons to other protocols, and explanations can be found in [1].

FIGURE 2. The DLIOP Service Layer

3.1 Collections of Items

Collections are container objects with a simple interface. It includes methods such as
GetTotalItems(), which returns the number of items in the collection, or
AddItems(), which inserts new items into a collection if possible. An important sub-
class of collections is constrainable collections. Constrainable collections can be asked
to produce a result collection that contains a subset of the items that they currently hold. 

We use such constrainable collections to implement InfoBus proxies to information
repositories: While behaving like a true collection to clients, such collections can be
“virtual” in that they do not necessarily need to hold all of the items of a repository
directly, but they only materialize them on an as-needed basis. When such a collection
receives a constrain request, it issues a query to the external information source, and
retrieves result information from it. This information from the native source will usually
not be available in the InfoBus item format, but the proxy will make it available via this
uniform interface. In Figure 3, the proxy representing the external service is thus imple-
mented as a special kind of collection object, a constrainable collection which is a col-
lection that may be queried.

3.2 Basic Search Interaction

Figure 3 shows an example of a basic search interaction. The client wishes to search
over some external service for which a constrainable collection object acts as a proxy.
Note that while the steps in the figure are numbered for reference, most of them occur
asynchronously. Arrows in Figure 3 represent method calls.

As a first step, the client creates a local collection object for holding the results. Then
the client issues a query to the constrainable collection that acts as the external service’s
proxy. The query contains information on which objects are desired (authors must con-
tain the word ‘Smith’). It also contains instructions on how many results should be
returned as soon as they become available (10), and on which parts of those results
should be included (only abstract and title of each result). In addition, the query request
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includes a pointer to the client’s local result collection. The proxy collection will use this
pointer to deliver results.

FIGURE 3. DLIOP: A Basic Search Interaction.

Once the query has been delivered, the client is free to perform other work while the
query is processed: the query call to the proxy collection is asynchronous. Alternatively,
the client may immediately ask its local result collection for the total number of results,
and/or for some or all of the result objects. These calls could block until the required
information is actually available.

Meanwhile, the proxy collection delivers the query to the external service by whatever
means are appropriate: e.g. HTTP, Z39.50, a telnet connection, or its local file system.
As soon as the proxy collection knows how many hits to expect, it notifies the client’s
result collection. In (possibly) multiple calls to the client’s collection object, the proxy
collection subsequently delivers results. Each call (step 6) to the client’s collection
delivers some number of title/abstract values as lists, each list being the desired (title/
abstract) excerpt from one result. The client collection creates a local object for each
result, filling its title and abstract properties with the corresponding values. It is up to the
proxy collection to decide whether to wait for all 10 results to arrive from the external
service before delivering them to the client’s result collection, or whether to collect a
few and deliver them as early as possible. 

3.3 Getting More Result Objects for the Same Query

At some point, the client will have received and examined the initial 10 results from its
original request. Whenever the service client requests more results from its local result
collection than are currently scheduled to arrive there, the result collection contacts the
proxy collection at the server side for more of the hits. These are then delivered just like
the original results. Notice that in order to do this, the proxy collection needs to let the
client’s result collection know the proxy collection’s object ID. This is done as one of
the parameters in each of the (partial) result deliveries.
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3.4 Freeing Proxy Collection Resources

The client may take a long time before asking its local result collection for more result
objects, or for more properties of the result objects already partially retrieved. What if
the proxy collection does not want to keep the resources associated with a given query
indefinitely? It may want to use these resources for other requests, or the external ser-
vice could be a for-pay service with high connect-time fees. The DLIOP allows the
proxy collection to discard its resources at any time, although of course the intent is to
service already pending requests before shutting down.

Allowing proxy collections to shut down the resources associated with a particular
query raises two issues. What does a result object at the client result collection do if it is
asked for properties it did not yet pull over from the proxy collection? And what does
the client’s result collection do if the client asks it for more hits for the same query? The
first issue is handled by what we call access capabilities. 

Each result object contains an access capability that contains the information needed to
obtain values for the object’s properties. The access capability for each result object is
passed as a parameter from the proxy collection to the client’s result collection when
results are delivered. An access capability in turn may contain multiple access options,
which each represent one way of getting the property values. When a result object needs
to retrieve additional properties for itself, it initially tries to request them through the
first access option in its access capability. If that fails, it tries the next one, and so on.
Refer to Figure 4 for an informal illustration of access capabilities. 

FIGURE 4. DLIOP: Access Capabilities Provide Flexibility for Resource Management

Each access option contains the object identifier (OID) of an object that can provide the
additional properties, and a cookie to pass along with the request when contacting that
object2. For example, the first access option may contain the OID of the proxy collec-
tion. The associated cookie is interpreted as the identifier for the in-memory results set

2. A cookie is a data structure that is passed uninterpreted to its final destination. Only that final
destination knows how to interpret and use the data structure.
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from which the requested properties will come. If the proxy collection has already dis-
carded this result set, it will raise an error in response to the request for property values.
The client’s result object then attempts this operation again, this time with the second
access option of its access capability. The OID may again be the proxy collection. But
now the cookie will contain an indication to the proxy collection that a new query is to
be performed, with the required information being retrieved (again) from the external
service. This is, of course, more expensive than if the first access option had worked, but
it allows the DLIOP to avoid sessions that tie up the server side indefinitely.

The second issue, of client collections being asked for more hits after the proxy collec-
tion has discarded its resources associated with the query, is solved similarly. Every time
new results are added to the client’s collection, a ‘moreCookie’ is passed along. Analo-
gous to access capabilities for individual result objects, this data structure provides the
client collection with one or more contacts for requesting additional hits. 

3.5 Load Balancing at the Server Side

Sometimes it may be desirable to free the object that acts as proxy to the external service
from handling new requests at the same time it is processing a pending request. Figure 5
shows how this requirement can be accommodated.

FIGURE 5. DLIOP: A Search Interaction with Server-side Off-Loading (Interactions 1, 2, 4, 5, 6, and
7 are as in Figure 2)

Instead of interacting with the external service itself, the constrainable collection imme-
diately creates a ‘delegate’ object which takes over the remaining processing of the
query request. It then returns to accepting more requests. Note that the request processor
object created as the delegate may reside on a machine other than the one running the
constrainable collection. The client is unaware of the origin of calls in steps 6 and 7.

3.6 Load Balancing During Result Delivery

The DLIOP allows server-side objects to perform load balancing even while results are
being delivered to the client. This is easy because, as pointed out in Section 3.3, the OID
of the proxy collection is passed to the client’s result collection every time a set of
results are delivered. Before delegating further work to a new object, the proxy collec-
tion can issue a call to the client’s result collection, adding an empty set of results, and
specifying a new OID as the target for future requests for additional result hits.
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3.7 Discussion

The DLIOP protocol is very carefully designed to leave as many decisions as possible to
implementors. If the external service is session-based, the proxy may maintain sessions
for as long or short a time as the implementor deems appropriate. Similarly, the location
and lifetime of caches are not prescribed by the protocol. For example, any given imple-
mentation may choose to cache large numbers of result objects at the proxy. Alterna-
tively, the objects could be moved to the client-side result collection as quickly as
possible. The correct strategy depends on usage patterns, resource considerations at the
proxy, and the typical size of result objects. The implementor makes the decision, not
the protocol.

The protocol is modular in that it allows the overall system to be partitioned into inde-
pendently implemented and maintained units. Clients can be constructed independently
from proxies. As proxies are added, clients can begin to take advantage of them right
away. Conversely, proxies may be developed without knowledge of the current or future
client population.

The protocol fares less well for the guideline of ‘making simple operations very simple
to perform and implement’. We do pay overhead for the protocol’s ability to perform
load balancing. This is best illustrated with the example of our ‘moreCookie’. In order
for the proxy to have the freedom to delegate work at any time, the client does have to
check the most recent ‘OID for future interactions’ before issuing follow-up requests to
the proxy. Recall that the proxy passes this OID during each call to the client. While this
is easy to implement, it is a complication that would not exist if the protocol did not
have its advanced capabilities.

3.8 Implementation Status

A CORBA-based implementation was completed early in the project and has since then
provided the foundation for many other protocols and services. DLIOP has also been
used to interoperate with collections developed by other DLI digital library projects.

4.0 SMA: Managing Metadata

The Stanford Digital Library Metadata Architecture (SMA) defines a service layer for
the uniform exchange and management of the metadata necessary for finding InfoBus
services, for querying these services, and for interpreting the structured results returned
by these services. Before this architecture was put in place, each InfoBus service han-
dled metadata in its own ad hoc way. This led to incompatibilities at the user level (a
query constructor might ask a user to fill in an “author” field, while a result analysis tool
might refer to an author as a “creator”) and at the infrastructure level (query constructors
and query translators must communicate with each other about field information).

In particular, the SMA layer is concerned with the interoperability of two types of meta-
data: (1) metadata that describes the information objects (e.g., textual documents) avail-
able through search services, and (2) metadata that describes the services themselves. A
more in-depth characterization of the metadata needs addressed by this architecture can
be found in [3]; further discussion of the design rationale for this architecture can be
found in [4]. Note that the following descriptions are geared towards search services but
the design readily generalizes to other usages as well.

To facilitate metadata compatibility and interoperability, the Stanford Metadata Archi-
tecture (SMA) includes four basic component classes: attribute model proxies, attribute
model translators, metadata facilities for search proxies, and metadata repositories. 
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Attribute model proxies elevate both attribute sets and the attributes they define to first-
class objects. By this, we mean that attribute sets and attributes have computational rep-
resentations through which they can describe themselves and interact with other compo-
nents of the architecture. They also allow relationships among attributes to be captured.
Attribute model translators map attributes and attribute values from one attribute model
to another (where possible). Metadata facilities for search proxies provide structured
descriptions both of the collections to which the search proxies provide access and of the
search capabilities of the proxies. Finally, metadata repositories accumulate selected
metadata from local instances of the other three component classes in order to facilitate
global metadata queries and local metadata caching.

Figure 6 shows the current component classes, communication pathways, and InfoBus
connections. We describe the specification of each component class and its associated
communication pathways in turn.

FIGURE 6. The Stanford Metadata Service Layer

4.1 Attribute Model Proxies

Structured descriptions of resources and services are built out of attributes and attribute
values. One level of aggregation beyond the individual attribute is the attribute model–a
self-contained collection of attributes. Well-known attribute models include the
USMARC set of bibliographic attributes (referred to as “fields” in the USMARC com-
munity) [22], the Dublin Core set of attributes [24], and so on.

In our metadata architecture, we reify both attributes and their encompassing attribute
models as first-class objects. Attributes are instances of class AttributeItem.
Attribute model proxies are implemented as InfoBus collections. Attribute model proxies
represent real world attribute models, just as search proxies represent real world search
services.

An AttributeItem’s properties include the following: model name, attribute name,
aliases usable for queries, value type, documentation, various other information used by
query translators, and so on.

The model name and attribute name are both strings that serve to identify the
AttributeItem uniquely. As an example, an attribute might have the model name
“Dublin Core’’ and the attribute name “Title.’’ The model name is repeated in all items
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to make them self-contained. This is important when the items are passed around the
system to components other than the “home’’ attribute model proxy. When examining
an AttributeItem, a client can always determine to which attribute model it belongs.

The attribute value type information in an AttributeItem dictates the data type that
can be contained in fields described by the AttributeItem. We use the interface defi-
nition language (IDL) that is part of our CORBA implementation to specify these types.
It is up to each search service proxy to ensure that the values it returns conform to these
type specifications. If the external service that the proxy represents natively returns a
different type, then the proxy is expected to transform the value into the specified type
before returning it.

Attribute model proxies make attribute models first-class objects in our computational
environment. They allow us to store and search over attribute-specific information that
is independent of the capabilities possessed by any particular search proxy. Since an
attribute model proxy is a collection, it is accessible via the same interface as all other
search service proxies. In other words, the attribute model proxy has a search method
that responds to a query by returning the appropriate subset of the included
AttributeItem. Furthermore, attribute model proxies record what relationships hold
among the included attributes. We currently record “is_a” and “part_of” relationships.
This is important for some services, such as sophisticated user interface services, that
require structured attribute models. 

A search service proxy that supports such an attribute model could use this relationship
information when processing queries. For example, a search service proxy might deter-
mine that items match the query Creator contains Ullman if they contain “Ull-
man’’ in the value of the Creator attribute or if they contain “Ullman’’ in the value of
descendant attributes (e.g., in the value of Reporter or Author). 

4.2 Attribute Model Translators

In heterogeneous environments, many different attribute models co-exist. This inevita-
bly leads to mismatches when InfoBus components that support different attribute mod-
els attempt to communicate with each other. For example, consider a bibliographic
database proxy and a client of that proxy. The bibliographic database proxy might sup-
port only the Dublin Core attribute model, while the client might support only the
USMARC bibliographic data attribute model. In order for this client and this proxy to
communicate with each other, they must be able to translate from USMARC attributes
to Dublin Core attributes and vice versa. In other words, they require intermediate
attribute model translators. Attribute model translators serve to mediate among the dif-
ferent metadata conventions that are represented by the attribute model proxies. These
translation services, available via remote method calls, translate attributes and their val-
ues from one attribute model into attributes from a second attribute model.

Of course, in some cases, translation may not be possible: consider translating from an
attribute model designed for chemistry databases into an attribute model designed for
ancient Greek texts. Similarly, Dublin Core is a much smaller set than USMARC, so
some information that can be tagged in USMARC finds no equivalence in Dublin Core.

Even when translation is appropriate, the translation from one attribute model to another
is often difficult and lossy. For example, the Dublin Core describes authorship using the
single attribute Author. However, USMARC distinguishes among several different types
of authors, including Corporate Author (recorded in the 100 attribute) vs. Individual
Author (recorded in the 110 attribute). When translating an AttributeItem from Dub-
lin Core to USMARC, a decision must be made whether to translate the Dublin Core
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Author attribute value into a USMARC 100 attribute value or a USMARC 110 attribute
value. This may be hard-coded, or the translation may be performed heuristically and
may take into account the other attribute values present in the item being translated. 

Translation services do more than map source attributes onto target attributes. They must
also convert each attribute value from the data type specified for the source attribute into
the data type specified for the target attribute. This conversion can be quite complex. For
example, one attribute model might call for authors to be represented as lists of records,
where each record contains fields for first name, last name, and author address. Another
model might call for just a comma-separated string of authors in last-name plus initials
format. When translating among these values, some information may again be lost if, for
example, the address is simply discarded.

Our attribute model translation services may be accessed by a variety of other InfoBus
components, including search service proxies. For example, a search service proxy
might choose to use attribute model translators to be attractive to more clients, because it
can then advertise that it deals in multiple attribute models. On the other hand, clients
might use attribute model translators in order to ensure their ability to communicate with
a wide variety of search services.

4.3 Metadata Facilities for Search Proxies

The metadata facility that we attach to each search service proxy is responsible for
exporting metadata about the proxy as a whole, as well as for exporting metadata about
the collections to which it provides access. Collection metadata includes descriptions of
the collection, declarations as to what attribute models are supported, information about
the collection’s query facilities, and the statistical information necessary for resource
discovery services like GlOSS [7] to predict the collection’s relevance for a particular
query. Clients can use the information to determine how best to access the collection
maintained by the search service (i.e., what capabilities the search service supports).

We have decided to make the interface for accessing the metadata facility of search ser-
vice proxies very simple in order to encourage proxy writers to provide this information.
Search service proxy metadata is accessed via the getMetadata() method, which
returns two metadata objects. Alternatively, each proxy may opt to “push” these meta-
data objects to its clients. The first metadata object contains the general service informa-
tion, and it is based heavily on the metadata objects defined by STARTS (cf. Section 5).
The general service information includes human-readable information about the collec-
tion, as well as information that is used by our query translation facility. Examples for
the latter are the type of truncation that is applied to query terms, and the list of stop-
words. Our current query translation engine is driven by local tables containing this kind
of information about target sources.

An interesting attribute of our first metadata object is contentSummaryLinkage. The
value for this attribute is a URL that points to a content summary of the collection. Con-
tent summaries are potentially large, hence our decision to make them retrievable using
ftp, for example, instead of using our protocol. The content summary follows the
STARTS content summaries, and consists of the information that a resource-discovery
service like GlOSS [7] needs. Content summaries are formatted as Harvest SOIFs [24].

The second metadata object returned by the getMetadata() method contains attribute
access characteristics. This is attribute-specific information for each attribute that the
proxy supports. Recall that attribute model proxies contain only information that is inde-
pendent from any particular search services. Attribute access characteristics complement
this information in that they add the service-specific details for each attribute.
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For example, some search services allow only phrase searching over their Author
attributes, while others allow keyword searching. Similarly, some search services may
index their Publication attributes, while others may not. The attribute access characteris-
tics describe this information for each attribute supported by the collection specified in
the getMetadata() call. The query translation services need this information to sub-
mit the right queries to the collections.

Notice that this design does not allow clients to query search service proxies directly for
their metadata. Search service proxies only export all their metadata in one structured
“blob.’’ The reason for this is that the InfoBus includes many proxies, and more are
being constructed as our testbed evolves. We therefore want proxies to be as lightweight
as possible. Querying over collection-related metadata as exported by search service
proxies is instead available through a special component, the metadata repository.

4.4 Metadata Repositories

Metadata repositories are local, possibly replicated databases that cache information
from selected attribute model proxies, attribute model translators, metadata facilities for
search proxies, and other InfoBus services in order to produce one-stop-shopping loca-
tions for locally valuable metadata. We allow for metadata repositories to pull metadata
from the various facilities, as well as for the facilities to push their metadata to one or
more repositories directly. The intent is for these repositories to be a local resource for
finding answers to metadata-related questions and for finding specialized metadata
resources. A metadata repository has a search-service-proxy interface, and includes:

• The AttributeItem from locally relevant attribute model proxies. This data is use-
ful, for example, to search for attribute models that contain concepts of latitude and
longitude.

• Translator information for locally relevant attribute models. This data is useful, for
example, to search for translators to or from particular models. Searches return point-
ers to the translator components.

• General service information for locally relevant search service proxies. This data is
obtained through getMetadata() calls on the proxies, as discussed in the previous
section, and is useful, for example, to search for collections whose abstracts match a
user’s information need. It is also useful for more technical inquiries, such as for
finding search proxies that support a given attribute model, or proxies that support
proximity search.

• The attribute access characteristics of the locally relevant search proxies. This data
is primarily useful to the query translators. Translators can, for example, find out
which proxies support keyword-searchable Dublin-Core Author attributes. 

4.5 Discussion

Defining what metadata should be managed in a generic architecture and how it should
be managed is a complex task. Many variations on a metadata architecture are possible.
In developing the SMA, we explicitly resolved a variety of design trade-off decisions by
appealing to two factors: (1) the concrete metadata needs of existing InfoBus services
[3], and (2) several of the protocol guidelines set forth in Section 2. We briefly describe
here how some key aspects of our design were influenced by the protocol guidelines.

• Design for interoperability beyond the “least common denominator.” Many of the
attribute models that are in use today are simply flat attribute sets that do not record
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information about attribute relationships. For example, many attribute sets contain
both “author” and “corporate author” as distinct attributes. Whether or not a “corpo-
rate author” is interpreted as a kind of “author” is up to the writer of a metadata
record or to conventional rules about how these fields should be used and interpreted.
By moving beyond the “least common denominator” and providing for relationship
information to be encoded explicitly in our attribute models, we have paved the way
for more sophisticated forms of querying and result analysis.

• Do not limit implementors unnecessarily. In designing our metadata repositories, we
ensured that the contents of repositories could be obtained either by pulling informa-
tion from the local contributing services or by having the local services push their
information to the repository. Depending on the situation, one approach might win
out over the other. Push is often useful for cases in which a service makes infrequent
major changes. Pull is often useful for cases in which services have exhibited unreli-
ability in alerting a repository of important changes, or for cases in which outdated
repository information causes difficulty for its clients. We realized that we could not
anticipate which of these situations would prevail in use, and thus decided that this
decision was best left to the implementors of repositories and contributing metadata
services.

A second area in which this guideline was helpful was in the design of the metadata
facility for search service proxies. Before the development of the SMA, there was no
standard way of obtaining service-related metadata from a proxy. Adding a metadata
facility to the proxy made this information uniformly available. However, we needed to
decide how this information should be accessed. One possibility was to make this meta-
data accessible via the DLIOP. This would let us query a proxy for its information and
for its metadata via the same protocol (similar to the approach taken by Z39.50’s
Explain facility [27]). However, we realized that this approach would put an extra bur-
den on proxy implementors in that they would need to write their own search facilities
for locating this information. We decided that it was better instead to keep proxies as
lightweight as possible and thus to give implementors more freedom and fewer restric-
tions in their proxy design. The SMA only requires that metadata be exported from the
proxy in a single “blob” and leaves the provision of facilities for searching over meta-
data to the local metadata repository.

4.6 Implementation Status

We have implemented prototype instances of all four component classes of our metadata
architecture: several attribute model proxies, two attribute model translators, a metadata
repository, and a metadata facility for a search proxy. Our attribute model proxies
include implementations of proxies for Z39.50’s Bib-1, Dublin Core, Refer, BibTeX,
GILS, and a subset of USMARC. We can, for example, search over our USMARC proxy
for all attributes containing the word Title in their description. This returns five entries,
including attributes for Title Statement, Varying Form of Title, and Main Entry -- Uniform
Title. This information will be used in our user interface to help users select proper
attributes for search.

5.0 STARTS: Managing Search

The Stanford Protocol Proposal for Internet Retrieval and Search (STARTS) is an
emerging protocol for Internet retrieval and search. In this section, we give a brief survey
of the STARTS service layer; further information can be found in [9].
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5.1 Objective

Users have many document sources available, both within their organizations and on the
Internet (e.g., the CS-TR sources3). The source contents are often hidden behind search
interfaces and models that vary from source to source. Even individual organizations
use search engines from different vendors to index their internal document collections.
These organizations can benefit from metasearchers, which are services that provide
unified query interfaces to multiple search engines. These give users the illusion of a
single combined document source. 

The goal of STARTS is to facilitate the main three tasks that a metasearcher performs: 

• Choosing the best sources to evaluate a query

• Evaluating the query at these sources 

• Merging the query results from these sources 

Also, as will become clear after the discussion below, STARTS makes it easier to build
InfoBus proxies to external services.

3. The CS-TR sources constitute an emerging library of Computer Science Technical Reports.
Cf. http://www.ncstrl.org/.

5.2 Problems Addressed and Approach

Building metasearchers is currently a hard task because different search engines are
largely incompatible and do not allow for interoperability. In effect, a metasearcher
faces the following three problems: 

• The source-metadata problem: A metasearcher might have thousands of sources
available for querying. It then becomes crucial that the metasearcher just contact
potentially useful sources. So, the metasearcher needs information about the sources’
contents to choose the best sources for a given query. 

• The query-language problem: A metasearcher submits queries over multiple sources.
But the interfaces and capabilities of these sources may vary dramatically. Thus, the
metasearcher has to translate the original query to adjust to each source’s syntax and
capabilities.

• The rank-merging problem: Most commercial sources rank documents according to
how “similar” the documents and a given query are. Merging query results from dif-
ferent sources is hard, since a metasearcher might have little or no information on
how the document ranks are computed at the sources.

In order to address the source-metadata problem, STARTS defines the information that
sources should export about themselves. This information includes automatically gener-
ated content summaries to assist in choosing the best sources for a query. It also includes
a description of the query capabilities available at the sources, since the STARTS query
language has several optional parts that sources might decide not to support.

To address the query-language problem, STARTS defines a simple query language that
sources should support. This language is based on a simple subset of Z39.50 [27]. A
STARTS query contains two (optional) components: a Boolean expression that defines
the documents that qualify in the answer to the query, and a ranking expression that
associates a score with these documents and ranks them accordingly. STARTS also
defines a suggested set of fields (e.g., author, title), and a suggested set of modifiers (e.g.,
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thesaurus, stemming) that should be available for searching at the sources. If sources
follow these suggestions, then query translation becomes greatly facilitated.

Finally, to address the rank-merging problem, STARTS requires that sources return
some statistics together with the results for a given query. This way, a metasearcher can
ignore the scores that the sources compute for the documents, and compute its own
scores from these statistics without having to retrieve the documents in the query results.
The metasearcher then ranks the documents using the new scores. Statistics returned
include the number of times that each of the query keywords occur in the documents in
the query results, for example.

5.3 Discussion

Although STARTS intends to make the search-engine world more uniform, it leaves
many aspects of the protocol open. As a notable example, STARTS does not specify how
sources should answer queries. Instead, it just specifies a query syntax, with many
options and significant room for future extensions.

A key goal in the STARTS specification is to keep the protocol requirements low and
easy to implement. For example, the content summaries that sources should export are
easily computable from the standard inverted-file indexes that search engines use to
answer queries efficiently.

Throughout the STARTS specification, there are ways of extending the protocol with
new, unforeseen features. For example, a new set of search fields may be defined in the
future for some specific domain. A source may then support this new field set by simply
specifying the set name in the source’s metadata.

The goal of STARTS is to facilitate searching over text sources. No attempt is made to
cover non-textual information, for example. As a result, the STARTS specification is
much simpler and focused than what it would have been otherwise.

STARTS could have adopted a “least common denominator” approach. However, many
interesting interactions would have been impossible under such a solution. Alternatively,
STARTS could have incorporated the sophisticated features that the search engines pro-
vide, but that also would have challenged interoperability, and would have driven us
away from simplicity. Consequently, we had to walk a very fine line, trying to find a
solution that would be expressible enough, but not too complicated or impossible to
quickly implemented by the search engine vendors.

5.4 Implementation Status

STARTS has been developed in a unique way. It is not a standard, but a group effort
involving more than a dozen companies and organizations. The Stanford Digital Librar-
ies Project coordinated search engine vendors and other key players to informally design
a protocol that would allow searching and retrieval of information from distributed and
heterogeneous sources. The key participants in this effort are Infoseek, Fulcrum, PLS,
Verity, WAIS, Microsoft Network, Excite, GILS, Harvest, Hewlett-Packard Laborato-
ries, and Netscape.

The STARTS specification is completed. A reference implementation of the protocol has
been built at Cornell University by Carl Lagoze. Also, the Z39.50 community is design-
ing ZDSR, a profile of their Z39.50-1995 standard based on STARTS.
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6.0 UPAI: Managing Payment

The Universal Payment Application Interface (UPAI) protocol is the Stanford InfoBus
layer that provides services related to payment. UPAI, described in detail in [10], makes
it easy to have client applications (such as a merchant’s online storefront or a user’s
browser) that include payment transactions without requiring the client itself to know
the details of about a specific payment mechanisms.

6.1 Objective

A number of vendors have offered solutions for secure, digital payments over the Inter-
net. First Virtual’s system4 and e-cash from DigiCash5 are examples of early payment
systems. These and others payment mechanisms all share a few basic conceptual states
and transactions; yet they differ greatly in protocol content, format, and order of execu-
tion. UPAI steps in at this point, and provides conceptual unification of the different
mechanisms as well as ways by which these concepts can be mapped into the native pro-
tocols.

A traditional application developer who wants to support both the First Virtual and the
DigiCash payment mechanism would add the logics for both protocols to his or her
application–as well as a mechanism to select the protocol to use for a particular transac-
tion. As new payment systems gain users, such an application developer would have to
add new sets of subroutines to legacy applications.

In contrast, UPAI permits existing applications to remain unchanged. New kinds of pay-
ment systems are supported by simply adding new proxies. The existing applications
would be able to communicate with any new payment protocol since newly introduced
objects would respect the pre-defined interface of the application as specified by UPAI.

4. Cf. http://www.fv.com/

5. Cf. http://www.digicash.com/

6.2 Architecture

Figure 7 depicts key components of the UPAI service layer.

The rectangle at the bottom of the figure represents the native payment mechanism pro-
tocol. Notice that the application code (both the browser on the customer’s side and the
storefront on the merchant’s side) never makes direct calls on the native protocols.
Instead, they always make the UPAI defined calls through intermediate objects. First,
the Payment Control Record, represented by the central square labelled PCR, encapsu-
lates all of the necessary information about one payment, such as the source and destina-
tion account (represented by AccountHandles), and the amount. AccountHandles
are proxies that translate from UPAI calls such as StartTransfer to the correspond-
ing native calls of the payment mechanism, perhaps generating an e-mail message of a
particular format or invoking a UNIX command.

Just as calls from the application code to the payment mechanism code are mediated by
UPAI proxies, so the return values generated by the native payment mechanism protocol
are converted by proxies into appropriate UPAI responses. The status updates are com-
posed of two pieces: a major status taking one of three values (Complete,
InProgress, or Failed); and a minor status (which may be of any type). The Pay-

mentControlRecord collects this status information, and rebroadcasts it to each of
the Monitor objects. Monitor objects have basic interfaces defined by UPAI, but may be
subclassed to add additional functionality. The monitor objects are integrated into the
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user or merchant’s application. They register an interest in tracking the status of the
transaction, and receive all updates. If a failure is reported, the user application may, for
example, select a different payment mechanism and try again.

FIGURE 7. The UPAI Service Layer: Components.

6.3 Discussion

The design considerations described in Section 2.0 permeate the design of the UPAI pro-
tocol. For instance, a standard payment is a common operation, and may be done with a
single call in the interface to StartTransfer. (Of course, the PCR must be first cre-
ated with the requisite control information.) This simplicity is in contrast to the com-
plexity of the native payment mechanisms, which often require multiple calls to the
operating system for a single payment. Note that UPAI does not provide an operational
efficiency gain–the proxies still make whatever calls are dictated by the native payment
mechanism protocol. UPAI instead provides a gain in implementation efficiency; it sim-
plifies the coding process for the application developers. The proxy itself could be devel-
oped by the payment system provider or a third party. 

The UPAI protocol is by its nature adaptable to new payment mechanisms. As described
above, the applications need not be aware of the particular details of any specific pay-
ment mechanism. They merely make calls to the UPAI proxies which are identical
regardless of the underlying native system. Moreover, the limited set of feasible return
values also disguises the underlying details of the native system. Therefore, a browser
implemented for a (hypothetical) ‘‘CyberBucks’’ system knows that it should expect the
goods that it has ordered if the StartTransfer invocation on the CyberBucks
AccountHandle proxy results in a Complete status update. On the other hand, pay-
ment mechanism-specific information may also be conveyed in the “minor” status field,
if the application’s Monitor object was designed with awareness of CyberBucks. For
instance, if the MajorStatus is Failure, and the MinorStatus reports that the pub-
lic key server is temporarily unavailable, the Monitor object may reinitiate the transfer
after an appropriate delay.

The UPAI protocol’s scope is limited to only the operational aspects of payment. It does
not, for example, provide any primitives related to the user interface for wallet manage-
ment. If desired, a higher level protocol could be built on top of UPAI to interact with the
user to set spending limits and provide expense reporting.
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The UPAI protocol is also designed as an asynchronous protocol. Callbacks are used to
convey return values, while the methods themselves return as soon as they are invoked.
Although this introduces some additional complications in process management, it pro-
vides a number of benefits. If a payment system is unavailable (or if it is simply taking
longer than expected), the user can recover quickly, returning to an application task,
making a second payment, or aborting the initial payment and selecting a different
mechanism. 

6.4 Implementation Status

A prototype implementation of UPAI has been completed. UPAI is used as part of the
Stanford Digital Library testbed to deal with the fulfillment processing for payment
obligations that are part of digital contracts defined by the InfoBus FIRM rights man-
agement service layer. Proxies for the First Virtual and DigiCash protocols were devel-
oped for an earlier version of the UPAI protocol.

7.0 FIRM: Managing Rights, Obligations, and Contracts

The Stanford Framework for Interoperable Rights Management (FIRM) defines a rights
management service layer on top of existing Internet protocols, supporting a host of
usages including, but not limited to, digital contracting, privacy negotiations, and net-
work security.

In FIRM, “form designers” develop standard digital contract forms that are then made
available as the “stationery” that anyone can easily take, customize, and instantiate into
computational contract objects. These “smart contracts,” also called “commpacts,” artic-
ulate and enforce the terms and conditions of a given rights relationship (subscriptions,
site licenses, etc.). Commpacts are first-class control objects that are managed indepen-
dently of the objects they control (by “commpact manager” services), accommodating a
wide variety of transaction scenarios.

In this section, we give a basic survey; further detail can be found in [14] and in [15].
We briefly highlight FIRM’s basic approach, its object and transaction models, and the
architecture that enables such a design. 

7.1 Towards an “Open Standards” Rights Management Service Layer

The objective of FIRM is to provide a simple protocol layer that makes it easy for appli-
cations to deal with rights management issues in a networked environment.

FIRM does not assume that exising solutions will be rewritten or that there will be a
convergence towards one single mechanism. Rather FIRM is based on the assumption
that the rights management landscape will continue to be heterogeneous, with each of
the systems making different design trade-offs to best accommodate the constraints
from a specific area of application. The basic idea behind FIRM is then to provide a pro-
grammable platform for rights management interactions by defining some basic object
interfaces and transactions.

FIRM limits its core to represent only the shared structure of the various kinds of rights
relationships that people might want to establish, specifically identifying some basic
principles of contract law as this shared structure—since contract law is essentially
nothing else than a body of concepts and principles that describe the shared structure of
rights relationships in a generic way. 

Any kind of information that reflects domain-specific conceptualizations is then kept
outside of the type system of the core specification itself, while FIRM provides a way of
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linking in such rights vocabularies into an integrated rights management layer. Sample
rights languages that can be expressed in this way include the Unix file access rights lan-
guage (cf. [14] for details about this case), Xerox’ DPRL [20], the EDI standard mes-
sage types [17], or specific privacy rights languages [16]. 

FIGURE 8. The FIRM Service Layer: FIRM makes use of the other InfoBus service layers. RManage
is a prototype implementation of the FIRM framework.

7.2 Shifting the Perspective to Relationships

FIRM takes a relationship-based approach. It represents relationships (contracts) explic-
itly as first-class objects (called “commpact”/“communication pacts”) and encapsulates
the boundary conditions of a relationship in these objects. 

Note that having such first-class “relationship objects” is different from traditional “cli-
ent-based” control, which is usually centered around a notion of (access-control) “capa-
bilities.” Capabilities are (opaque) tokens that give its possessor (hopefully—but not
necessarily—its owner) access to objects that accept them. Capabilities are user-concep-
tually like the “tickets” that we know from everyday usage—with the same set of associ-
ated problems: when they are lost, they are gone; trying to revoke any of them
guarantees to be a major enterprise, etc.6

However, unlike full-fledged contracts, “tickets” only provide limited information about
the context within which their use came about—which is why, in the “real world,” they
are used almost exclusively in situations which are either characterized by low stakes
and a strong imbalance of trust/bargaining power (e.g. Joe Individual vs. National Rail-
way Operations) or low stakes and immediate fulfillment (e.g. movie theater tickets).
For such special cases, tickets are a low-cost variant of externalizing contract informa-
tion. 

Some technical systems take this as a reason to only reify tickets and abstain from reify-
ing contracts themselves. While certainly a plausible trade-off for many applications,
this clearly limits the affordances available for users of such an environment. For exam-
ple, while they might be able to purchase a ticket and use it to gain access to online con-
tent, there would be no structured ways of cancelling the contract and returning the
ticket, or just obtaining information about the warranties a good has, etc. We are inter-

6. The “electronic tickets” that airlines have recently introduced are still called “tickets”; but in
terms of the control architecture, they clearly implement more of a form of a commpact in our
terminology here.
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ested here in coming up with a more complete infrastructure and investigating its prop-
erties. In particular, we would like to provide a way to establish and modulate
relationships directly. We will therefore reify contracts themselves. (It turns out that
“tickets” will then effectively show up as the way in which contract objects are refer-
enced.)

Note that commpacts also generalize conventional server-based control as well as third-
party control in that they accommodate these usages as the special cases where the com-
mpact is interpreted at the server or at a third party, respectively. The difference is that
rather than only having idiosyncratic protocols for special purposes (e.g. the PhotoShop
group license server protocol) we have the ability to tie in such protocols into an “open
standards” framework.

7.3 FIRM’s Object Reifications

The following is a summary of the some of the major object reifications in FIRM. Note
that some of the terms either are new words or they are phrases used with a certain spe-
cial intended meaning. New words such as ‘commpact’ and ‘epers’ were introduced to
distinguish between real-world objects (e.g. a legal contract or a real person) and their
electronic representation (the digital objects), allowing their interface to be clearly nego-
tiated. In other cases, we use phrases with a somewhat different meaning following the
new concepts and institutions introduced by the technical architecture.

Epers (also: e-person): An epers is a software agent that is the persistent digital repre-
sentation of (a role of) a person with a structured request interface. When acting online,
users are identified by a (possibly opaque) handle to their e-person, allowing any com-
munication partners to get back this structured representation and negotiate access con-
ditions in detail—only in some cases involving the user (e.g. when certain interactions
are not covered by the default preferences that a user set up for his or her e-person). One
person can have more than one epers. A Unix account can be seen as a current form of a
limited version of an e-person.

Home Provider: A home provider is the service that provides an “online home” for
persons in the form of an e-person. Current online services and ISPs can be home pro-
viders, although in principle people with a permanently connected machine can also run
their own home provider.

Commpact (also: smart contract): A commpact is the computational object that is the
digital representation of an agreement between two or more parties, be it a legal contract
or a more light-weight “communication pact” (e.g. one related to privacy). Commpacts
are “smart contracts” in that they have a structured (FIRM) interface, code that imple-
ments behavior, state (e.g. the validity status, the number of times a right was exercised,
etc.), and a set of textual descriptions. In other words, commpacts represent a mixture of
informal textual descriptions and implementation code (where the fact that both have
the same semantics is the responsibility of the designer of the underlying commpact
form). Commpacts are effectively a network-centric form of an authorization monitor.
They authorize actions, enforce prerequisites (“student status required”), and provide a
way to live up to obligations (e.g. initiate a payment transfer when fulfilling an obliga-
tion). The piece of text by which we generally know legal contracts is just the result of
one of the many methods that can be called on commpact objects–but there are also oth-
ers, including negotiation methods (e.g. ‘terminate’), structural messages (‘get me the
set of promise objects’), and, last but not least, authorization interactions (‘exercise this
right’). Cf. Figure 9.
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FIGURE 9. Commpacts as “Smart Contract” Objects: FIRM Interface + Code + State + Texts.

FIGURE 10. Commpacts as Authorization Monitors: Commpacts are a network-centric variant of an
authorization monitor. Actions are authorized using the commpact that the actor
designated as the base line with respect to which a certain action is to be performed. The
choice of the appropriate commpact will usually be determined by preference rules in a
way that is transparent to the user. 

Commpact Manager: A commpact manager is the service that keeps, manages, and
interprets commpact objects that have been assigned to it. Commpact managers can be
co-located with clients (e.g. for usage control, for the mobile case), servers (conven-
tional access control), or trusted third parties (e.g. rights clearing houses); the protocol
remains the same in each case. Every epers has a default commpact manager.

Commpact Form: A commpact form is the basic “template” of a commpact. Com-
mpact forms are much like a standard rental agreements in that they have been carefully
designed by someone once, but then they are readily available as “stationery” to every-
one else; general users can just “take” such a form, customize it, fill in some parameters
(such as the actual price offered, etc.), and then declare it an offer. Commpact forms are
assumed to be designed by what we call a “commpact forms designer.” They are made
accessible through “commpact forms providers.”
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Commpact Forms Provider: A forms provider is the service that actually operates an
online server that carries a collection of commpact forms—such that people can search
or browse for the ones that they are interested in. Figure 11 shows a user searching for
commpact forms that might be useful to draft a new subscription contract, using the
direct-manipulation affordances in the RManage/DLITE [6] interface (a viewer running
side-by-side the Web browser).

FIGURE 11. Using Commpact Forms to Make it Easy to Offer New Relationships: In the RManage
prototype, a user creates a query for ‘subscription’ (upper left) and employs the ‘Stanford
Forms Provider’ service (middle) to search for digital contract forms that might be useful
in drafting a subscription offer. A result collection is returned with four different commpact
forms. Users can inspect each form and then take one and use it to draft an offer (by
customizing it and by filling in form-specific parameters). 

7.4 A Network-Centric Architecture for Managing Control Objects

We have seen that we would like to accommodate the flexibility of managing first-class
control objects independently of any (content/service) objects that they might control.
This creates the need to have an underlying architecture that is rich enough to enable
such behavior. 

FIRM is therefore architecturally based on a “network-centric” design in which control
information is encapsulated in first-class (relationship) objects (“commpacts”) that can
live in principle anywhere on the network and that stand in a m:n-relation with the
objects and services that they control. Cryptographic means are then used to determine
which control objects are eligible to control which other objects, and, vice versa, which
objects may be controlled by which control objects.7 Note that the fact that control and

7. Currently, the only system besides FIRM that accommodates full-fledged control objects in its
design is the one recently developed by InterTrust [21] (called ‘control sets’ there).
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controlled objects are independently managed does of course not exclude the possibility
that in some cases commpact managers and content servers are realized in the same
address space on one and the same machine (reflecting a traditional access control
model).

In other words, rather than attaching control information to controlled information, we
have first-class control objects that designate the objects that they control (using a con-
straint). In this way, we keep independent two dimensions that are orthogonal: the ques-
tion of which controls apply and the question of which objects control is applied to. Note
that, among other things, this gives us the flexibility of being able to independently
deliver and modify objects of each of the types (e.g. providing a pay-per-view contract
in addition to a subscription contract for one and the same online article; making avail-
able a new article under a previous subscription contract, etc.).8 

8. Note that, strictly speaking, it is therefore incorrect to say that “rights languages attach control
information to objects”—since they just need to set it in relation with each other (“associate
it”). Attachment is primarily a matter of the delivery mechanism (NNTP, etc.), not a matter of
the control design.

FIGURE 12. Network-Centric Architecture for Managing Control Information.

FIRM puts an emphasis on reifying relationships/contracts as much as it reifies ways of
referencing contracts. Note that this is different from traditional server-based control,
where we generally have control behavior embedded in the server mechanism with no
principled way of exchanging, moving, and interacting with control information. 

7.5 FIRM’s Transaction Model

FIRM closely follows contract law principles in defining the structure and behavior of
its objects. A FIRM interface specification is available in CORBA’s Interface Definition
Language [18] (although nothing in FIRM intrinsically relies on the availability of a
CORBA distributed object infrastructure). 

The FIRM transaction protocol has been designed to have the following characteristics:

• Simple cases are simple in the FIRM protocol. In particular, a typical specialization
of a simple case turns out to be essentially the same as standard HTTP authorization.
In fact, due to the flexibility of the architecture, FIRM is likely to be faster than this
in many cases.

• Complex cases are uniformly possible. The main point is then that the FIRM protocol
uniformly extends to cases that are not possible in existing protocols (e.g. negotiating
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new relationships). It accommodates sophisticated negotiation and control behavior,
although the number of message exchanges will of course scale with the complexity
of what is trying to be accomplished. 

FIGURE 13. Transactions in FIRM: A user’s e-person agent executes FIRM protocol actions on behalf
of their user. For example, in the RManage prototype implementation of FIRM, users can
use an ‘e-person control panel’ to articulate basic preferences such as which offers an e-
person should automatically accept or which obligations it should automatically fulfill.
Note that while the client-server transactions can use conventional protocols (e.g.
HTTP), the FIRM protocol can be based on more sophisticated mechanisms (e.g. a
distributed object infrastructure such as IIOP/CORBA [18]).     

7.6 Discussion

FIRM provides the necessary “glue” for managing rights and obligations. FIRM’s lan-
guage is at the rights level only, that is, it does not talk about issues such as fulfillment
processing. For example, if we have an online purchase transaction, then FIRM would
posit a payment obligation with attributes describing the amount to be paid, the terms
and conditions in case of non-payment, etc., and with methods that allow relevant par-
ticipants to declare this obligation to be fulfilled, etc. But the actual (domain-specific)
way in which such a payment obligation will be fulfilled is not part of the FIRM specifi-
cation; it is an issue of the specific fulfillment implementation.

FIRM uses a two-level standard that separates specific from generic elements; this has
many advantages in terms of simplicity, extensibility, and distribution of authority. In
the FIRM framework, participants can continue to use legacy rights management sys-
tem, combined with wrappers to open up their proprietary rights management protocols
for interoperation with third parties. 

Moreover, the framework is inherently extensible: Any party can contribute new rights
vocabularies (say, for new domains or new media) by simply “publishing” correspond-
ing rights attribute models. Note that such extensibility reduces complexity in that com-
ponents for additional domains/usages only need to be “loaded” on an as-needed basis. 

The FIRM transaction protocol has been designed to be simple for the simple cases, but
to uniformly extend to the more complex cases.

7.7 Implementation Status

FIRM has been prototyped in a system called “RManage.” RManage augments services
such as Web servers with plug-ins that allow these services to make use of the FIRM
infrastructure. RManage also provides implementations of the e-person and commpact
objects that FIRM assumes. Furthermore, RManage can be used either with a plain Web
browser or integrated into DLITE [6], an interface viewer developed as part of the Stan-
ford Digital Libraries project.
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RManage enables services to make available information governed by (FIRM-compati-
ble) digital contracts. The sample contracts currently used include various forms of sub-
scriptions, site licenses, and pay-per-view contracts, each with different forms of search
rights, approval rights, notification obligations, and payment obligations. These digital
contracts are “smart contracts” in that they integrate behavior related to what the con-
tract is about (authorization, payment, privacy protection, etc.). For example, RManage
provides fulfillment processing for a whole range of payment obligations by making use
of the UPAI payment application interface (see Section 6), also prototyped as part of the
Stanford project, that provides an abstraction layer to integrate native payment protocols
from a variety of providers such as First Virtual, DigiCash, VISA, etc. Figure 14 gives a
sample view that shows how users can uniformly manage their relationships and initiate
associated actions such as payment transfers in the Web-based RManage client.

Services that are currently using digital contracts as part of our experimental InfoBus
testbed include Knight-Ridder’s Dialog databases, the Xerox PARC document summa-
rizer (running behind the company’s firewall), and others. Web-based services that have
been augmented by FIRM plug-ins include a site with weather information and a site
with a Yahoo-like guide to online legal information. Sample contracts used here deal
mainly with the controlled use of personal information (e.g. for content personalization,
advertising demographics, etc.).

FIGURE 14. Unified Relationship Management and Notification in RManage: RManage gives users a
unified view on their relationships. Each relationship can be manipulated with generic and
type-specific actions. Events from relationships are brought to a user’s attention in a
uniform way in the notifier structure. The notifier also allows people to initiate certain
actions (such as fulfilling payment obligations, accepting offers, etc.).

8.0 Conclusion

We have outlined the architecture of the Stanford InfoBus and its five service layers for
managing items and collections (DLIOP), metadata (SMA), search (STARTS), payment
(UPAI), and rights management (FIRM). The Stanford “Infobus” extends the current
Internet protocols with a suite of higher-level information management protocols that
define the technical concepts for a sophisticated future information infrastructure.
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