
Predicate Rewriting for Translating Boolean Queries

in a Heterogeneous Information System

Chen-Chuan K. Chang and H�ector Garc��a-Molina and Andreas Paepcke

Stanford University

Searching over heterogeneous information sources is di�cult in part because of the non-uniform
query languages. Our approach is to allow users to compose Boolean queries in one rich front-end
language. For each user query and target source, we transform the user query into a subsuming
query that can be supported by the source but that may return extra documents. The results
are then processed by a �lter query to yield the correct �nal results. In this paper we introduce
the architecture and associated mechanism for query translation. In particular, we discuss tech-
niques for rewriting predicates in Boolean queries into native subsuming forms, which is a basis of
translating complex queries. In addition, we present experimental results for evaluating the cost
of post-�ltering. We also discuss the drawbacks of this approach and cases when it may not be
e�ective. We have implemented prototype versions of these mechanisms and demonstrated them
on heterogeneous Boolean systems.

Categories and Subject Descriptors: D.2.12 [Software Engineering]: Interoperability; H.2.3
[Database Management]: Languages|query languages; H.2.5 [Database Management]:
Heterogeneous Databases; H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval|query formulation, search process; H.3.4 [Information Storage and Retrieval]:
Systems and Software|performance evaluation (e�ciency and e�ectiveness); H.3.7 [Informa-

tion Storage and Retrieval]: Digital Libraries|Systems issues

General Terms: Algorithms, Languages, Experimentation, Measurement

Additional Key Words and Phrases: Boolean queries, content-based retrieval, query translation,
predicate rewriting, query subsumption, �ltering

This material is based uponwork supportedby theNational ScienceFoundationunderCooperative
Agreement IRI-9411306. Funding for this cooperative agreement is also provided by DARPA,
NASA, and the industrial partners of the Stanford Digital Libraries Project.
Name: Chen-Chuan K. Chang
Address: Electrical Engineering Department, Stanford University, Stanford, CA 94305; email:
changcc@cs.stanford.edu
Name: H�ector Garc��a-Molina and Andreas Paepcke
Address: ComputerScienceDepartment, StanfordUniversity, Stanford, CA 94305; email: fhector,
paepckeg@cs.stanford.edu

Permission to make digital or hard copies of part or all of this work for personal or classroomuse is
grantedwithout fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � Chen-Chuan K. Chang et al.

1. INTRODUCTION

Emerging Digital Libraries can provide a wealth of information. However, there
are also a wealth of search engines behind these libraries, each with a di�erent
document model and query language. Our goal is to provide a front-end to a
collection of Digital Libraries that hides, as much as possible, this heterogeneity,
and that enables distributed search over them.
As a �rst step, we have focused on supporting Boolean queries [Salton 1989;

Frakes and Baeza-Yates 1992; Faloutsos 1985] at the front-end. The Boolean query
model may not be favorable in all situations; in particular, it does not produce
ranked output [Harman 1993]. However, most current commercial online services
(such as Dialog, BRS, Lexis-Nexis, Orbit, STN, etc.) as well as traditional library
systems (such as those at universities) support the Boolean query model to access
their text databases o�ering well-maintained information in �elds such as science,
business, and law. Furthermore, more and more web search engines are adopting
Boolean queries in their \advanced" interfaces (e.g., AltaVista, WebCrawler, and
Excite). Therefore, we believe that supporting the Boolean model is critical for
providing integrated access to those modern or legacy systems, in order to make
available their valuable contents. We are also extending our work to the vector
space model { see Section 7.
We adopt the approach of supporting integrated access to heterogeneous systems

through an intelligent front-end system responsible for query mapping and post-
�ltering. The front-end provides a powerful query language that may not be fully
supported by the underlying systems. Users do not access the underlying services
directly; instead they submit queries to the front-end. The front-end translates
the user queries into (native) subsuming queries that are supported by the target
systems but that may return extra documents. This translation allows the queries
to be evaluated by multiple services in parallel. Because the preliminary results
may contain extra documents that the users did not ask for, the front-end also
generates �lter queries to process the preliminary results locally and produce the
�nal answers. (Of course, front-end translation and �ltering have also been used in
related areas. See Section 2.) The following examples illustrate our approach.

Example 1. Suppose that a user is interested in documents discussing multipro-
cessors and distributed systems. Say the user's query is originally formulated as
User Query: Title Contains multiprocessor AND distributed (W) system
This query selects documents with the three given words in the Title �eld; fur-

thermore, the W proximity operator speci�es that the word \distributed" must
immediately precede \system."
Assume the user wishes to query the Inspec database managed by the Stanford

University Folio system. Unfortunately, this source does not understand the W
operator. In this case, our approach approximates the predicate \distributed (W)
system" by the closest predicate supported by Folio, \distributed AND system." This
predicate requires that the two words appear in matching documents, but in any
position. Thus, the subsuming query (written in Folio's syntax) sent to Folio-Inspec
is
Subsuming Query: Find Title multiprocessor AND distributed AND system
The subsuming query will return a preliminary result set that is a superset of

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 3

what the user expects. Therefore, the front-end needs an additional post-�ltering
step to eliminate (from the preliminary results) those documents that do not have
the words \distributed" and \system" occurring next to each other. Therefore, the
required �lter query is
Filter Query: Title Contains distributed (W) system

Example 2. To illustrate a little more complexity, let's suppose the user is in-
terested in the documents with the exact title \gone with the wind." The query is
formulated as follows:
User Query: Title Equals \gone with the wind"
Searching for exact values of a �eld is quite common in library citation systems

such as Folio. However, this feature is not available in, say, Dialog Corporation's
Dialog system, a commercial information provider. Speci�cally, the Title �eld in
Dialog can only be searched using an expression consisting of individual indexed
words. Since the complete phrase values are not indexed, one can only test the Title
�eld through the Contains operator instead of Equals. Therefore, our �rst attempt
at translation could be:
Subsuming Query: Title Contains gone (W) with (W) the (W) wind
Unfortunately, this query will surely return zero hits from Dialog, because it

contains the stopwords \with" and \the." Therefore, a correct translation must
remove these stopwords from the expression which then yields:
Subsuming Query: Title Contains gone (2W) wind (or gone (2W) wind / Ti, in

Dialog syntax)
This means that there are (at most) two words in between \gone" and \wind."

Post-�ltering is again required as the translation gives a native query broader than
the user query. Because the user query consists of only one predicate which may
not be satis�ed in the native query, the �lter query is simply the user query in its
entirety:
Filter Query: Title Equals \gone with the wind"

Figure 1 shows some of the main components of the proposed front-end sys-
tem, speci�cally illustrating the query translation process. Users interact with the
front-end interface and formulate queries in a powerful language that provides the
combined functionality of the underlying sources. The �gure shows how the query
is then processed before being sent to a target source; if the query is intended for
multiple sources, the process can be repeated (or done in parallel). First, the query
is parsed into a tree of operators. Then the operators are compared against the
capabilities and document �elds of the target source. The operators are mapped to
ones that can be supported and the query tree is transformed into the native query
tree (which subsumes the user query) and the �lter query tree. Using the syntax
of the target, the native query tree is translated into a native query and sent to
the source. After the documents are received and parsed according to the syntax
for source documents, they are processed against the �lter query tree, yielding the
�nal answer.
Even though heterogeneous search engines have existed for over 20 years, the

approach we advocate here, full search power at the front-end with appropriate
query transformations, has not been studied in detail. The main reason is that our
approach has a signi�cant cost, i.e., documents that the end users will not see have

4 � Chen-Chuan K. Chang et al.

 Query
Capability
Mapping

Syntax
Translation

Parser

Target
Capability & Schema

Target
Syntax

Target
Info.

System

Filter
Evaluation

Document
Extractor

Query Translator

Post-Filter

native
query

preliminary
result set

filter query
query result

query
user

native
query tree

query
tree

User
Interface

Front-End

result estimate /
execution status

rejected queries / feedback

Fig. 1. The (partial) architecture of the front-end system illustrating query translation and post-
�ltering. The shaded boxes represent metadata de�ning the target's syntax and capabilities.

to be retrieved from the remote sites. This involves more work for the sources, the
network, and the front-end. It may also involve higher dollar costs if the sources
charge on a per-document basis. Because of these costs, other alternatives have
been advocated in the past for coping with heterogeneity. They generally fall into
four categories (see Section 2 for more details):

(1) Eliminate the heterogeneity by standardization of the query languages;
(2) Present inconsistent query capabilities speci�c to the target systems with no

intention to hide the heterogeneity, and have the end users write queries specif-
ically for each;

(3) Provide a \least common denominator" front-end query language that can be
supported by all sources;

(4) Copy all the document collections that users may be interested in to a single
system that uses one search engine and one language.

While these alternatives may be adequate in some cases, we do not believe they
scale well and are adequate for supporting a truly globally distributed Digital Li-
brary. End users really require powerful query languages to describe their infor-
mation needs, and they do require access to information that is stored in di�erent
systems. At the same time, increasing computer power and network bandwidths
are making the full front-end query power approach more acceptable. Further-
more, many commercial sources are opting for easy-to-manage broad agreements
with customers that provide unlimited access. Thus, in many cases it may not be
that expensive to retrieve additional documents for front-end post-�ltering. Even
if there is a higher cost, it may be worth paying the cost to get users the required
documents with less e�ort on their part.
In summary, given the bene�ts of full query power, we believe that it is at least

worth studying this approach carefully. A critical �rst step is understanding how
query translation actually works and when it does not. Furthermore, because the

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 5

post-�ltering cost is of major concern in our approach, we performed experiments
to quantify the overhead. In [Chang et al. 1996a; Chang et al. 1996b] we gave
an overview of the translation process. We noted that predicates composing user
queries must be rewritten to be acceptable to the target sources. We then explained
how the resulting pieces are combined, and how a �lter query is derived. In this pa-
per we focus on the predicate rewriting process (not covered in [Chang et al. 1996a;
Chang et al. 1996b]) which is at the heart of the approach. In addition, this paper
also summarizes some of the results of our cost evaluation experiments. As we will
see, in many cases the overhead is reasonable (reference [Chang and Garc��a-Molina
1997] provides more details). Although this paper does not discuss implementa-
tion details for the algorithms, we do note that the algorithms presented here have
been implemented and used to transform queries for systems such as Dialog (Dialog
Corporation), Stanford's Folio, DEC's AltaVista, WebCrawler, and NCSTRL (an
on-line library of computer science technical reports), each with di�erent Boolean
query syntax and functionality.

Note that this paper concentrates speci�cally on the query translation process,
and not on other related important problems. In particular, as a consequence
of distributed search (i.e., meta-search) over heterogeneous systems, many other
challenging front-end issues also arise. For instance, we need a way to �nd po-
tentially relevant sources for searching [Gravano et al. 1994], a
exible payment
mechanism [Ketchpel et al. 1997] to handle on-line shopping (of information), etc.
We and others have investigated these issues, but they are clearly not in the scope
of this paper, and therefore are not shown in Figure 1. In addition, many issues
need to be revisited in a distributed environment. In particular, it is critical to sup-
port a good user interface that integrates various service components and interacts
with users in the process of meta-searching, namely, formulating queries, browsing
and clustering results. For instance, SenseMaker [Baldonado and Winograd 1997],
one of our front-end interface, employs CSQuest (accessible at http://ai.bpa.-
arizona.edu/html/mcsquest/, developed in the Illinois Digital Libraries project)
for term suggestion. While we are not able to discuss interface issues here, we do
note that the query translator can provide feedback information for user interaction,
as discussed in Section 7.
In addition, several important issues directly related to query translation are not

covered in our work yet. For one, currently we do not consider semantic mapping
issues for query terms (e.g., mapping \fault tolerant systems" to \reliable systems").
This can be very important for systems that employ controlled vocabulary. Simi-
larly, the general problem of the semantic mapping of �elds (e.g., mapping Author
to Creator) is another major barrier to distributed search over very di�erent sources.
Such semantic mapping problems are themselves still major open research issues.

Furthermore, our study shows that in some cases the approach can have serious
drawbacks. For instance, it may be hard or even impossible to obtain the \meta-
data" that the algorithms need, such as source vocabularies. In addition, in some
rare cases there may not be an appropriate translation, in which case the native
queries degenerate to True. Another problem is that, to simulate unsupported fea-
tures such as stemming, the algorithms may create queries containing too many
enumerated terms. We discuss these issues and how we may cope with them in
Section 7.

6 � Chen-Chuan K. Chang et al.

We start by brie
y reviewing the alternative approaches suggested for accessing
heterogeneous search engines. In Section 3 we describe the formal language used
at the front-end and its semantics, while in Section 4 we provide a brief overview
of the query translation process. Section 5 then describes the rewriting of single
predicates in detail. Finally, Section 6 summarizes the experimental results for
evaluating the post-�ltering overhead.

2. RELATED WORK

The problem of multiple and heterogeneous on-line information retrieval (IR) sys-
tems has been observed since the early 1970's. In 1973, T.H. Martin made a thor-
ough comparative feature analysis of on-line systems to encourage the uni�cation
of search features [Martin 1974]. Since then, many solutions have been proposed to
address the heterogeneity of IR systems. Obviously, one solution is standardization,
as suggested by the development of the Common Command Language (CCL) done
by Euronet [Negus 1979], Z39.58 [National Information Standards Organization
1993], and ISO 8777 [ISO 1993]. However, none of them has been well accepted as
an IR query standard.
Another approach for accessing multiple databases transparently is through the

use of front-ends or intermediary systems, which is also the approach that we ad-
vocate. This approach does not enforce any standard that requires the cooperation
of the underlying services and thus maintains their autonomy. Reference [Williams
1986] and [Hawkins and Levy 1985] provide overviews of these systems. Like ours,
these front-end systems provide automated and integrated access to many under-
lying sources. However, unlike ours, none of them tried to support a uniform yet
comprehensive query language by post-�ltering. As we mentioned in the preceding
section, their approaches generally fall into the following categories.
The �rst approach is to present non-uniform query capabilities speci�c to the

target services. As the user moves from one service to another, the capabilities of
the system are modi�ed automatically to re
ect speci�c limitations. Examples of
such systems are TSW [Preece and Williams 1980], OCLC's Intelligent Gateway
Service [Zinn et al. 1986], and the more recent internet search services such as
the All-in-One Search (http://www.albany.net/allinone/). This kind of system
actually does not provide transparent access to multiple sources. The user must be
aware of the capability limitation of the target systems and formulate queries for
each. It is therefore impossible to search multiple sources in parallel with a single
query, since it may not be interpretable by all of them.
The second approach is to provide a simple query language, the least common

denominator, that can be supported by all sources. Most front-end systems adopt
this approach. Examples include CONIT [Marcus 1982], OL'SAM [Toliver 1982],
and FRED [Crystal and Jakobson 1982]. These systems unify query functionality
at the expense of masking some powerful features available in speci�c sources. To
use particular features not supported in the front-ends, the user must issue a query
in the \pass-through" mode, in which the query is sent untranslated. This again
compromises transparency.
Along this line, another popular technique for dealing with language heterogene-

ity is for the front-end to use some form of natural language (e.g., vector-space)
queries. As discussed in Section 1, we decided to support Boolean queries because

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 7

they are used by most of the systems we are interested in. Consequently, to access
those Boolean systems, if the front-end supports natural-language queries, it must
�rst convert a natural language query to some Boolean format (e.g., as the con-
junction or proximity of keywords found in the query), and then translate it into
the target (Boolean) query languages. In other words, we still need a technique for
translating Boolean queries.
Finally, there are systems that manage and resell multiple collections and do the

search by themselves. For example, Dialog Corporation's Dialog system manages
over 450 databases from a broad scope of disciplines. Clearly, this centralized
approach does not scale well as the amount of information keeps increasing.
Closest to our work, in terms of the shared goal, are the evolving meta-searchers

on the internet, such as MetaCrawler (http://metacrawler.cs.washington.-
edu/) [Selberg and Etzioni 1995] and SavvySearch (http://guaraldi.cs.colostate.-
edu:2000/). These services provide a single, central interface for Web document
searching. They represent the meta-searchers which use no internal databases of
their own and instead rely on external search services (e.g., WebCrawler, Lycos) to
answer user queries. Like ours, they also do query mapping and (optional) post-
�ltering. However, they provide relatively simple front-end query languages that
are only slightly more powerful than the least common denominator supported by
the external sources. For example, they support a subset of Boolean queries instead
of arbitrary ones.
Furthermore, information integration has long been recognized as a central prob-

lem of modern database systems, with the goals to query legacy systems, to cope
with semantic or schematic inconsistency, and to handle unstructured data [Ull-
man 1997]. Our front-end architecture is consistent with the notion of media-

tors [Wiederhold 1992], which has been widely adopted in information integration
e�orts such as TSIMMIS [Garc��a-Molina et al. 1995] and InformationManifold [Kirk
et al. 1995]. In addition, the approach of (query) subsumption and post-�ltering
have been generally applied in complementing the lack of full capabilities in query
processing (e.g., [Papakonstantinou et al. 1995]); similar idea can also be found in
the work on signature �les [Salton 1989; Faloutsos 1985], which may generate \false
drops" at initial processing.
However, compared to the work on information integration, our contribution is

unique in the following aspects.

|We study selection queries (in terms of relational algebra [Ullman 1988]), i.e., ar-
bitrary Boolean combination of predicates to be evaluated over individual sources,
which are exactly the type of queries used in Boolean IR systems. We have devel-
oped the algorithms that generate minimal subsuming and �lter queries for this
type of queries [Chang et al. 1996a; Chang et al. 1996b]. In contrast, the above-
mentioned work focuses on selection-join queries that consist of only conjunctive
predicates (i.e., without disjunction and negation).

|To the best of our knowledge, the related e�orts in information integration assume
a �xed set of \uninterpreted" predicates, in the sense that a predicate is either
supported by a target system, or not at all. In contrast, in this paper, we
discuss techniques for semantically rewriting predicates when they are not fully
supported, rather than dropping them blindly. This certainly gives a better

8 � Chen-Chuan K. Chang et al.

Syntactic Construct Associated Semantics

1. Query Tree

(1.1) Query := Query1 OR Query2 hQuery1i [hQuery2i
(1.2) j Query1 AND Query2 hQuery1i \ hQuery2i
(1.3) j Query1 NOT Query2 hQuery1i � hQuery2i
(1.4) j Pred hPredi

2. Predicate Subtree

(2.1) Pred := Contains(Field;WPat) fD j 9(D; fsF1; sF2; � � � ; sFkg) 2 hFieldi;
(D; fsE1; sE2; � � � ; sEmg) 2 hWPati;
such that every sEi is contained in some sFjg

(2.2) j Equals(Field;PPat) fD j 9(D; fsF1; sF2; � � � ; sFkg) 2 hFieldi;
(D; fsE1; sE2; � � � ; sEmg) 2 hPPati;
such that every sEi is equal to some sFjg

3. Word Pattern Subtree

(3.1) WPat := WPat1 OR WPat2 hWPat1i [hWPat2i
(3.2) j WPat1 AND WPat2 f(D;S) j (D;S1) 2 hWPat1i; (D;S2) 2 hWPat2i; S = S1 [S2g
(3.3) j WPat1 (nW) WPat2 f(D;S) j (D;S1 = fs11; s12; � � � ; s1kg) 2 hWPat1i;

(D;S2 = fs21; s22; � � � ; s2mg) 2 hWPat2i;
s11 � s12 � � � � � s1k precedes s21 � s22 � � � � � s2m;
Dist(s11 � s12 � � � � � s1k; s21 � s22 � � � � � s2m) � n; S = S1 [S2g

(3.4) j WPat1 (nN) WPat2 f(D;S) j (D;S1 = fs11; s12; � � � ; s1kg) 2 hWPat1i;
(D;S2 = fs21; s22; � � � ; s2mg) 2 hWPat2i;
Dist(s11 � s12 � � � � � s1k; s21 � s22 � � � � � s2m) � n; S = S1 [S2g

(3.5) j Word f(D; fm:mg) j D[m:m] is a (single-word) segment in I(Word)g

4. Phrase Pattern Subtree

(4.1) PPat := PPat1 OR PPat2 hPPat1i [hPPat2i
(4.2) j PPat1 AND PPat2 f(D;S) j (D;S1) 2 hPPat1i; (D;S2) 2 hPPat2i; S = S1 [S2g
(4.3) j Phrase f(D; fk:mg) j D[k:m] is a segment in I(Phrase)g

Fig. 2. The abstract syntax of the front-end Boolean queries and the associated semantics.

translation.

3. BOOLEAN QUERY LANGUAGES

To discuss query translation we need a formal query language for the front-end
and a document model to de�ne the semantics. Although other models exist (see
[Loe�en 1994; Navarro and Baeza-Yates 1995] for a brief survey), we believe that
the one we present here is especially well suited as a query translation framework
because of its compactness and ability to model most functionalities of commercial
Boolean search engines. We assume that readers are familiar with Boolean systems,
so we present the formalism in an abbreviated fashion.

3.1 Syntactic Structure of Boolean Queries

We start with the syntactic structure of Boolean queries. To avoid de�ning a com-
plete syntax, we represent queries as \trees", where the nodes represent operators.
The left column of Figure 2 describes the components of query trees. (The right
column shows the associated semantics { these will be discussed later.) At the top
level, queries consist of predicates connected by the operators AND, OR, and NOT
(Figure 2, Construct 1). As required by most Boolean systems, the NOT operator
is always implicitly used as the binary operator AND-NOT. A document D is in
the result set of a query if and only if the query evaluates to True for D.
In Boolean systems, a document consists of a set of �elds, each representing a

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 9

particular kind of information such as Title, Author, and Abstract. Usually referred
to as �elded search, a predicate speci�es a pattern to be matched against the content
of a �eld (Figure 2 , Construct 2). Typically, for each searchable �eld, IR systems
build indexes [Salton 1989; Frakes and Baeza-Yates 1992; Faloutsos 1985] to direct
the search engine to �nd documents with some given term, such as the word cat or
phrase \Joe Doe". The indexing schemes of a �eld restrict how it can be queried.
Generally, there are two ways of indexing1.
First, the system may index every single word appearing in a �eld (except some

common words), with additional information such as the positions where the word
appears in the �eld. This word-index scheme allows e�cient evaluation to �nd the
set of documents containing some keywords. For example, the query Contains(Title,
cat) searches for documents with the word cat in the Title �eld, and can only be
used if Title is word-indexed. Furthermore, the positional information facilitates the
evaluation of proximity queries, such as Contains(Title, cat (5W) dog) (cat appears
within 5-word distance of dog). However, word-indexed �elds generally do not
allow the Equals operator, e.g., Equals(Title, \Database Systems") or Equals(Title,
Database (W) Systems), assuming Title is only word-indexed. The evaluation would
be expensive simply because the complete values are not indexed, and therefore the
�eld of each document must be accessed to evaluate the equality.
Second, the index may be built on the complete contents of the �eld (which is

called phrase-index), typically for short �elds such as Author. The system can thus
e�ciently support the Equals operator to search with the complete value of the
�eld, e.g., Equals(Author, \Joe Doe"). However, this type of index does not support
Contains, e.g., Contains(Author, \Joe Doe"). It also does not allow queries with
word expressions, e.g., Equals(Author, Joe (1W) Doe). Because the index entries
are the complete values of the �eld, such queries can only be evaluated by scanning
all the entries, which is expensive.
Therefore, for a word-indexed �eld, the Contains predicate can be used to test if

the �eld contains a word pattern (Figure 2 , Construct 3), which is an expression
consisting of words (the terminal Word) connected by AND, OR, or the proximity
operators. The nW proximity operator speci�es that its �rst operand must precede
the second by no more than n words. The W operator is used when the distance
is implicitly zero. For instance, we can use color (W) printer to search for the
phrase \color printer" (and thus it is not necessary to support phrases in Contains
predicates). If the order does not matter, operators nN and N may be used instead.
The terminal Word can be either an exact word like cat, or an expanded word
like cat� (which matches any words starting with cat if truncation is supported)
or stem(cat) (which matches any words with the same stem as cat under some
stemming algorithm [Lovins 1968; Porter 1980]).
On the other hand, for a phrase-indexed �eld, the Equals predicate can be used

to test the equality of the �eld to some phrase pattern. Phrase patterns (Figure 2,
Construct 4) are expressions consisting of phrases (the terminal Phrase) connected
by AND or OR operators. A phrase is a quoted string, in our notation, which is

1The discussion on indexing schemes is to (informally) give the intuition of why some �elds can
be queried only with either Contains or Equals, but not both. It is not meant to represent all the
access methods (see [Faloutsos 1985] for a general survey).

10 � Chen-Chuan K. Chang et al.

supposed to be the complete content of a �eld. Like words, an exact phrase is
completely speci�ed (e.g., \Joe Doe"); otherwise, it may be truncated (e.g., \Joe
�") to form an expanded phrase.
Figure 2 shows all the syntactic constructs of the front-end query language. The

underlying systems may not support all these constructs and interpret them uni-
formly. Boolean systems mainly di�er in how they process predicates. First, they
may have di�erent �elds in their documents, disallow searches over some �elds (e.g.,
because they are not indexed), or support only Contains or Equals for certain �elds
(as a consequence of particular indexing schemes used). Second, they may not
support certain operators (e.g., proximity operators). Third, they may not sup-
port features, such as stemming or truncation, for query expansion, or they may
de�ne stopwords that cannot be used in queries. Finally, there are some other mi-
nor details that are di�erent across Boolean systems, for instance, the tokenization
rules (e.g., OS/2 may be considered as two words). Moreover, a supported feature
may be interpreted non-uniformly across sources. For example, di�erent systems
may have di�erent algorithms for stemming, or they may interpret, say, transitive
proximity expression di�erently.
Note that in this paper we only discuss the query capability mapping process

(Figure 1), which is the major challenge of query translation. The process generates
syntax-neutral native query trees expressible in the target's syntax. In particular,
the syntax di�erences (e.g., operator precedence) of the target query languages are
handled in the ensuing syntax translation step, which actually produces the native
query strings.

3.2 Boolean Retrieval Model

This section formally de�nes the semantics (Figure 2, right column) of Boolean
queries in terms of the retrieval model for query evaluation. We �rst de�ne the
data model that underlies query evaluation. A document D is a �nite length string
logically structured as a number-indexed sequence of words. A segment m:n of doc-
ument D, denoted by D[m:n], where m and n are a pair of integers, is a contiguous
subsequence from the m-th to the n-th word of D. During query evaluation, usu-
ally only some particular segments of a document, which we call a subdocument,
are of importance. A subdocument of D, denoted by (D; fs1; s2; :::; sng), is a set of
segments from D, fD[s1]; D[s2]; :::; D[sn]g, that collectively satisfy some property,
e.g., match a pattern. A collection is in general a set of subdocuments. Notice that
a full document D is just a special instance of a subdocument.
A text retrieval system manages a collection of documents which we call the

source collection. Query evaluation is modeled as an algebra on collections start-
ing with the source collection and yielding a subset as the collection of answer
documents. All the nodes in a query tree are operators which take one or two
collections as operands and return collections. Notationally, we use hXi to denote
the collection returned by a subtree X.
Because most operations are de�ned around the notion of segments, we �rst

describe the positional relationships and operations of segments. For any two seg-
ments (of the same document), one can contain, equal, overlap, or precede the other.
Segment s1 = m1:n1 is said to contain segment s2 = m2:n2, if m1 � m2 � n2 � n1.
We say that s1 equals s2 if they contain each other. Segment s1 precedes s2 if

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 11

n1 < m2. Otherwise, s1 overlaps s2 if neither of them precedes or contains the
other. The distance between s1 and s2, Dist(s1; s2), is the number of words be-
tween the nearest endpoints of s1 and s2 if one precedes the other, or �1 if one
contains or overlaps the other. The concatenation of s1 and s2, denoted by s1 � s2,
is min(m1;m2):max(n1; n2), i.e., the smallest segment containing both s1 and s2.
Referring to the right column of Figure 2, the evaluation is a bottom-up, post-

order process. Not de�ned in the �gure are the �eld operator and the interpretation
function I(�). A �eld operator F returns a collection hFi in which each subdocument
is the �eld F of a document in the source collection. Notice that each subdocument
may contain more than one segment because a �eld, say Author, can be multi-
valued (i.e., having more than one author), in which case each individual value will
be represented by a segment in the subdocument of the �eld.
The evaluation of a terminal pattern (Figure 2 { 3.5, 4.3) is based on the notion

of interpretation. The interpretation of a terminal pattern t, denoted by I(t), is the
set f x j x is a string matching tg, e.g., I(cat?) = f cat, catsg, and I(\text retrieval")
= f \text retrieval"g. Remember that various features can be used to expand the
interpretation, and that the target systems might not understand such expansion,
in which case the interpretation is simply ;. In addition, the target systems may
not agree on the interpretation. In particular, many systems de�ne a set of non-
searchable words called stopwords (e.g., the, an). A stopword w is a word that, by
de�nition, does not match anything, i.e., I(w) = ; (and thus hwi = ;), although
it may actually appear frequently. We use ST to represent the stopwords de�ned
by a system T (which is called the stopword list2 of T). In contrast, the set of all
the words appearing in T other than stopwords is called the vocabulary of T and
denoted VT . Besides, a system may apply implicit expansion such that an exact
word is expanded automatically to match a set of words.

3.3 Atomic Predicates

Predicates are the basic constructs of queries and hence the basis of query map-
ping. Sometimes a predicate contains logical conjunctions or disjunctions, and it is
more e�ective to break the complex predicate into simpler atomic predicates. For
example, consider the predicate Contains(Title, multiprocessor AND distributed (W)
system). It is equivalent to the conjunction of the simpler predicates: Contains(Title,
multiprocessor) AND Contains(Title, distributed (W) system). This atomization sep-
arates predicates that may not be supported at a target from those that are, and
hence simpli�es translation. The predicate rewriting process (Section 5) assumes
atomic predicates as inputs.
Atomic predicates do not contain the OR operator { all the other operators can

distribute over OR [Mitchell 1973] (see Figure 2), so it can be \pulled out" from
predicates. For example, Contains(F, (A OR B) (nW) C) = Contains(F, (A (nW) C)
OR (B (nW) C)) = Contains(F, A (nW) C) OR Contains(F, B (nW) C).
However, atomic Contains-predicates may contain the AND operator (in addition

2Some systems use context-sensitive stopwords, e.g., \in" is ordinarily a stopword, but it is search-
able in certain contexts such as mother (W) in (W) law. To take advantage of those special cases
when a stopword is actually searchable, the front-end can record the source's stopword list along
with the \exceptional" contexts.

12 � Chen-Chuan K. Chang et al.

to the proximity operators) since the proximity operators do not distribute over
AND [Mitchell 1973], e.g., (A AND B) (nW) C 6= (A (nW) C) AND (B (nW) C). In
contrast, notice that in an atomic Equals-predicate the phrase pattern is simply a
single phrase, either exact or expanded.

4. QUERY CAPABILITY MAPPING

As discussed in Section 1, our goal is to transform a user query into a native query
that can be supported by the target source. Furthermore, we would like the native
query to return as few \extra" documents as possible. In this case, we say that
the native query minimally subsumes the user query with respect to the target
system. Note that the notion of query subsumption is directly related to query

containment (for conjunctive queries) in deductive databases [Ullman 1988] and has
been applied extensively in information integration [Ullman 1997]. The following
de�nitions formalize these concepts. The notation hQi represents the result set of
a query Q.

De�nition 1. (Query Subsumption) A query Q0 subsumes query Q (Q0 � Q) if
hQ0i � hQi regardless of the contents of the collection. If hQ0i is a proper superset
of hQi for some collection, then Q0 properly subsumes Q (Q0 � Q), i.e., Q0 subsumes
but is not equivalent to Q.

De�nition 2. (Minimal Subsuming Query) A query QS is the minimal subsuming

query of query Q, or QS minimally subsumes Q, with respect to a target system T ,
if

(1) QS is supported by T ,
(2) QS subsumes Q, and
(3) there is no query Q0 that also satis�es 1 and 2, and is properly subsumed by
QS .

Our goal thus is to transform the input query tree Q into its minimal subsuming
query QS . We do this in three steps. The �rst step is to convert Q into a disjunctive
normal form (DNF) query Qd where the predicates are atomic. Having Q in this
form simpli�es the following two steps. The DNF query will be of the form Qd =
C1_C2_� � �_Cm, where each conjunction termCi is of the form ~P1^ ~P2^� � �̂ ~Pn, i.e.,
conjunction of predicates. Each predicate ~Pj is either an atomic predicate Pj or a
negated atomic predicate :Pj. Converting queries (which are Boolean expressions)
into DNF is a well know process [McCluskey 1986], so we will not discuss it further
here.
The second step is to rewrite each atomic predicate in Qd into one that can be

supported by the target. The proper substitutes are those supported constructs
with weaker (or stronger for negated predicates) selectivity that are as close as
possible to the original predicates. We illustrate this through an example.

Example 3. (Predicate Rewriting) Consider the predicate P = Contains(Title,
color (5W) printer), which means Title must contain the two words appearing no
more than 5 words apart and in that order. Assume the target system only supports
the immediate adjacency operatorW, of which the distance is always implicitly zero.
In this case, we replace 5W with AND, because it is the closest weaker substitute.

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 13

The substitution results in P S = Contains(Title, color AND printer). Notice that
P � PS.
Next, consider what happens if P is negated in the query. In this case, it is not

correct to replace :P with :PS, since :P 6� :PS . Indeed, the subsumption rela-
tionship is reversed by the negation, i.e., :P � :PS. It is thus possible that some
answers of :P may be lost in :PS. This fact suggests that unsupported operators
in a negated predicate should be replaced with the closest stronger substitute; in
other words, 5W should be replaced with W in this case. Therefore, we obtain the
negative form of the predicate, P� = Contains(Title, color (W) printer). We see that
:P � :P�, and hence we can replace :P in our query with :P� and get a broader
result set.

As Example 3 suggests, we need di�erent subsuming forms for positive and neg-
ative predicates. We formally de�ne these subsuming forms in the following.

De�nition 3. (Predicate Subsuming Forms)

(1) A query PS is the positive subsuming form of a predicate P with respect to
a target system T , if PS minimally subsumes P with respect to T .

(2) A query P� is the negative subsuming form of a predicate P with respect
to a target system T , if :P� minimally subsumes :P with respect to T .

Notice that the subsumption relationship is PS � P � P� (and also :P� �
:P � :PS). In some extreme cases, there may not exist non-trivial rewritings
for either positive or negative subsuming forms. That is, P can only be rewritten
trivially as PS = True (or P� = False). This can happen, for instance, when
P speci�es a natively non-searchable �eld (see Section 5.1). In e�ect, this trivial
rewriting of P will remove it from the native query (and thus P will be processed
in post-�ltering). Section 7 discusses more on the implication of trivial rewriting.
Furthermore, if a predicate P is logically equivalent to P 0 expressible in T , then P 0

is both the positive and negative subsuming form of P , which we call the equivalent
subsuming form of P , i.e., P � P 0. Note that P and P 0 are not necessarily iden-
tical. For example, Contains(Title, text�) is logically equivalent but di�erent from
Contains(Title, text OR textual OR : : :). Of course, when a predicate is directly
supported by the target system, the predicate itself is its equivalent subsuming
form.
Once we have rewritings for all the predicates in Qd, the third step generates the

�nal minimal subsuming query QS to be sent to the target. It turns out that in
the vast majority of cases, QS is simply obtained by replacing the predicates in Qd

with their (positive or negative) rewritings. If Qd were not in DNF, this would not
be true. (This is why we converted the original query to DNF.) Even if Qd is in
DNF, there are certain rare cases where predicates are not \independent" and we
do not get a minimal query by simply replacing the predicates with their rewritings.
The precise condition when this occurs is given in [Chang et al. 1996a; Chang et al.
1996b], together with proofs that in the remaining cases the resulting query is the
desired minimal subsuming query.
Note that in [Chang et al. 1996a; Chang et al. 1996b] we assume that all target

systems support the Boolean operators AND, OR, and NOT. That is, if the source
supports predicates P1 and P2, then it supports P1 AND P2, P1 OR P2, and so on.

14 � Chen-Chuan K. Chang et al.

We surveyed many commercial Boolean search engines and found this to be true.
For systems that impose syntactic restrictions (e.g., AND must appear at the top
level of query expressions), the restrictions can be handled in the syntax translation
step (Figure 1) by conversion of the query expressions. Furthermore, in the rare
cases when Boolean systems do not support arbitrary combination of predicates,
one additional step (between capability mapping and syntax translation) must be
taken to formulate query plans consisting of supported subqueries [Garc��a-Molina
et al. 1998].
Thus, the critical di�cult step in the whole process is predicate rewriting, which is

the main contribution of this paper. In Section 5 we discuss the predicate rewriting
rules. Keep in mind that after QS is submitted to the target, we may still need to
�lter the results, as Example 1 and 2 suggest. The �lter query for post-processing
must include the conditions that were not \pushed down" to the target. Reference
[Chang et al. 1996b] provides details for constructing good �lters.

5. PREDICATE REWRITING

In this section we present systematic procedures for predicate rewriting, in which
each step rewrites a particular syntactic construct of a predicate subtree (Figure 2).
To obtain minimal translations, we �rst consider equivalent transformation when-
ever there are native constructs equivalent to unsupported features. Otherwise, we
consider transformations into either positive or negative subsuming forms, i.e., the

positive or negative transformations. Notationally, we use U =)V , U
+
=)V , and

U
�

=)V to denote equivalent, positive, and negative transformations respectively,
where U is an unsupported construct, and V the rewritten native construct.
The procedure for rewriting a predicate starts at the schema level transforma-

tion (Section 5.1), in which we transform between Contains and Equals, if either is
not supported. We then process the patterns. The rewriting of word patterns (for
Contains predicates) is quite di�erent from that of phrase patterns (for Equals pred-
icates); they are discussed in Sections 5.2 and 5.3 respectively. Figure 3 summarizes
the rewriting rules that we will explain in this section.

5.1 Schema Level Transformation

Each information source de�nes its speci�c view of the documents it manages. From
the users' perspective, the schema of a collection de�nes the set of searchable �elds
(that can be constrained in queries) and retrievable �elds (that can be returned in
query results). The schema also speci�es how each searchable �eld can be queried.
In practice, users would consult the source's documentation to formulate valid
queries. In a front-end system, users do not query the heterogeneous systems
directly; instead they formulate queries on a common schema de�ned at the front-
end.
There are generally two approaches for schema uni�cation, i.e., the speci�cation

of a common schema that represents a set of interested sources. In the �rst ap-
proach, the front-end supports a single universal schema �xed for all target services,
e.g., GAIA [Rao et al. 1994; Rao et al. 1993]. This may be too restrictive if the
front-end supports a wide range of targets and the set of targets actually involved
in queries can change dynamically depending on user interest.

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 15

Syntactic Construct Rewriting Rules

Predicate Subtree

Predicate with non-searchable �eld
+

=) True
�

=) False

(2.1) Pred := Contains(Field;WPat) =) Equals(Field;OR(ToPhrase(Field, WPat)))

(2.2) j Equals(Field;PPat)
+

=) Contains(Field;ToWord (PPat))
�

=) False

Word Pattern Subtree
(3.1) WPat := WPat1 OR WPat2 (always supported; but will not appear in an atomic predicate.)
(3.2) j WPat1 AND WPat2 (always supported)

(3.3) j WPat1 (nW) WPat2
+

=) [WPat1 (m1W) WPat2] AND [WPat1 (m2N) WPat2]
AND [WPat1 AND WPat2]

�

=) WPat1 (m1W) WPat2

(3.4) j WPat1 (nN) WPat2
+

=) [(WPat1 (m1W) WPat2) OR (WPat2 (m1W) WPat1)]
AND [WPat1 (m2N) WPat2] AND [WPat1 AND WPat2]

�

=) [(WPat1 (m1W) WPat2) OR (WPat2 (m1W) WPat1)]
OR [WPat1 (m2N) WPat2]

(See Fig. 6 for the detailed rules for the proximity operators.)
(3.5) j Word

� exact word w : (ideal case) ; if IT (w) = fwg;
+

=) w;
�

=) NoWord ; if IT (w) = fw;w1; w2; : : : ; wng;
+

=) AnyWord;
�

=) NoWord ; if IT (w) = ;; i :e:; w is a stopword:

(See Sec. 5.2.1 for the processing of AnyWord and NoWord.)
� expanded word x : (ideal case) ; if IT (x) = IF (x):

=) OR(IF (x)) ; if IT (x) 6= IF (x)
(or by approximation: � x; � x OR(IF (x)� IT (x)):)

Fig. 3. Summary of the predicate rewriting rules corresponding to the syntactic constructs. Rules
for phrase patterns are not shown.

Consequently, the second approach is to determine the common schemas based
on the set of involved targets. Along this line, various techniques can be used to
determine the common schema. The simplest approach is to compute the common
schema as the \intersection" of those searchable �elds supported at all targets,
assuming they share a degree of semantic consistency. For instance, if the user
is interested in querying bibliographic citations, the schema intersection of the
interested bibliographic sources may support Title, Author, Publisher, and so on.
Another interesting approach, as described in [Paepcke 1993], is to organize the
target services in a \type" hierarchy according to their subject areas, from which
a reasonable common schema can be computed.
Note that, in the determination of common schemas, we assume that there is a

way to decide the semantic mapping of equivalent (or similar) �elds across sources.
This assumption may not be true when the interested sources represent a wide
range of materials, e.g., news articles, patent records, bibliographic citations, etc.
Indeed, the general semantic mapping problem of �elds is itself a signi�cant barrier
to automatic distributed search that warrant serious investigation. In [Baldonado
et al. 1997a; Baldonado et al. 1997b], we present our initial study to represent source
schema and the mapping of �elds as part of \source metadata." Furthermore, in
most cases a user will be interested in a small subset of sources that share a common
subject area. In such cases, as we discussed in the second approach, we believe a
common schema and the mapping of �elds can be reasonably speci�ed.

16 � Chen-Chuan K. Chang et al.

We therefore consider the speci�cation of common schema an orthogonal issue
to be addressed separately from the query translation problem. We assume that
in the front-end there is an independent component, the common schema service,
that constructs a common schema for the intended targets speci�ed by users. Fur-
thermore, we assume that any �eld supported in the common schema is at least
retrievable for any intended target so that post-�ltering is possible. However, it is
not required that the targets support the same set of predicates for a particular
�eld; in fact, the �eld may not even be searchable at some targets. If the �eld is
not searchable at a target, it can only be processed in post-�ltering. That is, if a
predicate P is for a natively non-searchable �eld, P will be rewritten trivially as P
+
=)True and P

�

=)False.
Otherwise, the predicate, either P = Equals(F;PPat) or P = Contains(F;WPat),

refers to a �eld F that can be mapped to a searchable �eld at the target. (The
mapping can be simply given in a table, or provided by other front-end components
responsible for maintaining the mapping of �elds. For instance, references [Baldon-
ado et al. 1997a; Baldonado et al. 1997b] describe such service.) The �rst problem
we may face is that the target does not support the Contains or Equals operators
we need.
First we consider the rewriting of predicate P = Equals(F;PPat) when the target

only supports Contains for �eld F. Clearly, there is no non-trivial negative rewriting,

i.e., P
�

=)False, because Equals is more selective than Contains. On the other
hand, positive rewriting is possible because the phrase PPat does tell what must be
contained in the �eld. Assume ToWord(PPat) is a procedure that converts PPat
into its word pattern counterpart by tokenizing PPat into a list of words connected
with appropriate operators, either W or AND. In particular, internal truncation
is replaced with AND; otherwise, W is used. Therefore, the positive rewriting is

Equals(F, PPat)
+
=)Contains(F, ToWord (PPat)).

Note that di�erent systems may apply di�erent tokenization rules. For instance,
some systems tokenize the term OS/2 as two words OS and 2, while others recognize
it as a single word. Therefore, the procedure ToWord(PPat) is target speci�c
that tokenizes PPat according to the target system. In most cases we can simply
encode the native token de�nitions in regular expressions (e.g., \[A-Za-z]+" for
tokens consisting of only the alphabets). Otherwise, when the tokenization rules
are extremely complex, they can be directly coded in the procedure ToWord(�).

Example 4. (Equals-Predicates) Let P1 = Equals(Title, \gone with the wind").
Suppose the target (e.g., Dialog) does not support Equals for the Title �eld. In this
case, the rewriting is:

P1
+
=) Contains(Title;ToWord(\gone with the wind"))

= Contains(Title; gone (W) with (W) the (W) wind);

P1
�

=) False:

As another example, if P2 = Equals(Title, \introduction to database � principles
�"), in which case the phrase pattern is truncated, then the positive rewriting is
as follows. Note that the operator connecting the last two words is AND (instead
of W), because the truncation symbol indicates that there may be other words in

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 17

between.

P2
+
=) Contains(Title;ToWord(\introduction to database � principles �"))

= Contains(Title; introduction (W) to (W) database AND principles):

The �lter query for either P1 or P2 is simply the predicate itself. In general, if an
atomic predicate is supported at the target, then no �ltering is needed; otherwise,
the predicate itself (in its entirety) must be the �lter. The �lter construction
algorithm for complex queries consisting of more than one predicate is discussed
in [Chang et al. 1996a; Chang et al. 1996b].

Next we show the rewriting of P = Contains(F, WPat). If the �eld F can only
be queried with Equals, we must \promote" the word pattern WPat (representing a
partial value) to the corresponding phrase pattern (matching the complete values
of the �eld). This rewriting requires reference to the phrase vocabulary (i.e., the
set of complete values) of the �eld F. Without the vocabulary, the predicate can

only be rewritten trivially, i.e., P
+
=)True and P

�

=)False. Otherwise, if the vo-
cabulary is accessible, we can enumerate from it all the phrases containing WPat.
The disjunction (OR) of these exhaustively enumerated phrases gives an equiva-
lent rewriting. That is, Contains(F, WPat) =) Equals(F, OR(ToPhrase(F, WPat))),
where ToPhrase(F, WPat) = f p j p appears in the phrase vocabulary of F, p con-

tains WPatg. In some cases when ToPhrase(F, WPat) returns so many phrases that
the rewriting is unwieldy, users may be asked to choose those that best match their
intentions.

Example 5. (Contains-Predicates) Suppose the predicate P = Contains(Author,
garcia-molina), and the target does not support Contains for the Author �eld. If
ToPhrase(Author, garcia-molina) = f \garcia-molina, h.", \garcia-molina, r."g, the
equivalent rewriting is: Contains(Author, garcia-molina) =)Equals(Author, \garcia-
molina, h." OR \garcia-molina, r.").

5.2 Word Patterns for Contains-Predicates

We are now ready to transform the third predicate component, i.e., the pattern.
This section studies the word patterns WPat in predicates Contains(F, WPat). (We
discuss phrase patterns for Equals-predicates in Section 5.3.) The rewriting process
starts with the removal of stopwords (Section 5.2.1), then the replacement of unsup-
ported proximity operators (Section 5.2.2), and �nally the rewriting of expanded
words (Section 5.2.3). While the order of processing is not critical, we do assume
this order to simplify the presentation.

5.2.1 Exact Words. We �rst process the exact words, which are at the leaves
of the WPat subtree (Figure 2). We assume that the words are valid tokens as
de�ned by the target system. Otherwise, we can apply the procedure ToWord(w)
just discussed to tokenize and convert a word w into a proximity expression. For
instance, ToWord (\OS/2") = OS (W) 2, if the target system tokenizes the term as
two words. (The proximity operator W, if not supported, will be processed in the
ensuing step.)
An exact word may not be interpreted consistently across systems. We denote

18 � Chen-Chuan K. Chang et al.

the interpretation functions (Section 3.2) of the target T and the front-end by
IT (�) and IF (�) respectively. We assume that the front-end does not apply implicit
expansion, i.e., IF (w) = fwg, for an exact word w. However, the target may not
interpret exact words this way. There are three cases:

(1) IT (w) = fwg.

(2) IT (w) = fw;w1; w2; : : : ; wng, i.e., the target implicitly expands to words other
than w.

(3) IT (w) = ;, i.e., w is a stopword of T (w 2 ST).

Case 1 is the most common case and exactly what we want. For case 2 and 3,
as IT (w) 6= IF (w), a transformation is required. For our exposition, we de�ne
two \imaginary" word patterns: AnyWord, which matches any words in a docu-
ment (i.e., IT (AnyWord) = VT [ST), and NoWord, which matches nothing (i.e.,
IT (NoWord) = ;). Note that the target system does not understand these imagi-
nary patterns. The transformation process can therefore be divided into two phases.
In Phase 1 we replace w with the imaginary patterns when appropriate, then in
Phase 2 we actually rewrite these imaginary patterns.

Phase 1. For case 2, there is no way to suppress implicit expansion and restrict

the matchings to only w. Consequently, we have w
+
=)w (for any word w); note

that the positive rewritings are always broader than the user queries because of

expansion. Similarly, w
�

=)NoWord.
For case 3, because IT (w) = ; (w is a stopword at T), hwi = ; (Figure 2). That

is, the target system cannot evaluate if stopwords appear in a document (because
they are not indexed); this can only be done in post-�ltering. Note that we assume
the front-end does not specify any stopwords, i.e., IF (w) = fwg. Thus, in rewriting,
we must allow w to match any words so that no possible matches can be excluded,

i.e., w
+
=)AnyWord, and similarly w

�

=)NoWord.

Phase 2. This phase processes the imaginary patterns introduced in Phase 1,
because they are not natively interpretable. Note that in Phase 1 an exact word

w may be negatively replaced with NoWord (w
�

=)NoWord) or positively with

AnyWord (w
+
=)AnyWord). In the following we discuss both in turn.

First, the negative rewriting w
�

=)NoWord e�ectively makes the containing pred-

icate P become False (P
�

=)False). To see this, note that only the proximity
(nW and nN) and AND operators can appear in an atomic predicate (Section 3.3).
As Figure 2 shows, for any such operator op and arbitrary pattern E, clearly
; op hEi = ;. Because IT (NoWord) = ;, hNoWordi = ;. Therefore, by con-
struction, the rewritten predicate also evaluates to ;.
Second, for positive rewritings we need to process AnyWord. To illustrate, con-

sider the following rewriting (e.g., continued form Phase 1 for the pattern gone (W)
with (W) the (W) wind, where \with" and \the" are stopwords):

gone (W) AnyWord (W) AnyWord (W) wind
+
=) gone (2W) wind:

While the two AnyWords representing stopwords are removed, their occupancy is
properly re
ected by modifying the proximity operators. (Note that the rewriting

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 19

procedure StopWordRemoval(thisNode)
/� Remove AnyWord (representing stopwords) from the subtree rooted at thisNode. �/
/� Return a 4-tuple [WPat0, gl , gr , width]. �/
/� The symbol \s" represents don't-care (i.e., unimportant) return values. �/
begin

/� thisNode is a terminal Word (see Fig. 2), possibly rewritten to AnyWord. �/
if (thisNode is a leaf node):

if (thisNode:op = AnyWord): /� thisNode:op is the operator represented by thisNode. �/
/� an AnyWord is nulli�ed, and its occupancy (1 word) is returned in width. �/
return [Null , s, s, 1]

else: /� thisNode is a normal (non-stop) word. �/
return [thisNode:op , 0, 0, s] /� simply return the operator as is. �/

else:/� thisNode is an interior node in fnW; nN;ANDg. �/
/� recursively traverse the subtree in post-order. �/
[WPat1 , gl1 , gr1 , width1] := StopWordRemoval(thisNode:leftChild)
[WPat2 , gl2 , gr2 , width2] := StopWordRemoval(thisNode:rightChild)
if (thisNode:op = nW):

case (WPat1 6= Null and WPat2 6= Null):
return [WPat1 ((gr1 + n + gl2) W) WPat2 , gl1 , gr2 , s]

case (WPat1 6= Null and WPat2 = Null):
return [WPat1 , gl1 , gr1 + n + width2 , s]

case (WPat1 = Null and WPat2 6= Null):
return [WPat2 , width1 + n + gl2 , gr2 , s]

case (WPat1 = Null and WPat2 = Null):
return [Null , s, s, width1 + n + width2]

else: /� thisNode:op = nN, including AND (n =1). �/
case (WPat1 6= Null and WPat2 6= Null):

return [WPat1 (max(gr1 + n + gl2 ; gr2 + n + gl1) N) WPat2,
max(gl1 , gl2), max(gr1 , gr2), s]

case (WPat1 6= Null and WPat2 = Null):
return [WPat1 , width2 + n + gl1 , gr1 + n + width2 , s]

case (WPat1 = Null and WPat2 6= Null):
return [WPat2 , width1 + n + gl2 , gr2 + n + width1 , s]

case (WPat1 = Null and WPat2 = Null):
return [Null , s, s, width1 + n + width2]

end

Fig. 4. A recursive procedure, written in pseudo code, for removing stopwords.

is not equivalent because the left hand side requires exactly, rather than at most,
two words in between \gone" and \wind".)
Figure 4 presents a recursive procedure for stopword removal from a pattern

subtree. Essentially, the procedure is a post-order traversal of the subtree, during
which stopwords are removed, and their occupancy is propagated upward. It takes
as input the pattern subtree represented by its root thisNode , and returns a 4-
tuple [WPat0; gl ; gr ;width]. The �rst component WPat0 is the rewritten pattern
(of the input subtree) with all stopwords removed. Note that WPat0 may be Null

if the subtree contains only stopwords. Depending on if WPat0 is Null , di�erent
occupancy information of AnyWord will be returned. First, when WPat0 is Null ,
its width (the maximal number of words supposed to be occupied by the nulli�ed
pattern) is returned in width. Otherwise, the left and right gaps (the maximal
number of AnyWords adjacent to the pattern at either side) are returned in gl and

20 � Chen-Chuan K. Chang et al.

gr respectively. Note that, the AND operator can be modeled as and processed just
like the 1N operator, where 1 is an arbitrarily large number.

In summary, the positive rewriting of P = Contains(F;WPat) is P
+
=)Contains(F,

WPat0), in which WPat is rewritten to WPat0 with the procedure just discussed.
If WPat consists of only stopwords, then WPat0 becomes Null , which means P
+
=)True.

5.2.2 Proximity Operators. The front-end supports the proximity operators nW
and nN, which must be translated because not all systems support them. They
are standard features available in common command languages such as Z39.58
[National Information Standards Organization 1993] and ISO-8777 [ISO 1993], and
some commercial systems such as Dialog. Other systems either do not support the
proximity operators (e.g., Stanford's Folio), or support them only partially3, e.g.,
the distance and/or order parameters may not be speci�ed freely. For instance,
WebCrawler does not support nW for arbitrary n, although it does support 0W
(written as ADJ) and the unordered proximity operator nN (written as NEAR/n).
As another example, AltaVista has only the operator NEAR, which means 10N.
In general, translation for unsupported operators is possible only if the target

supports some semantically related operators. Therefore, we must �rst identify
the subsumption relationships of those semantically related operators. Given arbi-
trary patterns A and B as operands, the compound patterns constructed using the
proximity-related operators hold the subsumption relationships illustrated in Fig-
ure 5. In the �gure, an arc U �! V indicates that expression U properly subsumes
V . The subsumption relationships can be summarized as follows:

|A (m0N) B properly subsumes A (mN) B if m0 > m. Similarly, A (n0W) B
properly subsumes A (nW) B if n0 > n. This represents the relaxation of the
distance constraint.

|A (mN) B properly subsumes A (nW) B (and also B (nW) A) if m � n. This
represents the relaxation of the order constraint. Furthermore, A (mN) B can
be approximated by A (mW) B OR B (mW) A. In fact, in most cases they are
equivalent, except when the segments matching A do not precede those matching
B or vice versa (see Section 3.2). For instance, if A = (database (2N) principles)
and B = (distributed (2N) systems), the text \... principles of distributed database
systems ..." matches A (3N) B but not A (3W) B OR B (3W) A, because the
segments matching A and B overlap.

|A AND B properly subsumes A (mN) B, because AND is equivalent to1N, where
1 is an arbitrarily large number.

Based on the subsumption relationships, we can construct the rewriting rules for
unsupported operators. Figure 6 shows the rules for rewriting nW and nN. In
general, for an unsupported pattern U , the positive rewriting is the conjunction of

3We are also told that some systems interpret transitive proximity expressions (e.g., A (W) B
(W) C) as conjunctions of binary proximity expressions (e.g., A (W) B AND B (W) C), which is
inconsistent with the usual interpretation. For strict consistency, this can be handled by treating
transitive proximity expressions as subsuming (rather than equivalent) queries of themselves, and
processing them in the �lter queries.

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 21

A (mN) B

A AND B

A (nW) B B (nW) A

∅

largernlargern

largerm

m ≥ nm ≥ n

A (mW) B OR B (mW) A
≈

Fig. 5. Subsumption relationships of the proximity-related operators.

all the supported patterns Ui that subsume U , i.e., U
+
=) ^(Ui). For example, Rule

(1.1a) (Figure 6) states that A (nW) B (for a particular n) can be rewritten as the
conjunction of all its subsuming patterns: A (m1W) B, A (m2N) B, and A AND B,
for the smallest m1 (m1 > n) and m2 (m2 � n). Rule (1.1b) then shows the more
speci�c rewritings according to what the target actually supports. Note that it is
not necessary to include those terms that are \broader" than (i.e., subsume) some
other term already in the conjunction. For instance, in case (4) of Rule (1.1b), the
term A AND B was removed, because it is broader than the remaining conjuncts.
On the other hand, the negative rewriting of an unsupported pattern U is the

disjunction of all the supported patterns Ui that U subsumes, i.e., U
�

=) _ (Ui), as
Figure 6 also illustrates. Note that, when the target does not support any such Ui,

U
�

=) ;, in which case the enclosing predicate P becomes False, i.e., P
�

=) False

(e.g., Rule (1.2b), case (1)). In contrast, for positive rewritings, the worst-case

substitute is AND (i.e., U
+
=)A AND B), because the AND operator is by de�nition

always supported by a Boolean system.

Example 6. (Proximity Operators) Suppose the predicate P = Contains(Title,
distributed (2W) system). For the target AltaVista (which supports only 10N),
referring to Figure 6, we rewrite

P
+
=) Contains(Title; distributed (10N) system) (Rule(1:1b); case(2))

P
�

=) False: (Rule(1:2b); case(1))

As another example, assume the target is WebCrawler. Because it supports 0W
and nN (for arbitrary n), P can be rewritten as:

P
+
=) Contains(Title; distributed (2N) system) (Rule(1:1b); case(2))

P
�

=) Contains(Title; distributed (0W) system) (Rule(1:2b); case(2))

5.2.3 Expanded Words. This section discusses the rewriting for expanded word
patterns in general. For instance, stemming, synonym expansion, truncation, etc.
are all expansion features to broaden the interpretation of words. Given an ex-

22 � Chen-Chuan K. Chang et al.

1. A (nW) B
� Equivalent rewriting: none.
� Positive rewriting:

{ Find the smallest m1 and m2 such that m1 > n, m2 � n, and m1W and m2N are supported.

(1.1a) A (nW) B
+

=) [A (m1W) B] AND [A (m2N) B] AND [A AND B]

(1.1b) =

8>>><
>>>:

(1) A AND B if neither m1 nor m2 exists;
(2) A (m2N) B if m1 does not exist;
(3) A (m1W) B if m1 � m2 or m2 does not exist;
(4) [A (m1W) B] AND [A (m2N) B] if m2 < m1.

� Negative rewriting:

{ Find the largest m1 such that m1 < n, and m1W is supported.

(1.2a) A (nW) B
�

=) A (m1W) B

(1.2b) =

(
(1) ; if m1 does not exist;
(2) A (m1W) B otherwise.

2. A (nN) B
� Equivalent rewriting:

{ If nW is supported (otherwise, no equivalent rewriting):
(2.0) A (nN) B =) (A (nW) B) OR (B (nW) A) (approximation)

� Positive rewriting:

{ Find the smallest m1 and m2 such that m1 > n, m2 > n, and m1W and m2N are supported.

(2.1a) A (nN) B
+

=) [(A (m1W) B) OR (B (m1W) A)] AND [A (m2N) B] AND [A AND B]

(2.1b) =

8><
>:

(1) A AND B if neither m1 nor m2 exists;
(2) A (m2N) B if m2 � m1 or m1 does not exist;
(3) (A (m1W) B) OR (B (m1W) A) if m1 < m2 or m2 does not exist.

� Negative rewriting:

{ Find the largest m1 and m2 such that m1 < n, m2 < n, and m1W and m2N are supported.

(2.2a) A (nN) B
�

=) [(A (m1W) B) OR (B (m1W) A)] OR [A (m2N) B]

(2.2b) =

8><
>:

(1) ; if neither m1 nor m2 exists;
(2) A (m2N) B if m2 � m1 or m1 does not exist;
(3) (A (m1W) B) OR (B (m1W) A) if m1 > m2 or m2 does not exist.

Fig. 6. Rewriting rules for the proximity operators.

panded word x (e.g., stem(running), cat�), we assume that the front-end interpreta-
tion is IF (x) = fw1; w2; :::; wng, where wi's are the exact words supposed to match
x.
If the target T also supports the pattern with a consistent interpretation, i.e.,

IT (x) = IF (x), then no rewriting is necessary for this ideal case. For example, there
are usually standard interpretations across systems for the truncation features.
Otherwise, if IT (x) 6= IF (x) (either x is not supported or its interpretations are

inconsistent), a rewriting may be necessary. Our primary goal is to rewrite x into
a pattern x0 such that IT (x0) = IF (x), resulting in an equivalent rewriting. If this
is not possible, the alternative goals are IT (x0) � IF (x) for positive rewriting, and
IT (x0) � IF (x) for negative rewriting. In the following we study di�erent cases for
the expansion features.

(1) Pattern x is unsupported at T , i.e., IT (x) = ; (e.g., the target does not sup-
port stemming). Our strategy is to enumerate all the words in IF (x), i.e.,
x=) OR(IF (x)) = w1 OR w2 OR � � �OR wn. An exhaustive enumeration will
result in an equivalent rewriting, if each exact word wi is interpreted as is (i.e.,

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 23

no implicit expansion). Otherwise, with implicit expansion, the results can be
broader than expected, as discussed in Section 5.2.1.

(2) Pattern x is supported but with an inconsistent interpretation at T . For ex-
ample, the target may support a di�erent stemming algorithm [Lovins 1968;
Porter 1980]. In this case we have the following strategies:

|Tolerate the interpretation inconsistency. We may regard the target inter-
pretation as an acceptable approximation of the desired expansion, because
users may not insist on (and usually are not aware of) the actual interpre-
tation algorithms. Therefore, as long as the interpretation is expanded, it
should be acceptable for the minor details to be determined by the target
systems. In fact, insisting on a particular interpretation (such as that of the
front-end) may not be necessary as there is no single algorithm proven to be
the best in terms of retrieval e�ectiveness.
Another approximation is to enumerate the words from IF (x) � IT (x) in
disjunction with x, i.e., x =) x0 � x OR(IF (x) � IT (x)). Note that the
extra expansions in IT (x)� IF (x) are still ignored.

|Make the interpretation consistent. As long as IT (x)�IF (x) 6= ; (i.e., there
are extra expansions), the only way to obtain a consistent interpretation is
to directly enumerate the desired words, i.e., x =)OR(IF (x)), as case (1)
discusses.

For the approaches suggested above we need an enumerator that, when given an
expanded word x, will return all the words in IF (x). For the enumerator not to
miss any words that the target might have, it is required that the native vocabulary
VT be accessible. Otherwise, we can instead use a common vocabulary that is
appropriate for the subject domains of a set of targets, but that is not speci�c
to any of them. Although this may give us translations that are approximations
at best, it is a reasonable alternative if native vocabularies are hard to obtain
or costly to maintain. In addition, some systems have an upper bound on input
query length, thus instead of enumerating all the words, we may approximate by
enumerating some of them.

Example 7. (Stemming) Suppose the target system does not support stemming,
then

Contains(Title; gone AND stem(wind))=)Contains(Title; gone AND (wind OR winds));

if IF (stem(wind)) = fwind;windsg.

Finally, we discuss more speci�cally on truncation, an expansion feature that
almost every system supports but to various extents. The truncation support dif-
fers in the sophistication of the allowed patterns. For example, Stanford-Folio does
not allow open truncation to be used more than once in an expanded word (e.g.,
com�ta�). As just discussed, we can use enumeration for unsupported expansion
patterns. However, note that there are great numbers of possible truncation pat-
terns, say comp�, compute?, comput??, etc. Consequently, it is not possible to
pre-compute a database of expansions (with the patterns as keys) for fast look-up.
In other words, the enumeration requires a sequential scan over the full vocabulary
to match the pattern and thus can be costly.

24 � Chen-Chuan K. Chang et al.

Therefore, an alternative (for positive transformation only) is to rewrite with

supported, simpler patterns, e.g., com�ta�
+
=)com�. Such rewriting of unsupported

patterns can be directed by a set of rules for pattern translation. Of course, the
target must at least support some sort of truncation; otherwise, the truncation can
only be emulated by enumeration.

5.3 Phrase Patterns for Equals-Predicates

This section discusses the rewriting for phrase patterns, which are part of Equals-
predicates. Because a phrase pattern (in an atomic Equals-predicate) is a single
phrase, either exact or truncated (Section 3.3), we only need to deal with truncation,
if not supported.
The truncation of phrases is similar to that of words, so our discussion for word

truncation also applies. That is, for an unsupported phrase pattern, one way of
(equivalent) rewriting is to enumerate possible matches from the phrase vocabulary
(if available), as Section 5.2.3 describes. However, phrase vocabularies can be much
larger than word vocabularies, which implies more storage cost and larger search
space for enumeration. As also discussed in Section 5.2.3, another way for (positive)
rewriting is to translate unsupported patterns to their positive subsuming forms
directed by some pattern translation rules, e.g., \Introduction to database � principles

�"
+
=)\Introduction to database �".
Another alternative (for positive transformation) is to rewrite the Equals-predicate

using the Contains operator, as shown in the rewriting of P2 in Example 4. Of
course, this is possible only if the search �eld also supports Contains-predicates.
Note that the resulting Contains-predicate must then be processed as described in
Section 5.2. For instance, referring to the rewriting of P2 in Example 4, the word
\to" might be a stopword that must be removed, or the target may not support
the W operator.

6. COST EVALUATION

Because rewritten queries (minimally) subsume original queries, the front-end needs
to post-�lter preliminary results that may contain extra documents with respect to
the original queries. Post-�ltering incurs more work at the font-end, the networks,
and the underlying services, because extra documents that users will not see have
to be retrieved and processed. Because the post-�ltering is of major concern in our
approach, we performed experiments to study the overhead. This section presents
some of the experimental results. A more detailed report is available in [Chang and
Garc��a-Molina 1997].
Our experiments evaluated both batch and incremental processing, which are

generally the two ways to implement post-�ltering. Given a query Q and its trans-
lation QS , with batch processing the front-end retrieves and �lters all the docu-
ments in hQSi (the preliminary results) and produces the �nal answers hQi all at
once. The cost is therefore proportional to the size of the preliminary result set,
i.e., Size(hQS i). In contrast, with the second approach, the front-end processes the
documents incrementally when a matching document is requested. In other words,
if a user wishes to see, say a screenful of documents, only some of the source's
documents must be retrieved and �ltered. Therefore, with incremental processing,

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 25

the interesting cost metric is the per-document cost, i.e.. the batch cost amortized
by the number of documents matching Q. We call this metric the selectivity ratio,
denoted by SR(QS ; Q), because it indicates the reduction of selectivity from Q to
QS ; i.e.,

SR(QS ; Q) =
Size(hQSi)=size of the source collection

Size(hQi)=size of the source collection
=

Size(hQSi)

Size(hQi)
:

Note that in the above cost metric we ignore the sizes (numbers of words) of doc-
uments in hQS i and hQi. We believe that in most cases hQSi and hQi statistically
share the same average document size, and thus it is not an interesting cost factor
to focus on. (In other words, we believe that whether a document satis�es Q or
QS is independent of its document size.) However, for certain kind of queries (see
Section 6.1) this claim may be challenged. For such queries we also measured the
document sizes to verify their signi�cance as a cost factor (Section 6.1).
We set up the experiments to measure the cost metrics, Size(hQSi) and SR(QS ; Q),

for some of the translation rules over sets of sample queries. Each set of the ex-
periments focused on a speci�c translation rule using sample queries automatically
generated and appropriate for the rule. We focused on evaluating positive rewriting,
because post-�ltering is not necessary for equivalent rewriting and negation (the
NOT operator) is rarely used in practice4. Speci�cally, we evaluated the translation
rules for the proximity operators, stopwords, and the Equals operator. Furthermore,
we did not evaluate the cost of translation that degenerates the query predicates
trivially to True, namely, when the search �elds are not supported by the target. A
predicate rewritten to True will be e�ectively removed from the query, and the cost
will depend on the remaining predicates in the query, thus making it impossible to
isolate this kind of translation. We discuss this in Section 7.

6.1 Proximity Experiments

We �rst studied the cost of rewriting proximity queries by operator substitution, as
suggested by the rules in Figure 6. In other words, the experiments compared the
selectivity of queries with di�erent proximity operators. The automatically gener-
ated sample queries are of the parametric form QW = Contains(F, w1 (W) w2 (W)
� � � (W) wn), where F is a �eld designation like Title, and wi's are the words in a
phrase. First, for the �eld parameter, we selected three common �elds representing
di�erent typical lengths: Title, Abstract, and Text (the body of text of documents).
We expect that the typical lengths of the �elds may impact the selectivity of prox-
imity queries. Second, to generate the proximity expression \w1 (W) w2 (W) � � �
(W) wn", we �rst selected some phrase vocabularies, then randomly picked a phrase
from the vocabularies, and �nally extracted words w1; w2; � � � ; wn from the phrase.
In particular, we chose as vocabularies The Free On-line Dictionary of Comput-
ing (V OCFoldoc) [Howe 1997] and the Inspec Thesaurus (V OCInspec) [IEE 1991].
V OCFoldoc is an evolving dictionary of computing-related terms, and V OCInspec

is a set of controlled subject terms that IEE compiles to categorize the documents
in the Inspec collection. Third, the sample queries, and their subsuming queries

4 For instance, we analyzed a two-week user trace collected in our university library system, and
found that negation was used in only 22 out of the total 15595 queries, i.e., 0:14%.

26 � Chen-Chuan K. Chang et al.

(where W is replaced with less selective operators) were evaluated in the Dialog
service, because of its sophisticated search engine. In particular, among the many
collections Dialog provides, we chose to query the Dialog-275 (Computer Database)
and Dialog-2 (Inspec) because they support the desired search �elds, and their sub-
ject domains are appropriate for the vocabularies generating the queries.
Table 1 shows the four di�erent con�gurations used for our experiments, where

each con�guration de�nes a search �eld, a phrase vocabulary, and a source col-
lection. We performed two sets of experiments, each sharing these con�gurations,
but with di�erent subsuming queries. The �rst set of experiments evaluated the
costs when the W operator is replaced with AND, which represents the worst-case
substitution (Figure 6, case (1) of Rule (1.1b)). In the second set of experiments,
we investigated at a �ner granularity how progressively weaker operators impact
query selectivities.

Table 1. Con�gurations of the proximity experiments.
con�guration parameter Inspec-Ti Inspec-Ab Comput-Ti Comput-Tx

Search �eld Title Abstract Title Text

Phrase vocabulary V OCInspec V OCInspec VOCFoldoc V OCFoldoc

Source collection Dialog-2 Dialog-2 Dialog-275 Dialog-275

Figure 7 sketches the results of the �rst set of experiments, where a user query
QW with the W operator is compared with a native query QAND that uses the AND
operator instead. We only report on two of the con�gurations; the results for the
remaining two con�gurations are similar. Speci�cally, the �gures plot the pairs
[Size(hQWi); Size(hQANDi)] for the queries of the corresponding con�gurations.
In other words, they illustrate the distribution of Size(hQANDi) with respect to
Size(hQWi).
To illustrate the ranges of SR(QAND; QW) values in the �gures, the diagonal

dotted lines (representing the y=x = m axes, where m is labeled on the y�axis)
partition the space into di�erent bands, each representing a range of SR(QAND; QW)
(i.e., y=x). For instance, for all the data points falling in the lowest band (y=x
between 1 and 10), the subsuming query QAND fetches between 1 and 10 times as
many documents as the original query QW would have fetched, were it supported
by the source. Note that all the points fall on the upper-left side of the y=x = 1 axis
because QAND's subsume QW's. In other words, the closer the points accumulate
to the y=x = 1 axis, the better the QAND's approximate the QW's.
The cost of batch post-�ltering indicated by Size(hQANDi) varies greatly, from as

little as 1 to on the order of 103. In principle, the only upper bound is the size
of the queried collection. Given this signi�cant variation, batch post-�ltering may
not always be feasible; the front-end can choose to do batch post-�ltering when the
preliminary result sizes are manageable.
In contrast, the results in terms of selectivity ratios indicate that incremental

post-�ltering is feasible in most cases. As Table 2 (middle column) shows, the overall
average SR(QAND; QW)'s range from 2:12 for Comput-Ti to 139:38 for Comput-Tx.
Interestingly, the ratios decrease greatly if we exclude those samples of which QW's
get very few hits (e.g., less than 5) (Table 2, right column). These \odd" samples

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 27

1

10

102

103

104

1 10 102 103 104

S
iz
e
(Q
A
N
D
)

Size(QW)

(a) Con�guration Inspec-Ti

1

10

102

103

104

1 10 102 103 104

S
iz
e
(Q
A
N
D
)

Size(QW)

(b) Con�guration Inspec-Ab

Fig. 7. Results of AND-queries versus W-queries for Inspec-Ti and Inspec-Ab.

may simply suggest that the queried collection is not an appropriate source for
the underlying phrases to begin with. Note that, in both cases, QAND's tend to
approximate QW's better for shorter �elds (e.g., Title).
Interestingly, in all the four con�gurations, SR(QAND; QW) values tend to decrease

as Size(hQWi) increases. This means that incremental processing complements
batch processing well. That is, if batch processing does not work well because of
large result sizes, then it is likely that incremental processing will be e�ective.

Table 2. Average selectivity ratios of AND-queries versus W-queries.
Avg. SR(QAND;QW) Avg. SR(QAND; QW)

con�guration (all samples) (samples with Size(hQWi) � 5)

Inspec-Ti 5.25 2.69

Inspec-Ab 32.17 13.74

Comput-Ti 2.12 1.62

Comput-Tx 139.38 38.48

As stated earlier, our cost metric, SR(QS ; Q), does not consider the sizes of doc-
uments in hQSi and hQi, which might be questionable in some cases. Speci�cally,
hQSi and hQi may not share the same average document size when the length of
the search �eld can a�ect the query results, and in addition the search �eld length
also dominates the document size. Table 2 shows that the results for the proximity
translation depend greatly on the �eld lengths. Therefore, we also evaluated the
average sizes for documents in the query answers. As expected, for short �elds such
as Title (Comput-Ti), the average document sizes are almost identical, with the ra-
tio of hQANDi documents to hQWi documents being 1:05. In contrast, for longer
�elds (that determine the document sizes) such as Text, we do see a di�erence: in
Comput-Tx, the average (document) size ratio is 2:03. Notice that this ratio is still

28 � Chen-Chuan K. Chang et al.

insigni�cant in determining the total cost, as compared to the SR(QAND; QW) of
139:38. In other words, the document size is not a dominating factor of the total
cost, although it does have slight implication.
We next report on the second set of the proximity experiments, in which we com-

pared series of weaker operators to the W operator. Because a proximity operator
speci�es both the order and distance constraints, we investigated how the query
selectivities degenerate as we relax either of the constraints.
For each con�guration, Figure 8 gives the average SR(Qop; QW) values, when

a query Qop (with operator op) is compared to a query QW (with the most se-
lective operator W). For each con�guration we plot two curves: the �rst curve
consists of a series of pairs [n; SR(QnW; QW)], where n 2 f0; 10; 60; 127g. That
is, this curve represents the selectivity of the ordered proximity operators as the
distance constraints are progressively relaxed. Similarly, the second curve is for the
unordered proximity operators, i.e., it plots the pairs [n; SR(QnN; QW)], where
n 2 f0; 10; 60; 127;1g. (Note that1N represents the AND operator.) For example,
looking at the con�guration Inspec-Ti, we see in Figure 8(a) that the 60W operator
has an overhead of SR(Q60W ; QW) = 3.1, while the 60N operator has an overhead
of SR(Q60N; QW) = 5:2.
Several remarks are noteworthy. First, the results for the nN-queries are rela-

tively close to those of the nW-queries, with the former being no more than two
times greater than the latter, which indicates the range of overhead for systems
that do not provide the order constraint (e.g., Figure 6, case (2) of Rule (1.1b)).
Second, for systems with even only partial support of the proximity operators, the
incremental post-�ltering cost decreases signi�cantly compared to those with no
support. In other words, in a system that supports some operators stronger than
AND (e.g., AltaVista's NEAR operator meaning 10N), the incremental cost may
be greatly reduced with these operators. Third, the (unordered) proximity oper-
ators nN approximate the AND operator for n greater than some threshold value
depending on the typical lengths of the search �elds. For instance, for short �elds
as Inspec-Ti and Comput-Ti show, the nN operators start to approximate AND for
n � 10. For longer �elds such as Abstract, this threshold is about 60. Therefore,
for queries on short �elds (e.g., bibliographic �elds), lack of full support of the
proximity operators may not be a crucial restriction, because the AND operator
can approximate them well.

6.2 Summary of Other Experiments

The stopword experiments evaluated the rewriting rule for stopword removal (Sec-
tion 5.2.1). We compared the result size of a sample query Q (e.g., Contains(Text,
video (W) on (W) demand)) containing stopwords (e.g., on) to that of its subsum-
ing query QS (e.g., Contains(Text, video (1W) demand)), with stopwords removed
(by the procedure in Figure 4). The sample queries are of the parametric form
Q = Contains(Text, w1 op w2 op � � � op wn). We set up two con�gurations, which
di�er only in the connecting operator op: con�guration Con�g-Prox uses W, while
Con�g-Conj uses AND. To generate the queries, we selected from V OCFoldoc all
the phrases containing at least one stopword speci�ed by the information service
Britannica Online (http://www.eb.com/).
Figure 9 illustrates the distribution of the pairs [Size(hQi); Size(hQSi)]. The

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 29

1

10

102

0 10 60 127 1

S
R
(Q
o
p
;Q
W
)

proximity distance n

Inspec-Ab, (nN)
Inspec-Ab, (nW)
Inspec-Ti, (nN) r

r

r r r r

Inspec-Ti, (nW) b

b

b b b

b

(a) Con�gurations Inspec-Ti and Inspec-Ab

1

10

102

0 10 60 127 1

S
R
(Q
o
p
;Q
W
)

proximity distance n

Comput-Tx, (nN)
Comput-Tx, (nW)
Comput-Ti, (nN) r

r

r
r r r

Comput-Ti, (nW) b

b

b
b b

b

(b) Con�gurations Comput-Ti and
Comput-Tx

Fig. 8. Average SR(Qop; QW)'s for di�erent operator op's.

results depend not only on the connecting operators (i.e., AND or W), but also on
the remaining lengths of the subsuming queries, i.e., the numbers of search words
remaining in the subsuming queries after the removal of stopwords.
In all the cases except when the remaining length is 1 in con�guration Con�g-Prox,

the subsuming queries closely approximate the sample queries. In summary, �rst,
unless a query contains mostly stopwords, the subsuming query with stopwords
removed closely approximates the original query. Second, notice that stopword
removal from conjunctive expressions does not reduce selectivity as much as was
the case with proximity expressions, because AND only tests the occurrence of
terms, which is almost guaranteed for stopwords.
In the last set of experiments, we studied the e�ects of rewriting predicates with

the Equals operator to those with the Contains operator, i.e., the schema level
transformation (Section 5.1). The sample queries are of the form Q = Equals(Title,
\w1 w2 � � � wn"). Because we used Inspec (with a subset since year 1988) as the
source collection, the experiments generated the sample queries using the complete
Title values of Inspec citations (provided by the Stanford library). Because, in
practice, users usually rely on truncation instead of giving the full phrase, we con-
�gured two sets of experiments: con�guration Con�g-Full queries with full phrases,
and Con�g-Trun assumes truncation to the �rst 5 words. For both con�gurations,
the experiments generated subsuming queries of the form Contains(Title, w1 op w2

op � � � op wn), where n is no greater than 5 for Con�g-Trun. Speci�cally, the �rst
subsuming query QW uses the operator W to connect the words, which represents
the best-case translation. However, if the target system does not support W, the
query must be further transformed. Therefore, the second subsuming query QAND
assumes that the underlying service does not support the proximity operators, and
therefore uses AND as the connecting operator.
Surprisingly, the results (not shown fully here) demonstrate high consistency for

30 � Chen-Chuan K. Chang et al.

1

10

102

103

104

105

1 10 102 103 104 105

S
iz
e
(Q
S
)

Size(Q)

Remaining length = 1 b

b

b

b

b
b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

bb

b

b b b

b

b

b

b

Remaining length � 2

(a) Con�guration Con�g-Prox

1

10

102

103

104

105

1 10 102 103 104 105

S
iz
e
(Q
S
)

Size(Q)

Remaining length = 1 b

b

b

b

b

b

b

b
b

b

b

b

bb

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b
b

bb

b

b

bbb

b

b

b

b

b

Remaining length � 2

(b) Con�guration Con�g-Conj

Fig. 9. Results of the stopword experiments.

all the sample queries. Because both the Equals{queries and the Contains-queries
are extremely selective, almost all the Equals-queries return only one hit, and the
Contains-queries closely approximate the Equals-queries with the hits ranging from
1 to 10. Because of the small result sizes, batch post-�ltering is always feasible,
while in the previous two sets of experiments there are cases when it is not. For
the incremental cost, Table 3 shows the corresponding metric, i.e., the average
SR(QS ; Q)'s. Overall, the selectivity reduction is about 2, which indicates that
incremental costs may also be acceptable. Also, the costs increase slightly for
truncated phrases, and for systems that do not support the proximity operators.

Table 3. Average selectivity ratios of the equality experiments.
con�guration Average SR(QW;Q) Average SR(QAND; Q)

Con�g-Full 1.28 1.69

Con�g-Trun 1.29 2.14

7. CONCLUDING DISCUSSION

Search services support di�erent query languages and varying access capabilities.
To address this heterogeneity, we proposed a unifying front-end that provides the
illusion of uniform capabilities across underlying services. A front-end does not
internally manage data of its own; instead it relies on external services to provide
necessary information for answering queries. To unify search, the front-end must
translate user queries in a uni�ed language into those natively supported by the
underlying services. This translation also makes possiblemulti-search (over multiple
sources) with a single user query. In this paper we gave an overview of the query
translation process, and focused on predicate rewriting in particular. The front-end

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 31

must also perform local post-�ltering, in order to implementmissing functionalities.
This paper also summarized our experimental results illustrating the batch and
incremental post-�ltering costs.
We have implemented the algorithms presented in this paper in Digital Library

testbed system. Currently, we translate queries for heterogeneous search services
including Dialog, (Stanford's) Folio, AltaVista, WebCrawler, and NCSTRL, each
with di�erent Boolean query syntax and functionality. The results are quite en-
couraging: in most cases users get their results quickly, without having to know the
di�erent query languages. However, as pointed out earlier, there are situations in
which our approach has drawbacks. We discuss these in turn, suggesting ways to
cope with them.
The �rst problem is that a source may not provide the necessary information for

translation. In summary, our rewriting algorithms require the following metadata

de�ning the target's capability and schema (Figure 1): (1) the schema de�nition,
(2) the supported operators, (3) the stopword list, (4) the vocabulary, and (5) the
details of expansion features (e.g., the supported truncation patterns). While most
of them (e.g., items 1, 2, 3) are usually documented, others (e.g., the vocabulary)
are currently harder to obtain. Note that the availability of service metadata is es-
sential for interoperability in general, not just for query translation. Consequently,
various standards or agreements have been developed for metadata acquisition. For
example, the Z39.50 [National Information Standards Organization 1995] Explain
Facility and the STARTS [Gravano et al. 1997] protocols require services to export
their metadata. This metadata includes useful information for query translation,
e.g., searchable �elds and the operators for searching the �elds. Along these lines,
we have also developed a metadata architecture [Baldonado et al. 1997a; Baldonado
et al. 1997b] to facilitate metadata management.
A second potential translation problem is that a query may translate to True,

in which case a source with a large corpus is generally unable to return all of
its contents for �ltering. However, our study shows that in most interesting and
practical cases a better translation is possible. First, predicate rewrites to True

are actually unlikely in practice. Referring to Figure 3, for positive rewriting, a
predicate translates to True only when it involves a non-searchable �eld, or when
its pattern contains only stopwords. Both cases are unusual, or can at least be
easily avoided. Although negative rewrites to False are more likely, it may not be
a serious problem because negation is rarely used (see footnote 4). Second, if the
predicates translated to True appear in a conjunction, then the remaining conjuncts
may provide reasonable selectivity.
A third drawback is the potential high cost of post-�ltering. Our experiments

show that the costs of batch post-�ltering can vary greatly; the front-end can advise
users of its feasibility based on the numbers of hits for the native queries. (As we
discuss later, with user interaction, post-�ltering may only have to take place when
the results are of manageable sizes.) With incremental post-�ltering, costs are in-
curred only as the user requests matching documents, so the user has control over
the costs. With fast search engines and networks, combined with changing informa-
tion access economics, the additional processing time and cost may be acceptable
for users, given that they access information with less e�ort on their part.
There are variations to the basic translation scheme we have discussed in this

32 � Chen-Chuan K. Chang et al.

paper that may also mitigate the drawbacks. For example, we can apply approx-

imate translation that yields \slightly" di�erent answers. To illustrate, consider a
query with a truncation term. With exact translation, the term is replaced with all
possible expansions, and this can yield an excessively large native query. Instead,
we can decide not to enumerate all possible expansions. Similarly, suppose that
the source vocabulary is not available at the front-end. We can use instead some
common vocabulary, e.g., from a dictionary suitable for the domain of interest.
Another useful approximation is to map an unsupported �eld to \anywhere" (or
the default �elds supported by a service). These approximations do not guarantee
a precise translation, but it may be acceptable, given the inherent uncertainty in
information retrieval. We are currently extending our framework to incorporate
approximate translation.
Another variation is to skip post-�ltering. That is, the user query is still trans-

lated according to our algorithms, but all of the results of the subsuming query
are given to the user. (Notice that our translation algorithms guarantee that no
other native query could return fewer documents [Chang et al. 1996a; Chang et al.
1996b].) We still have to pay the overhead of fetching additional documents, but
there is no �ltering work at the front-end. The user may get documents that do
not match the query, but the costs at the front-end are reduced. This strategy is
used by MetaCrawler [Selberg and Etzioni 1995], which gives users the option to
eliminate post-�ltering that veri�es phrase queries.
Query translation can also support an interactive environment where a user gets

help in constructing queries, estimating their execution costs, and interpreting the
results. For example, as a user develops a query, the translation system can indicate
what components will be hard to translate, and suggest operators or terms that
may be easier to use with the intended sources. The front-end can also estimate
the expected post-�ltering cost based on some standard cost functions (e.g., our
experimental results), identifying the expensive predicates, and advising the user
accordingly. After the native query is evaluated, the front-end can report the
preliminary result size. If the size is small, the user may decide to do batch post-
�ltering directly, which yields all the �nal results at once. Otherwise, the front-end
may instead post-�lter incrementally and estimate the �nal result size dynamically
by extrapolation of the accumulated results. At any point, based on the execution
status, the user can continue to re�ne the query until the results are manageable.

In this paper we have focused on the Boolean query model, because it is used
by most commercial search services and library systems. However, there are also
other kinds of popular query models, the most prominent being the vector-space
model, and we have started to develop extensions for it. In the vector space model,
documents are retrieved and ranked based on their \similarity" with queries. If a
front-end decides to support the vector-space model, translation to an underlying
service that also supports vector-space queries is relatively straightforward, because
there is no strict syntax, there are typically no sophisticated features, and there
are not many dialects as with Boolean queries. However, the major challenge is
to collate results returned from di�erent services, i.e., to merge the di�erent rank-
ings [Fagin 1996; Voorhees and Tong 1997]. The problem is hard because all the
search engines use proprietary ranking algorithms, and the details are not publicly
available. To help meta-searchers perform the rank-merging, it is desirable that the

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 33

services return some ranking information along with the results, as STARTS [Gra-
vano et al. 1997] suggests. We have also studied how much data must be retrieved
from a ranking source in order to do meaningful merging [Gravano and Garc��a-
Molina 1997].
It is even harder to translate queries between di�erent retrieval models, e.g.,

from the Boolean model to the vector-space model, and vice versa. The retrieval
semantics are fundamentally di�erent; Boolean queries specify exact matches while
vector-space queries are based upon statistical similarities. One way to integrate
services that may use either model is to support a combined query model in the
front-end, as STARTS suggests. That is, users specify both a selection criterion
(Boolean) and a ranking criterion (vector-space). The front-end can then translate
the appropriate part for each underlying service with the corresponding model, and
post-process the other unexecuted part locally. However, there are still many open
issues that need to be resolved with such inter-model execution.

REFERENCES

Baldonado, M., Chang, C.-C. K., Gravano, L., and Paepcke, A. 1997b. Metadata
for digital libraries: Architecture and design rationale. In Proceedings of the Second ACM
International Conference on Digital Libraries (Philadelphia, Pa., July 1997), pp. 47{56.
ACM Press, New York.

Baldonado, M., Chang, C.-C. K., Gravano, L., and Paepcke, A. 1997a. The Stan-
ford Digital Library metadata architecture. International Journal on Digital Libraries 1, 2
(Sept.), 108{121.

Baldonado, M. Q. W. and Winograd, T. 1997. SenseMaker: An information-exploration
interface supporting the contextual evolution of a user's interests. In Proceedings of the
Conference on Human Factors in Computing Systems, CHI'97 (Atlanta, Ga., March 1997),
pp. 11{18. ACM Press, New York.

Chang, C.-C. K. and Garc��a-Molina, H. 1997. Evaluating the cost of boolean query
mapping. In Proceedings of the Second ACM International Conference on Digital Libraries
(Philadelphia, Pa., July 1997), pp. 103{112. ACM Press, New York.

Chang, C.-C. K., Garc��a-Molina, H., and Paepcke, A. 1996a. Boolean query mapping
across heterogeneous information sources. IEEE Transactions on Knowledge and Data En-
gineering 8, 4 (Aug.), 515{521.

Chang, C.-C. K., Garc��a-Molina, H., and Paepcke, A. 1996b. Boolean query mapping
across heterogeneous information sources (extended version). Technical Report SIDL-WP-
1996-0044 (Sept.), Stanford Univ. Accessible at http://www-diglib.stanford.edu.

Crystal, M. I. and Jakobson, G. E. 1982. FRED, a front end for databases.Online 6, 5
(Sept.), 27{30.

Fagin, R. 1996. Combining fuzzy information from multiple systems. In Proceedings of the
15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(Montreal, Canada, June 1996), pp. 216{226. ACM Press, New York.

Faloutsos, C. 1985. Access methods for text. Computing Surveys 17, 1 (March), 49{74.

Frakes, W. B. and Baeza-Yates, R. 1992. Information Retrieval Data Structures & Al-
gorithms. Prentice Hall, Englewood Cli�s, N.J.

Garc��a-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., and

Widom, J. 1995. Integratingand accessing heterogeneous information sources in TSIM-
MIS. In Proceedings of the AAAI Spring Symposium on Information Gathering (Stanford,
Calif., March 1995), pp. 61{64. AAAI Press, Menlo Park, Calif.

Garc��a-Molina, H., Labio, W., and Yerneni, R. 1998. Capability sensitive query pro-
cessing on internet sources. Technical report, StanfordUniv. Accessible at http://www-db.-
stanford.edu/.

34 � Chen-Chuan K. Chang et al.

Gravano, L., Chang, C.-C. K., Garc��a-Molina, H., and Paepcke, A. 1997. STARTS:
Stanford proposal for Internet meta-searching. In Proceedings of the 1997 ACM SIGMOD
Conference (Tucson, Ariz., May 1997), pp. 207{218. ACM Press, New York.

Gravano, L. and Garc��a-Molina, H. 1997. Merging ranks from heterogeneous internet
sources. In Proceedings of the 23rd VLDB Conference (Athens, Greece, Aug. 1997), pp.
196{205. VLDB Endowment, Saratoga, Calif.

Gravano, L., Garc��a-Molina, H., and Tomasic, A. 1994. The e�ectiveness of GlOSS for
the text-databasediscoveryproblem. InProceedings of the 1994 ACM SIGMOD Conference
(Minneapolis, Minn., May 1994), pp. 126{137. ACM Press, New York.

Harman, D. 1993. Document detection overview. In Proceedings TIPSTER Text Program
(Phase I) (Fredricksburg, Va., Sept. 1993). Morgan Kaufmann, San Francisco, Calif.

Hawkins, D. T. and Levy, L. R. 1985. Front end software for online database searching
Part 1: De�nitions, system features, and evaluation. Online 9, 6 (Nov.), 30{37.

Howe, D. 1997. The free on-line dictionary of computing. Accessible at http://-

wombat.doc.ic.ac.uk/.

IEE. 1991. INSPEC Thesaurus. Institution of Electrical Engineers, London.

ISO. 1993. ISO 8777:1993 Information and Documentation { Commands for Interactive
Text Searching (First ed.). Int'l Organization for Standardization, Geneva, Switzerland.

Ketchpel, S. P., Garcia-Molina, H., and Paepcke, A. 1997. Shopping models: A
exi-
ble architecture for informationcommerce. In Proceedings of the Second ACM International
Conference on Digital Libraries (Philadelphia, Pa., July 1997), pp. 65{74. ACM Press, New
York.

Kirk, T., Levy, A. Y., Sagiv, Y., and Srivastava, D. 1995. The InformationManifold. In
Proceedings of the AAAI Spring Symposium on Information Gathering (Stanford, Calif.,
March 1995), pp. 85{91. AAAI Press, Menlo Park, Calif.

Loeffen, A. 1994. Text databases: A survey of text models and systems. SIGMOD
Record 23, 1 (March), 97{106.

Lovins, J. B. 1968. Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics 11, 1-2, 22{31.

Marcus, R. S. 1982. User assistance in bibliographic retrieval networks through a computer
intermediary. IEEE Trans. on Systems, Man, and Cybernetics smc-12, 2, 116{133.

Martin, T. H. 1974. A feature analysis of interactive retrieval systems. Report SU-COMM-
ICR-74-1 (Sept.), Institute of Communication Research, Stanford Univ., Stanford, Calif.

McCluskey, E. J. 1986. Logic Design Principles. Prentice Hall, Englewood Cli�s, N.J.

Mitchell, P. C. 1973. A note about the proximity operators in information retrieval. In
Proceedings of ACM SIGPLAN-SIGIR Interface Meeting (Gaithersburg, Md., Nov. 1973),
pp. 177{180. ACM Press, New York.

National Information Standards Organization. 1993. Z39.58-1992 Common Com-
mand Language for Online Interactive Information Retrieval. NISO Press, Bethesda, Md.

National Information Standards Organization. 1995. Information Retrieval (Z39.50):
Application Service De�nition and Protocol Speci�cation (ANSI/NISO Z39.50-1995).
NISO Press, Bethesda, Md. Accessible at http://lcweb.loc.gov/z3950/agency/.

Navarro, G. and Baeza-Yates, R. 1995. A language for queries on structure and con-
tents of textual databases. In Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (Seattle, Wash., July
1995), pp. 93{101. ACM Press, New York.

Negus, A. E. 1979. Development of the Euronet-Diane Common Command Language. In
Proceedings 3rd Int'l Online Information Meeting (1979), pp. 95{98. Learned Information,
Oxford, U.K.

Paepcke, A. 1993. An object-oriented view onto public, heterogeneous text databases. In
Proceedings of the 9th International Conference on Data Engineering (Vienna, Austria,
April 1993), pp. 484{493. IEEE Computer Society, Washington, D.C.

Papakonstantinou, Y., Garc��a-Molina, H., Gupta, A., and Ullman, J. 1995. A query
translation scheme for rapid implementation of wrappers. In Proceedings of the 4th Inter-

Predicate Rewriting for Translating Boolean Queries in a Heterogeneous Information System � 35

national Conference on Deductive and Object-Oriented Databases (Singapore, Dec. 1995),
pp. 161{186. Springer, Berlin.

Porter, M. F. 1980. An algorithm for su�x stripping. Program 14, 3 (July), 130{137.

Preece, S. and Williams, M. 1980. Software for the searcher's workbench. In Proceed-
ings of the 43rd American Society for Information Science Annual Meeting, Volume 17
(Anaheim, Calif., Oct. 1980), pp. 403{405. Knowledge Industry Publications,White Plains,
N.Y.

Rao, R., Janssen, B., and Rajaraman, A. 1994. GAIA technical overview. Technical
report, Xerox PARC.

Rao, R., Russel, D., and Mackinlay, J. 1993. System components for embedded infor-
mation retrieval from multiple disparate information sources. In Proceedings of the ACM
UIST '93 (Atlanta, Ga., Nov. 1993), pp. 23{33. ACM Press, New York.

Salton, G. 1989. Automatic Text Processing. Addison-Wesley, Reading, Mass.

Selberg, E. and Etzioni, O. 1995. Multi-service search and comparison using the
MetaCrawler. In Proceedings of the 4th International WWW Conference (Boston, Mass.,
Dec. 1995).

Toliver, D. E. 1982. OL'SAM: An intelligent front-end for bibliographic information re-
trieval. Information, Technology and Libraries 1, 4, 317{326.

Ullman, J. D. 1988. Principles of Database and Knowledge-Base Systems. Computer Sci-
ence Press, Rockville, Md.

Ullman, J. D. 1997. Information integration using logical views. In Proceedings of the
6th International Conference on Database Theory (Delphi, Greece, Jan. 1997). Springer,
Berlin.

Voorhees, E. M. and Tong, R. M. 1997. Multiple search engines in database merging. In
Proceedings of the Second ACM International Conference on Digital Libraries (Philadel-
phia, Pa., July 1997), pp. 93{102. ACM Press, New York.

Wiederhold, G. 1992. Mediators in the architecture of future information systems. IEEE
Computer 25, 3 (March), 51{60.

Williams, M. E. 1986. Transparent information systems through gateways, front ends, in-
termediaries, and interfaces. Journal of the American Society for Information Science 37, 4
(July), 204{214.

Zinn, S., Sellers, M., and Bohli, D. 1986. OCLC's intelligent gateway service: Online
information access for libraries. Library Hi Tech 4, 3, 25{29.

