
1

An Extensible Constructor Tool for the Rapid,
Interactive Design of Query Synthesizers

Michelle Baldonado*, Seth Katz, Andreas Paepcke,
Chen-Chuan K. Chang, Hector Garcia-Molina, Terry Winograd

Gates Building 4A
Stanford University
Stanford, CA 94305

E-mail: {michelle, sethkatz, paepcke, kevin, hector, winograd}@cs.stanford.edu

ABSTRACT
We describe an extensible constructor tool that helps
information experts (e.g., librarians) create specialized query
synthesizers for heterogeneous digital-library environments.
A query synthesizer produces a graphical user interface in
which a digital-library patron can specify a high-level,
fi elded, mult i-source query. Fur thermore , a query
synthesizer interacts with a query translator and an attribute
translator to transform high-level queries into sets of source-
specific queries. In this paper, we discuss how our tool for
constructing synthesizers can facilitate the discovery of
available attributes (e.g., ‘title’), the collation of schemas
from different sources, the selection of input widgets for a
synthesizer (e.g., a drop-down list widget to support input of
controlled vocabulary), and other design aspects. We also
describe the user interface of our prototype constructor,
which is implemented based on the Stanford InfoBus and
metadata architecture.

KEYWORDS: constructor tool, query synthesizer, regional
schema, query generation, query translation, attribute
translation, metadata architecture, schema

INTRODUCTION
With the advent of large, rapidly evolving heterogeneous
digital libraries, patrons are faced with several difficulties
when trying to submit a query to multiple sources. First, the
patron must identify the right sources to use. Second, the
patron must determine what queries to submit to the sources.
In this paper, we consider sources that accept vector-space
queries as well as sources that accept traditional Boolean
queries. A patron must understand the source well enough to
know what operators to use in querying the source, whether
or not it allows (or requires) the specification of fields, and if
so, what values to use in the queries. For example, a given
field may require its values to come from a controlled

vocabulary (e.g., ‘Journal’ must be one of CACM, TODS,
TOIS), certain keywords may be preferable (e.g., automobile
over car), or values must be of a given type (e.g., integers,
not strings).

In this paper, we propose a two-tier approach to facilitating
query formulation in digital libraries (see Figure 1). The first
tier in our approach revolves around a constructor tool that is
used periodically by an expert designer (e.g., a librarian) to
explore the currently available information sources and their
idiosyncrasies. By using the constructor tool, the designer
produces one or more query synthesizers for specific tasks or
domains. These synthesizers form the basis of the second
tier. A query synthesizer produces a graphical user interface
(GUI) in which a digital-library patron (end user) can specify

* New contact information for Michelle Baldonado:
Xerox PARC, 3333 Coyote Hill Road, Palo Alto,
CA 94304. E-mail: baldonado@parc.xerox.com

Figure 1. Two-tier approach to query formulation

Target
Source

Searching

Search

Patron
(end user)

Query
synthesizers

Testing

Designer of query synthesizer
(e.g., librarian)

• Attribute Manager
• UI Layout Manager
• Test Engine
• Code Generator

Metadata

Constructor Tool

Tier 1

Tier 2

2

both a high-level, fielded query and a set of diverse target
sources for that query (see Figure 2). Furthermore, a query
synthesizer interacts with a query translator and an attribute
translator to transform high-level queries into sets of source-
specific queries. Our two-tier approach allows for two
classes of designers to codify knowledge about tasks and
sources ahead of time for the patron. The first class of
designer is already familiar with many sources (e.g., a
professional librarian) and thus uses the tool mostly to
compare source features. The second class of designer is not
already familiar with many sources and thus uses the tool not
only to compare source features, but also to learn about
sources. In either case, it is the patron who benefits from the
designer’s work because the patron can now more easily
genera te sophis t ica ted quer ies wi thou t care fu l ly
investigating the sources.

The context for our approach is the Stanford Digital Library
project, which provides uniform access via the InfoBus [10]
to a heterogeneous set of information services, search
services, and metadata services. The InfoBus includes a set
of protocols in a CORBA-compliant distributed object
architecture that allows services and clients to communicate
via remote method calls. Figure 3 presents an overview of
the Stanford Digital Library architecture, including the
constructor tool and its elements.

Very briefly, the constructor and synthesizers are used as
follows. The designer first establishes the task for which
patrons wi l l use the new synthesizer. She uses the
constructor to look for appropriate information sources and
learn what fields and operators are available for searching.
The constructor obtains this information by contacting
sources and metadata repositories through the InfoBus. The
designer next selects the fields that the patron will be
allowed to enter, specifies their formats, associates each field
with a GUI element, and stipulates how the patron’s inputs
will be incorporated into the final query. The designer can
also “test run” queries to ensure the design is acceptable.
Finally, when the patron uses the resulting synthesizer, he

simply interacts with the GUI produced, without having to
understand the specifics of the chosen sources.

Several challenges arise in designing such a constructor tool
that supports the rapid, interactive design of query
synthesizers. In this paper, we identify the following design
issues, outline our approach to each issue, and discuss the
current state of our constructor-tool implementation with
respect to each issue.

• Schema access. How does the designer examine the
schemas of all the relevant sources?

• Schema collation. How does the designer reconcile
schemas if the synthesizer will search multiple sources
at the same time?

• Constructor-tool user interface. How does the designer
interact with the tool to produce a synthesizer?

• Architecture and implementation. How was our proto-
type constructor tool built?

SCHEMA ACCESS
After identifying sources relevant to a target query
synthesizer, the designer needs to examine the schemas of
those sources. A source’s schema is the collection of fields
available for searching and retrieving portions of documents.
By understanding the source schemas, the designer can
further gauge each source’s relevance, and can ensure that
the new synthesizer provides a maximum of support in using
fielded queries. The use of fields in queries can significantly
improve search results for sources that maintain indexes. For
example, a database of online computer trade magazines will
yield thousands of results to a query for “notebook
computer.” In contrast, the result set is l imited to a
meaningful couple of dozens when the query specifies that
the results should have ‘type’ evaluation and ‘publication
year’ 1997. While many sources currently on the World-
Wide Web do not support such fielded requests, many high-
quality sources such as the Dialog Information Service have

Figure 2. A simple GUI produced by a query synthesizer
for product search

Search

EditorialEditorial

Product name:

Publication year:

Article type:

Evaluation
Press release
Interview
Editorial

Evaluation
Press release
Interview
Editorial

Product Search Form

Highly
specialized
attributes

Attribute-
specific input

widgets

Figure 3. Stanford Digital Library Architecture, including
the constructor tool

Constructor
Tool

•Attribute Manager

•UI Layout Manager

•Test Engine

•Code Generator

Query Synthesizer

Stand-Alone Interpreter for
Query Synthesizer

DLITE-Embedded Interpreter for
Query Synthesizer

Metadata Repository

Knight-Ridder Dialog
Search ProxyAltaVista

Search ProxyLibrary of Congress
Search Proxy

Stanford Front
Attribute ModelZ39.50 Bib-1

Attribute ModelDublin Core
Attribute ModelUSMARC

Attribute Model

3

done so for years. Fielded queries are not limited to sources
that accept Boolean queries. Some sources that use statistical
techniques to process queries (e.g., Verity databases) also
allow for fielded searching. Furthermore, even some Web
sites (e.g., specialized electronic-mail address finders) are
beginning to introduce attribute-based search as well.

Finding out which attributes may be used with any given
source raises the problem of schema access: how can the
schemas be inspected and compared? Some commercial
information providers support such metadata browsing.
Others do not. Even when such browsing facilities are
available, the issue of differing attribute naming conventions
remains. Many attribute-naming schemes have been
developed for full-text sources, notably the Library of
Congress’s MARC scheme [14], Z39.50’s BIB1 [9], or, more
recently, Dublin Core [13]. The schema access problem
would be easier to solve if target sources would all support
one or several such naming schemes in their entirety.
Unfortunately, many target sources present entirely non-
standard attributes or they support only a subset of the
standard sets. This may be because the sources contain very
specialized contents or because their content is indexed only
on a few of the attributes.

Even if target sources adhered to more orderly schemes,
attribute names alone are not enough. Additional information
is needed, such as what operators are relevant for an attribute
or what data type is specified for an attribute. A good query
synthesizer should, for example, warn patrons if they try to
use truncation (‘wildcards’) in a numeric field, unless the
underlying search engine can support this. Information about
an attribute’s data type can be used not only to guide the
patron in formulating a query, but also to normalize the
results that are returned. For example, a good system might
present al l dates in one uniform format. In order to
accomplish this, the formats of information in each field
must be accessible to the result preparation facilities. We will
not discuss the details of such translations in this paper.
Possible approaches are discussed in [11, 5].

Relational databases have long supported schema access
through data dictionary modules. They allow users or
applications to explore which relations exist in the database
and which attributes comprise each relation. For relational
databases, this job is somewhat easier than for text retrieval,
because the organization of data in relational systems is
much more structured and well defined.

In our constructor-tool prototype, we have addressed the
problem of schema access by using our comprehensive
metadata architecture that allows for the cataloging,
browsing, searching, and translation of metadata [1]. The
right-side portion of Figure 3 summarizes these metadata
access facil ities of the prototype. Two aspects of the
architecture are relevant to the schema access problem:
attribute models and source-specific metadata. An attribute
model is a machine-accessible representation of a coherent
field convention. For example, one of our attribute models

describes the Dublin Core naming scheme. Each Dublin
Core field is represented by a programming object that
contains all of the information about that field. We can
search over these objects, and can find out, for example,
which attributes contain the phrase ‘author ’ in their
documentation, or we can find out what data type is specified
for a particular attr ibute. Attr ibute descriptions are
particularly useful to synthesizer designers because they can
highlight cases where attributes in different models have the
same name, but have different meanings. For example, the
‘population size’ of a city may in one source include only the
city center, in other cases the surrounding suburbs as well.
The designer can make such differences clear to the patron
by choosing descriptive labels for the respective fields.

Attribute models are independent of any particular source. In
order to find out which subsets of attribute models are
supported at a given source, our constructor tool turns to the
corresponding library search proxy (LSP), shown at the
bottom right of Figure 3. An LSP is a wrapper that represents
an information source. Each LSP provides a standard method
that returns the schema of the source. That schema includes
all of the attributes actually supported, as well as any local
restrictions, such as usability with query language operators.

The metadata repository in Figure 3 provides all of the
search proxies’ and attribute models’ metadata in one place.
The constructor tool queries the metadata repository
whenever it needs to learn about attributes supported by any
given search proxy. As the query-synthesizer designer adds
more target sources, the constructor can thereby provide
feedback about which attributes are common to the sources.

Our constructor tool is extensible because it interacts with
the Stanford metadata architecture. As new sources and
attribute models are added to the InfoBus, they will be
dynamically available to the constructor tool.

SCHEMA COLLATION
If a query synthesizer is destined to be used with a single
source only, schema access facilities often suffice in helping
the information expert choose which attributes to make
available in the synthesizer.1 Otherwise, the schemas of
potential target sources somehow need to be reconciled. For
example, the designer or underlying translation facilities
must determine what fields are analogous at each source and
can be searched in a joint fashion across sources. Some fields
may not have an equivalent at all target sources, and the
designer must decide whether to include them in the
synthesizer. The designer must also specify constraints on
the values patrons may enter for each field. The runtime
system for the synthesizers must enforce these constraints
once the synthesizer is deployed. Finally, the designer must
specify a strategy for merging results from different sources

1. Note that some designers may opt to create a new
schema even when only a single schema is supported by
the chosen sources. See [16] for a discussion of transfor-
mations from USMARC to a logic-based ontology.

4

and ranking them for the patron. The derivation of a
meaningful combined ranking is of ten di fficu lt to
accomplish because different sources use very different
ranking criteria which are often kept as trade secrets.
Approaches to rank merging are discussed in [8, 7, 15].

This section explores various possible approaches to schema
collation: presenting the patron with a union schema, a
global schema, an intersection schema, or a regional
schema. Figure 4 illustrates each collation approach; Table 1
summarizes the distinctive features of each strategy. Note
that the table suggests other schema collation strategies not
considered here due to space restrictions. Several of these
approaches have been developed by the database community
over the years. See, for example, [3] for a survey. We have
found that digital-library usage differs from database usage
in that it tends to require a less rigorous, but more flexible
approach to this problem.

Union schema: A simple approach to schema collation is to
take the union of the selected sources’ attributes at runtime
and to present all of the resulting attributes to the patron. The
advantage is that this is straightforward computationally (the
synthesizer designer need not make any specific collation
decisions ahead of time), and no attributes are “abstracted
away” and made inaccessible. An obvious problem is that
the number of attributes can be very large, potentially
overwhelming the patron. Another problem is that
incompatibilities can lead to query failures because not all
attributes of the union are supported at all sources.

Global schema: In this approach, the synthesizer designer
manually formulates a global schema for use by the end
patron. At runtime, translation facilities are used to map
queries expressed in the global schema to source-specific
queries. An example of this approach can be found in [12].
Typically, the goal in creating a global schema is to provide
maximal coverage of the attributes found in the sources
under consideration. Thus, the designer of a global schema
often takes into account the semantic equivalence of
attributes. In Figure 4, the global schema created for source
schemas SA, SB, and SC includes two attributes that
correspond to an “equivalence” class of attributes: namely, B
corresponds to b1, b2, and b3, while C corresponds to c1 and
c2. Note again that even though two attributes may have the
same name, they may nevertheless need to be treated as
different attributes because their values have different
meanings.

One advantage of this approach is that it allows for the
removal of purely syntactic differences. For example, one
source might call the required payment for an item ‘cost’,
while another calls it ‘price’. A global schema can help users
by unifying such gratuitous differences. A disadvantage of
the approach is that global schemas need to be revised
whenever new sources join the set of targets. For example,
consider two sources describing items for sale. If one uses
‘product number’ while the other uses ‘serial number’ as an
identifier for each product, a global schema might neatly
unify the two by using an attr ibute called ‘product
identifier’. If a new source is added that records both a
‘serial number’ and a ‘product number’, then the global
schema needs to introduce a second ‘product number’
attribute in order to maintain a maximally spanning set of
attr ibutes. Another disadvantage is that sometimes
specialized attributes supported only by some sources are not
available at the global level at all, because they cannot be
mapped to other sources and can there fore not be
accommodated in the global schema.

Intersection schema : A third approach is to use the
intersection of target schemas: at runtime, only those
attributes that are supported by all target sources of interest
are presented to the patron. The advantages include both ease
of computation and reduction of the number of attributes
presented to the patron. A disadvantage is that a single
source with a very unusual or small set of attributes can drain
the intersection of most or all attributes.

Figure 4. Different solutions for schema collation
Lower-case letters refer to source-specific attributes. Upper-
case letters are newly defined attributes. Case and subscript

variants of a letter (e.g., B, b1) are similar and can be
translated into each other.

Table 1: Comparison of schema collation strategies

Runtime
Collation

Runtime
Translation

Maximally
spanning

set of
attributes

Union yes no yes

Global no yes yes

Intersection yes no no

Extended
intersection

yes yes no

Regional no yes no

A B C D

Global Schema

a
b1

b2

b3

c1

c2
d

Union Schema Intersection
Schema

Source schemas

a b1

d

SA

a b2

c1

SB

a b3

c2

SC

Target
Source

Translation

No Translation
(potential query

failures)

No Translation

Translation

a

Regional
Schemas

D C1

C B3Translation

5

The intersection approach can be extended by adding partial
attribute translation facilities. Through this approach, the
intersection of attributes is enlarged. The better the
translation facilities, the more attributes can be used across a
larger number of sources. For example, in Figure 4, the
intersection schema (a) might be enriched by attribute b1,
which is then translated to b2 and b3 where appropriate.

Various translation techniques can be employed. For
example, attributes that are contributed by all sources but
differ in name for each source would normally be excluded
in the intersection solution. They can be represented by a
single attribute if their semantic equivalence can be
recognized. As in the global schema approach, the query
translation machinery then provides the proper mappings
when queries are generated from the synthesizer and are
submitted to the various target sources.

Similarly, if the value types of corresponding attributes in
multiple sources differ, then attribute value translation can be
used to provide the schema uniformity necessary to keep the
intersection large enough for practical use. For example, if
an attribute in one schema calls for an array of integers
representing the coordinates of a place on a map, and a
corresponding attribute in another source calls for a string
containing the same information in another coordinate
system, then a synthesizer can enforce input of one or the
other format, with attribute value translation taking care of
the necessary adjustment.

Finally, controlled query degradation can be used to enlarge
attribute intersections. For example, suppose the ‘abstract’
attribute is supported by some of the target sources, but not
by others. If the problem sources support an ‘anywhere’
attribute that causes searches to range over the entire record,
then any occurrence of the ‘abstract’ attribute can be
replaced by ‘anywhere’ during the final query translation
process. Less drastically, if a target source supports ‘body’,
then occurrences of ‘abstract’ can be generalized by using
‘body’. This transformation would qualify documents that
contain the desired keywords in the main body, not
necessarily in the abstract. The transformation will degrade
the query because precision is decreased, but the query will
still run over all the sources. We have frequently found that it
i s pre ferable to t rade some loss o f p rec i s i on for
uncomplicated query applicability to multiple sources. This
is especially true if patrons are supported in analyzing large
result sets through ranking, clustering, and other exploratory
tools (e.g., SenseMaker [2]). We have discussed the relevant
tradeoffs and limitations of this particular transformation
technique elsewhere [4].

In the general case, discovery of semantic equivalence of
attributes is very difficult to automate and is tedious to
accomplish manually. In practice, this approach can be used
successfully on high priority attribute models and attributes.

Regional schema: The final approach detailed in this section
is the one that we have adopted. A regional schema, like a

global schema, is formulated by a synthesizer designer. The
goal of the designer in creating a regional schema is to
develop a schema that is useful for a particular task or
domain, rather than to develop a schema that maximally
spans the attributes supported by the target sources. For
example, a global schema that is developed for several book
databases will include ISBN number if that attribute (or a
variant of it) is available at all of the selected sources. In
contrast, a regional schema that is developed for the same
sources might forego that attribute if it is not deemed useful
for the expected task (perhaps patrons will only perform
queries when they are looking up bibliography references
and will never have ISBN numbers).

In fact, regional schemas need not reliably cover all possible
target sources. The “region” of a regional schema is the set
of schemas from which it is derived. In Figure 4, the region
for the top schema is SA and SB, while the region for the
bottom schema is SB and SC. Different translation facilities
do their best to make each region usable with as large a
family of target sources as possible. Patrons who use the
resulting synthesizers and submit the resulting queries to
unanticipated sources may find that this strategy works well,
thanks to the translation techniques described in the section
on intersection schemas. At other times, the strategy may
have failings. We are finding that as more patrons become
accustomed to Web search engines, they understand the fact
that information retrieval is often heuristic, and that the
possibility of failure may include the inability of some
sources to perform optimally, or even properly for all
queries. Rather than taking the all-or-nothing approach of
global schemas, or the very conservative approach of schema
intersection, our regional schema approach, coupled with
some attribute translation, attempts to expose patrons to
m ore sou rce s w i thou t undu ly bu rde n ing sys te m
administrators with schema maintenance.

Our own experience with global schemas has been the
motivation for us to switch to regional schemas. Before we
designed and implemented the constructor tool described in
this paper, all of our query synthesizers used USMARC as a
global schema. USMARC is widely used in libraries and it
covers a broad range of library-related metadata needs
beyond the naming of standard document attributes. For
example, it provides for attributes that store the physical
location of an item, its price, and physical format. Many of
these attributes can be generalized and reused in a digital
setting like ours. The format attribute, for example, could be
used to record whether a document is RTF, Postscript, or
some other electronic format. For our initial explorations,
USMARC proved to be a rich source of metadata attributes
for our digital library setting. Using USMARC throughout
the system made the creation of query synthesizers easier,
because the USMARC attribute definitions provided a
“lingua franca” of catalog-related metadata.

Eventually, however, we felt that we were stretching the
analogy between physical and digital libraries too far. This
became most obvious as we were creating collections of

6

online items that were not “documents” in a traditional
sense. For example, we needed to manage document
payment through online subscription facilities. Patron
accounts were modeled as items in subscription collections.
We wanted to search over these account collections in the
same way we searched over a bibliographic data source.
Other examples were patron profiles and access right
records. This broadening of the collection notion arises from
the technical realization that collections of electronic books
can be managed with similar underlying technology as
collections of payment accounts, access rights, or patron
profiles. All of these share a need for base facilities such as
persistence, transaction support, indexing, clustering, and
searching. This structural unification of administrative and
content information in digital library systems is technically
economical. Beyond this technical argument, its conceptual
uniformity simplifies the construction of unified interfaces
for a broad range of digital-library activities.

However, USMARC cannot reasonably be stretched to cover
such a diversity of metadata needs, and changing standards is
a very difficult process. Even if this were not the case, the
modularity inherent in the regional schema approach was
preferable, given our wide spectrum of attribute usage.

In deciding to allow for regional schemas, the need for a
constructor tool became apparent. The constructor tool
described here allows an information expert to perform the
metadata browsing necessary to create a synthesizer

containing task-specific attributes that are useful for the
target sources. As will be shown later, the constructor tool
warns the synthesizer designer when attributes are weakly
supported for a particular set of sources. Since our attribute
translation machinery often provides graceful degradation of
query processing in the face of unsupported attributes, the
designer may decide to include attributes in a synthesizer
even though they are not supported by all the sources for
which the synthesizer is intended.

The following section describes how the user interface of our
synthesizer construction tool helps designers construct both
regional schemas and synthesizer interfaces.

CONSTRUCTOR TOOL USER INTERFACE
This section surveys the user-interface design requirements
we set for the constructor tool and explains how our current
version of the constructor tool addresses these requirements

Requirement 1 : Al low the designer to explore the
relationships between sources and attribute models in order
to construct a useful regional schema.

Our approach to requirement 1: Figure 5 is a screen shot
taken of the current version of the constructor tool. When the
tool is first launched, the synthesizer designer selects sources
and attribute models from their respective pull-down menus
(top of Figure 5). Each such selection causes that source or
model to be added to a table (the Sources/Models table of
Figure 5). Each cell in the table describes how many

Figure 5. Browsing sources, attribute models, and attributes

7

attributes from the associated attribute model are supported
by the associated source. For example, the table shows that
the Yahoo source supports four StanfordFrontModel
attributes, while Folio, Stanford University’s library catalog,
supports all of that model’s attributes.

The table in Figure 5 provides a compact overview of the
relationships between sources and attribute models. The
designer can gain a more in-depth understanding by probing
the relationships between sources and individual attributes.
In Figure 5, an attribute model has been “opened” to reveal
i t s me m be r a t t r i bu te s : T he e n t r i e s be l ow
‘StanfordFrontModel’ show attributes such as ‘Title’ and
‘Abstract’. Each attribute-level cell of the opened model
reveals whether or not the attribute is supported, while the
attribute-model-level cells continue to reveal summary
information about the model. For example, the designer can
se e tha t Lyc os s uppo r t s ‘Abs t r ac t ’ , bu t no t
‘Publ i ca t ionYear ’ , whi le Fo l i o doe s suppo rt the
‘PublicationYear’ attribute.

Note that the Macintosh Finder, Windows Explorer, and
various outlining applications all use a similar technique for
showing hierarchical relationships. Our use of a Finder-style
widget for attribute models makes it possible to see three
relationships (the relationships between attribute model and
attributes, between attribute models and sources, and
between a t tr ibutes and sources) in a s ing le tab le .
Furthermore, this approach allows the designer to determine
the types of attribute models that are of interest before
running through every attribute in detail. As we expect that
designers will interact with only a few attribute models at a
time, the model representation allows the designer to reveal
or hide attributes as convenient. Selective display of

information conserves space and eliminates cognitive clutter
from the interface.

Requirement 2: Allow the designer to specify a GUI
element for each attribute in the newly developed regional
schema. While text-based synthesizers (illustrated by Figure
2) are useful for many domains, more complex synthesizers
might include GUI elements such as pull-down menus,
images, and maps. The interface to a target source about
cars, for example, could show the image of a car, and could
allow patrons to point to the parts they wanted more
information on. Similarly, group photos can be used to let
patrons extract information about sets of people. In short,
synthesizer constructors need to be highly extensible to
allow the addition of new input widgets over time.

Our approach to requirement 2: Selecting an attribute
from the constructor tool’s table (by checking its associated
check box) causes the attribute to appear in the lower panel
(see Figure 5). At this point, the designer chooses from a
small palette of specialized input widgets to include in the
synthesizer GUI. The default for any field selected by a
designer is a s imple text entry widget. To specify a
specialized input widget for an attribute (as well as to edit
other attribute-specific information, such as whether or not
the field will be required for the patron), the designer selects
an attribute and clicks the “Edit Properties” button (bottom
of Figure 5). The “Edit Field...” window shown in Figure 6
illustrates a designer’s decision to use a list input widget for
a ‘Language’ field. This choice has caused the List Box
property editor to appear (also show in Figure 6). In this
case, the property editor asks the designer to enter valid
choices for the list widget. In this example, these are the

Figure 6. Choosing an input widget (above) and interacting with its associated property editor (below)

8

document languages that are appropriate for the patrons’
expected tasks.

Our constructor tool supports a component software
architecture for developers to add new input widgets. Like
the list box widget of Figure 6, many custom input widgets
will have associated property editors for setting information
about the widgets. For instance, a range input type includes a
minimum and maximum value to allow.

Requirement 3: Allow the designer to specify value
constraints (where applicable).

Our approach to requirement 3: As we hinted in the
discussion of the previous requirement, our constructor tool
allows the designer to specify value constraints for an
attribute in the property editor for its associated input widget.
The widget then enforces its constraints and informs the
patron of those constraints. For example, when the patron
runs the cursor over the ‘Year’ field in Figure 7, balloon help
informs the patron of the integer input range constraint
associated with that field.

Requirement 4: Allow the designer to specify the layout of
the chosen GUI elements.

Our approach to requirement 4: The order in which the
attributes appear in the lower panel of Figure 5 corresponds
to the order in which they will appear in the generated query
synthesizer. Accordingly, the tool provides buttons that can
be used to edit this order

Our implementation is currently relatively simple in that we
use a linear, pre-built layout scheme. The designer cannot
currently arrange input widgets arbitrarily. Figure 7 shows
the user interface of a very simple, finished synthesizer. It
contains three fields, ‘Title’, ‘Year’, and ‘Language’.

Requirement 5: Allow the designer to dictate how the user’s
interaction with the GUI should shape the query under
construction. For example, consider designing a query
synthesizer to be used for accessing statistics about

California. Some of the sources might in fact be national-
level statistical databases that expect queries about cities to
include both city information and state information. In the
context of this query synthesizer, the designer might choose
to let patrons enter cities only and then to preprocess those
city values to append the information that these are
California cities.

Deciding where to insert search operators in the constructed
query is also an important issue for the designer. The trade-
off is between exposure of the sources’ full power on one
hand, and simplicity for the most common search tasks on
the other. Web search engines sometimes offer two
interfaces, a simple, one-field form, and a more complex
facility that provides more control over the search. The
simple form usually involves no operators at all. Search
terms are entered without the ability to limit keyword scope
to fields. Usually, for the top-ranked result documents, all
query terms are in effect implicitly connected through the
‘and’ operator.

Our approach to requirement 5 : At this t ime, our
constructor tool performs an implicit ‘and’ operation among
the fields of a synthesizer to generate the final query. We
plan to address the question of search operators and other
transformations of the patrons’ inputs to a final query
through the development of a simple scripting language (see
the summary section for a sketch of our plans).

Requirement 6: Allow the designer to engage in iterative
design.

Our approach to requirement 6: To support a synthesizer
designer in rapidly experimenting with different designs, the
constructor tool includes a facility for interactively testing
the query synthesizer under construction. This testing facility
can be used at any t ime during construction. It also
eliminates the need for an edit-compile-test cycle. In
particular, our facility allows the designer to initiate testing
from the menu shown in Figure 5, then choose specific
sources, enter sample values, and view the ensuing results.
The result window organizes results by source. The designer
can focus her attention on one source at a time to investigate
how the front-end query was received by that source.

TOOL ARCHITECTURE AND IMPLEMENTATION
Figure 3 shows that the constructor tool itself is subdivided
into four modules, some of which communicate through the
InfoBus with other faci l i t ies. The f ront-end of the
constructor tool is implemented in Java.

The attribute-management module keeps track of attributes
and the extent to which they are supported by the sources.
The user-interface layout management module allows
designers to build the end GUI interactively. The test engine
communicates with the InfoBus to perform its work. The
code generator will eventually produce both stand-alone
Java input form interpreters, and forms integrated into our
DLITE digital-library interface [6].

Figure 7. The GUI of a simple query synthesizer

9

We use an object model with inheritance for input widgets,
thus ensuring that the tool is extensible. In particular, the
component model requires all input types to inherit from a
common base class with methods for input validation,
extraction, persistence, and error reporting.

Input validation involves checking specified constraints. For
instance, a range input will check the given value to make
sure that it lies between permissible limits. Input validation
also checks to make sure that at least some input exists if the
given attribute is required for a particular query.

Input extraction involves processing an input value for
delivery to the query engine. For instance, a map click on
Belgium might be converted to the string ‘Belgium’ by the
input extraction method associated with a map widget. By
delegating responsibility to the input widget for mapping
input values to query values, our model provides for data
transformation. For instance, a developer could build an
input widget that removes punctuation from text before
delivering it to the query processing engine.

Input types maintain persistence by implementing the ‘get’
and ‘set’ methods. The resulting files are stored on the server
rather than the client because of Java’s security model.

Input widgets are also required to implement a standard
method for error reporting that returns an error string if the
input entered by a user is not acceptable. Note that input
types may not develop their own custom error reporting
dialogs, so that interaction is consistent across different
widget types.

Our approach to adding input widgets differs from that of
existing library query synthesizers. Many systems hardwire
input widgets specifically designed for a particular system to
achieve sufficient integration between input widgets and the
synthesizer, or they require the designer of the synthesizer to
do some programming. Our approach allows query
synthesizer designers to add prefabricated widgets without
writing code.

Finally, we note that our constructor tool is extensible in
three ways: it automatically integrates new attribute models
as they become available, it finds and queries target sources
for their schemas, and it can manually be extended to include
new synthesizer field input widgets for specialized targets,
such as geographical information systems.

STATUS AND FUTURE WORK
Our two-tier approach to query formulation allows the
interactive design of targeted synthesizers that codify
domain or task knowledge. In the first version of our
prototype system we have demonstrated some of those
aspects. The system implements attribute models, the
metadata repository, query syntax translation, and simple
attribute translation facilities. These are used “behind the
scenes” by the constructor tool. All menus and table displays
involving metadata are constructed at runtime, based on the

information obtained through these metadata facilities. Our
first version is still missing the code generator that creates
final synthesizer output forms for integration with our
DLITE digital library interface. The form shown in Figure 7
is a stand-alone facility.

The evaluation of version 1 will answer one particularly
interesting question: how generic are our query synthesizers?
Recall that synthesizer designers use metadata about
expected target sources as guidelines when deciding which
attributes to include in the synthesizer. Given our attribute
translation facilities and the notion of regional schemas, the
queries produced by the synthesizers will be applicable to
sources other than the ones anticipated by the designer.
While it is unlikely that a synthesizer designed with one set
of sources in mind will extend to sources of radically
d i ff erent con tent and o rgan iza t ion, we hope that
unanticipated, but s imilar, sources wil l indeed be
accommodated easily

For the second version of our prototype we plan a variety of
extensions. First, we need to enhance our set of input
widgets and, in doing so, test the extensibility of the widget
pool. The current set is quite appropriate for generating text-
input synthesizers. However, the constructor tool is ready to
be taken beyond text. In particular, we would like the ability
to use Java applets (or Java Beans) in place of standard input
widgets. This will greatly enhance the constructor’s ability to
generate sophisticated and interesting synthesizers. For
example, we would like the ability to create Java widgets
that input values by displaying graphics, such as maps, and
that generate properly translated values from the coordinates
patrons point to. Such values might be the name of the
closest city on a map, or the nearest face in a group picture.

A second enhancement concerns attribute translation. In
version 1, translation occurs when a synthesizer emits a
query after a patron has filled in the query form. The
designer of the synthesizer is not informed of possible
translations at the time she designs the synthesizer. We plan
to allow the designer to invoke attribute translation as part of
the synthesizer design phase. This will allow the designer to
gauge more directly how widely any given attribute will be
applicable to multiple target sources. For example, we might
allow the designer to select any given attribute in the
constructor interface. The tool would then highlight all the
sources for which the attribute can be successfully translated.

In this first version, we have not included enough support for
f lexibi l i ty in using operators. Currently, our query
synthesizers assume that all input fields are connected with
‘and’. Clearly, more sophisticated operators need to be made
accessible to the patron. The underlying query translation
machinery can manage a much richer set. Our current plan is
to design a simple scripting language in which designers can
specify how a query should be built from user input values.
Most likely, we will allow designers to produce query
expressions involving variable names that are later bound to
values patrons enter into input fields. A crude example to

10

explain the intent might be ‘$FirstName NextTo $LastName
and PY = $PubYear ’. Assume that later on, the patron
specifies ‘Richard’, ‘Nixon’, and ‘1972’ in the first/last
name, and publication-year fields respectively. The above
script would be resolved to ‘Richard NextTo Nixon and PY
= 1972’. Our existing query translation facility would in turn
translate this query to native target query languages of other
information sources. Remember that this query composition
from fields will be specified by the designer, and will be
exposed to the patron only to the extent determined by the
designer through text placed on the input form. The actual
composition will occur during the processing of the patron’s
input.

A longer te rm enhancement wil l be to explore the
construction of synthesizers that include query refinement.
Most patrons do not produce a single “killer query.” Instead,
they start with one query and then refine it. Of course, the
query synthesizers produced by our synthesizer constructor
can be used for refinement, in that the contents of the input
fields can be modified, but more sophisticated facilities can
be made available.

Although many challenges remain in further ing the
functionality of our constructor tool, we are encouraged in
this experiment in using ‘live’ metadata access to support the
semi-automatic construction of query input facilities. We are
committed to building and extending tools that support
intermediaries and simplify the tasks of patrons.

REFERENCES

1. Michelle Baldonado, Chen-Chuan K. Chang, Luis
Gravano, and Andreas Paepcke. Metadata for Digital
Libraries: Architecture and Design Rationale. In
Proceedings of the Second ACM International
Conference on Digital Libraries, 1997.

2. Michelle Q Wang Baldonado and Terry Winograd.
SenseMaker: An Information-Exploration Interface
Supporting the Contextual Evolution of a User's
Interests. In Proceedings of the Conference on Human
Factors in Computing Systems, 1997

3. C. Batini, M. Lenzerini, and S. Navathe. A
Comparative Analysis of Methodologies for Database
Schema Integration. ACM Computing Surveys, 18(4),
1986.

4. Chen-Chuan K. Chang and Hector Garcia-Molina.
Evaluating the Cost of Boolean Query Mapping. In
Proceedings of the Second ACM International
Conference on Digital Libraries, 1997.

5. Chen-Chuan K. Chang and Héctor García-Molina.
Conjunctive Constraint Mapping for Data Translation.
In Proceedings of the Third ACM International
Conference on Digital Libraries, 1998.

6. Steve B. Cousins, Andreas Paepcke, Terry Winograd,
Eric A. Bier, and Ken Pier. The Digital Library
Integrated Task Environment (DLITE). In Proceedings
of the Second ACM International Conference on
Digital Libraries, 1997.

7. Ronald Fagin. Combining Fuzzy Information from
Multiple Systems. In Proceedings of the 15th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, 1996.

8. Luis Gravano, Chen-Chuan K. Chang, Héctor García-
Molina, and Andreas Paepcke. STARTS: Stanford
Proposal for Internet Meta-Searching. In Proceedings
of the International Conference on Management of
Data, 1997.

9. Information Retrieval: Application Service Definition
and Protocol Specification. ANSI/NISO, April, 1995.
Preliminary Final Text.

10. Andreas Paepcke, Steve B. Cousins, Héctor García-
Molina, Scott W. Hassan, Steven K. Ketchpel, Martin
Röscheisen, and Terry Winograd. Using Distributed
Objects for Digital Library Interoperability. IEEE
Computer Magazine, 29(5):61–68, May, 1996.

11. Edward Sciore, Michael Siegel, and Arnon Rosenthal.
Using Semantic Values to Facilitate Interoperability
Among Heterogeneous Information Systems.
Transactions on Database Systems, 19(2):254–290,
June, 1994.

12. John Miles Smith, Philip A. Bernstein, Umeshwar
Dayal, Nathan Goodman, Terry Landers, Ken W.T. Lin,
and Eugene Wong. Multibase – integrating
heterogeneous distributed database systems. In AFIPS
National Computer Conf. 1981.

13. Jean Godby, Eric Miller Ron Daniel Stuart Weibel.
OCLC/NCSA Metadata Workshop Report. March,
1995.

14. USMARC Format for Bibliographic Data: Including
Guidelines for Content Designation. Cataloging
Distribution Service, Library of Congress, Washington,
D.C., 1994.

15. Ellen M. Voorhees and Richard M. Tong. Multiple
Search Engines in Database Merging. In Proceedings
of the Second ACM International Conference on
Digital Libraries, 1997.

16. Peter C. Weinstein. Ontology-Based Metadata:
Transforming the MARC Legacy. In Proceedings of the
Third ACM International Conference on Digital
Libraries, 1998.

