
A Linguistic Characterization of Bounded Oracle Computation

and Probabilistic Polynomial Time

J. Mitchell M. Mitchell

Stanford University

fmitchell,mmitchelg@cs.stanford.edu

A. Scedrov

University of Pennsylvania

scedrov@saul.cis.upenn.edu

May 4, 1998

Abstract

We present a higher-order functional notation for polynomial-time computation with

arbitrary 0; 1-valued oracle. This provides a linguistic characterization for classes such as

np and bpp, as well as a notation for probabilistic polynomial-time functions. The language

is derived from Hofmann's adaptation of Bellantoni-Cook safe recursion, extended to oracle

computation via work derived from that of Kapron and Cook. Like Hofmann's language,

ours is an applied version of typed lambda calculus with complexity bounds enforced by a

type system. The type system uses a modal operator to distinguish between two types of

numerical expressions, only one of which is allowed in recursion indices. The proof that the

language captures precisely oracle polynomial time is model-theoretic, using adaptations of

various techniques from category theory.

1 Introduction

In 1964, Cobham proposed a characterization of feasible functions that is based on a binary-

numeral form of primitive recursion [Cob64]. In Cobham's de�nition, primitive recursion is

restricted in an essentially ad hoc way, by requiring that any function de�ned by primitive

recursion be bounded above by some other function already shown to be computable in polyno-

mial time. Over the past 30+ years, Cobham's recursion scheme has been repeatedly analyzed

and reworked. One motivation for this line of research has been to �nd a \logical" characteri-

zation of polynomial time that does not contain any obvious use of clocks or other mechanisms

that count the number of computation steps. Another motivation has been to obtain a charac-

terization of higher-order polynomial time [Coo92].

Motivated by problems in reasoning about cryptographic protocols, we present a higher-

order typed programming language characterizing probabilistic polynomial-time computation.

Since the technical analysis of the language does not depend how the sequence of \random"

bits are chosen, we present this language as a linguistic characterization of polynomial-time

computation with oracle input. The principal complexity-theoretic property of the language

is that every function (of a certain syntactic type) that is de�nable in the language can be

computed in time that is bounded by a polynomial function of the input, independent of the

1

oracle. The fact that running time is bounded by the same polynomial, for all oracles, makes

it possible to capture complexity classes such as np and bpp.

For those not familiar with the area, it may be helpful to point out that there are several

incomparable but equivalently compelling de�nitions of the class of computable functions of

higher type (e.g., functions with function inputs). Therefore, we may also expect to �nd several

apparently reasonable classes of higher-order polynomial-time functions. (This general issue

is discussed in [Coo92], for example.) One natural approach to higher-order polynomial time

is through programming languages that respect resource bounds. More speci�cally, suppose

we can de�ne a language that contains function symbols and such that every natural number

function de�nable in the language can be computed in polynomial time. Then we may obtain

a class of \higher-order polynomial time functions" by treating expressions in the language as

functions of the higher-order variables they contain.

One complication that arises with time-bounded computation, but not with computability

independent of resource bounds, is that computation time may depend on the values of the

input function. For example, consider a function f(x; g) with natural number input x and

function input g. Suppose that on input x and g, the function f applies some polynomial-time

function h to g(x). If g is some arbitrary input function, then we have no reason to expect

the size of g(x) to be bounded by some polynomial in jxj. If g(x) is exponentially larger, for

example, then the computation of h(g(x)) may be exponential, even if we just count the running

time of h and assume that g(x) is obtained in a single step.

The starting point for the work presented here is a higher-order typed lambda calculus,

containing function symbols of arbitrary type and a form of recursion operator called safe re-

cursion. This calculus and associated complexity analysis were developed by Hofmann [Hof97],

building on work by Bellantoni and Cook [Bel92, BC92]. In brief, Bellantoni-Cook safe recur-

sion achieves the same goal as Cobham's restricted form of primitive recursion, but through

di�erent means. Instead of an explicit bound, there is implicit control over complexity through

the use of two separate lists of arguments. One list of arguments, called the normal ones, may

be used in any way. Arguments from the second list, referred to as safe, cannot be used as the

recursion argument in any nested safe recursion. Through this mechanism, described in more

detail in Section 3, it is possible to de�ne all polynomial-time functions, but it is not possible

to nest such computations a variable number of times. While Bellantoni and Cook worked in a

�rst-order framework similar to ordinary primitive recursive notation, Hofmann captured the

safe/normal distinction through a type system that brings the system closer to a convenient

programming language notation. In Hofmann's framework it is possible to declare and use

functions of any degree (e.g., functions of functions of functions).

Our extension of Hofmann's system retains the typed lambda calculus framework, but allows

the use of an oracle function not assumed de�nable within the language. In order to avoid the

problems with the size of function input mentioned above, we assume throughout that the

oracle function is 0,1-valued. Since a nondeterministic or probabilistic machine uses a di�erent

\choice" or random bit at each branch point, we formulate our oracle primitive as a basic

operation that returns the next bit of the oracle sequence each time it is called. This makes it

easy to show how a probabilistic or nondeterministic algorithm can be written in our language.

Although it has little direct bearing on the results described here, our motivation for this

work is the study of security properties. Speci�cally, as described in [LMMS98], we have devel-

2

oped a language for de�ning concurrent systems of probabilistic polynomial-time processes, with

the sequential parts of each process written using the language described here. In this frame-

work, the inherent complexity bounds allow us to quantify over all probabilistic polynomial-time

adversaries by quantifying over processes expressible in the language. Related use of a language

framework to quantify over adversaries has been developed in [AG97], but in a more abstract

setting without complexity bounds.

2 Polynomial-time functionals

Nondeterministic and probabilistic Turing machines are usually de�ned as machines that may

have more than one possible transition from a single con�guration [Sip97]. The di�erence

between nondeterminism and randomness is not in the structure of the machine itself, but

in the de�nition of acceptance: a nondeterministic machine accepts if there is any accepting

computation, while probabilistic machines accept with probability determined by the number

of coin
ips along a computation path. It is easy to see that both forms of Turing machines are

equivalent to deterministic Turing machines that use an oracle to decide which transition to

take. Under the oracle-machine formulation, we would say that a \nondeterministic machine"

accepts input x if there exists some oracle (representing all nondeterministic choices) that allows

it to accept x. Similarly, we may regard a probabilistic machine as an oracle Turing machine

that consults a randomly chosen oracle. Because of the correspondence between branching

computation and oracle computation, common complexity classes such as np, pp and bpp are

easily characterized using polynomial-time oracle computation. To be precise, we adopt the

following de�nition:

De�nition 1. A functional f('; ~x), where ' may be any function from N to f0; 1g, runs in

oracle polynomial time if there exists a polynomial p and an oracle Turing Machine M whose

output with oracle ' and input ~x is f('; ~x), and such that the running time of M on inputs ~x

is bounded by p(j~xj), where j~xj is the vector jx1j ; : : : ; jxnj and jxij = dlog2 xie.

It is important to notice that the running time of the oracle machine must be bounded by a

function of the length of the integer inputs. The time bound cannot depend on the oracle. For

this reason, the functions computable by oracle polynomial-time machines (as de�ned above)

are di�erent from the functions computable in polynomial time relative to any �xed oracle.

3 A language for oracle polynomial time

Our language OSLR is an extension of Hofmann's SLR with an oracle primitive. A central idea

in SLR is that there are two types of natural number arguments to functions. Arguments of

the �rst type, N, are bounded numeric values whose length (number of bits) can only be an

additive constant above any of the input values. Since arguments of type N are bounded, it

is safe to pass them on to nested recursive functions. Arguments of the second type, �N, are

normal natural number arguments that may be polynomially longer than input values of other

functions. To avoid exponential-time computations, there are syntactic restrictions on primitive

recursion that forbid use of normal arguments in recursive position.

3

The types of SLR and OSLR are given by the grammar

� ::= N (restricted natural numbers)

j � ! � (function type)

j �� ! � (functions from unrestricted inputs)

It should be noted here that �N is not actually an SLR type. There are two explanations for

this situation, both equally valid. The simpler explanation is that Hofmann has modeled in

a type system precisely what Bellantoni presented in a di�erent framework. In particular, as

explained in Section 4.1, Bellantoni makes use of input parameters of two sorts. There is only

one sort of output in his framework, although there are syntactic restrictions on the places in

which the output can be used. Hence, in SLR there is never a modality on the output type of

a function, of which the natural numbers are a degenerate (zero-ary) case. The typing rules

enforce the syntactic restrictions on composition.

Alternatively, we may employ an explanation derived from the theory of modal logics. In

particular, the distinction between �� and � is related to modal operators. Originally inspired

by type systems derived from linear logic [Gir87], similar type distinctions have been used in

program analysis and compilation to characterize the time at which a value becomes known

[DP96, WLPD98]. From the perspective of modal logic, there do exist modal output types,

and consequently, there is a �N type. One contribution of [Hof97] is the limited way that

the modality � may occur in types. This avoids the expression forms associated with ! in

linear logic and, more generally associated with any modal type operator associated with any

monad [Mog91]. A second innovation we adopt from [Hof97] is a form of subtyping, with

A! B <: �A! B, further avoiding explicit conversions between types.

Together, these innovations allow a useful form of type inference [Hof97]: there is a type-

checking algorithm that can automatically determine the type of any expression, without re-

quiring the distinction between N and �N to be written into expressions. (Since OSLR uses the

same overall type system as SLR, this algorithm carries over to OSLR.) Thus, from the point of

view of modal logic, the type �N exists, but the type-checking algorithm removes any need

for its use. Throughout the remainder of the paper, we adopt this point of view, as we feel it

provides a more intuitive, and less ad hoc, explanation.

The expressions of OSLR are given by the following grammar, where v may be any variable

and � any type:

e ::= v (variable)

j n (numeral)

j S0 j S1 (doubling functions)

j (e1 e2) (application)

j fun(v : �) e (abstraction)

j case� e1 zero e2 even e3 odd e4 (case distinction)

j saferec (safe recursion))

j rand (oracle bit)

Variables, lambda abstraction and application are standard from typed lambda calculus (see,

e.g., [Mit96]), with the modi�cation that fun(v : �) e may have types � ! � or �� ! �,

4

according to the type inference algorithm [Hof97]. In particular, a function gets the former

type if and only if the argument of type � is not passed to any function expecting a normal

input. Functions S0 and S1 double a number or double and add 1, and case� has three branches,

according to whether the �rst argument is zero, odd, or even. The restricted primitive recursion

operator saferec is described below. The function rand returns the next bit from the oracle,

with repeated calls potentially returning di�erent bits. (There is nothing about this language

that requires the oracle to be chosen randomly, but we use rand for oracle access since our

primary interest is in probabilistic polynomial time.)

The type system is an extension of standard typed lambda calculus, with subtyping as

described above and restrictions on computation achieved by careful distinction between N

and �N in the typing of basic operations. The types of constants are as follows:

n : N, when n is an integer constant

S0 : N! N

S1 : N! N

case� : N! � ! � ! �

saferec : �N! N! (�N! N! N)! N

rand : N

Intuitively, we would expect n : �N for numeral n, since an explicit numeral has a �xed value,

and therefore cannot implicitly de�ne a fast-growing function of any input. However, �N itself

is not a type. Instead, the typing rules of [Hof97] are formulated so that it is possible to apply

a function of type �N ! N to a numeral, since a numeral does not have any non-modal free

variables.

The type of the constant saferec is �N! N! (�N! N! N)! N, and the intended

meaning is that

saferec n a f =

(
a if n = 0

f n (saferec bx=2c a f) otherwise

The type of saferec captures the B� requirements on predicative recursion described in Sec-

tion 4.1. In particular, the output of a subrecursion is presented to f in a safe position, i.e., as

a N rather than a �N argument.

It is worth mentioning one alternate language design that we considered. Instead of accessing

an oracle bit-by-bit using rand : N, we could allow \random access" to the entire oracle by

including a function oracle : N! N instead. At �rst glance, it might seem that the second is

more general. However, it is easy to write a small loop that reads some polynomial number of

oracle bits using rand : N and concatenates them into an integer value for later use. In contrast,

we were not able to �nd any direct way translation in the opposite direction. Speci�cally, many

randomized algorithms can be written fairly directly in OSLR using a \next random bit" primitive

rand : N. When we attempted to �nd syntactic transformations that produced an equivalent

algorithm using an oracle function oracle : N ! N, we found that some artifacts of the type

of saferec made it di�cult to maintain a bit counter (indicating the next oracle bit to access)

and pass this into and out of primitive recursive functions. We therefore decided to make a

5

\next random bit" primitive rand : N a basic function of OSLR and prove that every function

de�nable using rand is computable in polynomial time.

4 An equivalence in �ve easy pieces

We prove an exact correspondence between OSLR functions of type �N ! N and the oracle

polynomial-time functionals.

Theorem 1. The well-typed OSLR terms of type �Nm ! N
n ! N de�ne precisely the oracle

polynomial time functionals.

The proof requires �ve steps, four extending previous results to oracle computation and one

(step 4) involving the oracle mechanism speci�cally:

1. De�ne class B�: The syntactic class B� is an extension of Bellantoni-Cook's class B,

corresponding to oracle polynomial-time functions.

2. Construct base category C of polynomial-time functionals. Following a standard cate-

gorical construction also used in [Hof97], we form a category C from oracle polynomial

time functions. The purpose is to apply model-theoretic techniques from category the-

ory and avoid laborious operational reasoning about the evaluation of higher-order OSLR

expressions.

3. Embed C in category Ĉ. Following another standard categorical construction, we embed

our category of oracle polynomial-time functions in a larger category Ĉ that allows us

to interpret the higher-order types of OSLR. The standard construction is that Ĉ is the

category of presheaves over C. Since we have two sorts of basic natural number expressions,

the standard Yoneda lemma [BW90] cannot be applied. However, a variant of it (also

used by Hofmann) can be used to show a form of conservativity of Ĉ over C.

4. Form a Kleisli category K over category Ĉ. The Kleisli construction [Mac71, Mog91] is

a standard technique for extending a semantic framework with additional structure or

\side information" that is passed automatically from one function to another when they

are composed. By choosing an appropriate monad, we use this construction to give an

semantic interpretation to the implicit counter used to maintain an index into the in�nite

bit string provided by the oracle.

5. Prove bijective correspondence. The �nal step is to show that for every map in the Kleisli

category (model of OSLR), there is an (equivalent) oracle polynomial-time functional, and

conversely. This uses a categorical version of the traditional logical relations argument

from typed lambda calculus [Mit96].

It is worth emphasizing that this is a model-theoretic proof, using classes of functions

rather than algorithms. In particular, the theorem states only that each de�nable functional

is computable in polynomial time. The proof does not provide an algorithm for evaluating

expressions within this time bound in a step-by-step fashion, although we believe an appropriate

machine model could be derived using [Bel92, BC92].

6

The use of category theory, in [Hof97] and here, is motivated by the fact that models

involved form what are known as \non-well-pointed" categories. Intuitively, this means that

there is some intensional structure involved that is not easily captured in the classical model

theory based on Henkin models. While it is di�cult to explain the mathematical reasons in

elementary terms, one speci�c issue involves the bijection between functions in the model and

oracle polynomial-time functionals in Step 5. The non-categorical alternative would be to use

logical relations over Henkin models [Mit96]. However, these are uniquely determined by their

extension at ground type, while the proof in Step 5 requires a careful choice of relation at

function types. The presheaf and Kleisli category constructions are also standard categorical

techniques that do not seem to have natural non-categorical analogs based on Henkin models.

4.1 Safe recursion with oracle

In [Bel92], Bellantoni de�nes a class B of functions and shows that B characterizes precisely the

polynomial time functions. Addition of 0; 1-valued oracles is considered in [Bel95]. This leads

to a class B� of functionals that characterize oracle polynomial time. The much harder problem

of allowing arbitrary oracle functions is considered in [KC96], but has not been reformulated

using safe recursion.

As mentioned earlier, class B involves functions with two forms of integer arguments, called

safe and normal. Normal arguments will be written to the left of safe arguments, separated by

a semicolon. For example, f(x; y; z) indicates a function of two normal arguments and one safe

argument. The functions in B may perform any polynomial time operation on their normal

arguments, but may only perform operations on safe inputs that do not increase the length of

the output by more than additive constant.

The functionals in B� accept one 0; 1-valued function (oracle) as input, in addition to safe

and normal integer arguments. The class B� is the smallest class containing:

� The constant 0 + 0-ary function 0('; ;) = 0,

� For each m and n, the m+ n-ary projection functions

�
m;n
j (';x1; : : : ; xm;xm+1; : : : ; xm+n) = xj;

� The successor functions si('; ; y) = 2y + i for i 2 f0; 1g,

� The predecessor function p('; ; y) = by=2c,

� Oracle application to safe argument Ap('; ;x) = '(x).

and closed under the following schemas:

� The \predicative recursion" schema, allowing the de�nition of a new function f as

f('; 0; ~x; ~y) = g('; ~x; ~y)

f('; ai; ~x; ~y) = hi('; a; ~x; ~y; f(a; ~x; ~y));

if g; hi are in B for i 2 f0; 1g,

7

� The \safe composition" schema, allowing the de�nition of a new function f as

f('; ~x; ~y) = h(';~r('; ~x;);~t('; ~x; ~y));

when h, ~r, and ~t are in B.

Proposition 1 (Bellantoni). The functionals in B� correspond precisely to the oracle poly-

nomial time functionals. In particular, every functional in B� may be computed in oracle

polynomial time, and all oracle polynomial time functionals may be expressed in B�.

4.2 The category C

We begin by forming a category of oracle polynomial-time functions under safe composition.

The objects of category C are pairs of natural numbers, indicating an arity (number of nor-

mal inputs and number of safe inputs). The maps, or morphisms, of the category are tu-

ples of oracle polynomial-time functions containing the right number of functions to allow

us to compose correctly. More speci�cally, a morphism from (m;n) to (m0; n0) is a pair

< f1
1
; : : : ; f1m0 ; f21 ; : : : ; f

2

n0 > of sequences of functions, with each f1i an m-ary functional in

B� and each f2j an m+n-ary functional in B�. The identity morphism at (m;n) is the obvious

tuple of m+ n-ary projections. Composition proceeds according to safe composition in B�.

4.3 The category Ĉ

A standard method for embedding a set of �rst-order functions into a model of a higher-order

typed language, without introducing additional �rst-order functions, is the Yoneda embedding

[BW90]. This involves a correspondence between a category D and the category D̂ of presheaves

(contravariant functors into Set) over D. Since our aim is to prove properties of a higher-order

language built from polynomial-time functions, this tool is an obvious one to use, at least for

category theorists. However, we must adapt the standard proof to account for the fact that our

initial functions have oracle, normal and safe arguments. Speci�cally, we let Ĉ be the presheaf

category over C.

An elementary fact of category theory is that presheaf categories are cartesian closed. This

allows us to interpret every SLR=OSLR type as an object of this category, namely:

[[N]] = HomC(�; (0; 1))

[[A! B]] = [[A(B]] = [[A]]) [[B]]

[[�A! B]] = [[�A(B]] = �[[A]]) [[B]]

Here, �F , for any functor F , is the functor that takes (m;n) to F (m; 0).

We follow standard techniques to give denotations for the expressions of pure SLR. In par-

ticular, for every typing judgment � ` e : � , indicating that e is a well-formed term over a set

of variables listed in �, there is a corresponding morphism [[� ` e : �]] : [[�]] ! [[�]] in Ĉ. (Here,

[[�]] is understood to be the product of the types of the variables enumerated in �.)

We are able to reuse a proof of Hofmann to obtain the following correspondence, analogous

to the standard Yoneda Lemma [BW90]:

Proposition 2 (Hofmann). There is a bijection between the set of natural transformations

from [[�N]]m � [[N]]m to [[N]] and the set of m+ n-ary functionals in B�.

8

4.4 The category K

While Ĉ forms a semantic model of SLR, there is no immediate way to access the oracle. More

speci�cally, need some sort of mechanism for maintaining an implicit counter and accessing the

next bit of the oracle for each occurrence of rand. The technique we apply comes from a general

approach to imperative languages in a categorical framework. Speci�cally, we use a monad-

based technique �rst identi�ed in [Mog91]. Intuitively, a Kleisli category over a category D

endows each map (morphism) ofD with some extra structure and rede�nes function composition

so that this extra structure is preserved. For the purpose of carrying out this construction, we

de�ne a monad M = (T; �; �) over Ĉ. The functor T : Ĉ ! Ĉ adding structure to each type is

[[[N]]) C � [[N]]], since the additional structure we require is a natural number index into the

oracle sequence.

The Kleisli category K over M has, as objects, the objects of C. However, a morphism from

A to B in K is a Ĉ morphism from A to TB, i.e., a morphism from A to [[[N]]) B � [[N]]]. The

natural transformation � : 1
Ĉ

�

! T provides a way of \lifting" values from Ĉ into K. Intuitively,

� gives a way of converting values of type A to objects of type T (A). The natural transformation

� : T 2 �

! T provides a means of doing composition. In particular, if f : A! B and g : B ! C

are two arrows in K, then f ; g : A! C is given by f ;Tg;�C . (This is, of course, an arrow from

A to TC in Ĉ, as desired.) The particular composition used performs the obvious threading of

stores; the store output by f is given as input to g, and it is the resulting store output by g

that is output by the composition f ; g.

One technical point that involves some amount of e�ort is that we must verify that the

monad is \strong," as described in [Mog91].

4.5 Conservativity

Finally, we must provide a bijection between OSLR expressions of type

�N
m ! N

n ! N and elements of B� and show that each expression denotes the appro-

priate oracle polynomial-time function. The full proof requires construction of a categorical

logical relation by the sconing or Freyd cover technique and is too lengthy to repeat here.

However, we can give a brief sketch of the underlying bijection.

First, assume that we have an appropriately typed OSLR expression f . The denotation
K[[` f : �Nm ! N

n ! N]] in category K is an arrow from 1
Ĉ
to T ([[�Nm ! N

n ! N]]), i.e,

[N) [[�Nm ! N
n ! N]]�N]. This type indicates that the semantic type of f is a function

that takes an initial oracle-counter value, the normal and safe numeric arguments, and then

returns the function value and a counter value indicating the number of oracle bits used. The

input and output counter values are needed if we wish to compose this function with others,

but if this is the entire function we wish to compute, then we can begin with counter value 0

and discard the output counter value. A basic property of function objects in cartesian closed

categories allows us to \evaluate" this function at the point [[` 0 : N]] to obtain an arrow

from 1C to [[�Nm ! N
n ! N]]. (This sets the initial counter value to 0.) If we project out

the function value and discard the �nal counter value then, by Lemma 2 above, the resulting

function of type �Nm ! N
n ! N is simply an element of B�.

The other direction is simpler. Most of the B� constants and schemas have direct OSLR

analogs. However, some argument must be made to show that OSLR can simulate B�'s oracle

9

access Ap, using the OSLR rand primitive. By Theorem 1, each functional of B� has a polyno-

mial bound, depending only on the length of the integer inputs. Therefore, as outlined at the

end of Section 3, the OSLR function may request a polynomial number of oracle bits initially

and then access any needed bit by simple bounded numeric operations.

5 Conclusion

We have developed a higher-order typed lambda-calculus OSLR with the property that the de-

�nable functions of type �N ! N are exactly the oracle polynomial-time functionals. In

contrast to the Bellantoni-Cook notation for safe recursion, the language allows de�nition and

use of higher-order functions of any type. In this respect, our language, more closely resem-

bles a complexity-sensitive version of the typed programming languages ML [MTH90] than a

mathematical notation for recursive functions.

As in Hofmann's SLR [Hof97], the complexity restrictions of OSLR are enforced by a type

system. The type system is entirely standard, except for the unary operator � which is used

to distinguish between natural numbers that can be used as recursion arguments and natural

numbers that cannot. The distinction between type �� and type � has a precise correspondence

with the distinction between modal and non-modal formulas in modal logic. This correspon-

dence is an instance of the well-known Curry-Howard Isomorphism between constructive logics

and typed functional languages [How80, Mit96]. Like modal operators in type systems used for

binding-time analysis and other forms of program analysis (e.g., [DP96, WLPD98]), the typing

rules for �� in SLR and OSLR have the properties of the necessitation rule from modal logic.

In this sense, Hofmann's characterization of polynomial time and our characterization of oracle

polynomial time are logical characterizations of these complexity classes.

While the modal type distinction may seem complicated, it is also essential in a certain

respect. Speci�cally, there is a recursive analog of Hofmann's correspondence between SLR and

Bellantoni's class B. If we eliminate the safe/normal distinction from class B, the result is

essentially the standard notation for primitive recursive functions. If we eliminate the �� = �

distinction from SLR, the result is a restricted version of G�odel's system T , originally used in

the proof of the consistency of Peano arithmetic, restricted to a single recursion operator of

simplest type. However, Hofmann's correspondence, as well as our extension to higher-type,

fail in this context, since non-primitive-recursive functions are de�nable in this restriction of

G�odel's T .

In independent work, Bellantoni, Niggl and Schwichtenberg have also developed linguistic

characterizations of higher-order polynomial time [BNS98]. One di�erence between their work

and ours is the language itself: ours is a standard lambda calculus with one twist in the type

system, while theirs language involves syntactic restrictions that do not (at present, anyway)

appear to be captured easily by conventional context-sensitive conditions. Perhaps a more

fundamental di�erence is the form of proof. In [BNS98], the function correspondence is proved

by an operational argument involving speci�c ways of syntactically simplifying expressions,

while our argument (based on Hofmann's approach) uses semantic arguments from category

theory.

Acknowledgments: Thanks to Stephen Bellantoni, Dan Boneh, Viviana Bono, Stefano Guerrini,

10

Martin Hofmann, Sampath Kannan, Bruce Kapron, Dusko Pavlovic, and Jim Royer for helpful

discussions and advice on relevant literature.

References

[AG97] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus. In

Proc. 4th ACM Conference on Computer and Communications Security, pages 36{47, 1997.

Revised and expanded versions to appear in Information and Computation and as SRC

Research Report 149 (January 1998).

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime func-

tions. Computational Complexity, 2:97{110, 1992.

[Bel92] S. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis, University

of Toronto, 1992.

[Bel95] S. Bellantoni. Predicative recursion and the polytime hierarchy. In P. Clote and J.B. Remmel,

editors, Feasible Mathematics II, pages 15{29. Birkhauser, 1995.

[BNS98] S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Untitled manuscript, March 1998.

[BW90] M. Barr and C. Wells. Category theory for computing science. Prentice Hall International,

1990.

[Cob64] A. Cobham. The intrinsic computational di�culty of functions. In Proc. Int'l Cong. Logic

Methodology and Philosophy of Science, pages 24{30. North-Holland, 1964.

[Coo92] S.A. Cook. Computability and complexity of higher-type functions. In Y.N. Moschovakis,

editor, Logic from Computer Science, pages 51{72. Springer-Verlag, 1992.

[DP96] R. Davies and F. Pfenning. A modal analysis of staged computation. In 23rd Annual ACM

Symposium on Principles of Programming Languages (POPL'96), pages 258{270, 1996.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.

[Hof97] M. Hofmann. A mixed/modal lambda calculus with applications to Bellantoni-Cook safe

recursion. Manuscript; see http://www.mathematik.th-darmstadt.de/~mh/, 1997.

[How80] W. Howard. The formulas-as-types notion of construction. In To H.B. Curry: Essays on

Combinatory Logic, Lambda-Calculus and Formalism, pages 479{490. Academic Press, 1980.

[KC96] B.M. Kapron and S.A. Cook. A new characterization of type-2 feasibility. SIAM J. Com-

puting, 25(1):117{132, 1996.

[LMMS98] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time frame-

work for protocol analysis. Technical Report STAN-CS-TN-98-XXX, Stanford University

Department of Computer Science, 1998.

[Mac71] S. MacLane. Categories for the Working Mathematician, volume 5 of Graduate Texts in

Mathematics. Springer-Verlag, Berlin, 1971.

[Mit96] J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55{92,

1991. Preliminary version appeared in Proc. IEEE Symp. on Logic in Computer Science,

1989, under the title Computational lambda calculus and monads.

11

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT Press,

1990.

[Sip97] M. Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.

[WLPD98] Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies. Modal types as staging spec-

i�cations for run-time code generation. ACM Surveys: Special Issue on Partial Evaluation,

page (To appear), 1998.

12

