| Paper Number 663 |

2D BubbleUp: Managing Parallel Disksfor Media Servers

Edward Chang, Hector Garcia-Molina, and Chen Li
Department of Computer Science
Stanford University
{echang,hector,chenli } @cs.stanford.edu

Abstract

In this study we present a scheme called two-dimensiona BubbleUp (2DB) for managing
paralel disksinamultimedia server. Itsgoa isto reduce initia latency for interactive multimedia
applications, while balancing disk loads to maintain high throughput. The 2DB scheme consists of
a data placement and a request scheduling policy. The data placement policy replicates frequently
accessed data and places them cyclically throughout the disks. The request scheduling policy
attempts to maintain free “service dots’ in the immediate future. These dots can then be used to
quickly service newly arrived requests. Through examples and simulation, we show that our scheme
significantly reduces initia latency and maintains throughput comparable to that of the traditiona
schemes.

Keywords: multimedia, datareplication, initial latency, disk array.

1 Introduction

Media servers are designed to provide large numbers of presentationsin the form of audios, movies
or news clips. These servers need a large number of disks, not only for storing the data, but also for
providing the required high bandwidth for al simultaneous streams. In this paper we propose a scheme
called two-dimensional BubbleUp (2DB) that manages paralel disksfor large media servers.

The objective of 2DB isto minimize initial latency while maintaining high throughput. We define
initial latency as the time between the request’s arrival and the time when the data is available in the
server's main memory. Low initial latency is important for interactive multimedia applications such
as video games, since we do not want the user to wait for a long time at scene transitions. Even in
movie-on-demand applications, where afew minutes' delay before a new multi-hour movie starts may
be acceptable, the response time should be very short when the viewer decides to fast-scan (e.g., fast-
forward or rewind) to other segments of the movie. Our 2DB scheme minimizes the initial latency for
both newly arrived and fast-scan requests of an ongoing presentation.

Many schemes have been proposed in the literature to manage parallel disks for media servers (see
Section 1.1). Most of these schemes try to balance disk load to maximize throughput. However, this
maximum throughput is often achieved at the expense of long initial latencies. In particular, a new
request is not admitted until it can be guaranteed that no one disk will be overloaded in the future. This
rigid scheduling causes requests to be delayed for long periods of time, even if the disks containing the

initial segments for the new presentation have the capacity to serve the new request. When the server
is near its peak load, the initial latencies can be on the order of O(M N), where M is the number of
disksand N isthe number of 10s performed in one sweep of the disk arm. Data replication can be used
to reduce initial latencies, but still, they can be on the order of O(N). Thisis because these schemes
typically use an elevator-like disk scheduling policy: When a new request accesses a video segment on
the disk that has just been passed by the disk arm, the request must wait until the disk arm finishes the
current sweep (servicingup to N — 1 requests) and returns to the data segment in the next sweep.

The 2DB scheme services requests in cycles (time dimension) on parallel disks (disk dimension).
Each cycle is divided into service dlots of equal duration. An ongoing presentation performs one 10
per cycle, using up one of the slots in that cycle on one of the disks. The 2DB scheduling policy
assigns 10 requests onto these two dimensional disk-time slots. It attempts to maintain the maximum
number of free slots open in the near future to service new requests. If new requests arrive before the
start of a service slot, they are usually scheduled immediately in the free slots, with littledelay. If free
slots are still available after new requests have been satisfied, the scheduler assigns existing requests
that have the closest service deadlinesto use the remaining slots. This effectively pushes the deadlines
of the most urgent tasks further in time, freeing up service slots in the immediate future, as well as
reducing the number of requests that will compete for the free slots with future new requests. We use
the name “bubble-up” because free dlots bubble up to or near the current time. The simulation results
of Section 6.2 show that the 2DB scheme can service new requests in under 0.6 second on the average,
even when the requests arrive in alarge batch and when the server is near its peak load. Other schemes
can takefrom 5 seconds to several minutes.

A data placement policy is used by 2DB to balance loads across disks. Each presentation is split
into chunks and spread across the disks. Like other traditional schemes, 2DB also replicates popular
presentations. However, the replication and data distribution is performed in a way that enhances the
run-time bubbling-up of free slots. The results of Section 6.1 show that two copies of the popular
presentations are sufficient to balance loads and permit the bubble-up strategy to effectively reduce
latencies.

Scheme 2DB can have service disruptions (hiccups), when some the data required by some presenta-
tions can only befound at fully loaded disks. However, the probability of a hiccups can be reduced to an
insignificant amount by slightly reducing the maximum system throughput. I1n other words, supposethat
our server can support N,;; streams with a traditional multi-disk scheme. If we reduce this maximum
load to N,y — M x Ny, for Ny = 2 (M isthe number of disks), then the hiccups virtually disappears.
Typically, thisisareduction of 2 to 6% in overall throughput. Thisis the price one paysto achieve the
very low initial latencies; we believe this price will be acceptable in many interactive applications.

Therest of the paper isorganized as follows. Section 2 introducesthe parameters used in this study.
In Section 3 we review the single disk scheduling policy, Fixed-Stretch, used by 2DB. Sections 4 and 5
present the 2DB scheme through an example and formal specification, respectively. Section 6 describes
our simulation results and observations. Finally, we offer our conclusionsin Section 7.

1.1 Rdated Work

The 2DB schemeis an extension of scheme BubbleUp, which we proposed in [6] for managing asingle
disk. We call the new scheme 2DB because the free disk bandwidth can be bubbled up in the schedule
not only in the time dimension but aso in the disk dimension. (This will become evident from the
example we show in Section 4). Adding the disk dimension makes the problem much more challenging
since the scheme must minimizeinitial latency, aswell as maintain balanced disks.

Parallel disk management schemes have been widely studied for conventiona file and database
systems [4, 17]. However, the design of a parallel disk manager for a media server faces at least two
additional challenges:

1. The data delivery must meet real-time constraints, and

2. Data prefetching cannot be excessive, since media data is voluminous and may take up too much
buffer space, driving down throughput.

Many studies have addressed disk arrays, where 10s have real-time constraints. These schemes
can be categorized by their disk striping technique, as either fine-grained or coarse-grained [22, 23].
Fine-grained striping works as follows: Fine-grained disk striping treats M disks as one storage unit,
with each 10 unit (which we call segment) broken into M subunits (subsegments), each stored on a
separate disk [5, 25, 28]. With fine-grained striping, al M disks service one request at atime. Studies
[7, 22] have shown that thisfine-grained approach may not be desirable due to its aimost linear growth
of required memory with respect to number of disks. Initial latencies are also very high, on the order of
O(M N), where N isthe number of users serviced per disk.

Coarse-grained striping stores each segment on one disk only. When a segment is accessed, only
one of the M disksis involved in that 10. Coarse-grained striping is attractive because of its lower
memory cost. A variety of coarse-grained striping schemes have been proposed. The simplest approach
stores each presentation entirely on one disk. (A disk may store more than one presentation.) A
drawback of this scheme isthat it can lead to an unbalanced workload, where disks with “hot” movies
become overloaded. This phenomenon is sometimes referred to as bandwidth fragmentation: theidle
disk bandwidth cannot be used to service a new reguest because the requested presentation is not at
an idledisk. To minimize bandwidth fragmentation, [12, 21, 10, 22, 25] propose placing segments of
a presentation on M disks in around robin fashion. In thisway, both cold and hot movies share the
bandwidth of all disks. However, since these schemes admit a new request only until the new request
does not overload any disk, theinitial latency may be very long (on the order of O(M N)).

To reduce initial latency, data replication schemes have been proposed [18, 26]. Replication does
help contain initial latency. However, these schemes schedul e requests one cycle (T) at atime (dueto
the limitation of the elevator disk scheduling policy), so latencies are still high, the order of O(N'). Our
2DB scheme achieves significantly lower initial latency, on the order of O(1).

Due to space limitations we cannot discuss the schemes mentioned in this section in more detail.
However, Appendix A provides some additional discussion and examples.

2 Analytical Model

To analyze the performance of amediaserver, we are typically given the following parameters regarding
the hardware (i.e., memory and disks), the videos, and the requests:

o Memy,qi Available memory, in MBytes.
e M: Number of disks. In this study, we assume the media server uses homogeneous disks.
e T'R: Thedisk’sdatatransfer rate.

¢ v(d): A concave function that computesthe disk latency given aseek distanced. For convenience, we
refer to the combined seek and rotational overhead as the disk latency.

o I: Number of distinct video titles.
e I”: Number of videos stored on disks after data replication.
¢ DR: Thedisplay rate of the videos.

The mediaserver hasthe following tunabl e parameters, which can be adjusted within certain bounds
to optimize system throughput:

e T": The period for servicing a round of requests on each disk. 7" must be made large enough to
accommodate the maximum number of streams we expect to handle.

¢ 5 The segment size, i.e., the number of bytesread for a stream with a contiguousdisk 10.

¢ NV: The maximum number of requestsadisk allowsin 7.

¢ N: The cutback in throughput to reduce hiccups. We also call N, the number of cushion slotsin T'.
e N, Thetotal number of requeststhe server alows. Ny = (N — Ny) X M.

To assist the reader, Table 1 summarizes these parameters, together with other parameters that will
beintroduced later. Thefirst portion of Table 1 liststhe basic fixed and tunable parameters. The second
portion describes subscripted parameters that are used for the characteristics of individual requests.

3 Fixed-Stretch

Before presenting the 2DB scheme, this section briefly reviews a disk scheduling policy Fixed-Stretch,
which we presented in detail in [6]. Our proposed scheme, 2DB, presented in the next section, uses a
modified version of Fixed-Stretch.

We assume that the media server services requestsin cycles. During a service cycle (timeT’), each
disk of the server reads one segment of data for each of the requested streams, of which there can be at
most V. We assume that each segment is stored contiguously on disk. The datafor astream isread (in
asinglel0) into amemory buffer, which must be adequate to sustain the stream until its next segment
isread.

In afeasible system, the period 7" must be large enough so that even in the worst case al necessary
IOs can be performed. Thus, we must make 7' large enough to accommodate N seeks and transfer N
segments. Fixed-Stretch achieves this by dividing a service cycle T' into N equal service slots. Since

| Parameter | Description

Mem g,q:; | Total available memory, MBytes
M Number of disks
DR Data display rate, Mbps
TR Disk transfer rate, Mbps
CYL Number of cylinders on disk
v(d) Function computes seek overhead
T Servicetimefor around of NV requests
A Duration of aservice slot
S Segment size, MBytes
CK Chunk size, number of segments
cO Chunk overlap size, number of segments
C Copies of the popular movies
L Number of movies
I Number of movies after replication
N Limit on number of requestsin T
Ny Throughput cutback or the number of cushion slotsper T’
Nau Limit on number of requestsin the server per T’
R; it request
D; it disk

Table 1: Parameters

the data on disk needed by the requests are not necessarily separated by equal distance, we must add
time delays between 10s to make all service slotslast the same amount of time. For instance, if the seek
distancesfor thelOsin acycle are eyly, cyls,..., and eyl cylinders, and cyl; isthe maximum of these,
then we must separate each 10 by at least thetimeit takes to seek and transfer this maximum i** request.
Sincein the worst-case the maximum cyl; can be as large as the number of cylindersonthedisk (C'Y L),
Fixed-Stretch uses the worst possible seek distance C'Y I and rotational delay, together with a segment
transfer time, as the universal 10 separator, A, between any two 10s. We use v(C'Y L) to denote the
worst case seek and rotational delay. If the disk transfer rate is T'R, and each segment is 5 byteslong,
then the segment transfer timeis /TR, s0 A = y(CY L)+ S/TR.

The length of a period, T', will be N times A. Figure 1 presents an example where N = 3. The
time on the horizontal axis is divided into service cycles each lasting T units. Each service cycle T’
(the shaded area) isequally divided into three service sots, each lasting A units (delimited by two thick
up-arrows). The vertical axisin Figure 1 represents the amount of memory utilized by an individua
stream.

Fixed-Stretch executes according to the following steps:

1. Atthebeginning of aserviceslot (indicated by the thick up-arrow in Figure 1), it setsthe end of slot
timer to expirein A.

2. If thereis no request to be serviced in the service dlot, it skipsto Step 6.

3. It alocates S amount of memory for the request serviced in thistime slot.!

When an 10 is initiated, the physical memory pages for the data it reads may not be contiguous due to the way buffers

Memory Requirement

I TOTAR Avcvy Ay A Time
== A o~ A e >

\ v
\, Playback Points

Figure 1: Service Slots of Fixed-Stretch

4. It setsthe 1O timer to expireiny(CY L), the worst possible seek overhead, and starts the disk 0.
Since the actual seek overhead cannot exceed v (C'Y L), the datatransfer must have begun by the time
the 1O timer expires.

5. When the 10 timer expires, the playback starts consuming the data in the buffer (indicated by the
“playback points” arrows in Figure 1), and the memory pages are released as the datais consumed.

6. Whenthe end of slot timer expires, the datatransfer (if issued in Step 4) must have been compl eted.?
Fixed-Stretch goesto Step 1 to start the next service slot.

As its name suggests, the basic Fixed-Stretch scheme has two distinguishing features:

e Fixed-order scheduling: A request is scheduled in a fixed service slot from cycle to cycle after it is
admitted into the server. For instance, if arequest is serviced in the & slot when it first arrives, it will
be serviced in the same k%" dlot in its entire playback duration, regardless of whether other requests
depart or join the system. (Aswe will seein Section 4, the “fixed” scheduling may be changed by the
2DB scheme))

e Stretched out 10s: The allocated service slot assumes the worst possibledisk latency v(C'Y L) so that
the disk arm can move freely to any disk cylinder to service any request. This property ensures that
the fixed-order scheduling isfeasible no matter where the data segments are |ocated on the disk.

At first glance, Fixed-Stretch appears to be inefficient since it assumes the worst seek overhead
between |0s. However, it uses memory very efficiently because of its very regular 10 pattern, and this
compensates for the poor seek overhead. In [6, 7] we analyze the memory requirement of Fixed-Stretch
and compare its performance with the performance of other disk scheduling policies (e.g., elevator and
GSS[27]). We show that Fixed-Stretch achieves throughput comparabl e to that of the other schemes.

are shared. There are several ways to handle these |O0s. One possibility is to map the physical pagesto a contiguous virtual
address, and then initiate the transfer to the virtual space (if the disk supports this). Another possibility is to break up the
segment 10 into multiple 10s, each the size of a physical page. The transfers are then chained together and handed to an 10
processor or intelligent DMA unit that executes the entire sequence of transfers with the performance of alarger 10. Other
possibilities are discussed in [20].

2The accuracy of the timers used by Fixed-Stretch can be tuned periodically by cross-checking the amount of datain the
stream buffers.

‘ X1,X2 ‘ ‘ X2,X3 ‘ ‘ X3,X4 ‘

‘ X4,X5 ‘ ‘ X5,X6 ‘ ‘ X6,X7 ‘

romm |

‘ Y1,Y2,Y3,Y4 ‘ ‘ Y4,Y5,Y6,Y7 ‘ ‘ Y7,Y8,Y9,Y10 ‘

Y10,Y11,Y12,Y13 Y13,Y14,Y15,Y16 | vresrsesssssssssesisinaes

D1 D2 D3

Figure 2: Data Placement Example

4 2-Dimensional BubbleUp (2DB)

In this section we use an example to illustrate how our scheme, two-dimensional BubbleUp (2DB),
works. In the example, we assume that the server usesthreedisks, D, D2, and D3, each ableto service
up to four requests (V = 4) in each service period T'. We assume two movies, X and Y, are placed
on the three disks. We also assume that movie X enjoys higher viewing popularity than movie Y does
and hence we place two copies of movie X on the disks. In the remainder of this section we show how
scheme 2DB places dataand schedulesrequests. To simplify our discussion, we only show how scheme
2DB minimizes initial latency for the newly arrived requests. Section 6.5 discusses how to extend the
scheme to support low latency fast-scan operations.

4.1 DataPlacement

Scheme 2DB places data on disksin chunks. The chunk placement follows threerules:

1. Each chunk is physically contiguous and isaminimum of two segmentsin size.

2. The tailing segments of a chunk are always replicated at the beginning of the next chunk. We call
the replication size chunk overlap; chunk overlap isaminimum of one segment in size.

3. Thefirst chunk of amovieis placed on arandomly selected disk, and the subsequent chunks are
placed in around-robin fashion throughout the disks.

Figure 2 shows an example of chunk placement. The formal rules of chunk placement are specified
in Section 5.1. In the figure, the chunk size and chunk overlap size of movie X are two and one and of
movie Y four and one, respectively. Note that we can compute the number of copies of a movie on the
disks using the formula - ——<ulsze - —— . For instance, movie X (the more popular movie)

has ;2 = 2 copieson the diskswhilemovieY has11.

The chunk placement is intended to accomplish the following objectives:

¢ Minimizing 10 overhead: Placing data in chunks ensures that every disk |10 lessthan 5 in sizeis
physically contiguous (performing only one seek). (We explain in Section 4.3 that scheme 2DB
sometimes needs to retrieve afraction of a segment to conserve memory.)

¢ Improving scheduling flexibility: The more copies of a movie reside on the disks, the higher the
probability that the server can find a disk to schedul e the requests for that movie.

¢ Balancing workload among disks: Placing the first chunks of the movies on randomly selected disks
makes it highly probable that the requests are uniformly distributed on the disks [2, 4]. (We discuss
the detailsin Section 6.1.)

4.2 Request Scheduling

To servicefour requestsin 7', scheme 2DB uses the disk scheduling policy Fixed-Stretch, which divides
the period into four equally separated service slots, each lasting time A (7" = 4 x A). Policy Fixed-
Stretch is chosen because its assumption of the worst-case seek overhead between 10s gives the disk
arm the freedom to move to any disk cylinder to service any request promptly. Scheme 2DB schedules
requests for one A at atime. At the start of each A, it assigns one request to each disk to retrieve up to
S amount of data. Thisnot only minimizes the number of seeks (recall that as long as the data transfer
sizeis < 9, the number of seeksis one), but aso keeps the memory requirement under control. For M
disks (in our example M = 3), scheme 2DB schedules up to M 10s, each on one disk, at the start of
each A.

The 2DB scheme assigns requests to disks according to their priorities. The priorities are ranked
based ontherequests' servicedeadlines, i.e., theearlier thedeadline, the higher the priority. For instance,
arequest that will run out of datain 2As enjoys a higher scheduling priority than one that will run out
of datain 3As. Scheme 2DB assigns requests, starting from the highest priority ones, to M disks until
either all disks are used or no more requests can be assigned. Note that not al disks may be used for
two reasons: (1) the number of requestsin the server islessthan M, or (2) the unassigned disks do not
have the data needed by the remaining requests.

To minimize initia latency, the 2DB scheme gives newly arrived requests the highest priority and
attempts to assign them to disksimmediately after their arrival. This, however, may cause a scheduling
conflict on the disks to which the newly arrived requests are assigned. For example, supposedisk Dy in
Figure 2 is saturated and anewly arrived request wantsto start movie Y on the disk (segment Y; resides
ondisk D). Assigning the newly arrived request to disk D, can cause the existing requests schedul ed
on disk Dy to be “bumped” by one A. Any bump in the schedule disrupts the continuous data supply
to the request and causes display disruption (hiccups). To reduce hiccups, scheme 2DB cuts back the
throughput on each disk by N,. These N, slots work like a cushion to absorb the unexpected bumps.
We show how N can be set to virtually eliminate the hiccupsin Section 6.1.

4.3 Execution Example

This section shows an execution example. We assumethat N = 4 and N, = 1. Under this condition,
each segment, 5, sustains playback for 77 = N x A = 4 x A, athough each disk services only
N — Ny = 3 requests per cycle T'. Table 2 liststhe arrival time of nine requests, R, to Rg, and their
requested movies. In the following we describe how the disks are assigned at the start of the first seven
time slots. Each Slot instanceislabeled A; to remind us that itsduration is A time units. We use ¥ to
denote the schedule that containsthe disk assignment (request and disk pairs).

e Ay: Requests Ry and R, have arrived requesting movies X and Y, respectively. The only possible
schedulefor therequestsis ¥ = {{ Dy, R3},{Ds, R1}}.

8

Arrive Time | Request Movie Request Movie
Before A4 Ry X R Y
Before Ag Ra X Ry Y
Before As Rs X Reg Y
Before A4 R~ X

Before Ax Rg X

Before Ag Rg X

Table 2: The Arrival Time of the Requests

Deadlines(AsAway) | 0 A 2As 3As
Dy Ry Ry
Dy Ry
D3 Rs

Table 3: 2D BubbleUp Example - At the End of A,

Note that without replicating segment X; on disk D3, one of the requests cannot be serviced immedi-
aely.

¢ Ay Requests R3; and R, arrive requesting movies X and Y, respectively. Since the new requests
enjoy the highest scheduling priority, we schedulerequests ks and R4 immediately. The only possible
assignment for the new requestsis ¥ = {{ D3, Rs},{D1, R4}}. Theidledisk D, can service R, to
retrieve segment X,. The amount of dataretrieved for R, is.5/4 since only that amount of data has
been consumed since R'slast 10in A. Keeping the peak memory required by each request under .5
capstheserver’'smemory requirement. Theschedulefor Ay is¥ = {{ Dy, R4}, { D2, R1},{ D3, R3}}.
If Dy were not used to service R4, the disk would beidle. Using the idle bandwidth to service R in
this time slot pushes back the deadline of R, by one A and hence gives the server more flexibility to
schedule the newly arrived request in A;. In other words, the disk bandwidth that was supposed to be
alocated in A5 isnow freed to service other requests. Essentially, the free disk bandwidthis*bubbled
up” nearer intime and the number of the high priority requestsin the future is also reduced.
Table 3 depicts the states of the requests at the end of A;. Therows of the table are the disks and the
columns the requests’ deadlines, zero, one A, two As, and three Asaway. Requests Ry, B3, and Ry,
which were just serviced, have a service deadline that is three time slots away at the end of A;. The
deadline of R, istwo Asaway. Note that the empty service slots are all kept near in time (zero, A,
and 2Asaway). The deadlines of the requests are pushed back in the table as far as possible.

¢ As: Requests R5; and R¢ arrive requesting movies X and Y, respectively. We schedule the newly
arrived requests immediately. We assign requests Rs and Rg to disks Ds and Dy, respectively.
The idle disk D, can service either Ry or R3. We assign Rs; to D,. The schedule for Ajs is
V = {{Dy, Rs},{ D2, R3},{Ds, Rs}}. Again, pushing the deadline of R3 backwards opens up free
server bandwidth earlier in time for scheduling other requests.

o A, to Ag: Since the execution steps are similar, we skip the detailed description for these time slots.
Table 4 summarizes the deadlines of the requests at the end of Ag.
At the end of Ag, the server isfully occupied. Any newly arrived requests will be either turned away
or put in a queue until a request leaves the server (e.g., when the playback ends). Again, all empty
slots are next in time because of the bubbleup policy.

Deadlines(AsAway) | 0 A 2As 3As
Dy Ry Ry Rs
D, Ri Rs Rs
Ds Rr Rs Ry

Table 4: 2D BubbleUp Example - At the End of Ag

e A;: Inthistimeslot, we show theuse of the cushionslot (V, = 1). Wefirst schedule Ry, R, and R~,
the highest priority requests (their deadlines are nearest in time). Since the datathat R, needs (1/4 of
segment Y5 and 1/2 of Y3) residesonly on disk D¢, we must assign D, to R,. The datathat R, and
R~ need can only befound on disk D5 (D4 has been taken). Thus, we must bump either R, or R; by
one A. If the cushion slot were not allocated, one of the requests would suffer a hiccup. Suppose we
decideto bump R, and assign Rs to the final disk. Table 5 shows the deadlines of the requests at the
end of A7. Note that the bumped request R, enjoysthe highest scheduling priority in the next time
slot and is guaranteed to be serviced in Ag. Our simulation results using significantly larger M's and
N's (discussed in Section 6) show that by replicating popular movies and carefully placing the data
chunks, atop priority request will not be bumped more than twice. Therefore, alocating two cushion
slots (N, = 2) issufficient to virtually eliminate hiccups.

Deadlines (AsAway) | 0 A 2As 3As
Dy Ry Rs Ry
Dy Ry Rs Rz Ry
D5 Rg Rsg

Table 5: 2D BubbleUp Example - At the End of A~

To summarize, the example first illustrates that the data replication (e.g., shown in Ay, A,, and
A3z) and the reduction in throughput (shown in A-) help balancing disk load. We also observe that
limiting the data prefetching size to .S’ conserves memory. Furthermore, the bubbleup scheduling policy
maintains the open service slotsin the nearest future to minimizeinitial latency. In Section 6 aredlistic
simulation showsthat all these observations hold and scale well with large Nsand M's.

5 Specification

Given [video titles, we first replicate the videos that enjoy high popularity. Video popularity is
commonly modeled using Zipf or geometric distribution [3, 19, 26]. For simplicity, one can say that
about 10% to 20% of the presentations enjoy 90% of the popularity. Thus, by replicating only 20% of
the videos, we can get ' = 1.2 x L videos stored on the disks. ?

Based on the storage requirement and the number of users that the server must support (V,;;), one
can derive the number of disks (M) and amount of memory (M,..:;) required. (Reference [9] shows

?Deciding on the number of copies of each individual movie to be replicated by predicting the movie's accessfrequency is
highly susceptibleto prediction errors, especially the accessfrequency of amovie can changeon an hour-by-hour or day-by-day
basis [10, 26]. Rather than predicting the popularity of each individual movie, we deem that a group prediction model [11]
less susceptibleto prediction errors. Analysis of movie replication strategies, however, is beyond the scope of this study.

10

Procedure ChunkPlacement (in V', C'S, CO, 5, M)
e Local variables
e C'K [* Local memory buffer */

e, j,a,0,k,0
1. Vdidate Input Parameters:
if (CS < CO)or (g5 > M))
Return error
2. Initidization:
6 — U1, M)
i —0 /%4t chunk, starting from zero */
Kk «— 0 [* offset into thevideo file */

3. While (x < sizeof(V))
(@a«—~r [*offsetintoV */

(b) 3 — 0 [* offset into the chunk */
(cForj=1toC'S Do

copy(er, V, 3, C K, S)

a — a+ 5 modsizeof(V)

B=p+5
(d) 8 — (8 + ¢) mod M
(e) Place C'K ondisk Dy
rk—=r+(CS-CO)x S
@i—i+1

Figure 3: Procedure ChunkPlacement

how to obtain the M and M, ,.;; that minimize the per-stream cost.) In this section we assume that M
and M,,.;; are given and we describe how scheme 2DB places data on the disks and schedul es requests.

5.1 DataPlacement

Let C'K and 3 denote the starting address of and offset into the memory where the temporary chunk is
created before being written onto the disk. Let « denote the offset into the logical sequence of the video
fileV. Let C'S denotethe chunk sizeand C'O thechunk overlap size (both in number of segments) of the
video. Let U(1, M) denote arandom number generator that generates an integer uniformly distributed
over the interval (1,M). Figure 3 depicts the procedure ChunkPlacement that implements the chunk
placement policy. The procedureis asfollows:

ChunkPlacement takes a video file (V), chunk size (C'5), chunk overlap size (C'O), segment size
(.5), and number of disks (M) asinput and places V' on M disksin chunks. The procedure first checks
if the input observes two rules:

1. CS > CO: By définition, the chunk overlap size should be smaller than the chunk size, so the
procedure can terminate.

11

Figure 4: Request Scheduling

2. CS/(CS — CO) < M: The copies of amovie must not exceed the number of disks, M, or the
disk storage iswasted without any benefit being gained.

After the parameters pass the input validationin step 1, step 2 of the procedureinitializes variables.
Variable 6 is assigned a random disk on which to place the first chunk of the video. Step 3 iterates
through seven substepsthe create and placement of chunks, one at atime, until the end of the video file
isreached. Steps 3(a) and 3(b) initialize the offsets into the video file and the chunk’s memory address,
respectively. Step 3(c) creates the i** chunk by copying 'S number of segments from the video file to
the chunk’s memory address, one segment at atime. The Copy function copies the segment in the video
file starting from the « offset into the local memory buffer C' K starting from the ¢ offset. If fewer than
('S segments of dataare | eft in thevideofile, the procedurewraps around thevideofile (a« < «+ .5 mod
sizeof(V')) and copiesthe initial segments into the chunk. For example, if the chunk size is two and
the first segment of the chunk is the last segment of the video, the procedure appends the first segment
of the video to itslast segment to create a chunk. Step 3(d) decides the destination disk and step 3(e)
places the chunk onto the chosen disk. Finally, steps 3(f) and 3(g) update the variables.

5.2 Request Scheduling

At each servicedlot A, the server assignsat most M out of N,;; requeststo M disks. Since somevideos
are replicated on more than one disk, a request may be assigned to one of many disks. Figure 4 depicts
this scheduling problem, where up to M of the N,;; requests must be assigned to M disks. The lines
connecting the requests on theleft to the disks on the right are the possible matches between the requests
and the disks. For instance, only one line emanating from requests R, Rs and Ry, shows that the
segments these requests access reside only on one disk. Two lines emanating from requests R», R3, and
R4 showsthat these requests can be assigned to either of the two disks at which the linesterminate.

We formalize the problem asfollows: Let ¢ = (V, F')beagraphwithvertex V = R U D, where R
isthe vertex set that containsup to NV,;; requestsand D the vertex set that contains M disks. All edges
in F/ go between R and D. An edge between a request vertex and a disk vertex exists if the segment
that the request next retrieves resides on that disk, and the weight assigned to the edge depends on the
scheduling priority of therequest. Aswe have discussed in Section 4, the priorities are ranked based on
therequests' service deadlines, i.e., the earlier the deadline, the higher the priority. Since T = N A, and
each request is supposed to be serviced at least oncein each T, N priority levelsexist. The priority of a
request is calculated by subtracting from N the time to the deadline in terms of the number of As.

Theoptimal schedule can be solved as a bipartite weighted matching problem. Let £;; represent the

12

edge between request R; and disk D;. Let w;; denote the weight assigned to £;;. Derigs[15] shows
that this bipartite weighted matching problem can be formulated into aspecial case linear programming
problem as follows:

Nou M
Mazximaize Z Z w;; B
=1 j=1
Nan M
subject to Z Ei; <1, and ZE@‘ <1, where E;; = 0or 1.
=1 7=1

F;; = 1 meansrequest R; isassigned to disk D;, otherwise F;; = 0. Derigs shows that this problem
can be solved using ageneralized Hungarian method in O(V3) time. For scheme 2DB, sincethe number
of nodes, V', includes N,;; = (N — N;) X M request nodes and M disk nodes, the computation cost is
on the order of O(N2M?) (N, issmall with respect to V).

Although solving the linear programming problem yields an optimal schedule, the typically large
Nau = (N — Ny) x M can make the computational time very long. Instead, we use agreedy procedure
that assigns disks from the highest priority request group down to the lowest group until either all disks
are used or no more requests can be assigned. Thisway, we need to evaluate only asmall subset of N,
requests. Indeed, our experiment in Section 6 shows that with high probability all M disks are used
after the top three (out of V) priority request groups are considered for the schedule. In addition, since
the reguests in each priority group have the same weight, the complexity of the problem is reduced to
that of solving a maximum unweighted bipartite matching problem, which the Ford-Fulkerson method
can solvein O(VE) time [13]. The number of nodes participating in the Ford-Fulkerson method starts
from up to M request nodesin the top priority group and M disk nodes. The number of edges between
themisupto C' x M. The computationa cost for the top priority group isthus on the order of O(M?).
The computational time for evaluating the subsequent request groups is much lower since with high
probability the majority of the disk nodes will have been assigned by then and do not participate in the
agorithm. The overall computational timeisstill on the order of O(M?). Now that M ismuch smaller
than (N — N,) x M and the computation is one order more efficient, the computational time can be
reduced by more than athousandsfold. *

To specify 2DB we define the following parameters. At the start of each time slot (A) scheme 2DB
assignsup to M requestsin the R set (containing al requests) to the disksin the D set (containing M
disks). For each request » € R, scheme 2DB maintains five sets of data:
¢ . A: records the service deadline (number of Asaway).

e 7.10: records the information needed for doing 10, including five sub-fields:
r.10.D: the disk set where the requested chunk resides,

r.10.C K the chunk that contains the accessed data,
r.10.S: thefirst ssgment in »./O.C'K that contains the accessed data,
r.10.x: thefirst bytein ».10 .5, where the accessed data begins.

*Suppose each iteration of the Ford-Fulkerson method executes 100 instructions (reference [13] shows a typical im-
plementation). Given M = 10, and C' = 2, the computationa time of three iterations on a 200 Mips machine is

IX(MP) _ 12x10°x100 o | millisecond. Since an iteration of Ford-Fulkerson method can be implemented in less than

100 instructions and the typical M is not large, the computational time is negligible compared to the disk latency.

13

Scheme 2DB
o Initidization:
D — {Dy,Dy,..Dps} I* Initthedisk set */
R,A — 0 [* Empty the request set and request queue */
¢ Asnew requests arrive, enter them into A.
¢ Before the start of every A:
O.p=N; D' «—D;¥ 10
1. Foreachr € R:
If theplayback ends, R — R — {r}
2. While((|R| < Nan) & (r = DeQueue(A) # nil))

r.A — 0; r.new — true

r.latency, r.hiccups, r 1O — 0

R— RU({r}

3. While((p > 0) & (D’ # 0))

R —0,E—0;¢—0

Foreachr € R: If (N — r.A = p)
e R — R'U{r}
o 110.size — I=E2)5 v compute 10 size*/
o r.CK — FindChunks(r.I0)/[* Find chunk numbers */
o r.D — FindDisks(r.CK,D") [* Find disks*/

eForeachd ¢ r.D:
Creste edge L, 4

E— EU{E 4}
¥ = Bipartite M atching(R', D', E)
Foresch E, ;, € : D' — D' — {d}
p—p-—1
¥ —vuy

4. Foreach £, ; € ¥: /* Perform 10s */
r.A — N

DiskIO(d,r.10)
rl0.S —rl0.5+ ((rd0.k+r.10.size)/5)
r10.k — (r10.k+ rd0.size) mod S

5. For each r € R: [* Update statistics*/
If (r.A =0)
o If (r.new) r.delay — r.delay + 1
o Elser.hiccup — r.hiccup+ 1

Else/* r.A > 0*/
or A —rA—-1

o If (r.new) r.new — false

Figure5: The 2DB Scheme
14

r.10.size: thesize of the dataretrieval.
e r.latency: recordsthe number of Astherequest waitsbeforeitsfirst 10 is started.
e . hiccup: recordsthe number of hiccupsthat the request has suffered due to scheduling conflicts.
e r.new: records anewly arrived request.

In addition, we use A to represent the server’s queue, where the newly arrived requests reside. Sets ¢
and V¥ store the temporary and final schedule, respectively. The variable p denotes the priority levels,
from N downto 1. Procedure DeQueue(A) removes the first request, if any, from the queue. Procedure
FindChunks returns the chunks that contain a given segment. Procedure FindDisks returns the disks
where the given chunksreside. Procedure BipartiteMatching returns ¢» given a bipartite graph. Finally,
procedure DisklO performs a disk-to-memory data transfer given a chunk and a disk number.

Figure 5 specifies policy 2DB. Before the start of every A, the 2DB scheme initializesvariablesin
step zero. After initialization, step 1 removes the requeststhat have finished their playback, if any, from
the R set. Step 2 admits new requests if the server is not fully loaded (| R| < N.i;). Step 3, the core
of the procedure, assigns disks to requests, one priority level at atime, until either al disks are used
or no more requests can be assigned. To find the candidate disk assignments for a request, this step
first computes the dataretrieval size by subtracting the amount of dataleft in the buffer ((r.A x 5)/N)
from 5. Using theinformation stored in .70 (including r.10.s, r.10 .k, and r.I0.size), it then calls
procedure FindChunks to find out in which chunks the desired data reside. Subsequently, it uses the
chunk numbersto call procedure FindDisks, whichlocates the diskswhere the accessed dataresidesfrom
among the unassigned disk set, D’. Edges are created between R’ and the candidate disks. After the
graph isbuilt, procedure BipartiteMatching is called to obtain a partial disk assignment in «». Repeating
these same steps (typically for lessthan four request groups) yieldsthefinal schedule, ¥. Step 4 then sets
the new deadline of the scheduled requeststo N A and initiates a disk-to-memory datatransfer for each
scheduled request on the assigned disk. It also updates the pointer to the data the request will retrieve
next time. Finaly, step 5 updates the service deadlinesfor all requests and the applicable statistics.

6 Evauation

We implemented a simulator to measure the server’s performance, including its ability to balance disk
load and itsinitia latency. We used the fraction of hiccups to measure if the disk load is balanced: if
the load is balanced, the fraction of hiccups should be zero, otherwise, hiccups occur.

Aswe have discussed in Section 4, the 2DB scheme replicates popular movies and reserves cushion
slots to balance disk load and to minimize initial latency. However, the parameters (listed below)
must be chosen properly to virtually eliminate hiccups, We thus investigated the effects on the server’'s
performance by various parameters including:

¢ The number of copies (C') of the hot movies (we assume that hot movies are the 20% of the movies
that enjoy 90% of the requests),

¢ The number of cushion slots or the throughput reductionin 7" (IVy),

¢ The chunk size (C'5) and chunk overlap size (C'O), and

¢ The number of disks (M) and the maximum number of requests serviced per disk (V).

15

e

00
I

Hiccup Fracton
0
(0]
T
¢
|

N —o
<o
>)) Mk SN

o

20

5 10 i1s
Number of Cushion Slots (Nb)

Figure 6: Hiccup Fractionvs. N,

The values of these parameters can be changed through a configuration file.

To conduct the simulation, we used the Seagate Barracuda 4L P disk [1]. We assumed a display rate
DR of 1.5 Mbps, which is sufficient to sustain typical video playback, and we used M = 10 disks and
N = 40 requests per disk (and hence T' = 40 x A). We show in Section 6.4 how the different val ues of
Msand Vs affect the performance.

We ran the simulator three times for every experiment, each time for 24 simulation hours. We
collected statistics for the average hiccup fraction, the average initial latency, and the worst-case initial
latency. We were not interested in the variance of the hiccup fraction since, any hiccups, regardless of
their distribution, mean the quality of serviceis unacceptable. The remainder of this section describes
the simulation results and our observations.

6.1 Fraction of Hiccups

We definethefraction of hiccupsasthetimethat arequest’s buffer underflows over its playback duration.
For instance, if the hiccup fraction is 0.1, the playback will be “blacked out” for one out of every ten
seconds on average. We measure the fraction of hiccups after the server reaches and stays at the peak
load, NV,;;, and measure how €' and N, affect the fraction of hiccups.

Figure 6 plotsthe average hiccup fraction (on the y-axis) versus N, (on the x-axis) for two different
values of C'. When movies are not replicated (C' = 1), the hiccup fractionis0.5 at N, = 0. It needs
N, = 20 cushion slots, or reducing throughput by 50%, to eliminate the hiccups. When two copies of
the hot movies are available (C' = 2), the figure shows that the hiccup fraction drops significantly. The
fraction of hiccupsis 0.1 when N, = 0 and reaches zero when N, = 2.

In addition to replicating the hot movies once (having two copies of each segment), we also ex-
periment with having three, four, and five copies of the hot movies. Surprisingly, having more than
two copies of the movies (C' > 2) does not reduce the number of cushion slots (V, = 2) necessary to
virtually eliminate hiccups. Theresults of having more than two copies of the hot moviesare similar to
those shown in Figure 6 for two copies. The following theorems provide the insightsto this surprising
result.

Suppose that we sequentially place n ballsinto n urns by putting each ball into a randomly chosen

16

Worst-case Latency -<---
2.5 |- Average Latency -=---

Inl Latency (Seconds}

B

3 =3 7z
Request Batch Size (n)

Figure 7: Initial Latency vs. n

urn. Itisknown (e.g., [24]) that there is a high probability (o(1)) the fullest urn has Migo(l)) balls
at the end. Now, suppose each ball is placed in the least full urn among d > 2 possiblelocations. Azar
[2] showsthat the fullest urn contains only ’”lé”d” + O(1) balls-exponentially fewer than before-with
high probability. The balls are analogous to the requests and the d possible destinations of the balls
are analogous to C' copies of the movies. Therefore, when ' = 2, the disk scheduling conflict decays

exponentialy. When C' > 2, theimprovement is not significant because the O(1) term dominates.

Furthermore, N, = 2 ishot a magic number. Azar shows that when m balls are placed in n urns
(m > n), the number of ballsin the fullest urn isless than miﬁ% + [m/n] with high probability
(o(1)). We care for only the first term since it represents the excessive number of balls in the fullest
urn with respect to the average number of balsin all urns. Suppose d = 2 and » = 10. Then we get
Inln10 — 0.5 < 1. Similarly for the 2DB scheme, given C' = 2 and M = 10, the number of excessive
reguests on the fullest disk is less than one with high probability. Indeed, Figure 6 shows that when
C = 2and N, = 1, the fraction of hiccupsis lessthan 3%. To handle this small fraction of bumped

requests, adding another cushion slot (making N, = 2) issufficient to eliminate hiccups.’

Note that Azar's derivation is based on the assumption that every ball is placed in the least full urn
of the d possible destinations. In other words, the balls are placed one at atime based on the past state
of the urns. The 2DB scheme cannot do worse because it assigns M requeststo M disksin each time
slot by selecting the requests from the top priority groups: it balances disk load with future knowledge.
For the proofs of these theorems please consult the references [2, 4, 24].

6.2 Initial Latency

Measuring initial latency when the server is not near its peak load is uninteresting, since plenty of free
slots are available to service the newly arrived requests and hence the initial latency must be low. We,
therefore, measured performance when the server was near its full load. We simulated the peak load as
follows: after we first loaded up the server with N,;; requests, at a random time in each service cycle

®The effect of adding another cushion slot is NOT equivalent to reducing the hiccup fraction down to 3% x 3%. Since
the number of bumped requests that have to use the first cushion slot is already small (e.g., 3%), the probability that the first
cushion slot cannot service al of these bumped requestsis very low. In other words, the expected number of requests bumped
into the second cushion slot approacheszero. Now, with C' = 2, each cushion slot can service two requests with probability
one. Since the probability that the second slot receives more than two bumped requests is infinitesimally small, adding the
second cushion slot is adequate to eliminate hiccups.

17

14 T T T T L 0.5

0.45 |
12 e

0.4
10 1 / 1 0.35 |
03 |

0.25 | e

Hiccup Fraction

0.2

Average Initial Latency

4t /] 015 | |

o1} |

$ 005 | |
0 9(5/ 1 1 1 1 1 1 0 > 1
0o 10 0o 60 o 10

L L
20 30 40 5 20 30 40 50 60
Chunk Size (Segments) Chunk Size (Segments)

(&) Initial Latency (b) Hiccup Fraction

Figure 8: The Effect of the Chunk Size

we terminated n requests and at the same time let a batch of n requests arrive at the server. We did this
for every service cycle. We simulated batch arrival to stress the server since if new requests arrive one
at atime (without disk contention) the performance is certainly good. We tested different values of n
from1to M.

Figure 7 shows the initia latency (on the y-axis) for » = 1 to M (on the x-axis), given C' = 2 and
N, = 2. The figure shows both the average and worst-case initial latency over multiple runs. When
n < 3, the average and worst-case initia latency is minimum: 75 milliseconds and 150 milliseconds,
respectively. This is because the server can immediately assign these new requests to disks without
encountering disk contention. Thewaorst-caselatency happenswhenthe server hasjust started scheduling
the existing requests for the next A when the requests arrive. The requests hence must wait until the
next A to be serviced. When n > 4, the average delay startsto rise linearly with » while the worst-case
delay grows super-linearly. Thisis because more requests may need to access their first segments on the
same disk and as a consequence some must be delayed for extra As. Nevertheless, even when n = 10,
the server is till ableto keep the average initial latency under 0.6 second.

The initia latency achieved by the 2DB scheme is substantially lower than that achieved by any
other proposed disk-based schemes (examples shownin Appendix A) for two reasons:

1. Most schemes use the elevator disk scheduling policy, which has an initial latency on the order of
O(N) [18] (about three to five seconds using the same configuration of our simulator).

2. Some schemes maximize throughput by delaying admission to newly arrived requests until the disk
load can be balanced. These schemes suffer from very long initial latency, on the order of O(N M)
(thedelay can bein minutesif M islarge).

6.3 Chunk and Overlap Sizes
To replicate a movie once and thereby create two copies of it, one seems to be able to choose any

chunk and chunk overlap size, aslong as the chunk overlap sizeis 50% of the chunk size. For instance,
gther ¢S =2and CO = 1and C'S = 4 and CO = 2 gives us two copies of the movie. However, our

18

e 2 3 | 1 P 2 3
PlE T f]2 (M1]2 [5]
»Z" 1 2 3| ‘,:" 1 2 3
Disk D1 D2 D3 Disk D1 D2 D3
(a) Small Chunk Size (b) Large Chunk Size

Figure9: Disk Load vs. Chunk Size

experiment showsthat asmall chunk sizeismore desirable.

Figure 8 shows the effect of the chunk size on the initial latency and the hiccup fraction. (We use
(' =2, Ny = 2,andn = 5 here to measure performance.) When the chunk size is small, from two to
four segments, the initial latency and hiccup fraction remain low. When the chunk size grows beyond
four segments, both the initial latency and display quality start suffering from severe degradation. We
attribute thisto the large chunk size aggravating congestion on some bottleneck disks. When the chunk
size is small, a request does not retrieve segments from the same disk for many consecutive service
cycles. Thus, if adisk is the bottleneck in one service cycle, that same disk is very unlikely to remain
the bottleneck in the next cycle, since the requests on it move quickly to other disks. If the chunk size
is large, the congestion caused by a bottleneck disk is prolonged because requests stay on a disk for a
larger number of cycles.

Figure 9 illustratesthe effect of the chunk size on the bottleneck. The figure uses three blocks, one,
two, and three, to represent three batches of requests. Batch two represents the workload that causes
bottleneck. Thesethree batches of requestsareinitially scheduled ondisks Dy, D5, and D3, respectively
(in service cycle T7). Figure 9(a) showsthat when the batches can be shifted from one disk to the next
from service cycleto cycle, the average number of requests on each disk can be evenly distributed after
threecycles. But when the batches stay onthe same disk for some cycles (Figure 9(b)), the bottleneck (on
disk D;) aggravates. Thus, using small chunk size together with the round-robin chunk placement can
shift the bottleneck quickly to balance the disk load, and using small chunk size is therefore desirable.

6.4 Thelmpactof M and N

So far we have used M = 10 for the number of disksand N = 40 for the number of requests per
disk in the ssimulation. However, for a media server that services a large number of requests, M can
be larger (M, however, cannot be too large due to bus bandwidth and contention issues). And as the
disk technology advances, N can aso grow rapidly. Our simulation shows that the minimum number
of cushion slots required to avoid hiccups is insensitive to different values of M and N. The vaue
of N, remains two, given C' = 2. This shows that the 2DB scheme is scalable in both the M and N
dimensions. Theinitial latency, however, is sensitive to the value of M. If a group of requests tends
to arrive a the same time asking for different movies, the larger the value of M, the more requests the

19

server can attend to in A. Thisis analogous to the reduction in the requests’ waiting time achieved
by adding serversin a queuing model. Therefore, one may consider choosing M based on the arrival
pattern of the new (and fast-scan) requests.

6.5 Fast-Scan Requests

Since we describe how BubbleUp supports fast-scan operations in detail in [6], we do not repeat the
discussion here. In short, scheme 2DB can support fast-scan operationswith negligibleinitial latency if
we add more cushion slots. This alows other requeststo be bumped in the schedule so that a fast-scan
request is given a higher priority to be serviced. The priority of a fast-scan request can be ranked high
or low depending on many factors such as the application types, the required quality of service (QoS),
and how frequently a user hasissued the fast-scan request. Using a priority scheduling scheme, scheme
2DB provides the flexibility to implement different admission control policies.

7 Conclusion

We have presented scheme two-dimensional BubbleUp for a media server to manage paralel disks.
Through examples and simul ationswe have shown how the scheme places replicated dataand all ocates
cushion slotsto balance disk load. We have a so shown that by bubbling up the free slotsin the nearest
future the scheme can minimize theinitial latency for the newly arrived requests. Our simulation shows
that the 2DB scheme reduces the initial latency substantially even when the requests arrive in a large
batch and when the server is near its pesk load.

It is important to note that the 2DB scheme can be used with any commercial, off-the-shelf disks
since it does not require any modification to the device drivers. The entire implementation of 2DB
can be above the device driver layer, since it only needs to queue an 10 request after the completion
of the previous one. To maintain cushion slots, the 2DB scheme trades a small fraction of throughput.
However, we argue that since short response time is necessary for interactive multimedia applications
and desirable for any others, the 2DB scheme is an attractive scheme to manage parallel disks.

References

[1] Seagate barracuda 9lp family product specification. URL: http://mww.seagate.com, 1997.

[2] Y. Azar, A. Broader, A. Karlin, and E. Upfad. Baanced alocations. ACM Symposium on Theory of
Computing, pages 593-602, December 1994.

[3] M. Bar, C. Griwodz, and L. Wolf. Long-term movie popularity models in video-on-demand systems.
Proceedings of ACM Multimedia Conference, pages 349 — 357, November 1997.

[4] R.Barve, E. Grove, and J. Vitter. Simple ramdomized mergesort on parallel disks. Parallel Computing,
23(4-5):601-31, June 1997.

[5] S. Bersonand S. Ghandeharizadeh. Staggered striping: A flexible technique to display continuous media.
Multimedia Tools And Applications, 1(2):127-148, June 1995.

[6] E.ChangandH. GarciaMolina. Bubbleup - low latency fast-scan for media servers. Proceedings of the 5th
ACM Multimedia Conference, pages 87-98, November 1997.

20

[7] E. Chang and H. GarciaMolina. Effective memory use in a media server. Proceedings of the 23rd VLDB
Conference, pages 496-505, August 1997.
[8] E.Changand H. GarciasMolina. Reducing initial latency in media servers. |EEE Multimedia, 4(3):50-61,
July-September 1997.
[9] E. Chang and H. GarciaMolina. Cost-based media server design. Proceedings of the 8th Research Issues
in Data Engineering, Feburary 1998.
[10] M.-S. Chen, H.-l. Hsiao, C.-S. Li, and P. Yu. Using rotational mirrored declustering for replica placement
in a disk-array-based video server. ACM Multimedia Systems, December 1997.
[11] S. Christodoulakisand F. Zioga. Data base design principles for striping and placement of delay-sensitive
dataon disks. Proc. of PODS (to appear), 1998.
[12] T. Chua J. Li, B. Oodi, and K.-L. Tan. Disk striping strategies for large video-on-demand servers. ACM
Multimedia, pages 297-306, November 1996.
[13] T. Cormen, C. Leiserson, and R. Rivest. Introductionto Algorithms. McGraw-Hill, 1990.
[14] A.Dan, D. Sitaram, and P. Shahabuddin. Scheduling policiesfor an on-demand video server with batching.
Proceedings of ACM Multimedia Conference, pages 1523, 1994,
[15] U. Derigs. A generalized hungarian method for solving minimum weight perfect matching problame with
algebraic objective. Discrete Applied Mathematics, 1(2):167-80, 1979.
[16] M.N.Garofdakis, B. Ozden, and A. Silberschatz. Resource scheduling in enhanced pay-per-view continuous
media databases. Proc. 23rd VLDB, pages 516-25, August 1997.
[17] G. Gibson, J. Vitter, and J. Wilkes. Strategic directionsin storage io issues in large-scae computing. ACM
Computing Survey, 28(4):779-93, December 1996.
[18] J. Korst. Random duplication assignment: An alternative to striping in video servers. Proceedings of the
5th ACM Multimedia Conference, pages 219-226, November 1997.
[19] T.D.C. Littleand D. Venkatesh. Popularity-based assignment of movies to storage devices in a video-on-
demand system. ACM Multimedia Systems, 1994.
[20] D.Makaroff and R. Ng. Schemesfor implementing buffer sharing in continuous-mediasystems. | nformation
Systems, 20(6):445-464, 1995.
[21] Y.-J. Oyangand C.-H. Wen. A multimediastorage system for on-demand playback. ACM Multimedia, 1997.
[22] B.Ozden, R.Rastogi,and A. Silberschatz. Disk stripingin video server environment. Proc. |EEE Multimedia
Computing and Systems, pages 17-23, June 1996.
[23] B. Ozden, R. Rastogi, and A. Silberschatz. Multimedia support for databases. PODS, pages 1-11, May
1997.
[24] A.Pepoulis. Probability, Random Variables, and Stochastic Processes, Second Edition. McGraw-Hill, 1984.
[25] Y. Wang, J. Liu, D. Du, and J. Hsieh. Efficient video file alocation schemes for vod services. ACM
Multimedia Systems, 5, September 1997.
[26] J. Wolf, , P. Yu, and H. Shachnai. Disk load balancing for video-on-demand systems. ACM Multimedia
Systems, December 1997.
[27] P. Yu, M.-S. Chen, and D. Kandlur. Grouped sweeping scheduling for DASD-based multimedia storage
management. Multimedia Systems, 1(1):99-109, January 1993.
[28] R. Zimmerman and S. Ghandeharizadeh. Continuous display using heterogenous disk subsystems. Pro-
ceedings of the 5th ACM Multimedia Conference, pages 227238, 1997.

21

Appendix A: Scheme Survey

In this section we review through examples various parallel disk management schemes proposed in the
literature for multimedia servers. The schemes we present in this section include:

Single Disk Placement (SD),

Disk Striping (DS),

¢ Round-Robin Placement (RR), and

Replication and Random Placement (RRP).

We study and compare these schemes’ initial latencies.

We defineinitial latency to be the time between the arrival of a single new request (when the system
is unsaturated) and the time when the request’s first data segment becomes available in the server’s
memory. |n computingtheinitial latency we do not take into account any time spent by a request waiting
because the system is saturated (with N,; streams), as this time could be unbounded no matter what
scheduling policy isin place. In other words, our focusis on evaluating theinitial delay when both disk
bandwidth and memory resources are available to service a newly arrived request.

7.1 Single Disk Placement (SD)

Video X Video Y Video Z

D1 D2 D3

Figure 10: Single Disk Placement

Thesingledisk data placement (SD) scheme places each movie entirely on onedisk. (A disk can contain
more than one movie.) Suppose we have three movies X, Y, and 7 and three disks Dy, D2, and Ds.
Figure 10 shows that scheme SD can place movies X, Y, and Z ondisks D4, D3, and D3, respectively.
Suppose each disk can service up to three requests and nine requests arrive consecutively, all asking for
movie X . (We assume that the requests arrive a few seconds apart so batching [14] the requests is not
feasible.) Scheme SD can service only three requests using disk 1)y and leaves disks Dy and D5 idle.
Some of theliterature definesthis situation as bandwidth fragmentation: disk bandwidthis available but
cannot be used to service requests. Bandwidth fragmentation can cause very long initial latency. For
example, while three reguests are viewing movie X, the fourth request that arrives and asks for movie
X may have to wait as long as the duration of themovie. The SD scheme thus may not be desirable.

22

7.2 Disk Striping (DS)

d (e o] [d0d (o [[d [
X4.1 X5.1 X6.1 X4.2| X5.2| X5.3
......
Cd[ed o] [[[3 [
Ya4.1 Y5.1) Y6.1 Y4.2 Y5.2 Y6.2| Y4.3 Y5.3 Y6.3
......

D1 D2 D3

Figure 11: Disk Striping Placement

In thisdiscussion of disk striping werefer to thefine-grained striping discussedin Section 1.1. Figure 11
shows two movies, X and Y, striped on three disks. Each segment of the movie is divided into three
subsegments, each stored on one disk. For instance, the first segment of movie X, X4, isdivided into
subsegments X 1, X1 2, and X 3 and stored on disks Dy, D,, and D3, respectively. When a segment
isretrieved, all three disks must operate at the same time transferring the subsegments.

Scheme DS does not suffer from bandwidth fragmentation since all disks share the workload at the
same time. However, it suffersfrom longinitial latency. Under the elevator-like disk scheduling policy,
anewly arrived request, in the worst case, has to wait for the disksto service (N x M) — 1 requests
before being serviced. Thisdelay can be minuteswhen M islarge.

7.3 Round-Robin Placement (RR)

The studies of [21, 16] propose placing successive segments of a movie on a group of disksin acyclic
fashion. We call this policy scheme RR. Suppose we have M disks. Scheme RR places the i'* segment
of themovie, 5;, ondisk Dg1;—1 moq A if thefirst ssgment of the movieis placed on disk Dy.

Figure 12 shows an example with two movies, X and Y, each being placed on M = 3 disks. The
J™ (j = 1,2,3) disk stores segments X ;. ar);; and Y;ar)4; for movies X and Y, respectively (i
starts at zero). When a segment is retrieved, only one disk is involved in doing the 10. Thus, the disks
operate independently from each other.

Scheme RR does not suffer from the bandwidth fragmentation problem, since arequest usesthedisks
in a cyclic fashion following the placement of the segments (illustrated shortly in an example). It can,
however, suffer from long initia latency. Suppose each disk can service up to three requests (N = 3).
Suppose disks Dy and D3 are servicing three requests and disk D5, two. If anew request arrives asking
for either movie X or Y, the new request cannot be serviced immediately since the bandwidth of disk
D+, where the first segments of the movies reside, is saturated. Since the consecutive segments are
placed in a cyclic fashion on the disks, the requests too are transferred in a cyclic fashion from disk to
disk after each service period. For instance, if arequest is serviced by disk D, in the current service
cycle, therequest will be serviced by disk D, inthe next service cycle, by disk D5 in the cycle after the
next, and so on. Therefore, for the new request to be serviced, the request must wait until the available

23

Figure 12: Round-Robin Placement

bandwidth, currently on disk D, isshifted to disk D3 and then D4. In genera, theworstinitia latency
under scheme RR ison the order of O(M N'). For alarge M, theinitial latency reported in theliterature
can be minutes, which is clearly unacceptable for interactive multimedia applications.

7.4 Replication and Random Placement (RRP)

D1 D2 D3

Figure 13: Replication and Random Placement

Scheme Replication and Random Placement (RRP), proposed by Krost [18], replicates segments of
movies and places them randomly on the disks. Since each segment has multiplecopies, anewly arrived
request is more likely to be serviced in this scheme than in ascheme without replication. This approach
statistically reduces theinitia latency.

Figure 13 shows how movies X and Y are replicated and randomly placed on three disks. The
example is the same as that used for explaining scheme RR. If a request arrives asking for movie X
when both disks Dy and D5 are saturated, scheme RRP can servicethe request on disk D, sincethedisk
holds the second copy of X. Theinitia latency isworst when the disk arm of D, has just passed X
and has to service therest of the requests on disk D, first. Asexplainedin([7, 8], thislatency is2 x T
or on the order of O(V') (since T depends on). In general, scheme RRP schedules requests for one
period 7" at atime. If arequest arrives after the scheduler has decided the schedule for the next 7, the
request must wait until the next period to be serviced.

24

