
MEDIC: A Memory & Disk Cache for Multimedia Clients

Edward Chang and Hector Garcia-Molina
Department of Computer Science

Stanford University
fechang, hectorg@cs.stanford.edu

Abstract

In this paper we propose an integrated memory
and disk cache for multimedia clients. The cache
cushions the multimedia decoder from input rate
fluctuations and mismatches, and because data can
be cached to disk, the acceptable fluctuations can
be very large. This gives the media server much
greater flexibility for load balancing, and lets the
client operate efficiently when the network rate is
much larger or smaller than the media display rate.
We analyze the memory requirements for this cache,
and analytically derive safe values for its control pa-
rameters. Using a realistic case study, we examine
the interaction between memory size, peak input
rate, and disk performance, and show that a rela-
tively modest amount of main memory can support
a wide range of scenarios.

Keywords: Multimedia client, resource manage-
ment, disk scheduling, memory management.

1 Introduction

The data for a multimedia presentation (i.e., video and audio)
is delivered via a channel from a server to a client. To date,
most research has focused on the design of the media server
[9, 10, 11, 12, 13, 17, 22, 24, 27, 28, 30, 31], while the
media client has received little attention [7, 19, 23, 26]. Most
research assumes that the client simply has to play back the
data as it receives it.

In this paper we do focus on the client side, presenting
a combined memory-disk buffering algorithm that allows
the client to dynamically and effectively deal with variable

data rates and delays. We call this algorithm MEDIC, for
MEmory-DIsk Cache. MEDIC carefully allocates its limited
memory to competing tasks, i.e., to receiving new data from
the network, to writing data to disk as memory fills up, to
reading data from disk as needed, and to holding data for
decoding and playback. Since data is concurrently written to
the disk cache and read from the disk cache, MEDIC must
also intelligently issue IOs to avoid undue conflicts.
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To examine the need for MEDIC, we need to address three
questions: Why is a cache needed at the client side? Why
should the cache include disk space? Why do we need an
integrated memory-disk cache?

The answer to the first question is fairly obvious: a client
cache is needed as a cushion against variability in the data
delivery rate, and against differences in delivery and con-
sumption rates. If one assumes a perfect media server, which
can pump out the data at precisely the rate it will be con-
sumed by the client, and one assumes a perfect network,
which can deliver the data at this same rate, then one does
not need a buffer at the client. However, the server and net-
work may deliver data at a rate different from that at which
data is consumed, and the rate may not be constant, due
to network disturbances, traffic congestion, router failures,
server glitches, and so on. Thus, a client cache is neces-
sary to handle the delivery-consumption mismatches. For
example, if the delivery rate is smaller than the consumption
rate, the cache must save up enough data before playback
starts. Similarly, the cache can provide playback data to the
decoder during input lulls. Furthermore, a client cache is
also quite useful, in that it makes the requirements on the
server and network less stringent: the larger the cache, the
more flexibility is given to the server and network for data
delivery.

A cache can be made larger by adding disk storage, and
hence the usefulness of a disk cache. A disk cache at the
client gives the server much more delivery flexibility. For
instance, a server can then send much more data to the client
during a low utilization period (if the network permits), and
less data during a peak utilization period. In this sense, the
client assists in server load balancing. For example, say, a
server with a capacity to service 100 clients expects its peak
load in 30 minutes. If the server is currently servicing 50
clients that have 60 minutes more of playback time, 50% of
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server’s capacity will be tied up during the peak period. If
the channel capacity is sufficient, the server can double the
data delivery rate to the current 50 clients, freeing capacity
for the peak period. For this to work, the client must have a
large cache, and using a disk for this large cache (as opposed
to main memory only) significantly reduces costs.

A large disk cache also makes it possible to deal with lim-
ited channel capacity. For instance, say a news clip that has a
display rate of 1:5 Mbps is delivered via a 1:0 Mbps channel
to the client. Suppose the playback duration of the news clip
is 1000 seconds (about 16 minutes). During playback, the
client only receives 1000�1:0Mb, but consumes 1000�1:5
Mb. Thus, when the clip is started, the client needs to have
cached at least 1000� 0:5 Mb, or 62 Mbytes. The cost of
saving this data on disk is a lot lower than saving it all in
main memory.

In addition, some VCR functions can be supported more
can efficiently if the client can buffer a large amount of data.
For instance, when a pause command is initiated by the
viewer, the client can continue receiving bits into its local
disk without disrupting the server. Another example is the
VCR command rewind. If the client keeps a copy of the pre-
sentation in the local disk, the rewind operation can be per-
formed locally without interfering with the server’s schedule.
Without client assistance, the pause and rewind operations
prolong playback time and may significantly decrease server
throughput.

Our third question deals with the need to integrate the
memory and disk caches. In some current systems, a disk
cache is used to download entire presentations, and then a
memory cache is used for playback (from the local disk). In
our earlier news clip example, we would need 25 minutes
(1500 seconds) to download the entire clip, before starting
the presentation. However, if the disk and memory caches
are well integrated, playback can start (from the local disk) as
soon as the initial 62 Mbytes arrive, i.e., in about 8 minutes
(500 seconds). While data is being played back from the disk,
new data arrives, and is written to disk. Algorithm MEDIC
performs this type of buffering in an adaptive fashion: If there
is enough memory at a given point, data need not go to disk;
it can go directly to the decoder. MEDIC also gracefully
deals with out of order packets, using its memory or disk
buffer to correctly sequence the data given to the decoder.
(It is best to let MEDIC deal with packet order instead of
assuming that the network layer provides a reliable stream,
because MEDIC knows precisely the instantaneous playback
needs and can thus be much more effective.)

In summary, the contributions of this paper are as fol-
lows:

�We present algorithm MEDIC, an adaptive, integrated
memory-disk buffer manager. The challenge is to develop
an algorithm that

1. can efficiently deal with the competing and unpre-
dictable read and write memory requirements,
2. avoids writing data to disk when it is not necessary,
3. handles out of order network data,
4. works on any off-the-shelf client disk, and

5. has the right control parameters for tuning.
�We derive bounds for the amount of memory a client needs

to support given input and playback characteristics. From
these bounds we compute effective settings for the control
parameters, which determine the timings and sizes of disk
IOs.
�We present a realistic case study, and show how input peak

rates, disk performance, and other parameters affect mem-
ory and performance. Our results indicate that, thanks to
the disk cache, a relatively modest amount of main memory
can support a wide range of input and media rates.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 models the data input and
consumption functions. Section 4 describes the data struc-
tures and parameters used by algorithm MEDIC. In Section 5
we prove various properties of algorithm MEDIC, leading to
memory use bounds and good control parameter settings.
Section 6 evaluates algorithm MEDIC’s performance and
suggests methods for improvement. Finally, we offer our
conclusion in Section 7.

2 Related Work

Many studies have proposed rate-adaptation mechanisms that
adjust the media delivery rate at the server by explicit quality-
of-service (QoS) feedback from the client [7, 19, 23, 26]. To
our knowledge, no scheme for adaptive buffer management
at the media client side has yet been proposed. We deem
an adaptive and “intelligent” buffer management policy at
the client side orthogonal and complementary to the rate-
adaptation mechanisms that the server employs, and argue
that together the two can provide a complete end-to-end so-
lution for media delivery.

Using memory-disk integrated caches at the client side has
been explored for conventional file systems [18] and client-
server database systems [16]. However, the problems that
a multimedia system faces are different. First, the media
data must meet display deadlines. Conventional buffer man-
agement schemes focus primarily on reducing response time
and do not take real-time constraints into consideration. In
addition, the access pattern for media data is very different:
once a page is decoded, it is not used again (except if we
support a rewind feature). Thus, page replacement policies
such as LRU and FIFO, which aim to maximize the hit rate
are not applicable to MEDIC.

While a number of studies have addressed real-time trans-
action and IO scheduling [4, 5, 6, 8, 21], to our knowledge
no work has dealt with memory-disk cache management for
multimedia clients. The work that is most relevant is reported
in [25]. That work proposes a Priority Memory Management
(PMM) algorithm that minimizes the number of missed dead-
lines by adapting both the multiprogramming level and the
memory allocation strategy of a real-time database system ac-
cording to feedback on system behavior. Like other real-time
scheduling policies, PMM meets deadlines for high priority
jobs with high probability at the expense of the low priority
jobs. MEDIC, on the other hand, must guarantee a continu-
ous supply of media data to the decoder. Another difference
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Figure 1: Media Data Delivery System Components

between traditional real-time policies and MEDIC is that the
traditional ones allow tasks to be completed ahead of their
deadlines, while for MEDIC early delivery of data to the
decoder may unnecessarily fill up memory. Thus, MEDIC
prefers a data supply strategy that delivers data not only in
time, but just in time (JIT). Furthermore, MEDIC does not
assume a real-time disk scheduler.

In addition to managing buffers to meet real-time con-
straints, MEDIC must also deal with channel delays. Proto-
cols such as IP, UDP, and ST2 (ST2 is a real-time IP layer
equivalent protocol) do not guarantee in-order packet deliv-
ery or reliable transmission [1]. Multimedia applications
are usually implemented directly on top of these protocols
because reliable protocols can interfere with media deliv-
ery [3]. For example, an error correction scheme such as
the automatic retransmission query protocol (ARQ, and of
which TCP is a typical implementation) tends to aggravate
the media delivery problem for at least three reasons:

�ARQ may interrupt the media server’s regular schedule to
re-fetch already transmitted data from a secondary storage
device. This creates an extra bandwidth requirement that
most server architectures cannot handle well.
�ARQ does not work well with data transmission with real-

time requirements since the retransmission requests may
further slow down the networks and the retransmission of
the missing data may well miss its deadline.
�ARQ can be catastrophic if multicast is involved since any

network delay or errors can induce a flood of retransmission
requests and retransmissions, which defeats the purpose of
multicast.

For these reasons, we assume unreliable delivery of data in
the research presented in this paper, and if necessary use the
MEDIC buffers to place data in the correct sequence.

3 Model

In this section, we model three major parameters in a media
data delivery system: the data input rate, the data consump-
tion rate, and the initial latency.

Figure 1 depicts a media data delivery process. First,
the media data is encoded and stored in the server’s storage
device (on the left-hand side of the figure). The encoded
bit stream can either be at a variable bitrate (VBR) or at a
constant bitrate (CBR). We define the encoding function (and
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Figure 2: Functions
thus decoding function in Figure 1) as xi, where i denotes the
ith frame period, and xi the number of bits used to encode
the ith frame. For instance, a movie that lasts 100 minutes,
with 25 frames per second, consists of 100 � 60 � 25 =
150; 000 frame periods, each lasting 40 milliseconds. The
points in Figure 2 show an encoding function for an MPEG2
movie. Since the number of bits required for encoding the
anchor frames (i.e., the I and P frames) is larger than that
for the intercoded frames (i.e., the B frames), we see that xi
fluctuates from period to period.

The decoder (on the right-hand side of Figure 1) uses
an “inverse” scheme for playback, so xi is also the data
consumption function. (The decoder can infer how much
data is needed at each point of time from the stream itself.
For a detailed specifications of some coding standards, such
as H.261 and H.263, please consult references such as [2].)

Data can be delivered to the client with a delivery profile
yi that may differ significantly from xi. (The amount of data
arriving in frame period i is given by yi.) For example, data
can be packetized and delivered to the client using a constant
size and rate packetization (CSRP) scheme, a variable size
and rate packetization (VSRP) scheme [15], or a combined
scheme (e.g., constant size, variable rate or variable size,
constant rate). Furthermore, the data delivery rate can be
faster or slower than the data consumption rate depending
on the channel capacity. Finally, errors may also affect the
delivery profile. The rectangles in Figure 2 show a sample
yi function.

The cache manager at the client must “convert” the yi
input into the xi decoder consumption function. However,
the xi function needs to be shifted in time by some amount
 (the initial playback delay), so that there is enough data
available. To illustrate, Figure 3(a) shows the cumulative xi
and yi functions, based on the original data in Figure 2. To
ensure that the data received is always greater than or equal
to the data consumed, playback must be delayed by at least
7 time frames. Figure 3(b) shows xi shifted by 7 units, and,
indeed, we see that now there is enough data at all times.

The following inequality describes this continuous data
supply requirement quantitatively:

kX

i=1

yi �
kX

i=1

xi� ; for 81 � k � tt+  ; (1)

where tt denotes the total number of frame periods of xi,
and xi = 0 and yi = 0 for i � 0. The minimum storage
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Figure 3: Accumulated Rates

required by the client is the maximum difference between
the accumulated value of yi and the accumulated value of xi
over all i0s, or

maxf
kX

i=1

yi �
kX

i=1

xi� jfor 81 � k � tt+  g:

We have argued that this amount can be quite large, so a disk
cache can be very cost effective.

4 The MEDIC Algorithm

This section describes the MEDIC client cache algorithm.
Its function is to initially accumulate data, and then supply
the decoder with the xi profile, using a limited amount of
main memory.

A simple cache manager could be implemented with two
separate buffers, one for receiving network data and writing
it to disk, and another for reading disk data and giving it
to the decoder. However, our goal is an integrated cache,
where buffer pages can be used for what is most critical
at the moment. In this environment where memory is not
reserved in advance for particular tasks, it is important to
avoid conflicts, e.g., not being able to allocate an empty
buffer for data coming off the disk, because memory is full
holding data waiting to be written to disk. We also want

Page Table Disk Buffer

Memory Buffer

Inuse Pool

Free PoolInuse Pool

Free Pool

Virtual     V bit    Physical

p1

p2

p3

p4

m1

m2

d3

d4

Figure 4: Page Table Structure

to avoid writing data to disk at all, when there is enough
memory to hold it for playback.

4.1 Resources and Data Structures

The memory buffer is composed of memory pages, and the
disk buffer of disk blocks. Both buffers are composed of
a free pool and an in-use pool. When a memory page or
a disk block is allocated, it is taken out of the free pool
and marked in-use. When a memory page or a disk block
is released, it is returned to the free pool. To simplify the
discussion, we assume the page size is identical to the block
size. Since for typical clients it is hard to change the disk
block allocation strategy, in this paper we assume that blocks
containing sequential data may not be contiguous on disk.
(In Section 6 we show the gains achievable if blocks were
contiguous.)

When a packet arrives at the client, MEDIC receives the
packet immediately in its private work space to prevent the
network buffer from overflowing. The resource manager
first checks if the packet has passed the display deadline.
If it has, it is discarded.1 Otherwise, the resource manager
allocates memory pages from the free memory pool to stage
the packet. (If the page size is larger than the packet size, a
page is allocated for multiple packets.)

MEDIC assembles the arrived data into a virtually con-
tiguous bit stream. Figure 4 shows the MEDIC page table.
It consists of a list of page table entries. Each entry consists
of a valid field and an address field. If a page is valid (i.e.,
the page has arrived and has not yet been consumed by the
decoder), the valid bit is set. For a valid page, the address
field in its page table entry indicates where the page physi-
cally resides, that is, in the memory buffer or disk buffer. We
denote the virtual pages of a bit stream p1 to pn, where n is
the total number of pages in the stream. We denote the phys-
ical page corresponding to pi as mi if it resides in memory,
and as di if it resides on disk. Figure 4 shows an example
where pages p1 and p2 are memory resident, and pages p3
and p4 disk resident.

The example of Figure 5 shows how MEDIC handles

1Such missed deadlines should not occur in a multimedia system. How-
ever, since MEDIC has no control over the input stream, it cannot assume
these undesirable events will not occur.
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Figure 5: Page Table Entries

packets that are larger than a page, and packets that are out
of order. For the example, assume that the packet size is 1.5
memory pages. Figure 5(a) shows the situation when packet
k2 has arrived ahead of packet k1. The k2 data is copied
into the second half of the first allocated page (denoted as p2
since it is the second virtual page in the bit stream) and onto
the entire second allocated page (denoted as p3). Note that
page p1 is not valid and the first half of p2 (physicallym2) is
empty, for packet k1 has not yet arrived.

When k1 arrives, MEDIC allocates only one memory page
m1 for p1, because the physical page for p2 is already valid
in the page table. MEDIC copies the data of k1 to p1 and
to the first half of p2, then updates p1’s page table entry, as
indicated in Figure 5(b).

MEDIC must decide when playback can start, when pages
should be moved to disk, and when pages should be read from
disk. Its policies for this are dictated by the following control
parameters:

� �playback, the playback threshold: The number of pages
to accumulate at the client before playback starts. These
pages should contain the data needed at the beginning of
the presentation.
� �read, the read threshold: If fewer than �read pages are

ready for the decoder in memory (containing the next data
for playback), then a read IO is initiated.
� �read, the pages to read: When a read IO is initiated, �read

pages are requested. As explained below, in some cases

Parameter Description

�playback Playback threshold, in pages
�read Read threshold, in pages
�write Write threshold, in pages
�read No. of pages to make ready
�write No. of pages to write
Mavail Available memory space, in pages
TR Disk transfer rate, in Mbps
ksize Packet size
psize Page size
ki The ith packet
pi The ith page of data
(d) Function computes worst disk latency
Sr Worst disk latency for a read request
Sw Worst disk latency for a write request
Tr Time a read guaranteed to be completed
Tw Time a write guaranteed to be completed
� Frame period
 The client’s initial latency, in frame periods
tt Playback time of a video, in frame periods
xi The media data encoding function
yi The media data supply function
� The page the decoder is currently accessing
Md No. of pages available to the decoder
Mf No. of free pages available to stage packets
�disk No. of pages on disk

Table 1: Parameters

fewer than �read may be read.
� �write, the write threshold: If fewer than �write memory

pages are available for incoming data, then a write IO is
initiated.
� �write, the pages to write: When a write IO is initiated,
�write pages are written out. All write IOs are for this
amount.

To assist the reader, Table 1 summarizes these parameters,
together with other parameters that will be introduced later.
The first tier of Table 1 lists the control parameters. The
second tier describes the physical and derived characteristics
of the hardware resources. The third tier shows the parame-
ters and functions that depict the data supply and input rates.
Finally, the fourth tier presents parameters that keep track of
the buffer usage.

We now describe informally how MEDIC operates given
its control parameters, while Appendix A shows the MEDIC
algorithm in more detail. MEDIC is an event-driven algo-
rithm, where there are three types of events: a packet arrives,
the decoder consumes a page, and an IO completes. At each
event, MEDIC updates its state variables to reflect the current
situation and takes appropriate action. The two main state
variables are:

�Md, the number of pages available to the decoder, and
�Mf , the number of free pages.

First let us consider how MEDIC manages Md and Mf

when there are no partially filled pages and data arrive at the
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client in order. If page p� is being consumed, then Md is
the number of memory-resident pages that logically follow
p�. If pj is the last of these pages, and pj+1 arrives from the
network, then it is immediately counted in the Md pages.

If pj+1 is on disk,and data for a page that follows it arrives,
then it is placed in memory butMd is not incremented. When
pj+1 and the pages that follow it are read from disk, Md is
incremented to reflect the latest sequential page in memory.
For example, say p3, p4, are on disk, p2, p5, p6 are in memory,
and p1 is being decoded. If p3 and p4 are read from disk,
then Md is incremented by 4, since now we have the next 4
pages in sequence in memory.

Of course, as pages are consumed by the decoder, Md is
decremented. Similarly, as any page in memory is allocated
(for whatever reason), Mf is decremented, and as pages
become free, it is incremented.

A write IO is triggered if Mf � �write and no previous
write IO is outstanding. The �write pages to flush to disk
are selected by our LSF (Late in the Sequence First) page
replacement policy. This policy selects the later pages in
the logical sequence. For example, if p3, p4, p7, p8 are in
memory and �write = 2, then we write p7, p8 to disk, since
they will be needed by the decoder later than p3, p4.

A read IO is triggered ifMd � �read and no other read IO
is in progress. Two important issues should be noted about
reads. First, a read may be for fewer than �read pages. This
can happen if there are fewer than �read pages on disk, or
if fewer pages are needed to increment Md by �read. To
illustrate what happens if fewer pages are needed, say p1, p4,
p5 are in memory, p2, p3 are on disk, �read = 4, and p1 is
the last page available to the decoder. In this case we need
to read only p2 and p3 to make the next 4 pages available to
the decoder, so that is all we read.

The second important issue is a subtle one and regards
memory allocation for read IOs. The following example il-
lustrates what can happen if we allocate this memory naively.
Assume that Mavail = 8 and all control parameters are set
to 2. In particular, �write is set to 2 because we estimate
that we may receive up to 2 new data pages while a write
IO is in progress. That is, at the beginning of a write IO
we want to have at least 2 free pages to hold new data that
may arrive while we flush data. Initially, pages p2, p3, p4,
p5, p8 are in memory, and p6, p7 on disk. At this point
Md = 4 and Mf = 3. When p2 and p3 are consumed, they
are returned to the free pool, and let us assume those physical
pages are immediately used to hold new data, in our case, p9
and p10. This leaves us with p4, p5, p8, p9, p10 in memory,
andMd = 2,Mf = 3. This triggers a read IO, so we reserve
two physical pages to hold p6, p7, and this triggers a write
IO (since Mf = 1 < �write). But now we have only one
page left for incoming data, which is not enough to receive
new data during the IOs. The problem occurred because we
delayed the write IO too much: If we knew that a read IO
was approaching and would consume 2 pages, we should
have started the write earlier, to free up memory.

Our solution is to reserve pages for a read IO in advance,
so that we never actually request pages for disk reads, and
hence we never interfere with the flow of data coming in from
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Figure 6: State Variables

the network. Although we could reserve enough memory for
read IOs statically, we prefer a dynamic scheme that reserves
memory from pages the decoder consumes, and only when a
read IO is imminent. To illustrate, let us return to our example
when pages p2 – p5, p8 are in memory, and p6, p7 on disk.
When p2 is consumed by the decoder, we notice that we are
approaching the read threshold (p2 is within �read + �read
pages from the last sequential page p5). Thus, the vacated
page is not returned to the free pool and is reserved for
the approaching read IO. Similarly, the vacated p3 is also
reserved. This means that when p9 arrives, a write IO is
triggered. This is earlier than in our previous scenario and
gives us enough free space to hold data during the IOs. For a
more detailed description of this dynamic reservation policy,
please refer to Appendix A.1.

So far we assumed that data arrived in order and that no
pages were partially filled. If this is not the case, interesting
challenges are introduced. For example, say page pi is par-
tially filled because a packet is late in arriving. (Page p2 is in
this situation in Figure 5(a).) Assume further that fewer than
�write pages are free, that an IO is initiated to flush pages to
disk, and that because of its sequence number, pi is one of the
pages that should be flushed. However, should pi really be
flushed? If we do so, then, when its missing data arrives, we
will have to read the page back into memory, update it, and
write it out again. Since this can be very expensive, MEDIC
tries to keep a page like pi in memory if at all possible, under
the assumption that the missing data will arrive soon in most
cases and that it is best to be patient. More specifically, a
page like pi is not written out only if there are �write full
pages that can be written out when an IO is triggered. If not,
all the full pages and some partial pages late in the sequence
(for a total of �write pages) are flushed to disk.

For Md accounting purposes, a memory page with miss-
ing data is counted as available. For instance, consider the
example of Figure 6. Here page p� is being decoded, pages
p4, p5, p7 – p10 are in memory, and page p11 is on disk. Page
p6 is missing altogether, but we still say that Md = 7. If
page p6 were partially filled, we would also say Md = 7.
The missing p6 data cannot be read from disk, so reducing
Md to force us to read disk data sooner will not help at
all. Thus, it is more accurate to count p6 as available, and
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hope that the missing data arrives before the decoder needs
it. (Recall that we cannot avoid glitches if data simply does
not arrive at the client on time.) Note incidentally that LSF
works well with delayed pages. When a page that is early
in the memory sequence arrives late, LSF flushes out a page
late in the sequence in the next write IO, making room to
stage the delayed page when it arrives.

In summary, MEDIC manages memory and disk buffers
for supplying data to the decoder and receiving incoming
packets. MEDIC keeps track of which pages are available
for the decoder in memory, and which are on disk. The
algorithm moves pages to disk as necessary, and reads them
back later on. It is important to note that MEDIC can only
work well if it has enough memory available to handle the
input stream and if the control parameters are set properly.
This is the topic of the next section.

5 Quantitative Analysis

In this section we analyze MEDIC’s use of main memory
and derive safe values for the control parameters. Our design
goal is to avoid, as much as possible, display glitches due
to variability and delays in the input stream. Studies have
shown that even just losing0:1%of data can cause significant
degradation in display quality, resulting from inter-frame de-
coding dependencies [14, 15]. Therefore, in computing our
control parameters we take a conservative approach. That is,
we assume the worst-case disk latency, as well as peak data
consumption and input rates. Of course, we cannot prevent
glitches due to data not showing up at the client. However, we
do compute how much main memory is required to avoid all
glitches due to improper buffering of data within the client.

For our analysis we assume that data arrives at the client in
order for now. To safely handle out-of-sequence data requires
more main memory to hold partially filled pages than what
we estimate below. This is discussed further in Section 5.5.

It is important to note that the client-side analysis we
present here differs from more “traditional” server-side anal-
yses [10]. In particular, in a server environment, the server
has full control of the data generation rate, while at the client,
data arrival (from the network) is unpredictable. Since server
algorithms have regular “patterns,” we know exactly how
many IOs are done (and their order) in a given period. At
the client, the MEDIC algorithm can generate any sequence
of read and write IOs. Thus, unless we are careful, it is hard
to predict how many read IOs may occur between two write
IOs, and thus how much memory we may need to buffer
incoming network data. Another difference is that the client
cannot dictate disk layout policies, as is possible on a server.

5.1 Disk-to-Memory Data Transfer

When Md reaches the read threshold, �read, MEDIC allo-
cates �read pages and starts a read IO. Let Tr denote the
longest time that it takes to complete the IO (we derive Tr in
Section 5.4). The maximum amount of data that the decoder
can consume in Tr, denoted as Maxx(Tr), can be expressed

as

Maxx(Tr) = max
0���tt

�+d Tr
�
e�1X

i=�

xi;

where tt denotes the total number of frame periods in xi.
Note that the read threshold must be at least Maxx(Tr), or
we may run out of data for the decoder during the Tr period,
causing a glitch. In terms of the number of pages, we can
thus express the read threshold �read as:

�read � dMaxx(Tr)

psize
e: (2)

To conserve memory, we take the equality in the above ex-
pression, yielding

�read = dMaxx(Tr)

psize
e: (3)

Next, we determine a safe value for �read. MEDIC only
issues a read IO when (1) no read request is pending and
(2) Md has reached �read. In the worst case, during a Tr
time interval, the decoder will consume the �read data it had
available at the beginning of the interval, and the one IO that
was issued will provide �read pages at the end of the period.
To ensure that the decoder has at least �read pages after this
IO, �read must be greater than or equal to�read. To conserve
memory we take the equality, and hence

�read = �read: (4)

5.2 Memory-to-Disk Data Transfer

When the number of free pages available, Mf , reaches the
write threshold, �write, MEDIC initiates a write of �write
pages to the disk to free up memory for future arriving pack-
ets. Let Tw denote the longest time the disk takes to complete
writing �write pages of data (we derive Tw in Section 5.4).
The maximum amount of data that can possibly arrive in Tw
time at the client can be expressed as

Maxy(Tw) = max
0���tt

�+d Tw
�
e�1X

i=�

yi:

If �write were smaller than this value (in pages), we could
run out of free pages to hold incoming data, before the �write
pages flushed out actually free up. Thus, we set �write to the
smallest safe value, or

�write = dMaxy(Tw)

psize
e: (5)

Next, we determine a safe value for �write. Since a write
can take as long asTw to complete, and the maximum amount
of data that can arrive in Tw is �write, MEDIC must write
out �write � �write pages so that at least �write free pages
are available to receive data at the end of the write (which is
the earliest time the next write can be started). To conserve
memory, we take the equality, and hence

�write = �write: (6)
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5.3 Memory Use

MEDIC needs enough main memory to hold the data needed
by the decoder, enough free pages for incoming data, and
enough pages for read and write IOs. Actually, it is easy
to see that, with the parameter settings we have chosen, the
following inequality must hold:

Mavail � �read + �read + �write + �write: (7)

That is, �write + �write memory is enough to handle all
incoming data: while the �write area fills up, we can write
out the �write area of the same size. (Keep in mind that with
our reservation policy for disk reads, we never use pages in
this write area for disk reads.) Similarly, the �read + �read
area is sufficient for handling any read IOs and any data the
decoder may need. Thus, for the rest of our analysis we
assume this much memory is available.

5.4 IO Time

In this section, we determine the worst time to complete a
read of �read pages, Tr, and the worst time to complete a
write of �write pages, Tw. As a first step we present two
theorems that give us the minimum time separation between
IOs of the same type.

[Theorem 1]: Suppose the control parameters �read and
�read are set according to Equations 3 and 4. Then MEDIC
guarantees that (1) the time between the start of two read IOs
must be greater than or equal to Tr , and (2) the decoder will
have �read pages of data at the start of every read IO. The
proof by induction is presented in Appendix B.1.

[Theorem 2]: Suppose the control parameters �write and
�write are set according to Equations 5 and 6. MEDIC
guarantees that (1) the time between the start of two write
IOs must be greater than or equal to Tw, and (2) the memory
pool will have �write free pages at the start of a write IO.
Please see the proof in Appendix B.2.

To compute our Tr and Tw bounds, we assume the worst-
case disk latency, including a full rotational delay. We in-
clude a full rotational delay because the page size can be
much smaller than the track capacity. We assume the disk
employs an elevator-like disk scheduling algorithm. In this
case, an IO request that involves data blocks scattered on
the disk can be serviced by at most two disk arm sweeps.
Since the seek function is concave [29, 30], the worst-case
total seek overhead occurs when the data blocks are equally
separated on the disk surface. In particular, the worst seek
overhead for reading �read pages occurs when the disk arm
must read �read=2 equally separated pages in each of its two
sweeps. Therefore, given that the disk has CY L cylinders,
the worst-case disk latency for reading �read pages, denoted
by Sr , can be expressed as

Sr = �read � (2 �CY L=�read);

where (d) is a function that computes disk latency (includ-
ing a full rotational delay) given the seek distance d. (We
show a typical (d) function in the case study of Section 6.)

Likewise, the worst disk latency for writing �write pages,
denoted by Sw , is

Sw = �write � (2 � CY L=�write):

Now, suppose that the disk services a read request without
interference from any writes. The longest time the disk takes
to read the �read pages is

tr = Sr + (�read � psize)=TR; (8)

where TR is the disk transfer rate. Similarly, the longest
time to write �write pages, without any read interference, is

tw = Sw + (�write � psize)=TR: (9)

However, read and write IOs can be interleaved. The
following theorem provides a bound for the completion time
of IOs with interference:

[Theorem 3]: With the control parameters set as described
in this section, any IO initiated by MEDIC will complete in
time tw + tr . Please see the proof in Appendix B.3.

Using Theorem 3, we obtain the following inequality for
Tr and Tw:

Tr = Tw � tw + tr : (10)

5.5 Partially Filled Pages

Recall that for our analysis we have assumed that packets
arrive in order, and we have no partially filled pages in mem-
ory. Actually, out of order data causes no memory problems
as long as it does not generate partially filled pages in mem-
ory. (A page that is completely missing from the sequence of
pages we are assembling does not consume any space so it is
not problematic.) However, a partially filled page “wastes”
memory, and this was not accounted for in our analysis. Fur-
thermore, partially filled pages written to disk can generate
extra IOs (i.e., data may have to be read from disk to fill it
up), and these extra IOs have not been accounted for.

A detailed analysis of how much extra memory is needed
to handle partially filled pages is beyond the scope of this
paper. Here we simply assume that either the packet size is a
multiple of the page size (so we have no partial pages at all),
or that enough additional memory is available to hold partial
pages, so that no extra IOs are required. We believe that in
the latter case a relatively small amount of extra memory will
suffice, unless the network is severely damaged. In the rest
of the paper we use Equation 7 as our memory bound.

5.6 Solving Control Parameters

Replacing �read by �read, and �write by �write, we can
summarize the equations we have derived:

�read = dMaxx(Tr)

psize
e; Maxx(Tr) = max

0���tt

�+d Tr
�
e�1X

i=�

xi:

(11)
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�write = dMaxy(Tw)

psize
e; Maxy(Tw) = max

0���tt

�+d Tw
�
e�1X

i=�

yi:

(12)

tr = �read � (2 �CY L
�read

) +
�read � psize

TR
: (13)

tw = �write � (2 � CY L
�write

) +
�write � psize

TR
: (14)

Tr = Tw � tw + tr (15)

Mavail � 2� (�read + �write): (16)

Note that if we do not have available the complete xi
and yi functions, we may use bounds that give us the max-
imum data that can arrive (or can be consumed) per frame.
(These bounds can replace xi and yi in the computation of
Maxy(Tw) and Maxx(Tr) respectively.) Such bounds may
be obtainable from the intrinsic limits of the network and the
decoding scheme. These bounds can be rather conservative,
since as we will see later, relatively small amounts of main
memory can handle large network and consumption rates.

Given the page size and disk hardware parameters, we
can solve for the control parameters based on an optimiza-
tion objective. Although several objectives are possible, the
following two are among the most interesting:

�Minimizing memory: Given the peak input and consump-
tion rates, find the smallest value of Mavail for which we
have feasible control parameters.
�Maximizing input bitrate: Given the peak consumption

rate and the available memory, find the peak input rate,
Maxy(Tw), that the client can support, and find the corre-
sponding control parameters.

Our set of equations can be solved numerically for each
optimization scenario. For example, Figure 7 illustrates a
simple iterative search procedure for obtaining the minimum
memory required and the corresponding control parameters.
(The steps to obtain the peak supportable input bitrate are
similar.) The iterative procedure of Figure 7 uses a stride, �,
to increase Tw and Tr as it searches for a feasible solution.
The value of� should be set small enough to obtain a tolerable
“error.” (Here error means that we may estimate a memory
size that is slightly larger than absolutely necessary. We used
a value of � = 1 millisecond in Section 6.) Clearly, there
are more efficient procedures for solving these equations, but
since this computation is performed off-line, our focus here
is simply on illustrating the process.

In Figure 7 we continue until a feasible solution is found,
when Tr � tr + tw (i.e., dnew < 0). However, we also stop
if it is clear there is no feasible solution. This happens when
the gap between Tr and tr + tw grows from one iteration to
the next (i.e., when dold > dnew).

5.7 Initial Playback Delay

At the end of Section 3 we derived  , the initial delay before
playback starts. The following equation converts the initial

� Input: �

� Initialization

�Variables: dnew, dold
� dnew; dold  �1
� Execution Steps:

1. Tr; Tw  0

2. While ((dnew < 0) and (dnew > dold))
(a) dold  dnew

(b) Tr  Tr + �; Tw  Tw + �

(c) Compute Maxx(Tr) and Maxy(Tw).

(d) Compute �read and �write following Eqs 11 & 12.

(e) Compute tr and tw following Equations 13 and 14.

(f) dnew = Tr � (tw + tr)

3. If dnew � 0 (feasible solution found)
(a) Compute Mavail = 2� (�read + �write).

(b) Output �read; �read; �write; �write, and Mavail.

Figure 7: Steps for Min. Mavail

delay into the number of pages MEDIC must have received
before playback starts.

�playback =

 X

i=1

xi:

In addition, we must ensure that playback does not start until
at least �read pages are ready for the decoder. Thus, our
equation is amended to:2

�playback = maxf
 X

i=1

xi; �readg: (17)

6 Evaluation and Observations

In this section we study MEDIC’s performance with an IBM
Deskstar disk, a unit designed for desktop computers. Given
this hardware, the only parameter that may be varied to tune
IO performance is the page size psize. Thus, many of the
experiments in this section focus on how the page size affects
disk utilization, and hence our performance objectives.

Figure 8 lists the parameters for the IBM Deskstar disk.
In addition, we assume that the peak data consumption and
input rates are both 4 Mbps (a typical MPEG2 bitrate).

For computing the seek overhead we follow closely the
model developed in [20, 29], which has been proven to be
asymptotically close to the real disks. The seek overhead
function is the following concave function:

(d) = �1 + (�1 �
p
d) + 11:2 if d < 900

2This equation assumes no partially filled pages. If we expect partial
pages, the count must be adjusted so that �playback pages hold the equiva-
lent amount of data.
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Parameter Name Value
Disk Capacity 8.45 GBytes

Number of cylinders, CYL 9784
Min. Transfer Rate TR 76.2 Mbps
Max. Transfer Rate TR 127.4 Mbps

Full Rotational Latency Time 11.2 milliseconds
Min. Seek Time 2.2 milliseconds
Max. Seek Time 15.5 milliseconds

�1 2.0 milliseconds
�1 0.2 milliseconds
�2 7.24 milliseconds
�2 0.000844 milliseconds

Figure 8: IBM Deskstar DHEA-38451 Disk Parameters

(d) = �2 + (�2 � d) + 11:2 if d � 900

6.1 Page Size

Figure 9 shows the effect of page size on required mem-
ory and on peak input rate. The horizontal axis represents
the memory page size up to 150 KBytes. (The increments
are one KByte when the page size is less than 20 KBytes,
and 10 KBytes when psize � 20 KBytes. Page sizes beyond
150 KBytes convey no additional information.) Figure 9(a)
shows the minimum memory requirement for a peak input
rate of 4 Mbps for different page sizes. Similarly, Figure 9(b)
shows the maximum data input rates that MEDIC can support
given 4 MBytes of main memory. We make three observa-
tions from these results.

�Not all page sizes yield feasible solutions. Figure 9(a)
shows that when psize < 19 KBytes, no feasible control
parameters exist to support the peak data consumption and
input rates of 4 Mbps. Figure 9(b) confirms that the sup-
portable peak rate is 3:8 Mbps when psize = 18 KBytes
and 4:1 when psize = 19 KBytes.
� Figure 9(a) shows that the memory requirement exhibits a

sharp knee at psize = 40 KBytes. The minimum memory
requirement drops drastically as the page size goes up, as
psize approaches 40 KBytes. A larger page size decreases
the number of inter-block seeks and consequently leads to
more efficient IOs and memory savings. However, as soon
as the data that arrives during one write IO is able to fit into
one single page, increasing page size further only wastes
memory (because of internal fragmentation). This explains
why the memory requirement goes up when psize > 40
KBytes. Thus, we should avoid selecting a larger than
necessary page size.
� The maximum data input rate MEDIC can handle goes

up with the page size as shown in Figure 9(b). This im-
provement results from the reduction in the inter-block seek
overhead.

To summarize, a large page size can increase disk band-
width, and may reduce the required memory or increase the
peak supported input rate. However, a large page size may
not be possible, for instance because the file system has a
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Figure 9: The Effects of Page Size

fixed block size, or because it increases external fragmen-
tation for the disk. An alternative to large pages may be
to allocate sets of smaller disk blocks contiguously on disk.
The smaller disk and memory pages lead to more effective
memory use, and the fact we can write sets of small pages
with fewer IOs can improve disk bandwidth. We explore the
potential impact of contiguous disk allocation in more detail
later on.

6.2 Further Improvements

To further improve the peak rate that MEDIC can support,
more memory or a faster disk may seem the right solution.
Our evaluation, however, suggests that adding hardware re-
sources does not help greatly. Figure 10(a) shows that addi-
tional memory does not significantly improve MEDIC’s peak
input rate. For instance, when the page size is 4 KBytes, the
difference in the peak rate between having 4 and having 32
MBytes of memory is only 4 Mbps. When page size is 120
KBytes, the rate goes up by 7 Mbps. The improvements ob-
tained by increasing the page size are much more impressive,
as can be seen by the vertical distance between the different
page size lines in Figure 10(a).

Figure 10(b) shows the effect of a faster disk transfer rate
on the peak input rate. When the page sizes are small, disk
latency dominates IO time, and a higher disk transfer rate
helps little. For example, say the data transfer time takes up
only 10% of the IO time. Then reducing the data transfer
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Figure 10: The Effect of More Memory or Faster Disk

time by 50% (with a twice as fast disk) reduces the IO time
by only 5%, an insignificant improvement. The curves for
psize = 20; 40 KBytes are thus flat. As the page size grows,
the IO becomes more efficient, and the transfer time becomes
more dominant in an IO. Now, if we employ a fast disk, the
reduction in IO time is noticeable. It is therefore clear that a
faster disk is useful only when the page size is large. When
the disk is fragmented and its utilization is low, upgrading
the disk is merely wasting money!

Of course, the improvements due to a faster disk transfer
rate will be more pronounced if the input rate is higher.
Clearly, in MEDIC, the disk must be able to keep up with the
input stream, else no amount of memory will be sufficient.

As mentioned earlier, another way to improve perfor-
mance is to enhance disk allocation to reduce the number
and the length of seeks. In a perfect situation, if both read
and write IOs happen in the same or in adjacent cylinders,
the disk latency can be minimized. This, however, is difficult
to enforce because read and write rates may vary over time.
However, “tricks” such as placing sets of blocks contigu-
ously, or only using the outer tracks of the disk (outer tracks
enjoy higher transfer rates in modern disks) may help reduce
overheads.

In order to understand the potential benefits of such en-
hancements, we conducted the experiment of Figure 11. The
figure shows the maximum supportable input rate under three
scenarios. The first scenario is the one we have so far pre-
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sented in this paper, i.e., the worst-case disk latency. The
bottom curve in Figure 11 shows the performance for this
scenario (it is the same curve displayed in Figure 9(b).)

In our second scenario we assume the best possible disk
latencies. That is, we assume that each inter-page seek travels
only one track. (Unless we design for a fixed page size, this is
the best we can do.) Such low latencies may not be achievable
in practice, but we include them here as a “theoretical” limit.
The top curve in Figure 11 shows this best scenario.

Finally, the middle curve in the figure is computed based
on an outer track data placement policy. In this scenario,
the outer quarter of the tracks is used to hold all data, reduc-
ing seek times. The result shows that the outer track data
placement policy comes close to the theoretical optimum.
Therefore, if we are given the freedom to select the data lay-
out on the client’s disk, it is advisable to use the outer tracks
for the multimedia cache and the inner tracks for placing con-
ventional data. However, again we observe that having large
page size (possibly emulated by contiguous allocation of sets
of blocks) is much more beneficial than the data placement
techniques. For example, raising page size from psize = 40
to psize = 60 achieves the same peak input rate as the ideal
case at psize = 40 KBytes.

To summarize, to improve IO performance for the client,
we recommend the following measures through the local file
system:

1. Avoid fragmentation of the local disk, so blocks are al-
located more frequently contiguously on disk. This may be
accomplished by running disk defragmentation software.
2. If possible, place the media data only on the outer tracks
of the disk.
3. Know what you are getting when adding memory or
upgrading to a faster disk, since in many cases increasing
these resources will not help.

Finally, it is important to note that MEDIC can support
relatively high bit rates with only about 4 to 10 MBytes of
memory. We expect these low requirements to hold across
many scenarios of interest. Without our integrated memory-
disk cache, the memory requirements would be much higher,
especially if there is a mismatch between the input and con-
sumption rates. In such a case, memory needs can grow
linearly with the length of the presentation.
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7 Conclusion

We have proposed a client-side adaptive caching scheme
that provides a continuous data supply to the decoder, even
if the channel has significant delays or errors. Isolating the
client from server and network variability requires substantial
buffer space, so an integrated memory and disk cache like
MEDIC is highly efficient and cost effective. Such client
isolation is extremely useful if the end user requires VCR-
like functions like pause and rewind.

Our analysis of MEDIC showed how the control parame-
ters can be set so that no data is lost due to cache mismanage-
ment and so that the least amount of memory or the largest
input data rate can be supported. Our results show the in-
teraction among the various design parameters and provide
guideliness for designing a MEDIC cache.

The MEDIC cache can easily be extended to deal with
multiple network streams and with playback from a local
CD-ROM. For example, one or more servers could send
one video base stream, one video enhanced stream, and one
audio stream. To handle these multiple streams, we would
only have to compute the total combined input and consump-
tion functions or bounds. A stream originating from a local
CD-ROM could be simply treated as a presentation that has
already been written to the disk cache (the peak data arrival
rate would be zero).

In summary, a dynamic and effective memory-disk cache
at the client side complements a good server design. Together
the client and server thus provide a complete end-to-end
solution for media data delivery.
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Appendix A - MEDIC Specification

We here describe MEDIC formally. After first initializing the
state variables, MEDIC is driven by system events. During
the playback of a presentation, the following are possible
events:

1. The NewData event indicates that a network packet has
arrived.

When the NewData event occurs, MEDIC checks if
the arrived data meet the display deadline. If they do,
MEDIC calls procedure LSF (described in Appendix
A.1) to update state variables, and perform page replace-
ment if necessary. MEDIC then copies the data onto the
memory pages according to the offset and amount of
the data in the bit stream. If the playback threshold has
been reached and the playback has not started, MEDIC
informs the decoder to start decoding and playing back
the media data.

2. The PageConsumed event indicates that a page of data in
the memory buffer has been consumed by the decoder.

When the PageConsumed event occurs, MEDIC calls
procedure LSF to update state variables and check if
the memory page can be released. If the replenish-
ment threshold, �read, has been reached (i.e., Md �
�read) and a data replenishment has not been requested,
MEDIC makes the next �read virtual pages available to
the decoder by calling procedure ReplenishPages (de-
scribed in Appendix A.2).

3. The IOCompletion event indicates that an IO has been
completed.

When a read is completed, MEDIC updates the page
table entries and releases the disk blocks. When a write
is completed, MEDIC updates the page table entries and
frees up the memory pages. MEDIC also updates the
applicable state variables.

Figure 12 specifies MEDIC formally.

A.1 Procedure LSF

Procedure LSF implements page replacement policy LSF.
Procedure LSF is called in two circumstances: 1) when a
page is consumed by the decoder, and 2) when new data have
arrived.

LSF gives the pages early in the memory sequence higher
memory allocation priority. This is implemented through
two rules:

� Replacement rule: When pages must be flushed to make
room for the incoming packets, LSF flushes out the
pages with highest logical sequence number.

� Reservation rule: When a page is consumed, the
freed page is reserved for the next read IO if page
p�+�read+�read�1 is on disk.

Resource Manager Policy

� Initialization:

1. Compute the control parameters
f�read; �write; �read; �write �playbackg

2. P laybackStarted;WriteRequested,
ReadRequested false

3. fMd;Mf ; �diskg  f0;Mavail; 0g
4. �  1

� Execute the following steps until playback ends:

1. On NewData event

– Receive the packet
– If deadline has not passed
� Execute procedure LSF

� Copy the data onto the memory pages
� If (Mavail�Mf +�disk > �playback) &

(not PlaybackStarted)
� Start playback

� P laybackStarted true

– Else (the deadline has passed), discard the
packet

2. On PageConsumed event

– Execute procedure LSF
– If (Md � �read) & (not ReadRequested)
� Execute procedure ReplenishPages

� ReadRequested true

3. On IOCompletion event

– On a read completion
� Update �disk
� Md  Md + �read

� ReadRequested false

– On a write completion
� �disk  �disk + �write

� Mf  Mf + �write

� WriteRequested  false

Figure 12: MEDIC Specification
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Figure 13: Safe Zone

The replacement rule is intuitive: we simply do not want
to flush out pages that will shortly be needed. To explain the
reservation rule, we first depict the virtual memory space in
Figure 13. LSF treats the area starting from the page that
is being decoded, p�, to page p�+�read+�read�1, as the safe
zone. The size of the safe zone is�read+�read because when
the read threshold, �read, is reached we want to be sure that
we have enough memory to bring in the next �read pages. If
we are short of memory for these �read + �read pages, the
data supply to the decoder may be disrupted.

A page that belongs to the safe zone must either already
be memory resident or the memory for it must be guaranteed
when needed. If a page in the safe zone has had memory,
the replacement rule ensures that its memory will not be
taken away. If a page in the safe zone is invalid because it
does not have a memory page, the replacement rule allocates
a memory page for it when the page’s data arrives. (The
replacement rule will flush out a page outside of the safe
zone to make room for the page in the safe zone.) The final
case is that in which a page in the safe zone is on disk, and
the question is when to allocate memory for it.

One solution is allocating memory only when a read IO
is initiated. This solution, however, requires more memory
resources. For instance, let Mavail = 8 and all control
parameter settings be 2. Let pages p4, p5, p8, p9, p10, p11 be
in memory, and p6, p7 on disk. At this time, sinceMd andMf

are 2, both read and write thresholds are met. MEDIC needs
4 free pages: 2 for the read IO, and 2 for receiving incoming
packets while the write of p10 and p11 is in progress. But
since we have only two free pages, we are short two memory
pages. If Mavail is 10, and the write threshold is set to
4, the IOs can then proceed without problems. However,
the memory requirement would be higher than 8 pages, the
requirement of the LSF algorithm.

LSF can use 8 memory pages to perform IOs without
causing disruptions. To accomplish this, LSF retains its
memory page when a page is consumed if the page that is
�read + �read pages away (from the consumed page) is on
disk. The safe zone shifts one page to the right when a page
is consumed. If the new page brought into the safe zone
is on disk, LSF gives it the page just freed. Following the
above example, when pages p2 and p3 are consumed, since
the pages brought into the safe zone, p6 and p7, are on disk,
one page is reserved for each. Meanwhile, since two pages
have been reserved for p6 and p7, pages p10 and p11 will

have been flushed to disk. (Pages later in the sequence yield
to the pages earlier in the sequence.) At the time when both
read and write are initiated, we have 4 pages (p4, p5, p8, p9)
in memory, 2 pages reserved for bringing in p6 and p7, and
2 free pages for receiving incoming packets. Incidentally,
to ensure that LSF works, the memory cannot be less than 8
pages in the example we have just shown. Otherwise, a page
in the safe zone may be flushed to disk, and the safe zone
is no longer safe. Section 5.3 derives the minimum memory
bound for LSF.

Algorithm LSF

� Initialization: max 0 (max records the largest valid
page number)

1. If called by PageConsumed event (Reservation Rule):

� �  � + 1

� Md  Md � 1

� If (p�+�read+�read�1:disk == nil)
p��1:valid false

Mf  Mf + 1

� Else (Reserve the memory page)
p�+�read+�read�1:valid true

p�+�read+�read�1:memory  p��1:memory

Update Md

2. If called by NewData event (Replacement Rule)

� For each page i the new data belong to
If (i > max) max i

If (pi:valid = false)
�Allocate memory page mi

� pi:memory  mi; pi:valid true

�Mf  Mf � 1

�Update Md

� If (Mf � �write) & (not WriteRequested)

m max (m records last page flushed)

PageF lushed 0

While (PageF lushed 6= �write)
�While (pm:memory == nil)

m m � 1

� Call DoIOs(pm:memory)

�m m � 1

� PageF lushed PageF lushed+ 1

Update Md

WriteRequested  true

Figure 14: Algorithm LSF

Let pi.valid denote whether the ith page has arrived at
the client. Let pi.memory denote the pointer to the physical
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memory address and pi.disk denote the pointer to the disk
block. Figure 14 documents algorithm LSF.

A.2 Procedure ReplenishPages

As soon as the data in memory runs under the replenish-
ment threshold�read, MEDIC prepares the next �read virtual
pages available to the decoder by calling procedure Replen-
ishPages. Note that some of the next �read pages of data may
be in memory, on disk, or may not yet have arrived. MEDIC
relies on the page table to locate the pages and requests disk
IOs if necessary. When a page belonging to one of the next
�read pages is valid in the page table and resides on disk, the
page must be read in from the disk. Procedure Replenish-
Pages calls procedure DoIOs to read in on-disk pages. For
the data pages that have not arrived, MEDIC at this time al-
locates memory and in the hope that the data will eventually
arrive.

A.3 Procedure DoIOs

Procedure DoIOs receives IO requests and must complete the
IOs before the deadlines. The implementation of procedure
DoIOs faces some practical restrictions. First, the data on
the client’s local disk may not be rearranged at will. Some
clients may have reasons to lay out the data in a certain way,
or may forbid applications to change the data placement on
their disks because of security concerns. Therefore, proce-
dure DoIOs may not have the freedom to employ any data
placement policies. Second, it is impractical to assume one
can replace the client’s device driver with a new disk sched-
uler. Procedure DoIOs must run at the application level to
work with any off-the-shelf commercial disks. Due to these
two implementation constraints, procedure DoIOs may have
to perform IOs through the local file system calls. Performing
IOs through the file system may not allow complete flexibil-
ity to maximize the disk bandwidth. However, we point out
at the end of Section 6 some measures the client can take to
improve its own performance.

Procedure DoIOs raises an IOCompletion event when the
file system calls are complete.

Appendix B - Proofs of Theorems

B.1 Proof of Theorem 1

[Proof] The proof is by induction on the number of the read
request. We denote tj as the time when the jth read is
requested.

� Basis (the first read request):

When the playback starts (the playback does not start
until a sufficient number of pages of data have accumu-
lated. See Section 5.7 for details),Md must be> �read.
As soon as Md drops to the read threshold the first read
is initiated. At this time, the decoder has �read pages,
and no other reads have been requested. Thus we have
proven the basis.

� Inductive Step:

Now we have to prove the inductive step. We assume
that the jth read satisfies the theorem. The theorem
states that tj � tj�1 + Tr , and the number of pages
available to the decoder (Md) at time tj is �read. We
want to show that tj+1 � tj + Tr, and Md = �read at
time tj+1.

1. The jth read started at time tj and must have been
completed by time tj + Tr, according to the def-
inition of Tr. In this Tr time, the decoder can
consume only up to �read pages, according to
Equation 3. In other words, the number of pages
available to the decoder at time tj + Tr must be
greater than or equal to zero. At the same time, the
read must have been completed, and it adds at least
�read pages toMd. Thus, Md must have � �read
pages at time tj + Tr . According to the specifi-
cation of MEDIC, the next read IO is not initiated
until the page count Md drops to �read. Thus, the
next read IO must happen after time tj + Tr, or
tj+1 � tj + Tr .

2. Next, we check if the number of pages available to
the decoder is �read at time tj+1. When a read is
requested, not all �read = �read pages may reside
on the disk. We have two cases:

(a) All �read pages are on disk at tj: As we have
just discussed, at time tj + Tr , Md must have
greater than or equal to�read pages. The j+1th

read either starts immediately if Md = �read,
or starts later when Md drops down to �read.
Either way, Md = �read at time tj+1.
(b) Not all �read pages are on disk at tj: If a
data page is not found on disk, the data of the
page can be in one of the three states: (1) have
arrived but have not been written out, (2) have
partially arrived but have not been written out,
and (3) have not yet arrived at all. If a page
is memory resident (in state 1 or 2), the page
will not be flushed to disk before it is consumed
according to algorithm LSF. If a page is missing
(state 3), MEDIC allocates memory and waits
for the data for it to arrive eventually. In any
rate, Md = �read at time tj+1.

The j + 1th step satisfies the theorem. Therefore, we
have proven the theorem by induction. 2

B.2 Proof of Theorem 2

[Proof] The proof follows these arguments:

1. A write is initiated only when the number of free pages
Mf drops to �write, according to the specification of
MEDIC. These �write free pages are sufficient to at least
stage the arriving packets for the next Tw time when the
write is in progress, according to Equation 5. In other
words, by Tw time from the time a write is started, the
free page count must be greater than or equal to zero, or
Mf � 0.
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2. The time it takes to complete writing�write pages must
be less than or equal to Tw. To put it another way, by
Tw from the time when the write is requested, the write
must have been completed and �write additional pages
have become available. Thus, we have Mf � �write.

3. If Mf = �write by Tw from the time when the write
is requested, a write IO is initiated immediately. If
Mf > �write, a write IO is not initiated untilMf drops
to �write. Either way, when the next write is started,
the Mf = �write, and the next write starts at least Tw
after the previous one.

2

B.3 Proof of Theorem 3

[Proof] We only prove the theorem for read requests. The
proof for write requests is symmetric.

When a read request is issued to the disk, another read
request cannot be pending according to Theorem 1. The disk
is in one of the following two states:

1. The disk is idle: If the disk is idle, the read request is
serviced immediately. According to Theorem 1, another
read request cannot arrive before the completion of the
current read. A write request, however, can arrive when
the disk is servicing the read. Since we assume that
the disk uses an elevator-like disk scheduling policy, all
disk blocks that the write accesses may happen to be in
the way and may stall the completion of the read. The
longest time the write can stall the read is the longest
time to service the write, or tw. If we add the worst
time to complete the read request, tr , the read must be
completed in tw+tr . Note that, when the read and write
are interleaved, each disk sweep can only have more
rather than fewer blocks to amortize the seek distance.
Therefore, the worst case read completion time can only
be shorter than tw + tr.

2. The disk is busy: If the disk is busy, it must be servicing
a write request. According to Theorems 1 and 2, at most
one write request can stall the read request. Thus, the
longest time it takes for a read to complete is to wait
for at most one write to be completed, tw, plus its own
service time, tr.

Either way, we have shown that a read is guaranteed to be
completed in tw + tr. 2
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