
Steve B. Cousins 1

ComponentTutorial.fm Modified August 19, 1997 12:09 am

 How to Build a Component

by Steve Cousins

This paper gives a short overview of how to build a DLITE component. The major sec-

tions are organized around important basic concepts (like the coordinate systems used)

and things programmers need to do like moving the component around. This paper does

not try to explain the details of all of the parameters to the methods. Rather, it is intended

to be an index into the code base, giving a high-level explanation that enables the code to

be understood.

The important thing to remember is that the component works in concert with a compo-

nent view that is typically running on a different computer. A component programmer

does not write any code for the component view, but can only call methods on it. There is

a fixed set of methods that the component view will call on the component. All of these

methods are defined in ITCN.isl (see Appendix A).

In general, to make a component behave in a certain way, borrow code freely from an

existing component that is similar to the one being designed. A sample component is pro-

vided in Appendix B.

1 SUPERCLASSES

All components inherit from thecomponent class (defined in component.py). Services

also inherit from theservice class (defined in service.py) or one of its subclasses, and

collections also inherit from thecollection class (defined in collection.py) or one of its

subclasses.

New classes inherit behavior from their superclass, and can override it as necessary. Over-

riding arbitrary methods from the superclasses provided should be done with care. This

appendix points out methods that are ok to redefine.

Steve B. Cousins 2

ComponentTutorial.fm Modified August 19, 1997 12:09 am

2 COORDINATE SYSTEMS

The coordinate systems of DLITE are designed for portability and simplicity, so absolute

pixels are used. The zero point is in the upper left. Points are passed to component views

in Point or PointList structures. There are Point and PointList methods defined by compo-

nent that handle the encoding. See theaddViewElements method of any component for an

example.

3 DRAWING THE COMPONENT

Components are drawn by calling addFoo methods on the component view, whereFoo is a

geometric shape like “Rectangle.” Since these methods need to be called for each viewer,

the convention is to put all the calls in theaddViewElements method, which is called each

time a new viewer is added.

The basic drawing primitives are:

• addImage - add a GIF image to the rendering

• addLine - add a line segment

• addOval - add an oval

• addPolygon - add a polygon

• addRectangle - add a rectangle

• addText - add a text label

• addButton - add a GUI button

• addTextBox - add a GUI text type-in widget

• addTable - add a table (not implemented in latest version)

Almost every component has a reference element.* The reference element is defined in the

addReferenceElement method. If this method is not defined, a default reference element

graphic (currently a small circle) is added.

The painter’s algorithm is used to determine the order elements are drawn on the canvas:

methods called first are drawn first, and possibly occluded by later calls. Unfortunately,

the underlying communication system in the current implementation does not guarantee

* The exception is the label component, which is just text on the canvas.

Steve B. Cousins 3

ComponentTutorial.fm Modified August 19, 1997 12:09 am

the order of asynchronous method calls, so one parameter of each drawing call is a serial

number. This call is entirely idiomatic and should be copied exactly.

Canvas elements may be named in order to be referred to later, by passing a string as the

“cookie” parameter. The name can be used to look up the reference element in order to

determine if the element was involved in a user operation like drop or activate, or to

change one of its properties like color or text.

4 MOVING COMPONENTS AROUND

Components can move themselves or other components. In general, components should

not move other components except in response to an external event like a process finishing

or a user action. The two methods for moving components aremoveTo, animateMoveTo ,

andanimateMoveToPt .

• ThemoveTo method moves the object immediately, without animating it to its desti-
nation. In order not to disorient the user, its use is not recommended.

• TheanimateMoveTo method takes a list of 2-tuples, each of which is an x-y pair. It
is used to move the component along a path. Historically, this method was used to
implement the “reject drop” behavior, in which the component “waggled” back and
forth before moving back to its original position. There is now arejectDrop

method on components that is used instead.

• The animateMoveToPt method is the most common move method. It animates an
object straight to a specified point.

Note that both the component and component view objects havemoveTo andanimate-

MoveTo methods. The component versions cause movement in all registered component

views. Use of the component view versions is discouraged.

5 CHANGING THE VISUALIZATION

A number of methods allow components to change the way their graphic elements appear.

In general, the graphic attributes of a canvas element can be modified, but methods that are

easier to use are defined to change labels and set colors. In addition, it is possible to add

and remove canvas elements to a component at any time.

Steve B. Cousins 4

ComponentTutorial.fm Modified August 19, 1997 12:09 am

Only canvas elements that were named at creation can be manipulated. Canvas elements

are named by passing a “cookie” parameter, which is simply a string. The canvas element

can be retrieved using thegetViewPart method on a viewer.

With themodifyGraphicAttributes call, it is possible to change some graphic attributes

on any canvas element of any component view. Programmers may need to remember to

update all component views if the change is to be seen by all people viewing the work-

center.

The most common uses of updateGraphicAttributes are to update text labels and the color

of objects. Two special-purpose methods on components handle these cases. Theupdate-

Lable method changes a label. If the name of the canvas element given isNone, then the

yellow pop-up label for the component is changed. ThesetPartColor method is used to

change the color of a canvas element. Both of these methods accept the view part name

that would be given togetViewPart (set with the cookie parameter), and apply to all

viewers.

New canvas elements can be added by calling the addFoo methods on all viewers. How-

ever, the programmer must be sure to put a hook into theaddViewElements method so

that these new canvas elements will appear when new viewers are registered. Canvas ele-

ments can be removed from all viewers with theremoveCanvasElement method, or from

only a particular viewer withremoveCanvasElementFromViewer .

6 SETTING THE HTML REPRESENTATION

Every component in DLITE has a URL associated with it, because a DLITE workcenter

has a web server that will translate URLs with object IDs in them to method calls on com-

ponents. Components can defineGET andPOST methods in order to respond to HTTP

requests directly. For less sophisticated components, ashowHTML method can be defined:

the default behavior ofGET for the component base class is to call theshowHTML method if

it is available.

Components can actually have many URLs, since the entire URL string past the object ID

will be passed to them. A common technique for making components editable via HTML

Steve B. Cousins 5

ComponentTutorial.fm Modified August 19, 1997 12:09 am

is to take their default URL (by callingtcnutils.GetURLforObj(self)) and append a

parameter string like “?method=edit” and using this URL as the action for an HTML

form. The default URL returns the form, and the extended URL processes the result.

7 RESPONDING TO ACTIVATE

When users double-click on component views, the component view sends an activate mes-

sage to the component. The component is passed the particular canvas element that was

double-clicked on as a parameter, so it can behave differently depending on exactly where

the user clicked.

This is most commonly used to distinguish the reference element from others. The

expected behavior is that when the user activates the reference element the view state

(expanded or contracted) of the component will change. The proper thing to do in the first

step of overriding the activate method is to pass the message on to the parent class if the

reference element was activated.

8 HANDLING DROPPED OBJECTS

When users drop components onto other components, the destination component will

receive a drop event. It is possible that multiple components will be dropped in a single

action if the user selected multiple items before dragging. The destination component

should do something to indicate to the user that the drop was received. A common opera-

tion is to check the input type, and reject the input if the check fails or accept it by moving

the dropped object otherwise.

Three support methods exist to help with this behavior.acceptDrop takes an x and y coor-

dinate and moves a dropped component to that location. It also attaches the object as a

sub-component of the accepting component. The accepting component must release the

dropped component when processing is completed, usingreleaseComponent . The

rejectDrop method implements the “waggle and return” behavior, to indicate that the

dropped object cannot be processed. ThereturnToPreDrop method moves the dropped

object back where it came from without the waggle. It is used to set an attribute of the

accepting component without taking control of the dropped component.

Steve B. Cousins 6

ComponentTutorial.fm Modified August 19, 1997 12:09 am

9 HANDLING BUTTON PRESS EVENTS

If a component has defined a button as one of its view elements, and a user presses the but-

ton, the component’sbuttonPress method gets called. The method call includes the

viewer from which the button was pressed.

10 HANDLING KEY PRESS EVENTS

If a component has a textBox as one of its view elements, it may receive calls to itskey-

Press method. The frequency of these calls can be controlled with the setKeyEvent

method on the textBox: the viewer will call the method each time the user hits any key,

only when the enter key is pressed, or never.

11 HANDLING DRAG EVENTS

The component programmer cannot control what happens while an object is being

dragged. However, it is possible to detect that a component has been dragged, and this is

occasionally useful in order to handle the case when components are dragged off of other

components (since the previous parent component will not see the drop method). In gen-

eral, the method call to override here is thesetParent method, but the programmer must

be sure to call the inherited version in addition to performing the override action.

12 MAKING ATTRIBUTE VALUES PERSISTENT

Components are supposed to persist. If new attributes are added to a component subclass,

those attributes may need to persist as well. The way to cause this to happen is to override

the __getstate__ and__setstate__ methods. The__getstate__ method is called to

ask the object what elements are in its state. The state is represented as a dictionary, and

the convention is for a subclass to add any fields it needs to the dictionary, and then call the

inherited version. Similarly, the__setstate__ method is used to restore an object’s state,

so the inherited version should be called first, and then any saved attributes should be

restored from the dictionary. Note that if new attributes are added to an object, the

__setstate__ method should handle the case when an object is restored that doesn’t

have the desired key in the dictionary.

Steve B. Cousins 7

ComponentTutorial.fm Modified August 19, 1997 12:09 am

13 ATTACHING SUBCOMPONENTS

Components can be attached as subcomponents to other components, meaning that when

the parent component is dragged, the subcomponent will move along with it. A program-

mer can make one object a subcomponent of another with thesubsumeComponent

method.

An important parameter of the method is how the subcomponent is to be attached. Three

options are possible: moveOff, copyOff, or permanent. With moveOff attachments, when

the user drags on the subcomponent it becomes disconnected. With copyOff, when the

user drags on the subcomponent a copy of it is moved with the mouse. With permanent

attachments, when the user drags the subcomponent it is as if the super-component is

being dragged.

14 HANDLING VIEWERS DIFFERENTLY

DLITE is designed so that multiple viewers can be attached to a workcenter at once. This

feature has increased the complexity of the interface between components and component

views immensely. It is possible for components to handle each viewer differently, but this

must be done very carefully, keeping in mind what will happen when viewers are added or

removed later.

Most methods have a viewer parameter, so it is possible to know which of many possible

viewers initiated an action, or to draw only to a particular viewer. Component views are

added and removed from a component with theregisterViewer andunregisterViewer

methods, so these methods can be overridden to track the current viewers, but the inherited

versions must always be called.

Steve B. Cousins 8

ITCN.fm Modified August 19, 1997 12:08 am

A ILU Interface Specification

This appendix contains a simplified version of the ILU specification for the interface

between a UI-client and a UI-server. The specification is in the ILU Interface Specification

Language (ISL), which is a slight variant of the CORBA standard Interface Definition

Language (IDL).

INTERFACE ITCN IMPORTS EpersRef END;

TYPE TString = ilu.CString;

TYPE TCookie = OPTIONAL TString;
TYPE TEpersRef = EpersRef.TEpersRef;
Type TStringList = SEQUENCE OF TString;

TYPE Filename = TString;

TYPE ComponentList = SEQUENCE OF Component;

TYPE Component = OBJECT OPTIONAL
 METHODS
 ASYNCHRONOUS registerCanvasElement(cookie : TCookie, ce :
CanvasElement,
 v : Viewer)

“Callback from CanvasView, so addFoo calls could be asynchronous”,

 ASYNCHRONOUS registerViewer(v : Viewer),
 ASYNCHRONOUS unregisterViewer(v : Viewer),
 ASYNCHRONOUS keyPress(key : TString, ce : CanvasElement, v : Viewer,

 text : TString, cursorIndex : CARDINAL)
“User typed one key in a textbox (or component).”,

 ASYNCHRONOUS activate(ce : CanvasElement, v : Viewer)
“Corresponds to a double-click in the view”,

 dragTo(x : INTEGER, y : INTEGER, nowOver : Component,
 SourceView : Viewer)
“User moved the corresponding view to (x,y) and the view is
 now on top of nowOver”,

 ASYNCHRONOUS drop(compList : ComponentList, ce : CanvasElement,
SourceView : Viewer)

“User dragged the elements in compList onto the element ‘ce’
 in this object”,

 copy(SourceView : Viewer, x : INTEGER, y : INTEGER) : Component
“Create a new copy of this component, located at (x,y)
 [this is used with ‘copy off’ operations]”,

 getPickleState() : TString
“Encode the state of this component in a pickle string, and return

it”,

 ASYNCHRONOUS buttonPress(SourceView : Viewer, str : TString)

Steve B. Cousins 9

ITCN.fm Modified August 19, 1997 12:08 am

“User pressed the button associated with str”,

 ASYNCHRONOUS identify()
“Print out debugging information about yourself on the console”

 END;

TYPE Point = RECORD
 x : INTEGER,
 y : INTEGER
 END;

TYPE TSize = RECORD
 width : INTEGER,
 height : INTEGER
 END;

TYPE PointList = SEQUENCE OF Point;

TYPE TFont = RECORD
 family : TString,
 style : TString,
 size : CARDINAL
END;

TYPE MoreAttribute = RECORD
 key : TString,
 value : TString
END;

TYPE EAttribute = ENUMERATION kFill, kOutline, kFont, kStipple, kWidth,
 kArrow, kAnchor, kBackground, kMoreAttr
 END;

TYPE EAlignment = ENUMERATION kNorthWest, kNorth, kNorthEast,
 kWest, kCenter, kEast,

 kSouthWest, kSouth, kSouthEast
 END;

TYPE Attribute = EAttribute UNION
 aFill : Color = kFill END,
 aOutline : Color = kOutline END,
 aFont : TFont = kFont END,
 aStipple : TString = kStipple END,
 aBackground : TString = kBackground END,
 aWidth : INTEGER = kWidth END,
 aArrow : TString = kArrow END,
 aAnchor : EAlignment = kAnchor END,
 aMoreAttribute : MoreAttribute = kMoreAttr END
END;

TYPE GraphicAttributes = SEQUENCE OF Attribute;

TYPE CanvasElement = OBJECT OPTIONAL
 METHODS
 ASYNCHRONOUS modifyGraphicAttributes(newGA : GraphicAttributes)

“change the appearance of the canvas element after it exists”
 END;

Steve B. Cousins 10

ITCN.fm Modified August 19, 1997 12:08 am

TYPE EKeyEvent = ENUMERATION kNone, kEnter, kAll END;

TYPE TextBox = OBJECT OPTIONAL
 SUPERCLASS CanvasElement
 METHODS
 ASYNCHRONOUS setKeyEvent(pType : EKeyEvent)

“request only certain types of event to callback.”,
 getText() : TString

“Return the current text in the text box”,
 ASYNCHRONOUS setText(newText : TString)

“Replace the current text in the text box with newText”,
 ASYNCHRONOUS setCursor(pIndex : CARDINAL)

“Move the text cursor to this position in the text.”,
 ASYNCHRONOUS insertColoredText(pWhereIndex : CARDINAL,
 pColor : Color, newText : TString)

“Insert some new text to this position with this color.”
 END;

TYPE TableElement = OBJECT OPTIONAL
 SUPERCLASS CanvasElement
 METHODS
 ASYNCHRONOUS SetTitle(col : INTEGER, title : TString,

 ga : GraphicAttributes)
“Set the title for this column to title”,

 ASYNCHRONOUS SetText(row : INTEGER, col : INTEGER,
 text : TString, ga : GraphicAttributes)

“Set the text at location (row,col) to text”,
 ASYNCHRONOUS SetContent(row : INTEGER, col : INTEGER,
 dcv : ComponentView, al : EAlignment)

“Replace the contents of (row,col) with dcv”,
 ASYNCHRONOUS SetColumnWidth(col : INTEGER, width : INTEGER)

“Set the width of col to width [could also be done with SetTitle”

 END;

TYPE Color = RECORD
 red : INTEGER,
 green : INTEGER,
 blue : INTEGER
END;

TYPE ECompViewAttachmentType = ENUMERATION
 kPermanent, (* user-action does not detach sub-compview from compview.
*)
 kCopyOff, (* dragging sub-compview causes copy to be made. *)
 kMoveOff (* dragging sub-compview causes detachment. *)
END;

TYPE EDropBehaviorType = ENUMERATION
 kPassive, (* nothing will happen if you drop something on this
element *)
 kRejectAll, (* if you drop something on me, it will slide off *)
 kAcceptDrop (* if you drop something on me, a drop message will get
sent *)
END;

(* This is an optimization for attaching lots of things at once. *)
(* eltype == 0; just attach cv, don’t draw anything. *)
(* eltype == 1; attach cv drawn as a document. *)

Steve B. Cousins 11

ITCN.fm Modified August 19, 1997 12:08 am

(* eltype == 2; attach cv drawn as a query. *)
TYPE Attachee = RECORD
 eltype : INTEGER,
 c : Component,
 label : TString,
 cv : ComponentView,
 attachmenttype : ECompViewAttachmentType,
 pt : Point
END;

TYPE AttacheeList = SEQUENCE OF Attachee;

TYPE ComponentView = OBJECT OPTIONAL
 DOCUMENTATION
 “Cookie Note: cookies are used to reference canvas elements
 when registerCanvasElement is called on Components.

 In most of these addFoo routines, a cookie parameter may be used to
 let the caller get a handle on the CanvasElement created. If the
 cookie is not Null, a registerCanvasElement callback is made.

 All points specified in these addFoo routines are relative to the
 anchor of the ComponentView, which is specified when it is added
 to the viewer (see below).”

 METHODS
 ASYNCHRONOUS reduceToReferenceElement(serial : Cardinal)

“remove all elements from the group except for the reference element”,
 ASYNCHRONOUS setReferenceElement(ce : CanvasElement, label : TString,

serial : Cardinal)
“use ce as the reference element for this group”,

 ASYNCHRONOUS addImage(p : Point, imageName : TString,
 attrs : GraphicAttributes, cookie : TCookie,

 onDrop : EDropBehaviorType,
 serial : Cardinal)

“add the image pointed to by imageName to this view.
 imageName is treated as a relative URL to a GIF image”,

 ASYNCHRONOUS addLine(pPoints : PointList, attrs : GraphicAttributes,
 cookie : TCookie,

 onDrop : EDropBehaviorType,
 serial : Cardinal)

“add a polyline to the view”,
 ASYNCHRONOUS addOval(p1 : Point, p2 : Point,
 attrs : GraphicAttributes, cookie : TCookie,

 onDrop : EDropBehaviorType,
serial : Cardinal)

“add an oval to the view”,
 ASYNCHRONOUS addPolygon(pPoints : PointList,

 attrs : GraphicAttributes, cookie : TCookie,
 onDrop : EDropBehaviorType,

serial : Cardinal)
“add a polygon to the view.”,

 ASYNCHRONOUS addRectangle(p1 : Point, p2 : Point,
 attrs : GraphicAttributes, cookie : TCookie,

 onDrop : EDropBehaviorType,
serial : Cardinal)

“add a rectangle to the view”,
 ASYNCHRONOUS addText(p : Point, txt : TString,

Steve B. Cousins 12

ITCN.fm Modified August 19, 1997 12:08 am

 attrs : GraphicAttributes, cookie : TCookie,
 onDrop : EDropBehaviorType,

serial : Cardinal)
“add text to the view. The font is specified in attrs.”,

 ASYNCHRONOUS addButton(p : Point, title : TString, cbString :
TString,

 attrs : GraphicAttributes, cookie : TCookie,
 onDrop : EDropBehaviorType,

serial : Cardinal)
“add a button to the view. When it is pressed, the component
 gets a buttonPress callback with cbString”,

 addTextBox(p : Point, textwidth : INTEGER, attrs : GraphicAttributes,
 onDrop : EDropBehaviorType, serial : Cardinal) : TextBox
“add a text entry box to the view. The TextBox object is returned
 (no cookie/callback is used in this case)”,

 addTable(p1 : Point, p2 : Point, attrs : GraphicAttributes,
 onDrop : EDropBehaviorType, serial : Cardinal) : TableElement
“add a TableElement object to the view”,

 (* warning: optimization *)
 ASYNCHRONOUS attachCompViews(attachelist : AttacheeList, serial :
Cardinal)

“make these cvs a part of me”,

 ASYNCHRONOUS attachCompView(cv : ComponentView,
 attachmenttype : ECompViewAttachmentType,

pt : Point,
serial : Cardinal)

“make cv a part of me”,

 ASYNCHRONOUS detachCompView(cv : ComponentView, serial : Cardinal)
“disconnect cv from me”,

 ASYNCHRONOUS removeCanvasElement(ce : CanvasElement, serial :
Cardinal)

“remove ce from the view”,
 ASYNCHRONOUS moveTo(p : Point, serial : Cardinal)

“move the view to p”,
 ASYNCHRONOUS animateMoveTo(pl : PointList, serial : Cardinal)

“move the view to each point in pl, animating the motion if possible”,

 ASYNCHRONOUS setLabelText(txt : TString, serial : Cardinal)
“Change the text in the yellow pop-up label to txt.”,

 ASYNCHRONOUS initComponentView(c : Component, anchor : Point,
 label : TString,
 serial : Cardinal)

“Initialize a previously unused componentView”
 END;

TYPE ComponentViewList = SEQUENCE OF ComponentView;

TYPE MenuAction = RECORD
 menu : TString,
 menuItem : TString
END;

Steve B. Cousins 13

ITCN.fm Modified August 19, 1997 12:08 am

TYPE MenuActionList = SEQUENCE OF MenuAction;

TYPE Viewer = OBJECT
 METHODS
 GetLocalResourceManager() : LocalResourceManager

“Return the local resource manager object for this viewer”,

 addComponentView(c : Component, anchor : Point) : ComponentView
“Add a new empty ComponentView, rooted at anchor, to this Viewer”,

 addManyComponentViews(n : INTEGER) : ComponentViewList
“Return a list of n ComponentViews”,

 ASYNCHRONOUS removeComponentView(cv : ComponentView)
“Remove cv from this Viewer”,

 ASYNCHRONOUS removeComponentViews(cv : ComponentViewList)
“Remove cv from this Viewer”,

 ASYNCHRONOUS addMenuAction(menu : TString, menuItem : TString)
“add menuItem to menu, creating menu if necessary. When a menuItem
 is selected, a callback is given to the Task”,

 ASYNCHRONOUS removeMenuAction(menu : TString, menuItem : TString)
“remove menuItem from menu”,

 ASYNCHRONOUS addMenuActions(actions : MenuActionList)
“add menuItem to menu, creating menu if necessary. When a menuItem
 is selected, a callback is given to the Task”,

 ASYNCHRONOUS removeMenuActions(actions : MenuActionList)
“remove menuItem from menu”,

 ASYNCHRONOUS BringToFront()
“Try to make the viewer the front window on the screen.”

 END;

TYPE ViewerList = SEQUENCE OF Viewer;

TYPE TaskRec = RECORD
 aTaskName : TString
(* aTask : Task *) (* swh *)
END;

TYPE TaskList = SEQUENCE OF TaskRec;

TYPE TaskFactory = OBJECT
 METHODS
 NewTaskFromTemplate(templateName: Filename, newName : Filename) :
Task

“Start a new task based on a template”,

 OpenExistingTask(fn : Filename) : Task
RAISES NoSuchTask END
“Attach to the running task in fn”,

 DeleteTask(fn : Filename)
“Delete the running task associated with fn. Does *not*
 remove the file fn”,

 Tasks() : TaskList

Steve B. Cousins 14

ITCN.fm Modified August 19, 1997 12:08 am

“Return a list of the ‘known’ tasks”,

(* StartupURL() : TString
“Each TaskFactory has an http server associated with it. This
method returns the url of that server’s startup page”,*)

 ASYNCHRONOUS RegisterLRM(lrm : LocalResourceManager,
loginName : TString, passwd : TString)

“Start a session with an lrm. If loginName/passwd are
 missing or incorrect, user is set to nobody.”,

 ASYNCHRONOUS UnregisterLRM(lrm : LocalResourceManager)
“Proper way to finish a ‘session’”

(* RegisterLRM(lrmName : TString, cookieList : TStringList)
“TEMPORARY METHOD. Used with the unix-startup stuff to set cookies
from the task factory”*)

 END;

TYPE WebPage = RECORD
 title : TString,
 url : TString
END;

TYPE WebBrowser = RECORD
 target : TCookie
END;

TYPE WebBrowserList = SEQUENCE OF WebBrowser;

EXCEPTION NoSuchTask : TString;
EXCEPTION SecurityViolation : TString;

TYPE LocalResourceManager = OBJECT OPTIONAL
 DOCUMENTATION
 “local resources needs to be enhanced with some type of
interesting security.”

 METHODS
(* GetLRMName() : TString

“Return a short name for this lrm”, *)

 (* Methods for dealing with Viewer resources *)
 GetViewerList() : ViewerList
 RAISES SecurityViolation END

“What tasks does the user have open?”,
 OpenViewer(task : Task, taskname : TString)
 RAISES SecurityViolation END

“Open a new window containing a viewer for task”,
 CloseViewer(viewer : Viewer)
 RAISES SecurityViolation END

“Close the window corresponding to viewer”,

 (* Methods for the Web Browser resources *)
 GetWebBrowsers() : WebBrowserList
 RAISES SecurityViolation END,
 OpenURL(pURL : TString, pTarget : TCookie)
 RAISES SecurityViolation END

“if pTarget == null, then just pick any web browser”,
 GetCurrentWebPage(pTarget : TCookie) : WebPage
 RAISES SecurityViolation END

“if pTarget == null, then just pick any web browser”,

Steve B. Cousins 15

ITCN.fm Modified August 19, 1997 12:08 am

 (* Methods for dealing with voice communication resources *)
 MakeVoiceConnection(phoneNumber : TString)
 RAISES SecurityViolation END

“Make a voice connection. At the least, give the user a
 dialog box with the phone number so she can dial.”,

 (* Methods for printer resources *)
 (* Methods for scanner resources *)
 (* Methods for local disk/storage resources *)

 (* Methods for E-person interactions *)
 GetUser() : TEpersRef

RAISES SecurityViolation END
“Return the epers of the currently logged in user, or None.”,

 SetUser(epers : TEpersRef)
RAISES SecurityViolation END
“Set epers as the currently logged in user at this lrm.”,

 GetUserName() : TString
 “Return the user’s name as a string”

 END;

TYPE Task = OBJECT
 METHODS
 GetName() : TString

“return the name of the task. “,
 GetSize() : TSize

“return the size of the task’s canvas”,

 clearTask()
“remove all of the components from task”,

 ASYNCHRONOUS saveTask()
“save task on disk”,

 ASYNCHRONOUS saveTaskAs(fn : Filename)
“save task on disk as fn”,

 loadTask()
“load task from disk (fn given to a task at create time)”,

 ASYNCHRONOUS addComponent(c : Component)
“add a new component to task.”,

 ASYNCHRONOUS copyComponent(c : Component, state : TString)
“make a local copy of c, using the state (which is intended
 to be a Pickle encoding of the object for now.”,

 ASYNCHRONOUS deleteComponent(c : Component)
“remove the component from task”,

 ASYNCHRONOUS registerViewer(v : Viewer)
“add a new viewer client to task”,

 ASYNCHRONOUS unregisterViewer(v : Viewer)
“remove v from the clients of task”,

 menuAction(menu : TString, menuItem : TString, v : Viewer)
“callback - user on v chose menuItem from menu”

 END;

Steve B. Cousins 16

TranslateCode.fm Modified August 19, 1997 12:08 am

B Translator Component

$Id: translator.py,v 1.10 1997/02/16 19:54:14 cousins Exp $
#
$RCSfile: translator.py,v $
#
Classes for translating documents.
#
Steve Cousins created 7/27/95
#
$Revision: 1.10 $
$Author: cousins $
$Date: 1997/02/16 19:54:14 $

from logging import log
module = __name__

import component
import services
import iluTranslations
import ITCN
import tcnfonts
import tcncolors
import tcnutils
#import netscape
import USMarc
import auxils
import epersUtils

import rand

import string

import documents
import dlcoslib

try:
 import prescriptClient
except ImportError, reason:
 log(module, “WARNING: prescript Translator Not Available
(“+`reason`+”)”)
 prescriptClient = None

class translator(services.service):
 def addViewElements(self,viewer):
 myview = self.views[viewer]
 myview.addPolygon(self.PointList([(0, 25),

 (-10, 70),
 (50, 115),
 (110, 70),
 (100, 25),
 (0, 25)]),

 iluTranslations.OutputGraphicAttributes(
{“fill” : “#96a7d4”}),

 cookie = None,
 onDrop = ITCN.EDropBehaviorType.kRejectAll,
 serial = self.nextSerial(viewer))

Steve B. Cousins 17

TranslateCode.fm Modified August 19, 1997 12:08 am

 myview.addImage(self.Point(50, 60),
 self.logo,
 iluTranslations.OutputGraphicAttributes(
 {“anchor” : “center”}),
 cookie = None,
 onDrop = ITCN.EDropBehaviorType.kRejectAll,
 serial = self.nextSerial(viewer))

 myview.addOval(self.Point(0, 0),
 self.Point(100, 40),
 iluTranslations.OutputGraphicAttributes(
 {“fill” : tcncolors.documentdropcolor}),
 cookie = ‘drop’,
 onDrop = ITCN.EDropBehaviorType.kAcceptDrop,
 serial = self.nextSerial(viewer))

 myview.addImage(self.Point(50, 20),
 “doc-emb.gif”,
 iluTranslations.OutputGraphicAttributes(
 {“anchor” : “center”}),
 cookie = ‘demb’,
 onDrop = ITCN.EDropBehaviorType.kAcceptDrop,
 serial = self.nextSerial(viewer))

 myview.addText(self.Point(50, 85),
 self.textLabel,
 iluTranslations.OutputGraphicAttributes(
 {“font” : tcnfonts.mediumfont,
 “anchor” : “center”}),
 cookie = None,
 onDrop = ITCN.EDropBehaviorType.kRejectAll,
 serial = self.nextSerial(viewer))

 myview.addText(self.Point(50, 95),
 self.statuslabel,
 iluTranslations.OutputGraphicAttributes(
 {“font” : tcnfonts.tinyfont,
 “anchor” : “center”}),
 cookie = “status”,
 onDrop = ITCN.EDropBehaviorType.kRejectAll,
 serial = self.nextSerial(viewer))

 def addGumballView(self, viewer):
 myview = self.views[viewer]
 myview.addPolygon(self.PointList([(0,0),(10,0),

 (12,5),(5,10),(-2,5),(0,0)]),
 iluTranslations.OutputGraphicAttributes(
 {“fill”:self.color}),
 cookie=’gumball’,
 onDrop = ITCN.EDropBehaviorType.kRejectAll,
 serial = self.nextSerial(viewer))

 def drop(self, componentList, viewObj, viewer):
 idlist = []
 for c in componentList:
 idlist.append(c.id())
 log(module,”DROP”,idlist,”onto”,self.id())
 ddrop = self.getViewPart(viewer,’drop’)
 demb = self.getViewPart(viewer,’demb’)
 if viewObj == ddrop or viewObj == demb:
 log(module,” ...into document drop slot”)
 for c in componentList:

Steve B. Cousins 18

TranslateCode.fm Modified August 19, 1997 12:08 am

try:
 foo = c.isDocument()
 self.gotDocument(c, viewer)
except AttributeError,key:
 log(module, “AttributeError in drop:”,key)
 c.rejectDrop()

 else:
 log(module,” ... NOT into ANY drop slot”)
 for c in componentList:

c.rejectDrop()

 def gotDocument(self, doc, viewer):

 x,y = self.xloc+45, self.yloc+55
 doc.tempSetColor(“green”)
 doc.animateMoveToPt(x,y)

 text = doc.getDocumentText()

 log(module, “Computing the translation”)
 self.DoIt(doc,text)

 def TranslateException(self, reason, document):
 log(module, “TranslateException”, reason, document)
 document.animateMoveToPt(document.xloc-65, document.yloc)
 document.revertColor()

 def TranslateCallback(self, translation, doc):
 log(module, “TranslateCallBack()”)
 obj = doc.getAttribs()

 translationattrs = iluTranslations.createCItem({})
 try:
 translationattrs[USMarc.kTitle] = “Translation of “ +
obj[USMarc.kTitle]
 except TypeError:
 translationattrs[USMarc.kTitle] = “Translation of “ +
`obj[USMarc.kTitle]`
 except:
 translationattrs[USMarc.kTitle] = “Translation of an unnamed
document”
 self.setTranslationAttrs(obj,translationattrs,translation)
 translationattrs[“original”] = doc

 translationdocument = documents.document(translationattrs,
 x=doc.xloc,
 y=doc.yloc,
 color=”#c1dde5”)

 doc.task.addComponent(translationdocument)

 doc.animateMoveToPt(doc.xloc+65, doc.yloc)
 doc.revertColor()

 translationdocument.animateMoveToPt(doc.xloc+5, doc.yloc+10)
 log(module, “exit TranslateCallback()”)

class prescriptTranslator(translator):
 def __init__(self, *args, **kw):

Steve B. Cousins 19

TranslateCode.fm Modified August 19, 1997 12:08 am

 self.sourceObjName = “prescript”
 self.sourceName = “prescriptTranslator”
 self.textLabel = “prescript Translator”
 self.logo = “ps2html.gif”

 if not kw.has_key(“color”):
 kw[‘color’] = tcncolors.gumballcolor
 if not kw.has_key(‘label’):
 kw[‘label’] = self.sourceName
 if not kw.has_key(‘servName’):
 kw[‘servName’] = self.sourceObjName
 self.fAlarmPeriod = 180 + rand.whrandom.randint(60*1, 1)

 # service proxy object and client property set
 self.owner = None
 self.description = ““
 self.obj = None
 self.objProps = None
 # try to find some of the values for these...
self.GetServiceProxy()

 apply(services.service.__init__,(self,)+args,kw)

 def GetServiceProxy(self):
 if not self.sourceObjName:
 return
 try:
 self.obj = epersUtils.get_epersHP(self.sourceObjName)
 self.objProps = dlcoslib.CosPropertySetClientImpl(self.obj)
 self.owner = self.objProps[“owner”]
 except:
 log(module, “Cannot locate this service right now.”)
 return

 def DescribeService(self):
 props = self.objProps
 if not props: return ““

 ## baseURL = self.url
 h1 = ““ ##props[“organization”]
 title = h1
 if props.has_key(“description”):
 page = props[“description”]
 else:
 page = “No description available for this service.<P>\n”

 if self.owner:
 ownerLink = auxils.epershref(self.owner)
 page = page + “<P>Owner: “+ownerLink+”<P>”

page = auxils.finishPage(h1, page, baseURL)
 return page

 def DoIt(self,doc,text):
log(module, “DoIt: self=”,self,”doc=”,doc,”len(text)=”,len(text))
 try:
 inst = prescriptClient.prescriptClient(text, self, doc)
 except:
 self.TranslateException(tcnutils.Exception(), doc)

Steve B. Cousins 20

TranslateCode.fm Modified August 19, 1997 12:08 am

 def setTranslationAttrs(self,obj,translationattrs,translation):
 try:
 translationattrs[USMarc.kAuthor] = “[NZDL prescript Translator
(orignal author: “ + \

 string.joinfields(obj[USMarc.kAuthor],’ and ‘)+”)]”
 except KeyError:
 translationattrs[USMarc.kAuthor] = “[NZDL prescript Translator]”

 translationattrs[USMarc.kContent] = dlcoslib.OutputMime(‘text/html’,
translation)

