
Minimizing Memory Requirements in Media Servers

Edward Chang and Yi-Yin Chen �

Abstract

Poor memory management policies lead to lower throughput and excessive memory

requirements. This problem is aggravated in multimedia databases by the large volume and

real-time data requirements. This study explores the temporal and spatial relationships

among concurrent media streams. Speci�cally, we propose adding proper delays to space

out IOs in a media server to give more room for bu�er sharing among streams. Memory

requirements can be reduced by trading time for space. We present and prove theorems that

state the optimal IO schedules for reducing memory requirements for two cases: streams

with the same required display rate and di�erent display rates. We also show how the

theorems can be put in practice to improve system performance.

Keywords: multimedia, disk scheduling, memory requirement.

1 Introduction

Poor memory management policies lead to lower throughput and excessive memory require-

ments. This problem is exacerbated in multimedia databases by the large volume of the media

data, which must be delivered in time to avoid display disruptions. This real-time requirement

is ful�lled by prefetching and staging large amount of data in memory to sustain continuous data

consumption between disk IOs. A few seconds of excessive prefetching or ine�cient manage-

ment of the memory bu�er pool incurs a large increase in the memory requirement or decrease

in the number of concurrent streams the limited memory can support.

Most research of multimedia storage system has focused on reducing disk delays via disk

arm scheduling policies and data placement schemes [5, 6, 8, 10, 12]. In this paper, on the other

hand, we focus more on the e�ective use of memory. It turns out that in many circumstances

memory is more of a critical resource than disk bandwidth, and using memory judiciously can

lead to improved throughput, lower hardware costs, and reduced initial latencies, as compared

to conventional strategies.

In particular, the contributions of this paper are as follows.

� We formally show that the amount of memory needed to support a given number of

�Stanford University, Department of Electrical Engineering, Gates Hall 5, Stanford, CA 94305. email:

echang@db.stanford.edu, yychen@leland.stanford.edu

1

concurrent streams can be minimized by spacing out in time the IOs performed in each

round of service. We present and prove theorems that state the optimal IO schedules for

two cases: streams with the same required display rate and di�erent display rates.

� We propose a disk scheduling algorithm that adds proper delays to space out IOs to give

more room for bu�er sharing among concurrent streams. This approach runs counter to

traditional schemes that squeeze out the last drop of disk bandwidth to improve through-

put. But surprisingly, wasting disk bandwidth leads to improvement in throughput. This

result suggests that with multimedia storage systems, unlike traditional �le systems, re-

ducing seek overhead alone does not yield better performance.

The rest of this paper is organized as follows. Section 2 formulates the quantitative model

for memory requirements. Section 3 proves the the theorems which state the conditions that

minimize the variance of memory requirement. Section 4 presents a disk scheduling scheme,

called Stretch, that stretches out IOs to minimize memory use. Finally, we evaluate Stretch in

Section 5.

2 Memory Model

2.1 De�nitions

To analyze the performance of a media server, we typically are given the following parameters:

� TR: the disk's data transfer rate.

�
(d): a concave function that computes the rotational and seek overhead given a seek

distance d. For convenience, we will refer to the combined seek and rotational overhead

as the seek overhead.

� MemAvail: the storage system's available memory.

� N : the number of stream requests. Each request is denoted as R1, R2, ..., RN . Each

stream requires a display rate of DRi (DRi < TR).

We also have the following tunable parameters. They can be adjusted, within certain

bounds, to optimize system throughput.

� T : the period for servicing a round of requests. We assume that T is constant, i.e., it

does not vary depending on N , the number of streams being serviced at a given time. As

discussed below, T must be made large enough to accommodate the maximum number

streams we expect to handle.

2

Parameter Description

MemAvail Total available memory, MBytes
DR Data display rate, Mbps
TR Disk transfer rate, MBytes/s
CY L Number of cylinders on disk

(d) Concave function for rotational and seek overhead give n distance d
T Service time for a round of N requests
N Number of requests being serviced

NLimit System enforced limit on number of requests

Ri ith request
cyli Seek distance of the ith request

KCushion Cushion bu�er factor, ranging from 1 to 2.
KMSharing Memory sharing factor, ranging from 1/2 to 1.

Table 1: Parameters

� S: the segment size, i.e., the number of bytes read for a stream with one contiguous disk

IO.

� NLimit: the maximum number of concurrent requests the media server allows. The media

server implements an admission control policy that turns away requests when the system

is already handling NLimit requests.

To assist the reader, Table 1 summarizes these parameters, together with other parameters

that will be introduced later. The �rst portion of Table 1 lists the basic �xed and tunable pa-

rameters. The second portion describes subscripted parameters that are used for characteristics

of individual requests. The third portion gives performance measurement parameters.

2.2 Memory Requirements

Figure 1(a) depicts the amount of memory used by a request in a period T . An IO starts shortly

before the data staged into memory in the previous period is used up. The data accumulates in

memory at the rate of TR�DR until the IO completes. This periodic behavior repeats itself

until the playback ends.

For our analysis we make two simplifying assumptions. First, we assume that memory can

be freed in a continuous fashion. In other words, Figure 1(a) shows the actual memory used

by a request. In practice, of course, memory is released in pages, so Figure 1(a) would have a

sequence of small decreasing steps, each one page in size. This implies that our estimates for

memory use may be up to one memory page o� for each request. Thus, our continuous release

assumption is an optimistic one for bu�er sharing schemes. However, if as expected the page

size is small compared to the segment size, the di�erence will be negligible.

3

T i m e

M
 e

 m
 o

 r
 y

S

 i
z

e

T

- DRiTR - DRi

(a) Memory Required in A Period

T i m e

M
 e

 m
 o

 r
 y

 S
 i

z
e

S = DR * T

T 2T 3T ...

Slope = -D
R

(b) Memory Use Function pi(t� �i)

Figure 1: Memory Requirement Function

Our assumption causes us to overestimate memory use: we will assume that each peak in

Figure 1(b) is S, while in reality it is S � (1�DR=TR). This is a pessimistic assumption, but

since typically the data transfer rate TR is much larger than the display rate DR, the di�erence

is very small.

Notice that the small di�erences caused by our two assumptions tend to cancel out each

other. In particular, if the page size is S �DR=TR, the e�ects will cancel. If the page size is

less than this value, as is probably the case, then overall our results will be slightly pessimistic

for memory sharing.

When an IO is initiated, the physical memory pages for the data it reads may not be

contiguous due to the way bu�ers are shared. There are several ways to handle these IOs. One

idea is to map the physical pages to a contiguous virtual address, and then initiate the transfer

to the virtual space (if the disk supports this). Another idea is to break up the segment IO

into multiple IOs, each the size of a physical page. The transfers are then chained together

and handed to an IO processor or intelligent DMA unit that executes the entire sequence of

transfers with the same performance as a larger IO. Other ideas are discussed in [7].

Let us denote the periodic function in Figure 1(b) as pi(t� �i), where t represents time and

�i is the displacement from the beginning of the period (e.g., the example shown in Figure 1(b)

has a displacement of 0). The memory use function p(t) for NLimit concurrent requests is a

superposition of NLimit such periodic functions, or

p(t) =
N
LimitX
i=1

pi(t� �i):

Notice that each function pi(t � �i) has a di�erent displacement. To minimize the memory

requirement of a system, one has to minimize the largest value of p(t). Since p(t) is periodic

(superposition preserves periodicity), it is adequate to just inspect a period of it.

To show the intuition behind the bu�er space minimization, let us �rst illustrate through an

example. Figure 2(a) presents an example function p(t) composed of three requests, p1(t� �1),

p2(t � �2), and p3(t � �3). In the �gure, �1 = �2 = �3 = 0, so the maximum value of p(t)

4

T i m e

M
 e

 m
 o

 r
 y

 S
 i

z
e

T 2T 3T ...

p1(t)

+ p2(t)

+ p3(t)

= p(t)

S

S

S

3S

(a) Worst Memory Requirement

T i m e

M
 e

 m
 o

 r
 y

 S
 i

z
e

T 2T 3T ...

p1(t)

+ p2(t)

+ p3(t)

= p(t)

S

S

S

2S

(b) Minimum Memory Requirement

Figure 2: Memory Requirement Examples

is 3 � S. In general, the memory requirement is the highest when the peaks of the requests

overlap, e.g., when �1 = �2 = �3. In practice this is impossible since the requests cannot use

the disk arm at the same time to perform their IO. However, this indicates that when IOs are

closer to one another, p(t) has a larger peak and hence requires that the system have a larger

memory to handle the worst case. On the other hand, when the IOs are separated by time,

there is more space to share, and hence the total memory requirement is smaller. We next show

how to separate the requests in time to minimize memory usage.

3 Minimizing Memory Requirement

We have demonstrated that the memory requirement is reduced when the delays are added to

separate I/O's. This section states and proves the optimal delays that minimize memory space

requirement. First we prove for a simpli�ed case where all requests share the same display

rate (or data consumption rate). Applying the same procedure we subsequently provides an

approximation for the general case where requests have di�erent display rates.

3.1 Constant Display Rate

[Theorem 1] We are given a multimedia storage system that supports NLimit continuous

streams with equal display rate DR. Minimizing memory usage requires the IO start times to

be spaced equally in T .

[proof]: Consider the periodical function pi(t� �i) shown in Figure 1(b). Let �i be 0 for now

for simplicity (add it back shortly). After normalize the period of the function T to 2�, the

5

function is expressed analytically in the region of (0; 2�) as:

pi(t) = S � S � t

2�

where S = DR� T . The period is 2� and hence the fundamental frequency !0 is given by

!0 = 2�f =
2�

T
= 1:

It therefore follows that Fourier series [13] will consist of angular frequency components ! =

1; 2; 3; etc:, and the series is

pi(t) =
a0

2
+ a1 cos t+ a2 cos 2t + :::+ an cosnt + :::

+b1 sin t+ b2 sin 2t+ :::+ bn sinnt + :::

=
a0

2
+

1X
n=1

an cosnt+ bn sin nt: (1)

The various coe�cients in this series can be evaluated by using the following equations:

a0 =
2

T

Z T=2

�T=2
pi(t)dt

an =
2

T

Z T=2

�T=2
pi(t) cosn!0tdt

bn =
2

T

Z T=2

�T=2
pi(t) sinn!0tdt: (2)

Substituting the expression for pi(t) in Equation 2, we get

a0 = S

an = 0

bn =
S

�n
(�1)n:

It is evident that all cosine terms are zero. The required series using the coe�cients in Equa-

tion 1 is now given by

pi(t) =
S

2
+
S

�

1X
n=1

(�1)n
n

sinnt: (3)

The function pi(t) has components of frequency ! = 1; 2; 3; :::; etc. Notice that the amplitude of

the components is inversely proportional to the frequency, so the magnitude of lower-frequency

components is larger than that at the higher frequencies.

Now adding the delay factor �i back into Equation 3 yields

pi(t� �i) =
S

2
+
S

�

1X
n=1

(�1)n
n

sinn(t � �i): (4)

6

Recall that p(t) is the superposition of N pi(t� �i)
0s, subsequently p(t) is written as

p(t) =
SN

2
+
S

�

NX
i=1

1X
n=1

(�1)n
n

sinn(t � �i) (5)

The objective is to minimize the maximum value of p(t). But as we have mentioned, since

p(t) is discontinuous, it is cumbersome to solve. Further, there is no close form solution to the

minimax problems. Instead, we change the objective to minimizing V ARp(t). For the constant

display rate case, these two objectives are equivalent.

1. The variance of p(t) according to the de�nition is

VARp(t) =

Z
1

t=�1
(p(t)� �p(t))

2dt:

For convenience, we use p0(t) to represent p(t)� �p(t), which gives us

V ARp(t) =
Z
1

t=�1
p0(t)2dt;

where p0(t) =
S

�

NX
i=1

1X
n=1

(�1)n
n

sinn(t� �i) (6)

2.
R
1

t=�1 p0(t)2dt can be written as
R
1

t=�1 jp0(t)j2dt, the autocorrelation of p0(t), since p0(t)

is a real function.

3. The autocorrelation of a function in time domain is the power spectrum in frequency

domain according to the Autocorrelation Theorem [2] [9]. We can write

Z
1

t=�1
jp0(t)j2dt =

Z
1

f=�1
jP 0(f)j2df;

where P 0(f) is the Fourier Transform of p0(t).

Summarize the steps above, the objective of the optimization is now transformed into mini-

mizing the power spectrum of the function in frequency domain. Performing Fourier Transform

on p0(t), we obtain P 0(f) as

P 0(f) =
S

2�
(
1X
n=1

(�1)n
n

(�(f +
n

2�
)� �(f � n

2�
))(

NX
i=1

e�j2��if): (7)

The variance of p(t) is equal to the power spectrum of p0(t) in frequency domain, or

V ARp(t) =
Z
1

f=�1
jP 0(f)j2df =

S2

2�2

1X
n=1

(
1

n2
� j

NX
i=1

e�j�inj2) (8)

7

R e a l

I m a g i n a r y

τ1 0=

τ3 4
π
3
---=

τ2 2
π
3
---= DR

Figure 3: Complex Exponentials

Because S and n are given, the only parameters that can be changed to in
uence V ARp(t) are

those � 0is. Isolating the terms that we can in
uence VARp(t), we get

1X
n=1

1

n2
� j

NX
i=1

e�j�inj2: (9)

Minimize VARp(t) is now reduced to minimizing above Expression 9. The expression reveals

that its �rst harmonic components dominates due to the 1
n2

multiplier. Indeed, the coe�cient of

�rst harmonic component is 1 and the sum of the coe�cients of the rest harmonic components

is only �2

8
. The �rst harmonic component carries a weight of about 50%. Replacing n with 1

in Expression 9 we get the �rst harmonic component:

j
NX
i=1

e��i j2: (10)

To minimize VARp(t) it is su�cient to accomplish

Minimize j
NX
i=1

e��i j2: (11)

Expression 11 is the magnitude of the sum of N complex exponentials. To minimize the

sum of N complex exponentials, we want pick � 0is that cancel out the amplitude in the complex

exponential plane. For equal amplitudes, this is to choose � 0is that equally divide 2�. Since we

have previously normalized T to 2�, the � 0is that divides T evenly minimizes V ARp(t).

For the constant display rate case, this strategy works not only for n = 1 (the �rst harmonic

component) but also for the n0s that are not a multiple of N . Use Figure 3 to illustrate (N = 3),

the � 0is that makes the �rst harmonic component zero is f0; 2�
3
; 4�
3
g. Plugging this set of � 0is

8

into the second harmonic component, we get a new delay set f0; 4�
3
; 8�
3
g that is equivalent

to f0; 4�
3
; 2�
3
g. Notice that although the delays of R2 and R3 change their position, the sum

nevertheless remains zero for the second harmonic component. This is not true though when n

is a multiple of N . When n is dividable by N , all vectors are shifted to the zero phase position

to re-enforce one another. However, since the components we eliminate clearly dominates,

eliminating the �rst harmonic component minimizes the variance.

For the constant display rate case, minimizing the variance happens also to minimax p(t).

Since p(t) under this special case is a superposition of N identical functions that separated by

an equal distance T
N
, it is easy to see that the optimal p(t) has N identical peaks. Changing

any � 0is would cause the minimax value of p(t) to be larger. Subsequently, we claim that

minimizing VARp(t) minimizes the memory requirement for the constant display rate case. We

have therefore proven that spacing out I/O's equally in T minimizes the memory requirement.

2

[Corollary 1] The minimum memory space required to support NLimit streams with the same

display rate DR in given period T is S(N+1)

2
.

[Proof]: With NLimit requests, p(t) is

p(t) =
N
LimitX
i=1

pi(t� �i);

where pi(t� �i) = DR� T �DR� (t� �i):

The minimum memory requirement is the maximum value of p(t). Since Theorem 2 shows

that spreading out IOs evenly in T minimizes the total memory requirement, we substitute the

proper � 0is into function p(t) to get

p(t) =
N
LimitX
i=1

pi(t�
i� T

NLimit
);

where pi(t�
i� T

NLimit
) = DR� T �DR� (t� i� T

NLimit
): (12)

Because pi(t � �i)
0s are monotonically decreasing, the start time of IOs gives the maximum

value of p(t). In addition, since all pi(t � �i)0s have the same shape due to the same display

rate, all IO start times give the same maximum value. Without loss of generality, let us pick

t = T and substitute t = T back into Equation 12, obtaining

Max p(t) =
DR� T

NLimit
�

N
LimitX
i=1

i

or Max p(t) = DR� T � (NLimit + 1)=2:

9

Since DR� T = S, the above expression is equivalent to S � (NLimit+ 1)=2. This gives us our

minimum memory requirement. 2

Let us now revisit the example of Figure 2(a). In that example we had three requests,

p1(t � �1), p2(t � �2), and p3(t � �3). To minimize the memory requirement, we can choose

�1 = 0, �2 =
T
3
, and �3 =

2T
3
to equally divide up T . Figure 2(b) plots the memory requirement

for p(t) by summing up the pi(t)
0s with these displacements. We can see that as predicted by

Corollary 1, the peak memory requirement is 2� S. For larger number of requests, we can cut

memory use by one half.

3.2 Di�erent Display Rates

Supporting di�erent display rates becomes increasingly important since a multimedia database

or �le system contains di�erent types of media (e.g., audio and video). Even if a media server

stores compressed videos of the same type (e.g. MPEG-2), the increasing demands of adaptive

rate control requires the video data to be delivered in layers of coding depending on the quality

of service (QoS) requirements [3]. The following theorem states the condition that minimizes

the memory requirement variance when rates are di�erent.

[Theorem 2] We are given NLimit continuous streams, each with a possibly di�erent display

rate DR0is. Minimizing the memory usage is equivalent to minimizing jPN
Limit

i=1 DRi � e�j�i j2.
Please refer to reference A for a complete proof.

4 Putting Theorems into Practice

In this section we show how the theorems can be used to enhance media server performance.

We �rst present a disk policy for media server that have the same display rate. We show how

the memory can be saved by trading time for space. In the second part of this section, we

show a simple augment to a typical admission policy. We demonstrate through an example

that delaying IOs admits more requests.

4.1 Scheme Stretch

The goal of scheme Stretch is to minimize memory usage by spacing out IOs in a period as

suggested by Theorem 1. Since the data on disk for the requests are not necessarily separated

by equal distance, we must add time delays between IOs to space them equally in time.

For instance, if the seek distances in a disk sweep are cyl1, cyl2,..., and cylN
Limit

cylinders,

and cyli is the maximum of these, then we must separate each IO by at least the time it

10

takes to seek to and transfer this maximum ith request. One can choose a di�erent separator

for each period, depending on the maximum seek distance for the requests of that period.

However, as we have argued earlier, there is no bene�t allowing T to vary from cycle to cycle.

To have a constant T and simplify the algorithms, scheme Stretch uses the worst possible seek

distance (CY L) and rotational delay, together with a segment transfer time, as the universal

IO separator, �, between any two IOs. The length of a period, T , will be NLimit times �. The

value of � must be at least as large the worst seek overhead plus the worst rotational delay to

cover the worst case.

At the �rst glance, compared with an elevator-like disk scheduling policy (hereafter we call

Sweep) that amortizes disk latency among requests, scheme Stretch seems like a terrible idea.

Here, we �rst explain what constitutes the memory requirements in a media server to show

why the worst disk latency could possibly lead to better system performance. In next section

we evaluate Stretch against Sweep with real disk parameters.

The memory requirements of a media server depends on three factors: disk latency, IO time

variability, and memory sharing. In the study of [4], we show that the segment size S is directly

proportionally to the average disk latency
(d). It is clear that Stretch su�ers from the worst

(d) since its d is large, and subsequently requires a larger S. However, Stretch bene�ts from

the other two factors:

1. No IO time variability: For Sweep, since the IO service order depends on the media

data's on-disk order, a request can be serviced in di�erent order from period to period.

For example, if the IOs for a request is serviced in the beginning of one period, and at

the end of next period, the system needs 2 � S amount of bu�er for each request [15].

Stretch, on the other hand, since services requests in a �xed order, it eliminates the \2�"
factor in front of the segment size.

2. Maximum memory sharing: Theorem 1 shows that when IOs are spaced out equally like

in Stretch, the memory saved is about 50% through bu�er sharing. On the other hand,

Sweep that maximizes disk bandwidth utilization su�ers from the worst memory sharing

because IOs are bundled.

In short, scheme Stretch saves memory in two ways. First, because IOs in a period are

spaced out, memory sharing is at its best. Second, because there is almost no time variability

between the IOs of a given request, we eliminate cushion bu�ers. Stretch does require larger

segments (T is arti�cially enlarged, and S = DR�T), but in our analysis we will see that overall
Stretch does save substantial amounts of memory and actually leads to improved throughput

over elevator-like disk policy! This result is surprising since Stretch underutilizes bandwidth by

slowing down the disk, doing just the opposite of what previous scheduling schemes do.

11

M e m o r y C a p a c i t y

M e m o r y C a p a c i t y

M
 e

 m
 o

 r
 y

 S
 i

z
e

N e w R e q u e s t

E x i s t i n g R e q u e s t s

(a) New Request Rejected

M e m o r y C a p a c i t y

M e m o r y C a p a c i t y

M
 e

 m
 o

 r
 y

 S
 i

z
e

D e l a y

N e w R e q u e s t

E x i s t i n g R e q u e s t s

(b) New Request Accepted

Figure 4: Delayed Admissions

4.2 Delayed Admissions

For a media server that has to entertain variable bit rates, the analysis is more complex.

However, through an example we illustrate that by delaying IOs, a media server can admit

more concurrent requests, and hence improve throughput.

A typical media server's admission policy determines if a request can be serviced by checking

if the disk bandwidth and memory space are su�cient for servicing the additional request.

Figure 4(a) shows that a new request arrives when the memory space left is inadequate to

service the request immediately. (The superposition of the peak memory requirements exceeds

the capacity.) Most admission control policy would turn the request away. However, Figure 4(b)

shows that if the request is delayed by a fraction of T , then the memory is su�cient to admit

the request.

5 Evaluation

In this section, through a case study we evaluate the performance of scheme Stretch. For our

evaluation we use the Seagate Barracuda 4LP disk [1]; its parameters are listed in Table 2.

For the seek overhead we use the following concave function [11]:

(d) = �1 + (�1�
p
d) + 8:33 if d < 400

12

Parameter Name Value

Disk Capacity 2.25 GBytes

Number of cylinders, CYL 5,288

Min. Transfer Rate TR 75 Mbps

Max. Rotational Latency Time 8.33 milliseconds

Min. Seek Time 0.9 milliseconds

Max. Seek Time 17.0 milliseconds

�1 0.6 milliseconds

�1 0.3 milliseconds

�2 5.75 milliseconds

�2 0.0021 milliseconds

Table 2: Seagate Barracuda 4LP Family Disk Parameters

(d) = �2 + (�2� d) + 8:33 if d � 400

Note that the seek time is proportional to the square root of the seek distance when the

distance is small, and is linear to the seek distance when the distance is large. We derive

the parameters for this function as follows. We �rst allocate 2=3 of the minimum seek time

provided by the vendor (0:9ms) as the disk arm's �xed overhead �1 (which includes the speedup,

slowdown, and settle phases). Parameter �1 then is the remaining portion of the minimum seek

time. We then select �2 and �2 so that the maximum seek time matches the manufacture's

time (17 ms), and so that function
 is continuous at d = 400. The values obtained are given

in Table 2.1

In each seek overhead we have included a full disk rotational delay TRot of 8.33 ms. The

rotational delay depends on a number of factors, but we believe that one rotation is a represen-

tative value. One could argue that rotational delay could be eliminated entirely if a segment is

an exact multiple of the track size. (In that case we could start reading at any position of the

disk.) However, the optimal segment size depends on the scenario under consideration, so it is

unlikely it will divide exactly into tracks. If we assume that the �rst track containing part of

a segment is not full, then in the worst case we need a full rotation to read that �rst portion,

even with an on-disk cache. If we assume that the last track could also be partially empty,

then we could need a second rotational delay, and our 8.33ms value may be conservative! Note

incidentally that we use a full rotational delay 2 (not average) since we are estimating a worst

case scenario.

1Incidentally, [11] suggests using between 200 to 600 cylinders to separate short and long seeks. Although we

do not show it here, our results are not very sensitive to the exact value used in this range.
2It is important to note that, as opposite to the conventional �le systems, we cannot take expected rotational

delay here. In the conventional system, since the sample size is in�nite, the average rotational delay converges

to the expected value in probability, according to laws of large number. However, for media servers, the average

does not converge since NLimit << 1. Using expected rotational delay could cause violation of the real-time
data requirement.

13

(d) KCushion KMSharing
(d)�KCushion �KMSharing

Elevator Policy 12.5 (ms) 2 1 25

Stretch 25 (ms) 1 1/2 12.5

Table 3: Memory Requirement Factor

We estimate the total memory requirements by inspecting three factors:
(d),KCushion and

KMSharing. Since S is directly proportional to seek overhead,
(d) is a good representative for

the segment size. ParameterKCushion represents the cushion bu�er requirement of a scheme. As

we have discussed, scheme Sweep requires an additional S amount of cushion for each stream,

while Stretch requires none. Thus, we assign KCushion = 2 to Sweep, and KCushion = 1 to

Stretch. Next, according to Theorem 1, we know Stretch bene�ts from memory sharing by a

factor of N
Limit

+1
2�N

Limit

, we therefore can assign KMSharing = 1=2 to Stretch.

For scheme Sweep, the worst total seek overhead in a disk sweep happens when the seek

distances are equally spaced out. This is due to the concavity of the seek function [11, 14].

Subsequently, for Sweep, the worst individual seek overhead is
(CYL=NLimit). On the other

hand, since Stretch su�ers from the worst possible seek, its seek overhead is
(CYL). For

NLimit = 40, a reasonable workload for Barracuda 4LP disks [4], we list the parameter values

of
(d), KCushion and KMSharing for two disk policies in Table 3. It is surprising to see that

the cumulative memory requirement factor of Stretch's is only a half of Sweep's.

The evaluation shows that scheme Sweep, althought maximizes disk bandwidth utilization,

helps only reducing the �rst factor of the memory requirement: the size of a segment. To

minimize the memory requirements, a media server must also minimize IO time variability and

maximize memory sharing, as demonstrated in Stretch.

6 Conclusion

In this paper we have proven that spacing out I/O's properly minimizes the variance of memory

requirement for the storage systems. For the systems where all requests have the same display

rate, this is equivalent to minimize the memory requirements. This result is notable since

the storage system can schedule I/O's to conserve memory. We propose a disk scheme and

admission policy both improve system performance by putting the theorems into practice.

References

[1] Seagate barracuda 4lp family product speci�cation. URL: http://www.seagate.com, 1996.

[2] R. Bracewell. The Fourier Transform and Its Applications, Second Edition, Revised. McGraw-Hill,

186.

14

[3] A. Campbell and G. Coulson. A qos adaptive transport system. Proceedings of ACM Multimedia,

pages 117{127, November 1996.

[4] E. Chang and H. Garcia-Molina. Reducing initial latency in multimedia storage systems. To appear

in IEEE Multimedia, 1997.

[5] T. Chua, J. Li, B. Ooi, and K.-L. Tan. Disk striping strategies for large video-on-demand servers.

Proceedings of ACM Multimedia, pages 297{306, November 1996.

[6] S. Ghandeharizadeh, S. Kim, and C. Shahabi. On con�guring a single disk continuous media server.

SIGMETRICS PERFORMANCE EVALUATION, 23(1):37{46, May 1995.

[7] D. Makaro� and R. Ng. Schemes for implememting bu�er sharing in continuous-media systems.

Information Systems, 20(6):445{464, 1995.

[8] B. Ozden, A. Biliris, R. Rastogi, and A. Silberschatz. A low-cost storage server for movie on

demand databases. Proc. VLDB, September 1994.

[9] A. Papoulis. Probability, Random Variables, and Stochastic Processes, Second Edition. McGraw-

Hill, 1984.
[10] A. Reddy and J. Wyllie. I/o issues in a multimedia system. Computer, 2:69{74, March 1994.

[11] C. Ruemmler and J. Wilkes. An intro to disk drive modeling. Computer, 2:17{28, March 1994.

[12] R. Steinmetz. Multimedia �le systems survey: approaches for continuous media disk scheduling.

Computer Communications, pages 133{44, March 1995.

[13] R. Strum and D. Kirk. Signals, Systems and Communication. John Wiley and Sons, Inc., 1965.

[14] F. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming raid-a disk array management system for

video �les. First ACM Conference on Multimedia, August 1993.

[15] P. Yu, M.-S. Chen, and D. Kandlur. Grouped sweeping scheduling for DASD-based multimedia

storage managemen. Multimedia Systems, 1(1):99{109, January 1993.

15

Appendix A: Proof of Theorems

A.1: Proof of Theorem 2

[Proof] The criteria that minimizes VARp(t) for di�erent display rates can be understood

by re-examining Equation 8. However, instead of using the constant segment size S, we �rst

substitute S with Si to re
ect the di�erent display rates, where

Si = DRi � T:

Re-writing Equation 8 we obtain

V ARp(t) =
1

2�2

1X
n=1

(
1

n2
� j

NX
i=1

Si � e�j�inj2) (13)

Isolating the term that contains the adjustable parameters � 0is, we have the optimization ob-

jective simpli�ed to be:

Minimize
1X
n=1

1

n2
� j

NX
i=1

Si � e�j�inj2:

Notice that since Si = DRi�T and T is merely a constant, we can reduce the objective function

to:

Minimize
1X
n=1

1

n2
� j

NX
i=1

DRi � e�j�inj2: (14)

The di�erent display rate case is di�erent from the constant display rate case in two ways:

1. The �rst harmonic component may not be eliminated entirely due to di�erent magnitude

of the vectors on the complex plane. For example, a vector -1 cannot cancel out a vector

2.

2. Minimizing the variance of p(t) does not necessarily minimize the maximum value of the

p(t).

However, minimizing the �rst harmonic component still minimizes the function's variance

due to the dominance of the �rst harmonic component. In addition, minimizing the function's

variance provides an approximation to the optimum in a convenient close form. Therefore we

can state Theorem 2 as following.

Since the �rst harmonic component dominates Expression 14, we can minimize Expression 14

by just minimizing the �rst harmonic component. Substituting n with 1 in the expression we

therefore obtain the theorem. 2

16

