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ABSTRACT
In this paper we present a mechanism for translating infor-
mation in heterogeneous digital library environments. We
model information as a set of conjunctive constraints that are
satisfied by real-world objects (e.g., documents, their meta-
data). Through application of semantic rules and value trans-
formation functions, constraints are mapped into ones under-
stood and supported in another context. Our machinery can
also deal with hierarchically structured information.

KEYWORDS: constraint mapping, data translation, seman-
tic interoperability.

1 INTRODUCTION
Digital libraries often need to interact with autonomous sys-
tems that structure and represent their information differently.
To ensure semantic interoperability [12], information must
be appropriately mapped from its source context to its tar-
get context where it will be used. For example, the condition
[author = "John Smith" ] in a query, may need to be trans-
lated to[name = "Smith, J." ]. Similarly, the component
[date = "Jan 1998" ] in the resulting answer (either meta-
data about a document or the document itself) may have to
be translated to the pair of components[year = 1998] and
[month = "January" ].

For translation purposes we view “information” as a collec-
tion of constraintsof the form[attrib = val] or simply [attrib
val]. If a constraint refers to a document, it indicates a “fact”
about it,i.e., that the attribute or propertyattrib has the value
val. If it refers to a query, then the constraint specifies a
desired fact about matching documents. Our attributes can
be hierarchical,e.g., publication.date.year (i.e., paths). In
general, constraints could have non-equality operators,e.g.,
[date > "Jan 1998" ]. Due to space limitations, we only
consider the equality operator, and therefore do not explicitly
write it. Our work can be generalized to other operators.

In this paper, we interpret a set of constraints as aconjunc-
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Figure 1: Overview of the data translation process.

tion, i.e., the desired or described document satisfies all of
the constraints. This is adequate for describing documents
and vector-space queries (where a query is simply a docu-
ment similar to the desired ones). However, Boolean queries
may include disjunctions,e.g., [author "Smith" ] OR [date
"Jan 1998" ]. In [5] we extend our work to handle arbi-
trary Boolean queries with disjunctions and conjunctions. It
is important to note that translating a set of conjunctive con-
straints into another is not simply a matter of mapping each
constraint separately. In general, the mappings can be many-
to-many. For example, the constraints[car-type "ford-
taurus" ] AND [year 1994] may yield[make "ford" ] AND
[model "taurus-94" ] at the target.

This paper presents a framework and algorithms for infor-
mation translation. The translation is performed byrules.
Intuitively, each rule specifies how one or more source con-
straints are to be transformed into one or more target con-
straints. For translating the values themselves,e.g., "John
Smith" into the first initial and last name strings"J." ,
"Smith," we rely onfunctionsthat can be written in any
programming language. The rules and functions are written
by human experts (e.g., librarians), either for pairs of sources
or pairs of attribute sets (e.g., Dublin Core to USMARC).
Eventually, we expect that libraries of common translation
functions will be available, so the librarian will mainly have
to select functions (with what parameters) to perform the
translation. At run time, queries and documents can then
be translated automatically using the rules provided. Fig. 1
gives an overview of the translation process: The librarians
analyze the source and target contexts (i.e., their schemas),
and define the mapping rules, which then drive the constraint
mapping algorithm to perform data translation.

There are many ways one can go about translating digital
library information (e.g., [1, 2, 3, 8, 14, 15], see Section 5).



We believe that our approach offers the following advantages
over other proposals.
� Because we view information as constraints, our machin-

ery can provide “minimal” translations without explicit
user guidance. For example, if several rules are available
for translating say first, middle and last names of authors,
the one that covers the most constraints will be applied.

� Our framework provides a natural way for dealing with
hierarchically structured documents (including HTML,
SGML). We encode the location of each value into a hi-
erarchical attribute name, and then use the same simple
machinery for translating the value into its appropriate
target location.

� We include several features that have turned out to be
very useful in a digital library environment. For instance,
we provide facilities for dealing with lists of values (e.g.,
for converting a list of authors to a single string contain-
ing all names), and for adding default constraintse.g., if
no author is given, generate[author "anonymous" ].

� Our last “advantage” is subjective, but we believe that our
framework provides the correct balance between simplic-
ity and power needed in a digital library environment. At
one end of the spectrum, we could say that a single func-
tion translates full documents or queries. This is a very
simple framework, but leaves all the work for the func-
tion. At the other end, we could eliminate functions and
do all processing within the translation framework. For
example, to translate a PowerPoint image to a GIF, we
would not call a function, but we would write rules that
specify how each component of the image is translated.
This would require the framework to be as powerful as
a general purpose programming language (including re-
cursion). As we will see, our framework focuses on the
logical mappings between constraints, leaving the pure
procedural transformation ofvaluesto functions. This
makes it easy to both implement and use our framework.

We start by defining the subsuming mapping and other fun-
damental notions for our framework. In Section 3 we develop
the rule system framework and the associated algorithm for
data translation, initially for “flat” data (i.e., those naturally
represented as attribute-value pairs). Section 4 then gener-
alizes the translation framework for hierarchical data (i.e.,
those with nested structures). Finally, in Section 5 we briefly
review and compare the related efforts on data translation to
justify why we advocate our particular approach.

2 PRELIMINARIES

Our universe is a collectionC of informationobjects, each
representing a real world entity of interest (e.g., a book, a
document, a car, a person). We define aquery (or a dis-
criminator) to be a set of conjunctive constraints that se-
lects or identifies one or more objects. For example, the set
Q = fc1, c2g, wherec1 = [lname "Smith" ], andc2 =

[fname "John" ] is a query that selects the qualified objects
(i.e., persons named"Smith, John" ) from our universe
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Figure 2: Conceptual illustration of query mapping.

of objects. To stress the fact thatQ is a conjunction (selected
object must satisfy all constraints), we write it asc1 AND c2,
or asAND(fc1, c2g). An individual object (e.g., a document)
can be represented by the query that uniquely identifies it.

Fig. 2 conceptually illustrates the problem we face. We are
given a queryQ in a source context. This context may limit
how constraints are expressed, semantically or syntactically.
For instance, a context may not support some attributes, or
support them with different attribute names, value formats,
unit, currency,etc. Within the source context,Q can be in-
terpreted and identifies a set of objectshQi that satisfy all the
Q constraints.

Our problem is to transform the information encoded byQ

into another set of constraintsQS that can be interpreted in a
differenttarget context(Fig. 2). In particular, we would like
to have aquery mapping functionS(�) that transforms any
query likeQ into a “good” queryQS for the target context.
What does “good” mean here? First,QS should be inter-
pretable in the target context,e.g., it should use appropriate
attributes and values. Second, the objects selected byQS ,
hQSi, should be a superset ofhQi (we do not want to miss
any objects). For example, consider again the"Smith,
John" query c1 AND c2. Suppose that the target context
does not support thefname attribute, but does support last
names. Then we may have to translate this query intoc1.
This query will identify more objects than the original one,
and is acceptable if there is no other way to identify at the tar-
get a smaller set of objects that includes “Smith, John .”
The latter minimality requirement represents our third con-
dition for a good mapping.

The next definition formalizes these three properties. Note
that the notion of query subsumption is directly related to
query containmentin deductive databases [16] and has been
applied extensively in information integration [17].

Definition 1 (Minimal Subsuming Mapping): Let S(�) be
a mapping on queries of a source systemTs. (We use the no-
tationQS for S(Q)). S(�) is theminimal subsuming mapping
w.r.t. some target systemT , if for any queryQ in Ts,

1. QS is expressible in the context ofT ,

2. QS subsumesQ, i.e., hQi is a subset ofhQSi; hQi �
hQSi,

3. QS is minimal, i.e., there is no queryQ0 such that (i)Q0

satisfies 1 and 2, and (ii)QS subsumesQ0.



A good mappingS(�) cannot simply translate the individual
constraints independently [6], as Example 1 illustrates.

Example 1: Consider again the mapping ofQ = c1AND c2,
wherec1 is [fname "John" ], andc2 is [lname "Smith" ].
Suppose that, corresponding tolname andfname, the target
system supports thename attribute, but requires that at least
the last name component be specified. That is, a name can
be stated as"Smith, John" , or simply"Smith" , if the
first name is not known.

If we assume that the constraints are “independent” and han-
dle them separately, we obtain the following mapping, where
S(c1)=True as no smaller mapping exists when only the first
name is known. Note thatTrue actually means no constraint.

S(Q) = S(c1) AND S(c2)

= True AND [name "Smith" ]

= [name "Smith" ]:

Clearly, the above is not the minimal translation, because the
fname constraint is effectively discarded. In fact, constraints
c1 andc2 are “interrelated” because they collectively decide
the target constraint onname. In other words, by considering
c1 andc2 together, we obtain the minimal translationS(Q) =
[name "Smith, John" ].

As Example 1 illustrates, to obtain the optimal mappings,
the translation framework cannot blindly assume that con-
straints are independent. Unfortunately, there is no auto-
matic way for computers to figure out the interdependence
of constraints; that knowledge must be supplied by human
experts in a computable way. In Section 3 we introduce a
rule system framework for data translation that encodes the
“dependence” of constraints, and that defines how constraints
should be mapped. In Section 4 we extend this rule system
to hierarchical information models (such as SGML).

3 CONJUNCTIVE QUERY MAPPING
Given a constraint setI representing a conjunctive query
AND(I), our goal is to find its minimal subsuming mapping,
S(AND(I)), which is a conjunctive query in the target con-
text. Fig. 3 shows a running example that we use in this
section to illustrate the mapping process. A siteCar main-
tains information on used cars; a second siteAuto would like
to collect data from the first site (and possibly other sites).
Thus, information from the source contextCar must be trans-
lated into theAuto target context. Fig. 3 shows on the left
a particular object as represented byCar. That is, if Icar
represents the constraints on the left of the figure (Icar �

fc1; c2; � � � ; c9g), then the queryAND(Icar ) represents that
object. On the right of Fig. 3 we show the same object as
represented in the target context. IfIauto are the constraints
on the right (Iauto � fa1; a2; � � � ; a8g), then we would like
our mapping to yield the target queryAND(Iauto). That is,
S(AND(Icar )) = AND(Iauto ).

Given a source constraint set, our algorithm first maps in-
dividual constraints as directed by a rule system, and then

Car instanceIcar Auto instanceIauto
[lname "Smith" ] (c1)
[fname "John" ] (c2)
[license "4HQD973" ] (c3)
[price 9000] (c4)
[car-type "ford-taurus" ] (c5)
[year "1994" ] (c6)
[mileage 80000] (c7)
[unit "km" ] (c8)
[color "blue" ] (c9)

[dealer "Ford 101" ] (a1)
[owner "John Smith" ] (a2)
[id "4HQD973" ] (a3)
[price 9000] (a4)
[model "taurus-94" ] (a5)
[make "ford" ] (a6)
[mileage 50000] (a7)
[color-code "bl" ] (a8)

Figure 3: Mapping instance from Car to Auto.

Kcar� fRc:1 , Rc:2 ,Rc:3 ,Rc:4 ,Rc:5 ,Rc:6 , Rc:7g

Rc:1 ) [A1 X]; SimpleMapping (A1) 7! A2 = AttrNameMapping (A1);
emit: [A2 X]

Rc:2 ) [lname L]; [fname F] 7! A = LnFnToName(L,F);
emit: [owner A]

Rc:3 ) [lname L] 7! emit: [owner L]

Rc:4 ) [car-type T] ; [year Y] 7! M = Model (T,Y) ; A = Make(T) ;
emit: [model M] AND [make A]

Rc:5 ) [mileage M1] ; [unit U1] 7! M2 = CvtLengUnit (M1,U1,"mile" )
emit: [mileage M2]

Rc:6 ) [color C] 7! CC = ColorCode (C)
emit: [color-code CC]

Rc:7 ) 7! emit: [dealer "Ford 101" ]

Figure 4: Kcar for mapping Car to Auto.

formulates the mapping of the source query as a whole. The
rule system, called amapping specification, consists of a set
of mapping rules, each specifying the mapping of some con-
straint patterns. For instance, Fig. 4 shows a mapping spec-
ification Kcar for translating instances ofCar to Auto. In
the remainder of this section, we first discuss the rule system
framework, and then the algorithm that uses the rule system
to handle conjunctive queries.

3.1 Mapping Rules
A constraint mapping rule specifies how a source constraint,
or the conjunction of some related source constraints, can be
mapped to the target side. Intuitively, we may think of the op-
eration of a rule for constraint mapping aspattern matching,
similar to that of the rules used in Lex and Yacc. In particu-
lar, a rule specifies somepre-conditionsin its left hand side,
the head, and someactionsin its right hand side, thetail,
as separated by the7! symbol. The pre-conditions state the
source constraints to be matched, and the actions direct how
the corresponding target constraints can be generated.

RuleRc:6 (Fig. 4) states that a source constraint on thecolor
attribute is mapped to a target constraint on thecolor-code
attribute, with the color value replaced with some standard
code. The rule calls upon the functionColorCode () to
look up the color code. Similarly, ruleRc:2 specifies that the
source constraints onfname andlname are translated jointly
by first merging them into a full name, and then formulating
the target constraint onowner.

The head of a rule consists of constraint patterns and condi-
tions to be matched against the source constraints. Acon-



straint patternis a 2-tuple[attrib val], where each component
can be either a constant (of the corresponding domain) or
variable. A source constraintmatchesa pattern if both agree
on the non-variable components. As the result of a matching,
the variables of the pattern is thenboundto the corresponding
constants in the matching constraint. For instance, matching
the pattern[color C] with the constraint[color "blue" ] re-
sults in the binding ofC to the constant"blue."

A conditionis a predicate function that takes bound variables
as arguments, and return eitherTrue or False . Conditions
can be used in the head of a rule, in addition to constraint
patterns, to restrict matchings to only those variable bind-
ings that hold the conditions. For instance, inRc:1 , the con-
dition SimpleMapping (�) tests if the attributeA1 is one
that requires only straightforward name mapping. If so, the
matching constraint will be “copied” with only the attribute
name mapped appropriately. For example, referring to Fig. 3,
license andprice are such “simple” attributes.

The tail (right hand side) of a rule directs, for each set of
matching source constraints, how the corresponding target
constraints can be generated. It consists of two parts: a list
of function statementsand an “emit:” clause, with the former
responsible for converting value formats, attribute mapping,
and so on, and the latter specifying the corresponding target
constraints to be generated.

A function statement is of the form:
Y1, Y2, . . . , Ym = FunctionName (X1, X2, . . . ,Xn);

whereXi’s are input constants or variables that are already
bound in the rule head or the preceding function statements,
and Yj ’s are variables to be bound by the function output.
For instance, functionLnFnToName(�) (in Rc:2 ) takes the
bound variableL andF as its argument, and bindsA as the full
name. Similarly, functionCvtLengUnit (M1,U1,"mile" )
converts lengthM1 from unit U1 to "mile" (i.e., the target
mileage is always specified in miles).

Note that the functions in the tail as well as the conditions
in the head are supplied externally, and in principle can be
written in any programming languages.

As the last component of a rule, theemit: clause specifies
the corresponding target constraints. Note that it can gener-
ate more than one constraint connected withAND. (Recall
that constraint mapping is in general many-to-many.) For in-
stance, ruleRc:4 produces the conjunction of the constraints
on model andmake.

Having described the components of mapping rules, we next
discuss their evaluation and semantics. The evaluation of a
rule, given a set of source constraints as inputs, involves find-
ing matching constraints, from which the target constraints
will be emitted as directed by the rule actions. Moreover, the
semantics of the rule requires that the emitted constraints be
the minimal subsuming mapping of the matching constraints
(except for a special case, see later). In Definition 2 we for-
malize the notion of matchings and emissions. Example 2

then illustrates these notions and uses them to show the rule
semantics, which we will formalize in Definition 3.

Definition 2 (Matchings and Emissions): Let r be a map-
ping rule andI be a set of source constraints.
1. A matching set(or matchingfor short) ofr w.r.t. I is a

subset ofI , of which the constraints together satisfy the
head ofr. We denote the set ofall the matching setsof r
w.r.t. I byM(r, I).

2. Theemissionof r w.r.t. a matchingm, i.e.,m 2M(r, I),
is the query generated by theemit: clause ofr w.r.t. m,
and is denotedE(r, m).

Example 2: Let’s consider the evaluation of the rules inKcar

(Fig. 4) with respect to the source constraint setIcar (Fig. 3).

For Rc:1 , the pattern[A1 X] can match any constraint in
I . Assuming that the functionSimpleMapping (�) returns
True for only license andprice, we obtain two matchings:
fc3g andfc4g, i.e.,M(Rc:1 , I) = ffc3g, fc4gg.

With the matchingfc3g, assumeRc:1 emits the target con-
strainta3, i.e., E(Rc:1 , fc3g) = a3. By definition, this means
S(c3) = a3.

ForRc:2 , M(Rc:2 , I) = ffc1, c2gg, i.e., constraintsc1 and
c2 together form a matching. SinceE(Rc:2 , fc1, c2g) = a2,
we have

S(AND(fc1, c2g)) = S(c1 AND c2) = a2:

Finally, observe that ruleRc:7 does not require any con-
straints to form a matching, because the rule head is empty.
In this case,M(Rc:7 , I) = f?g (the empty set is a match-
ing). Note that the rule will be fired no matter what the source
constraints are. The special case of “empty” matching is use-
ful in making implicit constraints explicit at the target side.
ForRc:7 , even based on no source constraints, the rule still
emits[dealer "Ford 101" ], an implicit constraint that all
Car objects assume.

The next definition tells us that each rule must emit “good”
target constraints, in the sense discussed in Section 2. In
other words, Definition 3 states the requirement for a rule to
be correct. Clearly, as in any other rule systems (or program-
ming in general), it is always possible to give incorrect or
inconsistent rules, in which case best translations cannot be
guaranteed. Furthermore, this notion of goodness does not
apply for empty matchings. For instance, for ruleRc:7 in
Example 2,S(AND(?)) 6= [dealer "Ford 101" ], because
AND(?) � True (i.e., no constraints).

Definition 3 (Rule Semantics): Letr be a mapping rule and
I be a set of source constraints. For any matchingm, s.t.m
2M(r, I)
1. if m 6= ?, thenS( AND(m) ) � E(r, m). That is, the

emission of the ruledefinesthe minimal subsuming map-
ping of the matching constraints.

2. otherwise, ifm = ?, then the emission of the rule repre-
sents the mapping of someimplicit constraintsassumed
at the source system.



3.2 Algorithm for Conjunctive Query Mapping
The conjunctive query mapping problem can be stated as fol-
lows. Given a set of source constraintsI representing a con-
junctive queryAND(I), and a set of rulesK as the constraint
mapping specificationw.r.t. some target systemT , the prob-
lem is to find the minimal subsuming mapping of the source
queryAND(I) w.r.t.T , i.e., S(AND(I)).

The algorithm is relatively straightforward; essentially, the
mapping of the whole query (as a constraint set) is the con-
junction of the mappings of some subsets of the constraints.
We first evaluate the mapping rules with respect to the source
constraints to find the matchings. Note that each matching
is a subset of constraints that are deemed “interrelated” and
thus must be processed together (e.g., constraintsc1 andc2
in Example 2). That is, the mapping rules effectively parti-
tion the source constraint set into subsets of interrelated con-
straints, and define their mappings (as the emissions). The
mappings of those matching subsets are then assembled in a
conjunctive form as the mapping of the whole source query.

However, some matching subsets may be redundant and thus
should be removed. For instance, inKcar (Fig. 4)Rc:2 de-
fines the mapping toowner from both the sourcelname and
fname, whileRc:3 from only thelname constraint. Note that
Rc:3 can be useful to generate a partial name ofowner if
fname is optional and can be omitted in someCar instances.
However, for a source instance with bothlname andfname,
such asIcar , Rc:3 gives a redundant matchingfc1g, be-
cause in this caseRc:2 can generate better mappings (i.e.,
full names) with the “larger” matchingfc1, c2g.

In general, if a matching is a subset of some other match-
ing, we can eliminate the former because, with a larger set of
source constraints, the latter will generate a “smaller” map-
ping. However, when the matching is?, it cannot be elimi-
nated because it actually represents some implicit constraints,
as discussed in Section 3.1. Due to space limitation, we
are not able to discuss the formalism supporting thissub-
matching suppression; please refer to [5] for more details.

Fig. 5 presents the mapping algorithm, which we next illus-
trate with Example 3. Please refer to [5] for the proof that
Algorithm 1 does generate minimal subsuming mappings.

Example 3: To illustrate Algorithm 1 for data mapping, we
use it to translate theCar instanceIcar (Fig. 3). That is, we
run the algorithm with the constraint setIcar and mapping
specificationKcar (Fig. 4) as inputs, and show that it outputs
Iauto as the mapping,i.e., S(AND(Icar )) = AND(Iauto ). We
illustrate the process step by step.

1. A = [(M(Rc:1 , I);M(Rc:2 , I); � � � ;M(Rc:7 , I))
= [ ( ffc3g, fc4gg, ffc1, c2gg, ffc1gg, ffc5, c6gg,

ffc7, c8gg, ffc9gg, f?g )
= f fc3g, fc4g, fc1, c2g, fc1g,

fc5, c6g, fc7, c8g, fc9g,?g

2. fc1g is removed, because it is a subset offc1, c2g.

Input: Let I be a set of constraints, andK be the
constraint mapping specificationw.r.t. a target systemT .

Output: S(AND(I)), the minimal subsuming mapping of
AND(I) w.r.t.T .

Procedure:
(1) Find all the matchings for all the rules inK:

A := [(M(r, I)), for all r 2 K.
(2) Remove any non-empty matching that is a subset of

other matchings (i.e., sub-matching suppression):
for all mi 2 A:

for all mj 2 A (j 6= i):
if mj � mi andmj 6= ?, removemj fromA.

(3) Output the conjunction of all the emissions:
S(AND(I)) = AND(S(AND(mi))) = AND(E(r, mi)),
for all mi 2 A, s.t.mi matchesr, i.e.,mi 2M(r, I).

Figure 5: Algorithm 1 for conjunctive query mapping.

3. S( AND(Icar ) )
= AND( E(Rc:1 , fc3g), E(Rc:1 , fc4g),

E(Rc:2 , fc1, c2g), E(Rc:4 , fc5, c6g), � � � � � �,
E(Rc:7 , f?g)

= AND(a3, a4, a2, a5 AND a6, a7, a8, a1)
= AND(Iauto)

4 HIERARCHICAL DATA TRANSLATION
We have studied the translation machinery for “flat” data
(as sets of attribute-value pairs); in this section we general-
ize the framework for hierarchical (i.e., nested) data models.
While the flat representation of data has been widely used
(e.g., BibTex, Dublin Core [18], and relational databases),
hierarchical structures have also been developed to provide
richer information abstraction. In particular, they have been
used for structured documents (e.g., SGML [9], XML, see
http://www.w3.org/XML ), metadata (e.g., USMARC,
Warwick Framework [13]), semi-structured data (e.g., the
OEM model in [14]), and scientific data [3].

This section is organized as follows. In Section 4.1, we dis-
cuss what we view as hierarchical data by introducing the un-
derlying “conceptual” model as well as our restrictions (e.g.,
we do not handle recursive schemas, see later). We then gen-
eralize the framework for translating data in this model. First,
to base translation on the constraint mapping framework, we
need to extend the notion of constraints for tree-like hierar-
chical data, so that they can be represented as conjunctive
constraints. Second, the evaluation of mapping rules (in par-
ticular, the pattern matching) is slightly complicated because
patterns can match “macro” constraints that represent, say,
subtrees. We discuss them in Sec. 4.2 and 4.3 respectively.

4.1 Conceptual Grammatical Model
As a basis for hierarchical data translation, we conceptu-
ally abstract information objects (e.g., documents, metadata,
etc.) as EBNF (Extended Backus-Naur Form [19]) grammar-
generated trees. Recognizing the fundamental characteristics
of data to be its hierarchical and grammatical structure, many
have used the well-understood concept of formal language
grammars to model data [9, 10]. For instance, in SGML [9]



<ref >
<id > CG98</id >
<tr-no > SIDL-WP-98-01</tr-no >
<title > Connstraint Mapping</title >
<authors >

<name><lname > Chang</lname >
<fname > Kevin</fname ></name>

<name><lname > Garcia-Molina</lname >
<fname > Hector</fname ></name>

< /authors >
<inst > Stanford Univ.</inst >
<date ><month > January</month >

<year > 1998</year ></date >
<kws><term > query translation</term >

<term > data mapping</term ></kws>
< /ref >

(a) Example SGMLRef document.

V = f ref, authors, name, date, kws g
T = f id, tr-no, title, inst, lname, fname, month, year, term g

S = ref
P = f ref ! id tr-no? title authors inst date kws

authors ! name+

name ! lname fname
date ! month year
kws ! term� g

D = all map tostring

(b) Conceptual schemaGref for SGMLRef documents.

id title authors inst date
“CG98” “Constraint ...” “Stanford Univ.”

kws

ref

name[1] name[2]

lname fname lname fname

yearmonth term[1] term[2]

“Chang” “Kevin” “Garcia-Molina” “Hector”

January 1998 “query ...” “data ...”

tr-no
“SIDL- ...”

(c) Example instance treeIref of schemaGref .

Figure 6: Schema and instance for SGML Ref.

(or the evolving XML), documents are defined with a DTD
(document type definition), which is essentially a grammar.
In particular, we adopt and extend the formalism ofgram-
matical model[10] to model hierarchical data.

Definition 4 (Conceptual Grammatical Model):
A conceptual grammatical schemaG is a five-tupleG = (V ,
T , P , S,D):

� (V ,T ,P , S) is a context free grammar in EBNF , of which
V andT are finite sets ofstructural attributesandtermi-
nal attributesrespectively,S a start symbol, S 2 V , and
P a finite set of EBNF production of the formA ! �

whereA 2 V , � is a non-empty regular expression over
the alphabetV [ T .

� D is a mapping onT , s.t.D(A) is a set called the domain
of A, forA 2 T .

An instance(or instance tree) of G is a derivation treeof
G, where the leaves (with terminal attributes) are assigned
valuesfrom the corresponding domains thatD defines.

@TechReport fCG98,
author = "Kevin Chang and

Hector Garcia-Molina",
title = "Constraint Mapping",
institution = "Stanford University",
year = 1998,
month = "Jan",
number = "SIDL-WP-98-01",
keywords = "query translation,

data mapping" g

(a) Example BibTexTechReport entry.

V = f tr g
T = f key, author, title, institution, year, month, number, keywords g
S = tr
P = f tr ! key author title institution

year month? number? keywords?g
D = key: string , author: string , title: string , institution: string ,

year: int , month: string , number: string , keywords: string

(b) Conceptual schemaGtr for BibTexTechReport entries.

key titleauthor institution year
“CG98”“Kevin Chang and ...”“Constraint ...” 1998“Stanford Univ.”

number
“SIDL-...”

keywords
“ query...”

tr

month
“Jan”

(c) Example instance treeItr of schemaGtr .

Figure 7: Schema and instance for Bibtex TechReport.

We illustrate the notions with the running examples in SGML
(Fig. 6) and BibTex (Fig. 7). Specifically, Fig. 6(a) shows an
(assumed) SGML document of typeRef for recording bibli-
ographic reference information. In (b) we illustrate the con-
ceptual schema that defines the logical structure of such doc-
uments. The example document is then represented as an in-
stance tree in (c). Furthermore, Fig. 7 shows the same infor-
mation in the BibTexTechReport format; in particular, it also
shows the corresponding BibTex entry in (a), the conceptual
schema in (b), and the instance tree in (c). We will use these
examples to illustrate the translation process, assuming we
want to translate information fromRef to TechReport. Note
that, in the regular expressions of grammar productions, we
use� for Kleene closure (0 or more times),+ for positive
closure (1 or more times),? for optionality (0 or 1 time), and
j for separating alternatives. For instance,tr-no? in Gref in-
dicates that the attribute is optional.

The iteration constructs in EBNF (" +" and" �" ) provide a
way for specifyinglistsof repeating attributes, which we use
to modelcollections, for instance, a collection ofnames as
the value ofauthors (authors! name+). Note that, to unam-
biguously reference list elements, the repeated occurrences
of an attribute (as generated by the iteration constructs) in
instance trees (e.g., Fig. 6(c)) are ordered and labeled with
the usual list operators,e.g., name[1] for the first element in
thename list. In addition, the notationA[k1:k2] refers to the
sub-list fromk1-th through thek2-th elements. Eitherk1 or
k2 can be omitted and defaulted to1 and the length of the
list, e.g., A[:] refers to the whole list.

We believe the conceptual model is sufficient, for transla-
tion purposes, in describing information objects observing
some implicit or explicit grammatical structures. In partic-



instanceIref = fc1, c2, � � �, c12g
[id "CG98" ] (c1)
[tr-no "SIDL-WP-98-01" ] (c2)
[title "Constraint ..." ] (c3)
[authors.name[1].lname "Chang" ] (c4)
[authors.name[1].fname "Kevin" ] (c5)
[authors.name[2].lname "Garcia-Molina" ] (c6)
[authors.name[2].fname "Hector" ] (c7)
[inst "Stanford Univ." ] (c8)
[date.month "January" ] (c9)
[date.year "1998" ] (c10)
[kws.term[1] "query ..." ] (c11)
[kws.term[2] "data ..." ] (c12)

Figure 8: Iref as a set of terminal constraints.

ular, because a list is by definition an order and duplicate-
sensitive collection, one may argue that we need other con-
structs such asbags(order-insensitive) andsets(order and
duplicate-insensitive). However, it suffices to conceptually
model them as lists,i.e., by assuming some ordering in a
set or bag, because the additional orderings should have no
implication on the translation correctness. For instance, al-
though the schemaGref conceptually representskeywords
as a list of terms (bykeywords! term�), the underlying data
source may actually model it as a set.

Without loss of generality, we assumenormalizedschemas,
which ensure that the generated instance trees have distinct
paths (i.e., no two different paths have the same sequence of
labels). This path uniqueness is critical because (for hier-
archical data) constraints will be specified with paths (Sec-
tion 4.2). Formally, a schema is normalized, if every gram-
mar production has the following characteristics:

1. The iteration operators (� and+) associate only with in-
dividual attributes. For example,A ! (X jY)+ is not al-
lowed; it can be normalized toA ! B+ andB ! X jY.

2. Attributes are unique within a concatenation. For exam-
ple, A ! XYX is not allowed; instead, it can be normal-
ized (by annotation) to, say,A ! X1YX2.

We believe that the restrictions are reasonable for grammars
whose purpose is to describe the logical structures of infor-
mation; most “natural” schemas are already normalized,e.g.,
the schemas of relational databases, BibTex, Dublin Core,
USMARC,etc. In other rare cases of unnormalized schemas,
it is straightforward to normalize them (as informally sug-
gested in the above requirements). The full machinery for
normalizing schemas and their instance trees is given in [4].

Our framework currently does not deal with schemas with re-
cursive grammars,e.g., section! title section, wheresection
derives itself. Although in principle it should be feasible,
supporting grammar recursion would require more “power-
ful” path patterns to represent recursively generated paths,
which will greatly complicate the mechanism. In fact, we be-
lieve that non-recursive schemas cover most practical cases,
for instance, document metadata and structured information.

4.2 Constraints as Path-Value Pairs
While constraints correspond naturally to attribute and value
pairs for flat data, we need to generalize the notion of con-

straints for hierarchical data, which is in turn based on ex-
tending attributes to paths.

Intuitively, a natural generalization is to “flatten” a hierar-
chical structure (e.g., Fig. 6(c)) intopath-valuepairs, each
representing a constraint (e.g., Fig. 8). More formally, we
generalize a constraint to be of the form[P V(P)], whereP is
a pathexpression, andV(P) thevalueassociated withP. We
next discuss what paths are, and their values.

In the simplest case, if a pathP (starting at the root) leads
to a leaf node, thenV(P) is the value assigned to the leaf
node thatP ends with. We call suchP a terminal path,
and [P V(P)] a terminal constraint. For instance, inIref
(Fig. 6) the pathdate.year leads to the value"1998" (i.e.,
V(date.year) = "1998" ), thus representing the constraint
[date.year "1998" ]. Note that, as (for translation) we are
only interested in paths starting from the root, we omit the
root label (e.g., ref) in the paths.

Note that, because each terminal path is unique (as guaran-
teed by normalized schemas [4]), an instance tree can be flat-
tened into (as well as reconstructed from) a set of terminal
constraints, which is a generalization of the constraint set
representation for flat data. Thus, as we have intuitively ob-
served., the constraint set in Fig. 8 is indeed a valid represen-
tation for the instance treeIref in Fig. 6(c).

Furthermore, as the translation is on tree structures, it is de-
sirable to have mapping functions that process some whole
“sub-structures,”e.g., subtrees, or lists of terminal paths. In
other words, we needmacro constraintsto conveniently rep-
resent sets of terminal constraints in the sub-structures. In
the following, we discuss such constraints, which in turn are
based on the notions of structural paths (for subtrees), and
iteration paths (for list construction).

First, to represent a subtree, astructural pathis a path that
ends with some interior node,e.g., in Iref : authors.name[1],
date, keywords, etc. The value of a structural path is the set
of terminal constraints contained in the (sub-)tree rooted at
the path. For example, inIref V(authors.name[1]) is

f[lname "Chang" ]; [fname "Kevin" ]g;

and V(date) is f[month "January" ], [year "1998" ]g.
Formally, the value of a structural pathps w.r.t. an instanceI
is defined asV(ps) =
f[p0 v] j ps.p0 is a terminal path inI, v = V(ps.p0)g:

Second, we use iteration paths to construct lists of (terminal
or structural) paths. Aniteration pathpx is a sequence of
labels,l1.l2.� � �.ln, where someli is of the formai[k1:k2]. For
instance,kws.term[:] denotes the (whole) list of keywords,
and its valueV(kws.term[:])

= h V(kws.term[1]), V(kws.term[2]) i
= h "query � � �" , "data � � �" i,

i.e., a list of terms (we useh� � �i to denote a list).

As another example,authors.name[1:2] represents the list of
subtrees rooted atauthors.name[k], k 2 1:2. Therefore, we
haveV(authors.name[1:2])



= h V(authors.name[1]), V(authors.name[2]) i
= h f[lname "Chang" ], [fname "Kevin" ]g,

f[lname "Garcia- � � �" ], [fname "Hector" ]g i.

Formally, the value of an iteration pathpx is defined recur-
sively as follows. Assumingpx = p1.a[k1:k2].p2, s.t.a[k1:k2]
is the first label with an iteration range,V(px) :=

hV(p1.a[k1].p2);V(p1.a[k1+1].p2); � � � ;V(p1.a[k2].p2)i:

Finally, note that a macro constraint actually represents a set
of terminal constraints. For instance, a constraint specified
with a structural pathps, [ps V(ps)], represents the set of ter-
minal constraints contained in the subtree rooted atps. To see
what terminal constraints are actually covered, as the trans-
lation algorithm requires, we can “flatten” a constraint with
the following operational definition.

Definition 5 (Flattening Function): Let c = [p V(p)] be a
constraint. The flattening functionF (c) returns the set of
terminal constraints contained inc:

1. if p is a terminal path (i.e., c is a terminal constraint), then

F ([p V(p)]) := f[p V(p)]g;

2. otherwise, ifp is a structural path, then

F ([p V(p)]) := f[p.p0 v] j [p0 v] 2 V(p)g;

3. otherwise, ifp is an iteration pathp1.a[k1:k2].p2, where
a[k1:k2] is the first label with an iteration range, then

F ([p V(p)]) :=

k2[

j=k1

F ( [p1.a[j].p2 V(p1.a[j].p2)] )

For example, to find the terminal constraints contained in the
macro constraint with the iteration pathauthor.name[1:2], we
evaluate the flattening function as follows:

F ([author.name[1:2] V(author.name[1:2])])
= [2j=1 F ([author.name[j] V(author.name[j])])
= F( [ author.name[1]

f[lname "Chang" ]; [fname "Kevin" ]g ] ) [
F( [ author.name[2]

f[lname "Garcia- � � �" ]; [fname "Hector" ]g ])
= f [author.name[1].lname "Chang" ],

[author.name[1].fname "Kevin" ] g [ f � � � g
= f c4; c5 g [ f c6; c7 g = f c4; c5; c6; c7 g

4.3 Constraint Mapping for Hierarchical Data
With the notion of constraints, we can translate hierarchi-
cal data using the constraint mapping machinery discussed
in Section 3. Specifically, in our example of translatingRef
(Fig. 6) to TechReport (Fig. 7), to apply Algorithm 1, the
input will be a source instance tree (e.g., Iref in Fig. 6(c)),
and a mapping specification consisting of rules (e.g., Kref

in Fig. 9) that directs translation to the target context. Note
that the source instance tree conceptually represents a set of
terminal constraints, as the algorithm requires (e.g., Iref =
fc1, c2, � � �, c12g in Fig. 8). However, it is not necessary to
actually “materialize” the constraint set representation; the
matching and evaluation of rules can be done directly on the

Kref� fRr:1 ,Rr:2 , Rr:3 ,Rr:4 , Rr:5g

Rr:1 ) [A1 X] ; SimpleMapping (A1) 7! A2 = AttrNameMapping (A1) ;
emit: [A2 X]

Rr:2 ) [authors.name[:] L] 7! S = ConsolidateNames (L) ;
emit: [author S]

Rr:3 ) [date D] 7! M, Y = MonthYear (D) ;
emit: [month M] AND [year Y]

Rr:4 ) [kws.term[1:K2] L] ; K2 <= 3 7! S = MergeString (L) ;
emit: [keywords S]

Rr:5 ) NoConstraint ([tr-no N]) 7!
emit: [number "to be assigned" ]

Figure 9: Kref for mapping Ref to TechReport.

tree representation. As its output, the algorithm generates
conjunctive constraints that represent the target instance tree
(e.g., Itr in Fig. 7(c)).

The evaluation and semantics of mapping rules are essen-
tially the same as discussed in Section 3, although the match-
ing of constraint patterns is slightly more complex. In par-
ticular, a pattern can represent a macro constraint and thus
match a set of terminal constraints, while in Section 3 a pat-
tern can match only a single attribute-value pair. To see how
data translation works, we next explain the evaluation of the
rules inKref with respect to the source instanceIref , which
will generateItr as the translation.

For instance, the ruleRr:3 in Kref converts the sourcedate
(subtree) into the targetmonth andyear. GivenIref , the eval-
uation will consider all the paths (that start from the root),
and find thatdate is a matching path for the pattern[date
D]. That is, the pattern matches the macro constraint[date
V(date)] (denotedCd), resulting in bindingD to V(date),
which is f[month "January" ], [year "1998" ]g. Note
thatCd is a macro constraint representing the set of termi-
nal constraintsF (Cd) = fc9, c10g, thusM(Rr:3 , Iref ) =

ffc9; c10gg. The functionMonthYear (�) then takesD as
input, in whatever data structure (appropriate for the func-
tion’s programming language) encoding the value ofD, and
returns themonth and year values. Finally, the rule emits
E(Rr:3 , fc9, c10g) = [month "January" ] AND [year 1998]
as the target constraints.

In general, a constraint pattern in mapping rules is of the form
[P X], whereP is a parameterized pathandX is a variable
or constant representingV(P). A parameterized pathP is a
path expression that may contain variables to be assigned
values such thatP matches a path in the source instance.
For example, let’s considerRr:1 , which handles those “sim-
ple” translations that require only attribute name mapping.
In particular,A1 is a parameterized path that can match any
path inIref consisting of a single attribute (such asid, tr-no,
title, authors, etc.), andX will be bound to whateverV(A1)
is. Further restricted by conditionSimpleMapping (A1),
which we assume returnsTrue for the “simple” attributesid,
tr-no, title, andinst, the matchings are thusM(Rr:1 , Iref ) =
ffc1g; fc2g; fc3g; fc8gg. ThenRr:1 emits the mapping for
each matching,e.g., E(Rr:1 , fc1g) = [key "CG98" ].



A parameterized path can also contain variables that repre-
sent integers in the index ranges of an iteration path,e.g.,
kws.term[1:K2] in ruleRr:4 . Note that the rule emits the tar-
getkeywords from at most the first3 sourceterms (assuming
the target context imposes this restriction). In evaluation, be-
cause the listkws.term[:] is of length2 in Iref , only the bind-
ings ofK2 to either1 or 2 will result in valid (iteration) paths
representing sub-lists. Furthermore, the binding ofK2 = 1

represents the matching
F([kws.term[1:1] V(kws.term[1:1])]) = fc11g;

while that ofK2 = 2

F([kws.term[1:2] V(kws.term[1:2])]) = fc11; c12g:

(This example does not have the matchings ofK2 = 3 and
above.) Therefore, the former “sub-matching” will be sup-
pressed by the latter (step 2, Algorithm 1). This suppres-
sion mechanism and the conditionK2 <= 3 will select the
“largest” matching within the restriction. Thus,K2 = 2, L
is bound to the listh"query � � �" ; "data � � �" i, and the
target constraint is[keywords "query � � �, data � � �" ].

As another example of iteration paths, ruleRr:2 emits the
author constraint. The expressionauthors.name[:] matches
the whole list (i.e., authors.name[1:2]), resulting in the bind-
ing of L to V(authors.name[1:2]) (given in Section 4.2). The
function ConsolidateNames (L) then merges the names
in the required target format.

Finally, ruleRr:5 shows the special case of empty match-
ings to emit “default” constraints (see Definition 3), which
is similar toRc:7 (Fig. 4) and is not specific to hierarchical
data. Note that a sourceRef instance may not have thetr-no
constraint (which is optional inGref , Fig. 6). The condition
NoConstraint ([tr-no N]) checks if the pattern (in which
N is simply a dummy variable) does not find any matching
in the source tree. If so, the rule emits the default constraint
[tr-no "to be assigned" ]. Otherwise, the transaltion of
tr-no will be handled byRr:1 instead, as we just discussed.

5 Related Work
Information integration has long been recognized as a cen-
tral problem of modern information systems [12, 17]. In this
paper we have presented our data translation framework with
the goal of coping with semantic or schematic inconsistency
in data exchange.

Fully automatic semantic integration is extremely difficult,
if not impossible [12]. Thus, most related efforts advocate,
like we do, using human-specified translation rules. Most
prominently, some systems [1, 14] use variations of data-
log rules [16], and some others use the semantic rules of
attribute grammars [8]. In addition, there are also systems
using special-purpose query languages [2, 3] for transforma-
tion. The common idea behind all these approaches is that a
rule essentially specifies how target “patterns” are to be gen-
erated from matching source “patterns.”

Our work differs from other rule translation efforts in its
data representations and its supporting theoretic framework,

which in turn impact how mapping rules are specified and
evaluated. In particular, while we abstract information ob-
jects as “flattened” sets of constraints, other systems perform
translation directly on object structures (trees or graphs). Fur-
thermore, viewing information as constraints, we address the
data translation problem with the theoretic framework of con-
junctive query mapping, and specifically using the notion of
query subsumption. To the best of our knowledge, no other
existing work uses these notions for data translation. We be-
lieve that our approach leads to the following advantages:

� Simple Rules.Because of our unique data representation,
our rules use patterns for constraints, instead ofobject
patternsthat match the object layouts (e.g., in [1, 2, 3,
8, 14]). Consequently, our rules are more modular and
declarative; independent constraints are separated into
different rules, each declaring a correspondence between
some source and target constraints. (We could call this a
“divide and conquer” approach.) In contrast, with object
patterns, rules must be composed in a way that mirror the
structure of objects. In fact, object rules are typically not
independent of each other, because they together direct
the bottom-up (or top-down) construction of target struc-
tures, in a more procedural fashion.

� Minimal Translations. Since we model information as
queries, we can generate minimal translations that use
the most source constraints, when there are multiple op-
tions (as supported by sub-matching suppression, Sec-
tion 3). In contrast, in other systems, first, it is cum-
bersome to enumerate all such options in object patterns
(e.g., the combination of the absence or presence of some
attributes with respect to the whole layout). Second, it
would then require an additional mechanism,e.g., rule
ordering, to resolve the multiple choices, which intro-
duces more complications.

� Duality of Data and Queries.Although in this paper we
mainly focused on data translation, our same mechanism
can be used for the translation of arbitrary user queries
as well [5]. This unification can be very beneficial in the
integration of heterogeneous digital libraries that support
Boolean query languages.

Some data translation proposals do not rely on rules, as we
do, but instead rely on explicit metadata that encodes the
context for automated mediation. For instance, the COIN
framework [15] uses thesemantic-valuemodel, where each
attribute is annotated with apropertylist that defines its con-
text (e.g., unit = "usd" for attributerevenue). This approach
assumes one-to-one mappings and thus cannot handle the
general case of many-to-many mappings for interrelated at-
tributes. In addition, it only deals with attribute “value” con-
version, and is not applicable to hierarchical data. Lastly, it
relies on implicit agreement on what the properties for dif-
ferent attributes are, as well as what conversion functions are
applicable for translation.

We did not discuss how to extract constraints (attribute-value
pairs) from information objects. For structured objects this



can be done simply by parsing. In other cases, pattern-based
extraction may be used, as illustrated in [11].

Finally, we note that the framework described in this paper
is closely related to and complements our earlier work on
query translation for Boolean IR systems [6, 7]. In particu-
lar, in [6] we discussed the theoretic framework for optimal
query mapping; however, it assumes that constraints are in-
dependent in translation (see Section 2). The framework in
this paper does consider the dependence. Furthermore, our
earlier work does not incorporate the ability to call arbitrary
functions to translate values, nor does it deal with hierarchi-
cal attributes. Actually, we can view the algorithms of [7] as
providing translation functions for the particular case of “text
search” constraints (e.g., ones that search for words near oth-
ers, or words matching wildcards).

6 CONCLUSION
Autonomous information systems often structure and repre-
sent their information inconsistently in a heterogeneous en-
vironment. To ensure semantic interoperability, information
must be mapped appropriately when exchanged across in-
teracting contexts. In this paper, we have presented a rule-
system framework for information translation. We view in-
formation as a set of conjunctive constraints that identify the
represented object(s). Consequently, our machinery provides
“minimal” translation, as guaranteed by the supporting query
mapping formalism [5].

We have also shown how to generalize the constraint map-
ping framework for hierarchical data, such as SGML or XML
documents. The generalization is based on extending at-
tributes to paths in trees, thus flattening the hierarchy into
a set of path-value pairs. In addition, we have also presented
macro constraints that can be used to process a whole sub-
structure in the trees,e.g., a subtree, or a list of children.

Although our translation rules are modular and declarative,
it may still be a tedious task to develop mapping specifica-
tions like the ones in Figures 4 and 9. Therefore, it may be
useful to develop an interactive graphical interface, where a
librarian can browse through metadata specifications for the
source and target contexts, and through libraries of available
value transformation functions. Through this front-end sys-
tem the librarian can generate the specifications by selecting
options on the screen, as opposed to writing text as shown
in our figures. We believe that such a front-end design sys-
tem can significantly enhance the effective data translation
machinery we have developed.
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