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ABSTRACT —— -
In this paper we present a mechanism for translating infor- A schems
mation in heterogeneous digital library environments. We
model information as a set of conjunctive constraints that are Crggggﬁigt
satisfied by real-world object®.g, documents, their meta- specification
data). Through application of semantic rules and value trans- (input info. object) iyl (output info. object)
formation functions, constraints are mapped into ones under- _} AN
stood and supported in another context. Our machinery can constraint s¢ mapping gonstraint se

also deal with hierarchically structured information.

. . . Figure 1: Overview of the data translation process.
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tic interoperability. tion, i.e, thg desireq or described documen't ;atisfies all of
the constraints. This is adequate for describing documents
1 INTRODUCTION and vector-space queries (where a query is simply a docu-

Digital libraries often need to interact with autonomous sys- ment similar to the desired ones). However, Boolean queries
tems that structure and represent their information differently. may include disjunction®.g, [author "Smith" ] OR [date

To ensure semantic interoperability [12], information must "Jan 1998" 1. In [5] we extend our work to handle arbi-

be appropriately mapped from its source context to its tar- trary Boolean queries with disjunctions and conjunctions. It
get context where it will be used. For example, the condition is important to note that translating a set of conjunctive con-
[author ="John Smith" ]inaquery, may needtobetrans- straints into another is not simply a matter of mapping each
lated tojname ="Smith, J." ]. Similarly, the component  constraint separately. In general, the mappings can be many-
[date ="Jan 1998" ]in the resulting answer (either meta- to-many. For example, the constraintsar-type "ford-

data about a document or the document itself) may have totaurus" ]AND [year 1994 may yield[make “ford" ] AND

be translated to the pair of componefysar = 1998 and [model "taurus-94" ] at the target.

th ="January” 1. . : .
[mon vary” 1 This paper presents a framework and algorithms for infor-

For translation purposes we view “information” as a collec- mation translation. The translation is performedrnjes

tion of constraintsof the form{[attrib = val] or simply [attrib Intuitively, each rule specifies how one or more source con-
val]. If a constraint refers to a document, it indicates a “fact” straints are to be transformed into one or more target con-
aboutit,i.e, that the attribute or propertyttrib has the value  straints. For translating the values themseleeg, "John

val. If it refers to a query, then the constraint specifies a Smith" into the first initial and last name stringd." |,
desired fact about matching documents. Our attributes can"Smith,”  we rely onfunctionsthat can be written in any
be hierarchicalge.g, publication.date.year (i.e., paths). In programming language. The rules and functions are written
general, constraints could have non-equality operatogs, by human expert®(g, librarians), either for pairs of sources
[date > "Jan 1998" ]. Due to space limitations, we only  or pairs of attribute setse(g, Dublin Core to USMARC).
consider the equality operator, and therefore do not explicitly Eventually, we expect that libraries of common translation
write it. Our work can be generalized to other operators. functions will be available, so the librarian will mainly have
to select functions (with what parameters) to perform the
translation. At run time, queries and documents can then
be translated automatically using the rules provided. Fig. 1
gives an overview of the translation process: The librarians
analyze the source and target contexss,(their schemas),
and define the mapping rules, which then drive the constraint
mapping algorithm to perform data translation.

In this paper, we interpret a set of constraints asm@junc-

There are many ways one can go about translating digital
library information €.g, [1, 2, 3, 8, 14, 15], see Section 5).



source context ) target context
query mapping
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We believe that our approach offers the following advantages
over other proposals.

e Because we view information as constraints, our machin-
ery can provide “minimal” translations without explicit
user guidance. For example, if several rules are available
for translating say first, middle and last names of authors,
the one that covers the most constraints will be applied.

e Our framework provides a natural way for dealing with
hierarchically structured documents (including HTML,
SGML). We encode the location of each value into a hi-  Figure 2: Conceptual illustration of query mapping.

erarchical attribute name, and then use the same simplegf objects. To stress the fact th@tis a conjunction (selected
machinery for translating the value into its appropriate object must satisfy all constraints), we write it@SAND c»,
target location. or asAND({cy, c2 }). An individual object .9, a document)

e We include several features that have turned out to be can be represented by the query that uniquely identifies it.
very useful in a digital library environment. For instance,

we provide facilities for dealing with lists of values.(, Fig. 2 conceptually illustrates the problem we face. We are
for converting a list of authors to a single string contain- 9IVen & queng) in asource contextThis context may limit

ing all names), and for adding default constraim, if how constraints are expressed, semantically or syntactically.
no author is given, generauthor "anonymous” 1. For instance, a context may not support some attributes, or

« Ourlast “advantage” is subjective, but we believe that our support them with different attribute names, value formats,

framework provides the correct balance between simplic- Unit: currencyetc. Within the source context) can be in-
ity and power needed in a digital library environment. At terpreted and identifies a set of obje@@} that satisfy all the

one end of the spectrum, we could say that a single func- ¢ constraints.

tion translates full documents or qUerieS. Thisis a very Our prob'em is to transform the information encoded@y
simple framework, but leaves all the work for the func- jnto another set of constrainfs® that can be interpreted in a
tion. At the other end, we could eliminate functions and differenttarget ContextFig_ 2) In particu|ar’ we would like
do all processing within the translation framework. For g have aquery mapping functio(-) that transforms any
eXampIe, to translate a PowerPoint image to a GIF, we query ||keQ into a “good" querws for the target context.
would not call a fUnCtion, but we would write rules that What does “good” mean here? Fir@,s should be inter-
specify how each component of the image is translated. pretaple in the target context,g, it should use appropriate
This would require the framework to be as powerful as attributes and values. Second, the objects selecte@hy

a general purpose programming language (including re- (S, should be a superset ¢f) (we do not want to miss
cursion). As we will see, our framework focuses on the any objects). For example, consider again tBenith,
logical mappings between constraints, leaving the pure john" queryc; AND ¢». Suppose that the target context
procedural transformation ofaluesto functions. This does not support thimame attribute, but does support last
makes it easy to both implement and use our framework. names. Then we may have to translate this query éto
This query will identify more objects than the original one,
and is acceptable if there is no other way to identify at the tar-
rgeta smaller set of objects that includ&siith, John "
The latter minimality requirement represents our third con-
dition for a good mapping.

We start by defining the subsuming mapping and other fun-
damental notions for our framework. In Section 3 we develop
the rule system framework and the associated algorithm fo
data translation, initially for “flat” datai.g., those naturally

represented as attribute-value pairs). Section 4 then gener

alizes the translation framework for hierarchical date.(  The next definition formalizes these three properties. Note
those with nested structures). Finally, in Section 5 we briefly that the notion of query subsumption is directly related to
review and Compare the related efforts on data translation thuery Containmen'n deductive databases [16] and has been
justify why we advocate our particular approach. applied extensively in information integration [17].

2 PRELIMINARIES Definitic_m 1 (Minimal Subsuming Mapping): Let S(-) be
a mapping on queries of a source systEm(We use the no-

Our universe is a collectiof of informationobjects each tationQ* for S(Q)). S(-) is theminimal subsuming mapping

representing a real world entity of interegtq, a book, a w.r.t. some target systeffi, if for any queryQ in T,

dchment, a car, a person). We d_efinquaary((_)r a dis- 1. Q° is expressible in the context @,

criminator) to be a set of conjunctive constraints that se- s i ) s\,

lects or identifies one or more objects. For example, the set 2+ @ Ssubsume:ﬁ), i.e., (@) is a subset of@”); (@) C

Q = {c1, c2}, wherec; = [Iname "Smith" ], andc, = Q@)

[fname "John" ] is a query that selects the qualified objects 3. Q° is minimal i.e., there is no query)’ such that (i)}Q’

(i.e., persons nametbmith, John" ) from our universe satisfies 1 and 2, and (i) subsumes)’. [



A good mappingS(-) cannot simply translate the individual Car instancel,, Auto instancel,uz,
constraints independently [6], as Example 1 illustrates. [Iname "Smith" ] (1) | [dealer "Ford 101" ] (a1)

[fname "John" ] (c2) | [owner "John Smith" ] (a2)
Example 1: Consider again the mapping @f = c; AND cs, [license "AHQD973" ] (c3) | [id "AHQDI973"] (as)
wherec, is [fname "John" ], andc; is [Iname "Smith" ]. [price 900Q . (ca) | [price 900Q . (a4)
Suppose that, correspondingitame andfname, the target %;::’,’.‘ngﬂd]'taums J 225; mgiee',,fgarg,r.us']% ] EZE’;
system supports theame attribute, but requires that at least [mileage 8000Q (Ci) [mileage 5000Q (ai)
the last name component be specified. That is, a name can [ynit "km" | (cs) | [color-code "bI" ] (as)
be stated asSmith, John" , or simply"Smith" , if the [color "blue" ] (o)

first name is not known. Figure 3: Mapping instance from Car to Auto.

If we assume that the constraints are “independent” and han-

dle them separately, we obtain the following mapping, where Kear={Re.1, Re.2, Re3, Reyy Resy Re.gy Rer}
S(c1)=True as no smaller mapping exists when only the first , _ ,
. . Re.1) [ALX]; SimpleMapping (A1) — A2 = AttrNameMapping (Al);
name is known. Note thdfrue actually means no constraint. emit [A2 X]
S(Q) — S(cl) AND 8(02) Rec.2) [Iname L]; [fname F] — A = LnFnToName(L,F);
e emit [owner A]
= True AND [name Smith ] Re.3) [Iname L] — emit [owner L]
= [name "Smith" 1. Re.4) [car-type T] ; [year Y] — M = Model (T,Y) ; A = Make(T) ;

emit [model M] AND [make A]

Clearly, the above is not the minimal translation, because the |z, ;) [mileage M1] ; [unit U1] — M2 = CvtLengUnit  (M1,UL,"mile" )
fname constraint is effectively discarded. In fact, constraints emit [mileage M2]

c; andes are “interrelated” because they collectively decide |Re.s) [color C] = CC = ColorCode (C)

the target constraint amme. In other words, by considering _ emit [color-code CC]

¢, andc, together, we obtain the minimal translati§(Q) = Re.7) = emit [dealer "Ford 101" ]

[name "Smith, John" ]. L] Figure 4: K_,, for mapping Car to Auto.

As Example 1 illustrates, to obtain the optimal mappings, formulates the mapping of the source query as a whole. The
the translation framework cannot blindly assume that con- ryje system, called mapping specificatiarconsists of a set
straints are independent. Unfortunately, there is no auto- of mapping ruleseach specifying the mapping of some con-
matic way for computers to figure out the interdependence giraint patterns. For instance, Fig. 4 shows a mapping spec-
of const_raints; that knowledge must b(_a supplieo_l by human jfication K.,, for translating instances afar to Auto. In
experts in a computable way. In Section 3 we introduce a the remainder of this section, we first discuss the rule system

rule system framework for data translation that encodes the-framework, and then the algorithm that uses the rule system
“dependence” of constraints, and that defines how constraints;g nandle conjunctive queries.

should be mapped. In Section 4 we extend this rule system

to hierarchical information models (such as SGML). 3.1 Mapping Rules

A constraint mapping rule specifies how a source constraint,
or the conjunction of some related source constraints, can be
mapped to the target side. Intuitively, we may think of the op-
eration of a rule for constraint mapping pattern matching
similar to that of the rules used in Lex and Yacc. In particu-
lar, a rule specifies sonpre-conditiondn its left hand side,

the head and someactionsin its right hand side, théail,

as separated by the symbol. The pre-conditions state the
source constraints to be matched, and the actions direct how
the corresponding target constraints can be generated.

3 CONJUNCTIVE QUERY MAPPING

Given a constraint sef representing a conjunctive query
AND([), our goal is to find its minimal subsuming mapping,
S(AND(I)), which is a conjunctive query in the target con-
text. Fig. 3 shows a running example that we use in this
section to illustrate the mapping process. A site main-
tains information on used cars; a second &it® would like

to collect data from the first site (and possibly other sites).
Thus, information from the source cont&dr must be trans-
lated into theAuto target context. Fig. 3 shows on the left

a particular object as represented @ygr. That is, if I ., RuleR. s (Fig. 4) states that a source constraint ondsier
represents the constraints on the left of the figurg. (= attribute is mapped to a target constraint on ¢hler-code
{c1,¢2,+-+,c9}), then the quenAaND(Z,,,) represents that  attribute, with the color value replaced with some standard

object. On the right of Fig. 3 we show the same object as code. The rule calls upon the functi@olorCode () to
represented in the target context.|f;, are the constraints  look up the color code. Similarly, rulg. . specifies that the

on the right (4uto = {ai1,a2,---,ag}), then we would like source constraints dname andiname are translated jointly
our mapping to yield the target queAND(I,.:,). That is, by first merging them into a full name, and then formulating
S(AND(I,4r)) = AND(Iyu10)- the target constraint aswner.

Given a source constraint set, our algorithm first maps in- The head of a rule consists of constraint patterns and condi-
dividual constraints as directed by a rule system, and thentions to be matched against the source constraintsom



straint patternis a 2-tupldattrib val], where each component then illustrates these notions and uses them to show the rule
can be either a constant (of the corresponding domain) orsemantics, which we will formalize in Definition 3.

variable A source constrainhatches pattern if both agree

on the non-variable components. As the result of a matching,
the variables of the pattern is theaundto the corresponding
constants in the matching constraint. For instance, matching
the patterfcolor C] with the constrainfcolor "blue" 1] re-
sults in the binding o€ to the constantblue.”

Definition 2 (Matchings and Emissions): Let » be a map-

ping rule andl be a set of source constraints.

1. A matching setor matchingfor short) ofr w.r.t. I is a
subset off, of which the constraints together satisfy the
head ofr. We denote the set @fll the matching setef r
w.r.t. I by M(r, I).

A conditionis a predicate function that takes bound variables 2. Theemissiorof r w.r.t. a matchingn, i.e., m € M(r, I),

as arguments, and return eithBrue or False. Conditions is the query generated by tleenit clause ofr w.rt. m,

can be used in the head of a rule, in addition to constraint  and is denoted(r, m). n

patterns, to restrict matchings to only those variable bind-

ings that hold the conditions. For instancefn ;, the con-
dition SimpleMapping (-) tests if the attributeAl is one
that requires only straightforward name mapping. If so, the For R..;, the patternAl X] can match any constraint in
matching constraint will be “copied” with only the attribute I, Assuming that the functioBimpleMapping (-) returns
name mapped appropriately. For example, referring to Fig. 3, True for only license and price, we obtain two matchings:
license andprice are such “simple” attributes. {cs} and{cq}, i, M(Rc.1, I) ={{c3}, {ca}}.

Example 2: Let's consider the evaluation of the rulein,,
(Fig. 4) with respect to the source constraintkgt (Fig. 3).

The tail (right hand side) of a rule directs, for each set of With the matching{c;}, assumeR..; emits the target con-
matching source constraints, how the corresponding targetstraintas, i.e., £(R..;, {c3}) = a3. By definition, this means
constraints can be generated. It consists of two parts: a listS(c3) = as.

of function statementsnd an €mit” clause, with the former
responsible for converting value formats, attribute mapping,
and so on, and the latter specifying the corresponding target®

ForRc.e, M(Rc.2, I) = {{c1, c2}}, i.e, constraints:;; and
» together form a matching. SIN€&R..z, {c1, c2}) = as,

constraints to be generated. we have
S(AND({c1, c2})) = S(c1 AND c3) = as.
A function statemgnt is of_the form: Finally, observe that Ui, , does not require any con-
Yi, Y2, ..., Yo = FUNCUONNGME (X1, Xz, .., Xn), straints to form a matching, because the rule head is empty.

whereX;'s are input constants or variables that are already |, this case M(R.., I) = {@} (the empty set is a match-
bound in the rule head or the preceding function statements,jng) Note that the rule will be fired no matter what the source
andY;’s are variables to be bound by the function output. constraints are. The special case of “empty” matching is use-
For instance, functiohnFnToName() (in R. ») takes the | in making implicit constraints explicit at the target side.
bound variablé andF as its argument, and bindsas the full ForR..», even based on no source constraints, the rule still

name. Similarly, functioi€vtLengUnit  (M1,U1,"mile” ) emits[dealer "Ford 101" ], an implicit constraint that all
converts lengttM1 from unitUl to "mile"  (i.e, the target Car objects assume.

mileage is always specified in miles).

. . . . The next definition tells us that each rule must emit “good”
Note that the functions in the tail as well as the conditions target constraints, in the sense discussed in Section 2. |

in the head are supplied externally, and in principle can be
written in any programming languages.

n
other words, Definition 3 states the requirement for a rule to
be correct. Clearly, as in any other rule systems (or program-

As the last component of a rule, tieenit clause specifies ~Ming in general), it is always possible to give incorrect or
the corresponding target constraints. Note that it can gener_inconsistent rules, in which case best translations cannot be
ate more than one constraint connected WND. (Recall guaranteed. Furthermore, this notion of goodness does not
that constraint mapping is in general many-to-many.) For in- @Pply for empty matchings. For instance, for rie.- in

stance, ruleR..; produces the conjunction of the constraints Example 2,5(AND(2)) # [dealer "Ford 101" ], because
onmodel andmake. AND(@) = True (i.e., no constraints).

Having described the components of mapping rules, we nextP€finition 3 (Rule Semantics): Letr be amapping rule and
discuss their evaluation and semantics. The evaluation of al P& @ Set of source constraints. For any matching.t.m
rule, given a set of source constraints as inputs, involves find- € M(r’ 1) .

ing matching constraints, from which the target constraints 1- If m # @, thenS(AND(m) ) = £(r, m). That s, the
will be emitted as directed by the rule actions. Moreover, the ~ €Mmission of the ruleefineshe minimal subsuming map-
semantics of the rule requires that the emitted constraints be  PIng of the matching constraints.

the minimal subsuming mapping of the matching constraints 2- Otherwise, iim = &, then the emission of the rule repre-
(except for a special case, see later). In Definition 2 we for-  Sents the mapping of sonplicit constraintsassumed
malize the notion of matchings and emissions. Example 2  atthe source system. m



3.2 Algorithm for Conjunctive Query Mapping

The conjunctive query mapping problem can be stated as fol-
lows. Given a set of source constraitsepresenting a con-
junctive queryAND(Z), and a set of rule& as the constraint
mapping specification.r.t. some target systeffi, the prob-

lem is to find the minimal subsuming mapping of the source
queryAND(I) w.r.t. T', i.e., S(AND(I)).

The algorithm is relatively straightforward; essentially, the
mapping of the whole query (as a constraint set) is the con-
junction of the mappings of some subsets of the constraints.
We first evaluate the mapping rules with respect to the source
constraints to find the matchings. Note that each matching
is a subset of constraints that are deemed “interrelated” and
thus must be processed togetheg( constraints:; andcs

in Example 2). That is, the mapping rules effectively parti-

Input: Let I be a set of constraints, arfd be the
constraint mapping specificationr.t. a target systerf'.
Output: S(AND(Z)), the minimal subsuming mapping of
AND(I) w.rt. T.
Procedure:
() Find all the matchings for all the rules :
A:=UWM(r, I)),forallr € K.
(2) Remove any non-empty matching that is a subset
other matchingsife., sub-matching suppression):
forall m; € A:
forallm; € A (j #1):
if m; C m; andm; # &, removem; from A.
(3) Output the conjunction of all the emissions:
S(AND(I)) = AND(S(AND(m;))) = AND(E(r, m;)),
forall m; € A, s.t.m; matches, i.e.,m; € M(r, I).

of

Figure 5: Algorithm 1 for conjunctive query mapping.

tion the source constraint set into subsets of interrelated con-

straints, and define their mappings (as the emissions). The3.

mappings of those matching subsets are then assembled in
conjunctive form as the mapping of the whole source query.

However, some matching subsets may be redundant and thus

should be removed. For instance,fif,, (Fig. 4) R..» de-
fines the mapping towner from both the sourcthame and
fname, while R s from only thelname constraint. Note that
R..s can be useful to generate a partial namewher if
fname is optional and can be omitted in som@er instances.
However, for a source instance with batlame andfname,
such asl;., R..s gives a redundant matching; }, be-
cause in this cas®. . can generate better mappinge(
full names) with the “larger” matchingc, c2 }.

In general, if a matching is a subset of some other match-

ing, we can eliminate the former because, with a larger set of

source constraints, the latter will generate a “smaller” map-
ping. However, when the matching#s it cannot be elimi-

nated because it actually represents some implicit constraints

as discussed in Section 3.1. Due to space limitation, we
are not able to discuss the formalism supporting thib-
matching suppressigplease refer to [5] for more details.

Fig. 5 presents the mapping algorithm, which we next illus-
trate with Example 3. Please refer to [5] for the proof that
Algorithm 1 does generate minimal subsuming mappings.

Example 3: To illustrate Algorithm 1 for data mapping, we
use it to translate thear instancel,.,, (Fig. 3). That is, we
run the algorithm with the constraint s&f,,, and mapping
specificationk.,, (Fig. 4) as inputs, and show that it outputs
I, @s the mapping,e., S(AND(I;4,-)) = AND(Zpys0). We
illustrate the process step by step.
L. A=UMMRes, Dy MRe.2, I),--- ,MRc.7, 1))
= U({{es} {ea}}, {{er, 2} {{ea} ) {{es, ca} )
{{er, esb} {{eo}}. {2})
={{es} {ea} {er, 2}, {an },
{cs, c6} {cr. cs} {eo}, @}

2. {c1 } isremoved, because itis a subse{ef, c2}.

S(AND(I¢qr) )

a = AND(E(Re.1, {03}), EMRe.1, {04}),
E(Rc.Qa {Cl, 02}), E(RC_4, {05, cﬁ}), ...... ,
g(Rc.’h {Q})

= AND(as, a4, a2, as AND ag, a7, ag, a1)

= AND(L,uto)

4 HIERARCHICAL DATA TRANSLATION

We have studied the translation machinery for “flat” data
(as sets of attribute-value pairs); in this section we general-
ize the framework for hierarchical¢., nested) data models.
While the flat representation of data has been widely used
(e.g, BibTex, Dublin Core [18], and relational databases),
hierarchical structures have also been developed to provide
richer information abstraction. In particular, they have been
used for structured documents.g, SGML [9], XML, see
http://www.w3.org/ XML ), metadatad.g, USMARC,
Warwick Framework [13]), semi-structured dad, the
OEM model in [14]), and scientific data [3].

This section is organized as follows. In Section 4.1, we dis-
cuss what we view as hierarchical data by introducing the un-
derlying “conceptual” model as well as our restrictiopgy

we do not handle recursive schemas, see later). We then gen-
eralize the framework for translating data in this model. First,
to base translation on the constraint mapping framework, we
need to extend the notion of constraints for tree-like hierar-
chical data, so that they can be represented as conjunctive
constraints. Second, the evaluation of mapping rules (in par-
ticular, the pattern matching) is slightly complicated because
patterns can match “macro” constraints that represent, say,
subtrees. We discuss them in Sec. 4.2 and 4.3 respectively.

4.1 Conceptual Grammatical Model

As a basis for hierarchical data translation, we conceptu-
ally abstract information objectg (g, documents, metadata,
etc) as EBNF (Extended Backus-Naur Form [19]) grammar-
generated trees. Recognizing the fundamental characteristics
of data to be its hierarchical and grammatical structure, many
have used the well-understood concept of formal language
grammars to model data [9, 10]. For instance, in SGML [9]



<ref > @TechReport {CG98,

<id > CG98</id > author = "Kevin Chang and
<tr-no > SIDL-WP-98-0XK/tr-no > Hector Garcia-Molina",
<titte > Connstraint Mapping</title > title = "Constraint Mapping"
<authors > '

institution = "Stanford University",
<name> <Iname > Chang</Iname >

<fname > Kevin </fname > </name> )rlrfc?r:th = l?gg
<name> <Iname > Garcia-Molina</Iname > = ) )
<fname > Hector </fname > </name> number = "SIDL-WP-98-01",
<lauthors > keywords = "query translation,

data mapping" }
(a) Example BibTexechReportentry.

<inst > Stanford Univ</inst >
<date > <month > January</month >
<year > 1998</year > </date >
<kws> <term > query translation</term >
<term > data mapping</term > </kws>
<Iref >

7
/

-

tr}

key, author, title, institution, year, month, number, keywords }

~— T —

(a) Example SGMIRef document. tr — key author title institution

_ year month’ number’ keywords’ }
V= { .ref, autho.rs, n.ame, date, kws } =key: string , author: string |, title: string , institution: string
T ={id, tr-no, title, inst, Iname, fname, month, year, term } year: int , month: string , number: string , keywords: string

S =ref (b) Conceptual schemé&. for BibTexTechReportentries.
P ={ ref — id tr-no” title authors inst date kws

authors — name™ t‘r

name — Iname fname ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

date — month year

kws — term* }
D = all map tostring

(b) Conceptual schem&.; for SGML Ref documents.

o v

key author title institution  year month number keywords
“CG98"“Kevin Chana and ...™Constraint ..."Stanford Univ." 1998 “Jan” “SIDL-.."” *“auew..."

(c) Example instance trek, of schemaG,..

of Figure 7: Schema and instance for Bibtex =~ TechReport.

\ We illustrate the notions with the running examples in SGML
| | | | | (Fig. 6) and BibTex (Fig. 7). Specifically, Fig. 6(a) shows an

id trno tite authors inst  date kws (assumed) SGML document of typef for recording bibli-
"CG98" "SIDL-..."Constraint ... “Stanford Univ." \ ographic reference information. In (b) we illustrate the con-
\ \ ceptual schema that defines the logical structure of such doc-
name[l]  name[2] month year term[1] term[2] uments. The example document is then represented as an in-

‘ January 1998 “query ..."” “data...”

Iname fname Iname fname
“Chang” “Kevin” “Garcia-Molina” “Hector”

(c) Example instance trek.; of schemaG,.;.

Figure 6: Schema and instance for SGML  Ref.

stance tree in (c). Furthermore, Fig. 7 shows the same infor-
mation in the BibTeXechReport format; in particular, it also
shows the corresponding BibTex entry in (a), the conceptual
schema in (b), and the instance tree in (c). We will use these
examples to illustrate the translation process, assuming we
want to translate information fromef to TechReport. Note

that, in the regular expressions of grammar productions, we

use* for Kleene closure (0 or more times}, for positive
closure (1 or more times},for optionality (0 or 1 time), and
| for separating alternatives. For instangeyo’ in Grey IN-
dicates that the attribute is optional.

(or the evolving XML), documents are defined with a DTD
(document type definition), which is essentially a grammar.
In particular, we adopt and extend the formalismgodm-
matical mode[10] to model hierarchical data.

The iteration constructs in EBNF t" and" *") provide a
. . . _ way for specifyindists of repeating attributes, which we use
?c;n;elp)t;'al grammatical schengais a five-tuple(: = (V, to modelcollections for instance, a collection afames as

e Es the value ofwthors (authors — name™). Note that, to unam-

e (V,T,P,S)is acontextfree grammarin EBNF, of which  biguously reference list elements, the repeated occurrences
V andT are finite sets o$tructural attributesandtermi- of an attribute (as generated by the iteration constructs) in
nal attributesrespectivelyS a start symbalS € V', and instance treese(g, Fig. 6(c)) are ordered and labeled with
P a finite set of EBNF production of the formd — « the usual list operatorg, g, name[1] for the first element in
whereA € V, a is a non-empty regular expression over thename list. In addition, the notatioa[k1: k2] refers to the
the alphabet’ U T sub-list fromk; -th through thek,-th elements. Eithek, or

e Disamappingof’,s.t. D(A) is a set called the domain k2 can be omitted and defaulted toand the length of the
of A,forAeT. list, e.g, A[:] refers to the whole list.

An instance(or instance treg of GG is a derivation treeof We believe the conceptual model is sufficient, for transla-
G, where the leaves (with terminal attributes) are assignedtion purposes, in describing information objects observing
valuesfrom the corresponding domains thatdefines. = some implicit or explicit grammatical structures. In partic-

Definition 4 (Conceptual Grammatical Model):



instancel,; = {ci, c2, -+, c12}
[id "CG98" ]
[tr-no "SIDL-WP-98-01" ]
[title "Constraint ..." |
[authors.name[1].Iname "Chang" ]
[authors.name[1].fname "Kevin" ]
[authors.name[2].Iname "Garcia-Molina"
[authors.name[2].fname "Hector" ]
[inst "Stanford Univ." 1
[date.month "January” ]
[date.year "1998" ]
[kws.term[1] "query ..." ]
[kws.term[2] "data ..." ]

(e1)
(c2)
(ca)
(ca)
(c5)
1 (ce)
(¢7)
(cs)
(co)
(c10)
(c11)
(c12)

Figure 8: I.; as a set of terminal constraints.

ular, because a list is by definition an order and duplicate-

sensitive collection, one may argue that we need other con-

structs such abags(order-insensitive) andets(order and
duplicate-insensitive). However, it suffices to conceptually
model them as listsi.e., by assuming some ordering in a

straints for hierarchical data, which is in turn based on ex-
tending attributes to paths.

Intuitively, a natural generalization is to “flatten” a hierar-
chical structured.g, Fig. 6(c)) intopath-valuepairs, each
representing a constraine.g, Fig. 8). More formally, we
generalize a constraint to be of the fopmV(P)], whereP is
apathexpression, an¥(P) thevalueassociated wittp. We
next discuss what paths are, and their values.

In the simplest case, if a path (starting at the root) leads
to a leaf node, theV(P) is the value assigned to the leaf
node thatP ends with. We call suclP a terminal path
and [P V(P)] aterminal constraint For instance, inf..s
(Fig. 6) the patlhdate.year leads to the valué1998" (i.e.,
V(date.year) = "1998" ), thus representing the constraint
[date.year "1998" ]. Note that, as (for translation) we are
only interested in paths starting from the root, we omit the

set or bag, because the additional orderings should have nqoot label .g, ref) in the paths.

implication on the translation correctness. For instance, al-
though the schemé&,.; conceptually represent@ywords

as a list of terms (bkeywords — term*), the underlying data
source may actually model it as a set.

Without loss of generality, we assumermalizedschemas,

Note that, because each terminal path is unique (as guaran-
teed by normalized schemas [4]), an instance tree can be flat-
tened into (as well as reconstructed from) a set of terminal
constraints, which is a generalization of the constraint set
representation for flat data. Thus, as we have intuitively ob-

which ensure that the generated instance trees have distincerved., the constraint set in Fig. 8 is indeed a valid represen-
paths {.e., no two different paths have the same sequence of tation for the instance trek,; in Fig. 6(C).

labels). This path uniqueness is critical because (for hier-
archical data) constraints will be specified with paths (Sec-
tion 4.2). Formally, a schema is normalized, if every gram-
mar production has the following characteristics:

1. The iteration operator$ @nd*) associate only with in-
dividual attributes. For exampla, — (X |Y)" is not al-
lowed; it can be normalized t8 — B™ andB — X |Y.

2. Attributes are unique within a concatenation. For exam-
ple, A — XYX is not allowed; instead, it can be normal-
ized (by annotation) to, sag, — X;YX,.

We believe that the restrictions are reasonable for grammars

whose purpose is to describe the logical structures of infor-
mation; most “natural” schemas are already normalieegi,

the schemas of relational databases, BibTex, Dublin Core,

USMARC, etc In other rare cases of unnormalized schemas,
it is straightforward to normalize them (as informally sug-

gested in the above requirements). The full machinery for
normalizing schemas and their instance trees is given in [4].

Our framework currently does not deal with schemas with re-
cursive grammar®.g, section — title section, wheresection
derives itself. Although in principle it should be feasible,
supporting grammar recursion would require more “power-

Furthermore, as the translation is on tree structures, it is de-
sirable to have mapping functions that process some whole
“sub-structures,&.g, subtrees, or lists of terminal paths. In
other words, we neehacro constraint$o conveniently rep-
resent sets of terminal constraints in the sub-structures. In
the following, we discuss such constraints, which in turn are
based on the notions of structural paths (for subtrees), and
iteration paths (for list construction).

First, to represent a subtreestuctural pathis a path that
ends with some interior node,g, in I,.s: authors.name[1],
date, keywords, etc The value of a structural path is the set
of terminal constraints contained in the (sub-)tree rooted at
the path. For example, if.s V(authors.name[1]) is
{[lname "Chang" ], [fname "Kevin" ]},

and V(date) is {[month "January" ], [year "1998" 1}.
Formally, the value of a structural pathw.r.t. an instancd
is defined a3/(p;) =

{[p’' vl | ps.p’ is a terminal path id, v =V(ps.p’)}.

Second, we use iteration paths to construct lists of (terminal
or structural) paths. Aiiteration pathp, is a sequence of
labels,l;.l5.- - -.l,, where som¢ is of the forma;[k::k»]. For

ful” path patterns to represent recursively generated paths,instance kws.term[:] denotes the (whole) list of keywords,

which will greatly complicate the mechanism. In fact, we be-

lieve that non-recursive schemas cover most practical cases,
for instance, document metadata and structured information.

4.2 Constraints as Path-Value Pairs

and its value/(kws.term[:])

= ( V(kws.term[1]), V(kws.term[2]) )

= ("query "data --" ),

i.e, alist of terms (we usé - -) to denote a list).

While constraints correspond naturally to attribute and value As another exampleuthors.name[1: 2] represents the list of

pairs for flat data, we need to generalize the notion of con-

subtrees rooted aiuthors.name[k], k € 1:2. Therefore, we
haveV (authors.namell: 2])



= ( V(authors.name[l1]), V(authors.name[z]) ) Krey={Root R Rvs Ry R }
= ({[Iname "Chang" ], [fname "Kevin" ]},

{[lname "Garcia- ---"], [fname "Hector" 1} ). Ry.1) [ALX]; SimpleMapping (A1) — A2 = AttrNameMapping (A1) ;
emit [A2 X]
Formally, the value of an iteration pagh is defined recur- R..2) [authors.name[:] L] — S = ConsolidateNames (L) ;
sively as follows. Assuming, = p:.alki: k2].p2, S.t.a[k;: k2] emit [author S]
is the first label with an iteration rangg(p..) := Ry.3) [date D] = M, Y = MonthYear (D);
emit [month M] AND [year Y]
(V(p1.alk1].p2), V(p1.alk1 +1].p2), - - -, V(p1.a[ka].p2)). R,.;) [kws.term[1:K2] L] ; K2 <=3+ S = MergeString (L) ;

emit [keywords S]

Finally, note that a macro constraint actually represents a set| Rr.s) NoConstraint _ ([tr-no N]) - o

of terminal constraints. For instance, a constraint specified emit [number "to be assigned” ]

wi_th a structu_ral patip;, _[ps V_(ps)], represents the set of ter- Figure 9: K,.; for mapping Ref to TechReport.
minal constraints contained in the subtree rootgd .afo see . _ .
what terminal constraints are actually covered, as the trans-tree representation. As its output, the algorithm generates
lation algorithm requires, we can “flatten” a constraint with conjunctive constraints that represent the target instance tree
the following operational definition. (e.g, It in Fig. 7(c)).

Definition 5 (Flattening Function): Let ¢ = [p V(p)] be a The evaluation and semantics of mapping rules are essen-
constraint. The flattening functioff(c) returns the set of  tially the same as discussed in Section 3, although the match-
terminal constraints containedén ing of constraint patterns is slightly more complex. In par-
ticular, a pattern can represent a macro constraint and thus
match a set of terminal constraints, while in Section 3 a pat-

1. if pis aterminal pathi(e., c is a terminal constraint), then

Fp VE) :={lp V(P)I}; tern can match only a single attribute-value pair. To see how
2. otherwise, ifp is a structural path, then data translation works, we next explain the evaluation of the
Fp V) = {Ip.p' V| [P’ VI € V(D)) rules in K,.pwith respect to the source instanfgs, which

L ) ) will generatel;,. as the translation.
3. otherwise, ifp is an iteration pathp;.a[k::k2].p2, where

alk1: k] is the first label with an iteration range, then For instance, the rul&, ; in K,.; converts the sourceate
ko (subtree) into the targetonth andyear. Givenl,.;, the eval-

F(p V) := U F([p1-a[j]-p2 V(p:.a[j].p2)]) uation will consider all the paths (that start from the root),
j=ki n and find thatdate is a matching path for the pattefdate

] ) ] . ) D]. That is, the pattern matches the macro constfautt
For example, to find the terminal constraints contained in the ygate)] (denotedC,), resulting in bindingd to V(date),

macro constraintwi_th the ite_ration paththor.name[1:2], we which is {{month "January” ], [year "1998" ]}. Note
evaluate the flattening function as follows: that Cy is a macro constraint representing the set of termi-
F([author.namel[1: 2] V(author.namell: 2])]) nal constraints¥(Cy) = {cg, cio}, thus M(R;. s, Ief) =
= U‘j:l F([author.name[4] V(author.name[j])]) {{e9,c10}}. The functionMonthYear (-) then takesD as
= F([ author.namel[1] input, in whatever data structure (appropriate for the func-
{[lname "Chang" ], [fname "Kevin" ]}1)U tion’s programming language) encoding the valu®pénd
F( [ author.name[2] returns themonth andyear values. Finally, the rule emits
{[Iname "Garcia- ---"], [fname "Hector" ]} ]) EMR+.3, {cg, c10}) = [month "January” ] AND [year 199§
= { [author.name[l].lname "Chang" ], as the target constraints.

[author.name[l].fname "Kevin" 1} U {---} . : . .
{c1, 05} U {ce, cr}=1{cu,cs o, cr ) In general, acqnstramt patterr_l in mapping ru_Ies is of_the form
[P X], whereP is aparameterized patlndX is a variable
4.3 Constraint Mapping for Hierarchical Data or constant representing(P). A parameterized patR is a
With the notion of constraints, we can translate hierarchi- path expression that may contain variables to be assigned
cal data using the constraint mapping machinery discussedvalues such thaP matches a path in the source instance.

in Section 3. Specifically, in our example of translatiRef For example, let's consid&,. ;, which handles those “sim-
(Fig. 6) to TechReport (Fig. 7), to apply Algorithm 1, the  ple” translations that require only attribute name mapping.
input will be a source instance tree.§, I.; in Fig. 6(c)), In particular,Al is a parameterized path that can match any
and a mapping specification consisting of rulesy( K,.s path inl.; consisting of a single attribute (suchidstr-no,

in Fig. 9) that directs translation to the target context. Note title, authors, etc), andX will be bound to whateveP’ (A1)
that the source instance tree conceptually represents a set ak. Further restricted by conditioBimpleMapping (A1),
terminal constraints, as the algorithm requiresy( If = which we assume returriB-ue for the “simple” attributesd,
{c1, ¢2, - -+, c12} in Fig. 8). However, it is not necessary to  tr-no, title, andinst, the matchings are thust(R,. 1, Ler) =
actually “materialize” the constraint set representation; the {{c1}, {c2}, {cs}, {cs}}. ThenR, ; emits the mapping for
matching and evaluation of rules can be done directly on the each matchings.g, E(R..1, {c1}) = [key "CG98" ].



A parameterized path can also contain variables that repre-which in turn impact how mapping rules are specified and

sent integers in the index ranges of an iteration patd,
kws.term[1:K2] in rule R, ;. Note that the rule emits the tar-
getkeywords from at most the firs3 sourceterms (assuming
the target contextimposes this restriction). In evaluation, be-
cause the liskws.term[:] is of length2 in .., only the bind-
ings ofK2 to eitherl or 2 will result in valid (iteration) paths
representing sub-lists. Furthermore, the bindingtdf= 1
represents the matching

F([kws.term[1: 1] V(kws.term[1: 1])]) = {c11 },
while that ofk2 = 2

F([kws.term[1:2] V(kws.term[1:2])]) = {c11, c12}.
(This example does not have the matchingg®af= 3 and
above.) Therefore, the former “sub-matching” will be sup-
pressed by the latter (step 2, Algorithm 1). This suppres-
sion mechanism and the conditi@ <= 3 will select the
“largest” matching within the restriction. Thuk2 = 2, L
is bound to the lis{"query ---","data ---"), and the
target constraint itkkeywords "query  ---, data ---"].

As another example of iteration paths, rig » emits the
author constraint. The expressiauthors.name[:] matches
the whole list {.e., authors.name[1:2]), resulting in the bind-
ing of L to V(authors.name[1:2]) (given in Section 4.2). The
function ConsolidateNames (L) then merges the names
in the required target format.

Finally, rule R, 5 shows the special case of empty match-
ings to emit “default” constraints (see Definition 3), which
is similar toR ..~ (Fig. 4) and is not specific to hierarchical
data. Note that a sour¢ef instance may not have theno
constraint (which is optional itr,..f, Fig. 6). The condition
NoConstraint  ([tr-no N]) checks if the pattern (in which

N is simply a dummy variable) does not find any matching
in the source tree. If so, the rule emits the default constraint
[tr-no"to be assigned" ]. Otherwise, the transaltion of
tr-no will be handled byR.,. ; instead, as we just discussed.

5 Related Work

Information integration has long been recognized as a cen-
tral problem of modern information systems [12, 17]. In this
paper we have presented our data translation framework with
the goal of coping with semantic or schematic inconsistency
in data exchange.

Fully automatic semantic integration is extremely difficult,

if not impossible [12]. Thus, most related efforts advocate,

like we do, using human-specified translation rules. Most
prominently, some systems [1, 14] use variations of data-
log rules [16], and some others use the semantic rules of
attribute grammars [8]. In addition, there are also systems
using special-purpose query languages [2, 3] for transforma-

evaluated. In particular, while we abstract information ob-
jects as “flattened” sets of constraints, other systems perform
translation directly on object structures (trees or graphs). Fur-
thermore, viewing information as constraints, we address the
data translation problem with the theoretic framework of con-
junctive query mapping, and specifically using the notion of
query subsumption. To the best of our knowledge, no other
existing work uses these notions for data translation. We be-
lieve that our approach leads to the following advantages:

e Simple RulesBecause of our unique data representation,
our rules use patterns for constraints, insteadlmjéct
patternsthat match the object layoute.g, in [1, 2, 3,

8, 14]). Consequently, our rules are more modular and
declarative; independent constraints are separated into
different rules, each declaring a correspondence between
some source and target constraints. (We could call this a
“divide and conquer” approach.) In contrast, with object
patterns, rules must be composed in a way that mirror the
structure of objects. In fact, object rules are typically not
independent of each other, because they together direct
the bottom-up (or top-down) construction of target struc-
tures, in a more procedural fashion.

Minimal Translations. Since we model information as
queries, we can generate minimal translations that use
the most source constraints, when there are multiple op-
tions (as supported by sub-matching suppression, Sec-
tion 3). In contrast, in other systems, first, it is cum-
bersome to enumerate all such options in object patterns
(e.g, the combination of the absence or presence of some
attributes with respect to the whole layout). Second, it
would then require an additional mechaniseg, rule
ordering, to resolve the multiple choices, which intro-
duces more complications.

Duality of Data and QueriesAlthough in this paper we
mainly focused on data translation, our same mechanism
can be used for the translation of arbitrary user queries
as well [5]. This unification can be very beneficial in the
integration of heterogeneous digital libraries that support
Boolean query languages.

Some data translation proposals do not rely on rules, as we
do, but instead rely on explicit metadata that encodes the
context for automated mediation. For instance, the COIN
framework [15] uses theemantic-valuenodel, where each
attribute is annotated with@ropertylist that defines its con-

text (e.g, unit="usd" for attributerevenue). This approach
assumes one-to-one mappings and thus cannot handle the
general case of many-to-many mappings for interrelated at-
tributes. In addition, it only deals with attribute “value” con-
version, and is not applicable to hierarchical data. Lastly, it

tion. The common idea behind all these approaches is that arelies on implicit agreement on what the properties for dif-

rule essentially specifies how target “patterns” are to be gen-
erated from matching source “patterns.”

Our work differs from other rule translation efforts in its
data representations and its supporting theoretic framework,

ferent attributes are, as well as what conversion functions are
applicable for translation.

We did not discuss how to extract constraints (attribute-value
pairs) from information objects. For structured objects this



can be done simply by parsing. In other cases, pattern-based
extraction may be used, as illustrated in [11].

Finally, we note that the framework described in this paper
is closely related to and complements our earlier work on
query translation for Boolean IR systems [6, 7]. In particu-
lar, in [6] we discussed the theoretic framework for optimal
guery mapping; however, it assumes that constraints are in-
dependent in translation (see Section 2). The framework in 5,
this paper does consider the dependence. Furthermore, our
earlier work does not incorporate the ability to call arbitrary
functions to translate values, nor does it deal with hierarchi-

cal attributes. Actually, we can view the algorithms of [7]as 6.
providing translation functions for the particular case of “text
search” constraint®(g, ones that search for words near oth-

ers, or words matching wildcards).

4.

6 CONCLUSION

Autonomous information systems often structure and repre-
sent their information inconsistently in a heterogeneous en-
vironment. To ensure semantic interoperability, information
must be mapped appropriately when exchanged across in- 8.
teracting contexts. In this paper, we have presented a rule-
system framework for information translation. We view in-
formation as a set of conjunctive constraints that identify the
represented object(s). Consequently, our machinery provides
“minimal” translation, as guaranteed by the supporting query
mapping formalism [5].

We have also shown how to generalize the constraint map-
ping framework for hierarchical data, such as SGML or XML
documents. The generalization is based on extending at-
tributes to paths in trees, thus flattening the hierarchy into
a set of path-value pairs. In addition, we have also presented
macro constraints that can be used to process a whole sub-12.
structure in the treeg, g, a subtree, or a list of children.

11.

Although our translation rules are modular and declarative,
it may still be a tedious task to develop mapping specifica-
tions like the ones in Figures 4 and 9. Therefore, it may be
useful to develop an interactive graphical interface, where a ;,
librarian can browse through metadata specifications for the
source and target contexts, and through libraries of available
value transformation functions. Through this front-end sys-
tem the librarian can generate the specifications by selecting
options on the screen, as opposed to writing text as shown
in our figures. We believe that such a front-end design sys-
tem can significantly enhance the effective data translation
machinery we have developed.

15.

16.
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