
Extending Greedy Multicast Routing to Delay Sensitive

Applications

Ashish Goel� Kameshwar Munagalay

Stanford University

July 27, 1999

Abstract

Given a weighted undirected graph G(V;E) and a subset R of V , a Steiner tree is a subtree

of G that contains each vertex in R. In this paper, we present an online algorithm for �nding a

Steiner tree that simultaneously approximates the shortest path tree and the minimum weight

Steiner tree, when the vertices in the set R are revealed in an online fashion. This problem

arises naturally while trying to construct source-based multicast trees of low cost and good

delay. The cost of the tree we construct is within an O(log jRj) factor of the optimal cost, and

the path length from the root to any terminal is at most O(1) times the shortest path length.

The algorithm needs to perform at most one reroute for each node in the tree. Our algorithm

extends the results of Khuller et al.and Awerbuch et al., who looked at the o�ine problem [9, 2].

We conduct extensive simulations to compare the performance of our algorithm (in terms of cost

and delay) with that of two popular multicast routing strategies: shortest path trees and the

online greedy Steiner tree algorithm.

�Dept. of Computer Science, Stanford CA 94305. Research supported by ARO Grants DAAG55-98-1-0170 and

ASSERT award DAAG55-97-1-0221. Email: agoel@cs.stanford.edu
yDept. of Computer Science, Stanford CA 94305. Research supported by ARO Grants DAAG55-98-1-0170 and

ASSERT award DAAG55-97-1-0221 and by ONR Grant N00014-98-1-0589. Email: kamesh@cs.stanford.edu

1 Introduction

Online multicast routing is a problem of growing importance with the advent of multimedia ap-

plications. Application sensitive multicast routing is critical to the success of these applications.

For multicast applications where end to end delay is of overriding importance but the bandwidth

requirement is small (such as stock tickers), shortest path routing strategies perform well. A short-

est path routing strategy connects the source of the multicast to each receiver using the shortest

unicast route from the source to the receiver (or the other way round) in the underlying IP/ATM

network. DVMRP [16], CBT [3], and PIM [5] are all examples of deployed routing protocols that

use shortest path trees. In shortest path strategies, any sharing of routes by di�erent receivers is

incidental; the routing scheme itself makes no e�ort to share routes.

For applications which require large amounts of bandwidth, but are not delay sensitive, it is

important to minimize the total cost (weight) of the multicast tree. The greedy online algorithm

for �nding small weight Steiner trees proposed by Imase and Waxman [8] has the best possible

competitive ratio of O(log k), where k is the number of multicast receivers. In the worst case, the

tree produced by shortest path strategies can be upto a factor k worse than the tree produced by

the greedy algorithm. Even when all multicast receivers are chosen randomly from a very large grid,

the shortest path algorithm produces trees which are expected to be a factor
p
k worse than those

produced by the greedy algorithm (Theorem 2.2). This demonstrates that shortest path routing

strategies will not scale well for bandwidth intensive applications. This claim is also supported by

extensive simulations by Doar and Leslie [6] and Waxman [18].

In this paper we focus on applications which are both bandwidth intensive and delay sensitive.

Our goal is therefore to simultaneously approximate the shortest path tree and the minimum cost

Steiner tree.

Formally, the problem we study is the following. We are given a weighted undirected graph

G = (V;E) with a cost function c : E ! <, and a source node s. Receivers R = fv1; v2; : : : ; vkg
arrive in an online fashion. Our goal is to maintain a tree T connecting s to all the receivers that

have arrived so far. Let c(T) =
P

e2T c(e) be the total cost of T . Let dG(s; v) be the shortest path

distance from s to v with respect to the cost function c, and let dT (s; v) be the path length from s

to v in T . Also, for a receiver v, let StretchT (v) = dT (s; v)=dG(s; v): Now, de�ne

StretchT = max
v2R

StretchT (v)

and let

CostRatioT = c(T)=c(T �);

where T � is the minimum weight Steiner tree on the vertices in R [fsg. An algorithm for this

problem is (p; q)-competitive if StretchT � p and CostRatioT � q for the tree T produced by the

algorithm. Our goal is to obtain an algorithm that simultaneously guarantees small values of p and

q.

Khuller et al.looked at the o�ine version of this problem (the receiver set R is known in ad-

vance), and gave an (O(1); O(1))-approximation [9], extending the work of Awerbuch et al. [2]. Our

problem can also be looked upon as a variation of the online shallow-light Steiner tree problem. In

the shallow-light Steiner tree problem, there is a cost c(e) and distance d(e) associated with each

1

edge e. Given a set of receivers R (which appear online), a source s, and a distance bound �, the

goal is to �nd a tree T connecting all vertices in R[fsg, which is cheapest in terms of cost metric

c (lightness) and where the distance dT (s; v) in terms of metric d is bounded by �. Our problem is

easier since the metrics c and d are the same. The shallow-light Steiner tree problem was studied

by [11, 4] in an o�ine setting. They gave an algorithm which violates � by at most a constant fac-

tor, approximates the cost by a poly-logarithmic factor, and which runs in quasi-polynomial time.

In the online setting, various heuristics have been proposed [10, 14, 7], but each of these heuristics

su�ers from either a super-polynomial running time, or poor bounds on costs and distances.

Our main result is the DSG (Delay Sensitive Greedy) Algorithm, which is (O(1); O(log k))-

competitive, where k = jRj. We need to do a small amount of rerouting { each node in R gets

rerouted at most once (A node is said to be rerouted when its parent pointer in the multicast tree

changes). The weight of the tree constructed by the DSG algorithm is within O(1) of the weight

of the greedy online Steiner tree. Since the greedy Steiner tree has the best possible competitive

ratio in terms of weight of the tree upto constant factors [8], we are within constant factor of the

optimum in terms of both the weight and stretch. The running time of DSG is O(jRj), over and
above the running time of the greedy algorithm, assuming that all pairs shortest paths between

the source and the receivers have been precomputed. The algorithm also has low communication

overhead and is easy to implement in a distributed setting. Our algorithm is modeled after the

elegant algorithm in [9] which we adapt to an online setting. Like their algorithm, our algorithm

provides a continuous tradeo� between the weight of the tree and the stretch { we can obtain trees

with smaller weight by relaxing the stretch, and vice-versa. We believe that our algorithm is simple

enough to lend itself, like the greedy algorithm, to eÆcient implementations.

We simulate our DSG algorithm for Waxman networks [18] and grid networks. Our simulation

results (Section 4) show that our algorithm's performance is comparable to the greedy algorithm

in terms of the overall cost of the tree, and comparable to the shortest path algorithm in terms of

the end to end delay. Also, the actual results observed in simulations are signi�cantly better than

the worst case approximation guarantees we prove in this paper. Further, most nodes in R never

get rerouted.

2 Background: The Greedy Algorithm

The greedy algorithm [8, 1] for constructing small weight Steiner trees online does the following.

Suppose we have already constructed a tree T . Let s be the source of the multicast tree and R be

the set of already connected receivers. When a new node v requests to join the set R, the algorithm

�nds the node in T that is the closest to v, and attaches v to T via this node.

Assume that jRj = k. Let TG denote the tree constructed by the greedy algorithm, T � denote

the shortest (optimal) tree, and TS denote a shortest path tree. For any tree T , let C(T) denote

its total cost. Imase and Waxman [8] proved the following theorem.

Theorem 2.1. [8] C(TG) � dlog keC(T �). Further, no algorithm can guarantee a factor better

than
dlog ke

2
.

In contrast, it is possible for C(TS) to be as large as (k � 1)C(T �) in the worst case. The

above result should make a clear case for the superiority of the greedy algorithm for minimizing the

2

total cost of the multicast tree. However, one might object that the pathological networks which

result in the large di�erence in the performance of the greedy algorithm and the shortest path

approach do not occur in practice. To address this concern, we study the greedy and the shortest

path algorithms in the following simple model. We assume that we have a completely connected

network, and the receivers and the source for the multicast are drawn randomly from within a unit

square, and the distance between nodes is the Euclidean distance.

Theorem 2.2. The expected cost of the tree T � is �(
p
k). The expected cost of the tree TG is also

�(
p
k). The expected cost of the tree TS is �(k).

The distance between two randomly chosen points on a grid is �(1); using linearity of expec-

tations we immediately obtain TS = �(k). T � = �(
p
k) is implicit in [17]; TG = �(

p
k) follows

from [17] and [15]. Thus even when the multicast nodes are chosen probabilistically from a simple

network (ie. the grid), the performance di�erence between the greedy algorithm and a shortest

path approach is of the order of
p
k.

3 The DSG (Delay Sensitive Greedy) Algorithm

3.1 Description

We are given an undirected network G and with weights d(e) on each edge e, and a pair (s;R)

of source and receivers (this set grows in an online fashion). The tree T constructed by the DSG

algorithm should have StretchT = O(1), and the weight of the tree should be within an O(1) factor

of the weight of the greedy online tree.

Let T be the tree constructed so far for receiver set R. We root the tree T at s, and assume

all edges in T are directed towards the root. Let � be the maximum permissible value of the ratio

dT (s; v)=dG(s; v) over all v 2 R. Let � be any number between 1 and � (ie. 1 < � < �). The

algorithm accepts � and � as parameters.

For any node v in tree T , let parent(v) denote the parent of v in T .

The basic idea behind the DSG algorithm is quite simple. When a request to join R arrives,

the requesting node v is �rst connected to the node in T which is the closest to v (this is just the

greedy algorithm). As soon as it happens that dT (s; v) > �dG(s; v) for the newly added receiver v,

we reroute v so that it obeys the constraint dT (s; v) � �dG(s; v). Since � < �, the above constraint

is more strict than the one we are required to satisfy. Along with v some other nodes on the path,

along T , from v to s may also get rerouted; these rerouted nodes also satisfy the more stringent

constraint. No node gets rerouted more than once; most nodes never get rerouted (see Fig. 5).

We now present the DSG algorithm in detail. Since this is an online algorithm, we only need

to specify what happens when a new receiver v requests to join the existing tree T . For any node

t 2 T , parent(t) is the next node in the path along T from t to the source. We say that a node got

rerouted when its parent changes. The algorithm works in four steps:

(1) Join: Let u be the node in T closest to the new receiver v. Augment the existing tree T by

adding the shortest path from v to u. Notice that this is the same as the greedy algorithm.

3

A

B

C D

4

2

B

5

2

2

A (0,0)

C (7,4)

4

D (9,4)

A (0,0)

5

C (4,4)
2 D (6,4)

A (0,0)

B (5,5)

5

A (0,0)

2

5

(a) (b) (c)

 (d) (e)

B (5,5)B (5,5)

C (7,4)

B (5,5)

4

5

2

Figure 1: Execution of the Algorithm on a four node graph. The numbers in parentheses next to any node

v indicate the current values of dT (s; v) and dG(s; v) respectively.

(2) Check: Check whether dT (s; v) � � � dG(s; v). If so, exit. If not, goto Step (3).

(3) Cut: Starting from v, traverse parent pointers in T and locate the �rst node v0 such that

dT (s; v
0) � � � dG(s; v0). \Cut" the path just downstream of v0. Let P be the path from v0 to

v, excluding v0. Direct path P from v to v0.

(4) Relax: This is the main step where the DSG algorithm deviates from the greedy strategy.

Let w be the child of v0 on path P . Traverse path P starting at w and ending at v. For

every node t on P encountered during the traversal, perform the following operation. If

dT (s; t) > � � dG(s; t), add the shortest path from s to t to the tree T , and delete the edge

connecting t to parent(t) from T . This step is called the Rerouting Step.

The algorithm works even if each branching point in the multicast tree is a receiver. Therefore

it can be run at the application layer or over a set of enabled routers, much like the MBone [13].

3.2 An Example

The DSG algorithm is best illustrated by means of this simple example (see Fig. 1). Let G be the

4 node graph shown in Fig. 1(a). We choose � = 1:6 and � = 2, and let s = A.

We consider the sequence of addition of node B, followed by C, and �nally D. When node B is

added (Fig. 1(b)), it is connected to A, and so, parent(B) = A, and

4

dT (A;B) = 5. When node C is added (Fig. 1(c)), it is connected in the greedy fashion to its

closest neighbor in T , in this case, B. Therefore parent(C) = B and dT (A;C) = 7. Since dT (A;C)

is less than � times dG(A;C), no rerouting takes place. When node D is added (Fig. 1(d)), it is

�rst connected greedily to its closest node, C, setting parent(D) = C and dT (A;D) = 9. However

dT (A;D) > � � dG(A;D), so we need to reroute it.

We start from D and follow parent pointers �nding the �rst node v0 satisfying the condition

dT (A; v
0) � � � dG(A; v0). Note that C violates the � requirement, while B does not; hence with

reference to the notation used in the description of the algorithm in steps 3 and 4, v0 = B, w = C,

v = D, and our path P consists of the nodes C and D. We reroute w = C in Fig. 1(e) using the

shortest path from C to A. This makes parent(C) = A, and dT (A;C) = 4. This causes dT (A;D)

to be set to 6 in sub-step (2) of step (4) of the algorithm. Since D now satis�es the � condition, it

is not rerouted. The �nal tree is shown in Fig. 1(e).

3.3 Competitive Analysis

We now prove that the tree produced by the DSG algorithm is within a constant factor of the

weight of the greedy tree, while all path lengths get dilated by at most a constant factor. We de�ne

a reroute as the change in the parent pointer of an existing node in the tree.

Theorem 3.1. No node in the tree T generated by DSG gets rerouted more than once.

Proof. Note that when a node v gets rerouted, the following two conditions always hold:

1. Just before rerouting, dT (s; v) > dG(s; v). This is because the reroute is always along the

shortest path to the source.

2. After rerouting, dT (s; v) = dG(s; v), and this value remains the same as long as v is in T .

This implies that once a node gets rerouted, condition 1 is no longer satis�ed for it, and so, it

cannot get rerouted again.

In practice, most nodes never get rerouted (see Fig. 5).

Theorem 3.2. The cost of the tree produced by DSG is at most
�(1��+2�)

(��1)(���) times the cost of the

tree generated by the greedy algorithm.

Proof. Our analysis is similar to that used by Khuller et al.[9] for showing the existence of shallow

spanning trees in any graph.

If the relax step does not reroute, the DSG algorithm adds exactly the path that would be

added by the greedy algorithm. If this step actually results in a relaxation, we will show that the

new paths added in that step are at most a constant factor multiple of the old path. This will

prove the result.

Consider the path P that was relaxed in one particular relax step of the algorithm. Let us

focus our attention on this step. For the purpose of analysis, let us include v0 in the path. Let

v1; v2; : : : ; vk be the sequence of nodes along P for which we were forced to add shortest paths to

5

s. Note that v1 = w. Further note that the following inequalities are easily deducible from the

algorithm:

1. dT (s; v
0) + dG(v

0; v1) > �dG(s; v1).

2. dG(s; vi�1) + LP (vi�1; vi) > �dG(s; vi) for i = 2; 3; : : : ; k, where LP (vi�1; vi) is the distance

between nodes vi�1 and vi along path P .

The value of dT (s; v
0) in the above inequalities is that at the beginning of the relax step.

Adding the inequalities enumerated above, we get

dT (s; v
0) + LP (v

0; v1) + �k
i=2LP (vi�1; vi) > (�� 1)�k

i=1dG(s; vi) (1)

Let Lnew denote the total length of the new paths added during the relaxation phase. Note

that all the new paths are shortest paths, and their total length is clearly at most �k
i=1dG(s; vi).

Using this fact, equation 1 can easily be simpli�ed to:

LP (v
0; v) + dT (s; v

0) > (�� 1)Lnew (2)

Note that since the greedy algorithm adds unrelaxed paths, the path it has added for inserting

the vertices w through v on the path P is precisely the length of the path P including the edge

(w; v0). Therefore, this phase of the greedy algorithm adds weight LP (v
0; v). The DSG algorithm

will add paths of length at most Lnew +L(v0; v) in the same phase. Since no vertex on P will ever

get relaxed again, if we bound Lnew in terms of L(v0; v), the same bound holds of the weight of the

tree the DSG algorithm constructs in terms of the weight of the greedy online tree.

Observe that the following inequalities hold for the vertices v and v0:

1. dT (s; v
0) < �dG(s; v

0),

2. �dG(s; v) < dT (s; v
0) + LP (v

0; v), and

3. dG(s; v
0) < dG(s; v) + LP (v; v

0), by triangle inequality.

From these, we deduce:

dT (s; v
0) <

�(1 + �)

� � �
� LP (v0; v): (3)

From equations 2 and 3, it follows that

Lnew <
�(1 + �)

(�� 1)(� � �)
� LP (v0; v): (4)

Therefore,

Lnew + LP (v
0; v) <

�(1 � �+ 2�)

(�� 1)(� � �)
� LP (v0; v): (5)

As observed above, the weight of the tree the DSG algorithm produces is at most Lnew
LP (v

0;v)
+ 1

times the weight of the greedy online tree. This proves the theorem.

6

The factor in the above theorem is minimized when � is chosen to be
�
p
�+1+�

p
2

�
p
2+
p
�+1

. In our

simulations, this factor is much smaller than that predicted in Theorem 3.2.

Theorem 3.3. Let T be the tree generated by DSG. For all v 2 R, dT (s; v) < �dG(s; v).

Proof. The proof follows trivially from the observation that we reroute v if it does not satisfy the

condition stated in the theorem.

Theorems 3.2 and 3.3 allow us to trade o� the cost of the tree with the stretch in a controlled

fashion, by changing parameters � and �. From the simulations we can see that for realistic

networks, the guarantees for the cost are much better than these worst case predicted values. The

tradeo� between end to end delay and overall cost is clearly discernible from our simulation results.

Theorem 3.4. Let the greedy algorithm take total time � to add all nodes of the graph to the

multicast tree. Then, the DSG algorithm takes total time O(n + �) to perform the same task

assuming that all pairs shortest paths between the source and all receivers have been precomputed.

Here, n is the number of nodes in the graph.

The proof of theorem 3.4 is simple; each parent pointer in the tree gets visited at most once.

If we allow only the receivers to be the branch points in the tree, the additional time changes to

O(jT j+ �).

4 Simulation Studies

We have simulated the DSG algorithm on two classes of graphs, the Waxman networks and the

rectangular grid graphs.

4.1 Waxman Networks

In this model [18] we choose n nodes uniformly at random from a square Cartesian grid on the

plane. For every pair of nodes (u; v), we add an edge in G between them using the probability

function:

Pe(u; v) =
k�e

jGj
 � exp(
�d(u; v)

ÆL
)

where d(u; v) is the Euclidean distance between u and v, L is the diagonal of the grid,
 and Æ are

parameters in the range (0; 1], �e is the mean degree of each node, jGj = n is the number of nodes

in the graph, and k is a constant. The cost of an edge is simply its Euclidean length.

In our case, the values of the parameters are:
 = 0:2, Æ = 0:25, �e = 4, n = 1000 and k = 25.

In other words, we will be considering 1000 node graphs with mean degree 4. The factors Æ and

are chosen to make the graph resemble geographical maps of major nodes on the Internet [6].

The simulation results are summarized in �gures 2,3, 4 and 5. The curves corresponding to

the DSG algorithm are labeled by the pair (�; �) that we use as parameters in the execution (see

section 3.1). We run the DSG algorithm on ten random graphs each for three distinct pairs of

7

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50 60 70 80 90 100

S
tr

et
ch

Number of Multicast Nodes

Comparison of Average Stretch for Waxman Networks

(1.1,1.3)
(1.2,1.6)
(1.5,2.0)
Greedy

Figure 2: Comparison of Average Stretches for Wax-

man Networks with 1000 nodes. The numbers in

parentheses are the values of � and � used by DSG.

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100

S
tr

et
ch

Number of Multicast Nodes

Comparison of Maximum Stretch for Waxman Networks

(1.1,1.3)
(1.2,1.6)
(1.5,2.0)
Greedy

Figure 3: Comparison of Maximum Stretches for

Waxman Networks with 1000 nodes. The numbers in

parentheses are the values of � and � used by DSG.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f W
ei

gh
t t

o
th

at
 o

f K
M

B
 A

lg
or

ith
m

Number of Multicast Nodes

Comparison of Weights to the KMB Algorithm for Waxman Networks

Greedy
(1.5,2.0)
(1.2,1.6)
(1.1,1.3)

Shortest Path

Figure 4: Comparison of Weights for Waxman Net-

works with 1000 nodes. The numbers in parentheses

are the values of � and � used by DSG.

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 N
od

es
 R

er
ou

te
d

Number of Multicast Nodes

Fraction of Multicast Nodes Rerouted for Waxman Networks

(1.5,2.0)
(1.2,1.6)
(1.1,1.3)

Figure 5: Fraction of the Multicast Nodes which are

rerouted by the DSG algorithm forWaxman Networks

with 1000 nodes. The numbers in parentheses are the

values of � and � used by DSG.

8

1

1.2

1.4

1.6

1.8

2

40 80 120 160 200 240 280 320 360 400

S
tr

et
ch

Number of Multicast Nodes

Comparison of Average Stretch for Grid Networks

(1.1,1.3)
(1.2,1.6)
(1.5,2.0)
Greedy

Figure 6: Comparison of Average Stretches for 200�
200 Grid Networks. The numbers in parentheses are

the values of � and � used by DSG.

1

2

3

4

5

6

7

8

9

40 80 120 160 200 240 280 320 360 400

S
tr

et
ch

Number of Multicast Nodes

Comparison of Maximum Stretch for Grid Networks

(1.1,1.3)
(1.2,1.6)
(1.5,2.0)
Greedy

Figure 7: Comparison of Maximum Stretches for

200�200 Grid Networks. The numbers in parentheses

are the values of � and � used by DSG.

(�; �) values (shown in the �gures), and take the average for each pair. The source is chosen from

the pool of nodes at random. We add randomly chosen nodes to the multicast tree in increments

of 10, till we have added 100 nodes, which is 10% the size of the network. Readings are taken after

every addition of 10 nodes.

In �gures 2 and 3, we compare the average and maximum stretches that the DSG algorithm

produces versus that produced by the greedy algorithm. In �gure 4, we compare the weights of the

trees generated by the DSG algorithm to those generated by the greedy algorithm and the shortest

path algorithm. The y-axis gives the ratio of the weight to the weight of the tree generated by a

commonly used heuristic known as the KMB Algorithm [12]. Finally, in Fig. 5, we plot the fraction

of the nodes which are rerouted by the DSG algorithm.

The simulation results clearly support the claims made in previous sections. The weight of the

shortest path trees is at least 20% away from the optimum, while the weight of the trees produced

by the DSG algorithm and the greedy algorithm are very close to optimal. The DSG algorithm

has bounded maximum stretch, but the average stretch is very close to one. This compares well

with the stretch of the shortest path tree. The greedy algorithm, however, does very poorly in this

regard. Observe also that there is a tradeo� between the weight of the tree our algorithm produces,

and its stretch. By tweaking the values of � and �, we can reduce the stretch at the expense of

increasing weight, or vice versa. The DSG algorithm guarantees that no node is rerouted more than

once. But, the results clearly show that the fraction of nodes actually rerouted is much smaller

(below 20%). This fraction can be reduced by increasing the values of � and �.

4.2 Grid Graphs

Here, we consider a rectangular grid of size n� n. All points on the grid are nodes in the graph,

and the only edges are horizontal or vertical edges between adjacent grid points. All edges have

the same length.

We run the DSG algorithm on 200 � 200 grids. The source is chosen at random. We add

9

1

1.5

2

2.5

3

3.5

4

4.5

5

40 80 120 160 200 240 280 320 360 400

R
at

io
 o

f W
ei

gh
t t

o
th

at
 o

f K
M

B
 A

lg
or

ith
m

Number of Multicast Nodes

Comparison of Weights to the KMB Algorithm for Grid Networks

Greedy
(1.5,2.0)
(1.2,1.6)
(1.1,1.3)

Shortest Path

Figure 8: Comparison of Weights of the Trees for

200�200 Grid Networks. The numbers in parentheses

are the values of � and � used by DSG.

0

0.05

0.1

0.15

0.2

40 80 120 160 200 240 280 320 360 400

F
ra

ct
io

n
of

 N
od

es
 R

er
ou

te
d

Number of Multicast Nodes

Fraction of Multicast Nodes Rerouted for Grid Networks

(1.5,2.0)
(1.2,1.6)
(1.1,1.3)

Figure 9: Fraction of the Multicast Nodes which are

rerouted by the DSG algorithm for 200 � 200 Grid

Networks. The numbers in parentheses are the values

of � and � used by DSG.

nodes chosen at random in increments of 40, till we reach 400 nodes, which is 1% the total number

of nodes. The paths we add between any two nodes are made to closely resemble straight line-

segments, i.e., for connecting any node to any other node, we use a uniform step-like path. For

this purpose, we use the standard Bresenham's Algorithm from computer graphics.

These networks closely resemble the simple completely connected network model described in

section 2. The paths we use for joining nodes to each other are nearly straight lines. The length

of the lines is measured in the l1 norm (since the distance between two nodes is the Manhattan

Distance), instead of the usual Euclidean norm. But, this does not change the analysis given in

section 2. Our results are summarized in �gures 6, 7, 8, and 9. It is clear that the greedy algorithm

produces trees with much worse stretches, and the shortest path algorithm produces trees with

much worse weights than the corresponding trees for Waxman Networks. This conforms with the

analysis presented in section 2, where it was shown that the weight of the shortest path tree could

be �(
p
k) times the greedy solution, where k is the number of nodes in the multicast. These results

reinforce the fact that even for simple networks, the greedy and shortest path algorithms could

perform very badly in terms of the delays and total cost respectively.

5 Conclusions

We present an online algorithm that produces Steiner trees with small weight as well as stretch.

Our technique extends the greedy construction of [8] and that of Khuller et al. [9]. The algorithm

has a small running time and communication overhead, and guarantees a total cost of the tree

within O(log jRj) times the optimal, and per-receiver stretch of O(1). We need to perform some

amount of rerouting whenever a node gets added or deleted from the system. Each receiver gets

rerouted at most once, and in our simulations most receivers never get rerouted. Extending the

DSG algorithm for the case when we have two di�erent metrics on the edges remains an interesting

open problem.

10

References

[1] N. Alon and Y. Azar. On-line steiner trees in the euclidean plane. Discrete and Computational

Geometry, 10(2):113{121, 1993.

[2] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of communication protocols.

Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computin,

pages 177{87, 1990.

[3] A. Ballardie, P. Francis, and J. Crowcroft. Core based trees(cbt) - an architecture for scalable

inter-domain multicast routing. ACM SIGCOMM, pages 85{95, 1993.

[4] M. Charikar, C. Chekuri, T. Cheung, A. Goel, S. Guha, and M. Li. Approximation algorithms

for directed steiner problems. Ninth Annual ACM-SIAM Symposium on Discrete Algorithm,

pages 192{200, 1998.

[5] S. Deering, D.L. Estrin, D. Farinacci, C. Jacobson, V. Liu, and L. Wei. The pim architecture

for wide-area multicast routing. IEEE/ACM Trans on Networking, 4(2):153{152, April 1996.

[6] M. Doar and I. Leslie. How bad is naive multicast routing. IEEE INFOCOM, pages 82{89,

1992.

[7] Sung-Pil Hong, Heesang Lee, and Bum Hwan Park. An eÆcient multicast routing algorithm for

delay-sensitive applications with dynamic membership. Proceedings IEEE INFOCOM, pages

1433{40, 1998.

[8] M. Imase and B. Waxman. Dynamic steiner tree problem. SIAM J. Discrete Math., 4(3):369{

384, August 1991.

[9] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning and shortest path

trees. Algorithmica, 14(4):305{321, 1994.

[10] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos. Multicast routing for multimedia communi-

cation. IEEE/ACM Transactions on Networking, 1(3):286{92, June 1993.

[11] G. Kortsarz and D. Peleg. Approximating shallow-light trees. Proceeding of the Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 103{110, 1997.

[12] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees. Acta Informatica,

15:141{45, 1981.

[13] M. Macedonia and D. Brutzman. Mbone provides audio and video across the net. IEEE

Computer, pages 30{36, April 1994.

[14] M. Parsa, Qing Zhu, and J.J. Garcia-Luna-Aceves. An iterative algorithm for delay-constrained

minimum-cost multicasting. IEEE/ACM Transactions on Networking, 6(4):361{74, 1998.

[15] Y.T. Tsai and C.Y. Tang. An on-line algorithm for computing low distance spanning trees on

euclidean space. Computer Science and Informatics, 22(2):3{16, 1992.

i

[16] D. Waitzman, C. Partridge, and S. Deering. Distance vector multicast routing protocol. In-

ternet RFC 1075, 1988.

[17] N.B. Wang and R. Chang. An upper bound for the average length of the euclidean minimum

spanning tree. International Journal of Computer Mathematics, 30(1-2):1{12, 1989.

[18] B. Waxman. Routing of multipoint connections. IEEE J. on Sel. Areas in Commun.,

6(9):1617{22, 1988.

ii

