
Simulation of Iterative Matching for Combined Input

and Output Queueing

Srinivasan Pichai, Sriram Mudulodu

fvasan,msriramg@leland.stanford.edu

May 1998

1



1 Abstract

Since its introduction the Stable Marriage problem has been a subject of interest in math-

ematics and computer science. Recently this algorithm has found application in the area

of switch scheduling algorithms for high performance switches. Inputs and Output ports

of the switch compute their preference lists based on expected departure times for an ideal

output queued switch. The stable matching as computed by the Galey-Shapley for this set

of preferences determines the con�guration of the interconnection fabric. The nature of the

stable matching enables the emulation of an output-queued switch with combined input and

output queueing using a speedup factor of 2.

However it is important to compute the stable match e�ciently for high performance.

Hence parallel iterative versions of the algorithm have been proposed. In this report we

investigate the convergence time of the parallel stable matching algorithm. The de�nition of

the preference lists imposes special constraints on the problem and this reduces the worst case

complexity of the algorithm. Simulations have shown that convergence time for the average

case is also considerably lower than the general version of the algorithm. We also discuss

the various implementation details of the algorithm. Our work is based on the algorithm

presented in [CGMP98]. One of the advantages of this emulation is that the cell latency can

be accurately controlled as it would be in an output-queued switch.

2 The Gale-Shapley Algorithm

The stable marriage problem was �rst introduced by Gale and Shapley in [GS62]. In the

basic problem, a set of women and men all rank the members of the opposite sex according

to their individual preferences. A matching is unstable if there is a man and a woman who

prefer each other to their current partners. Any matching which is not unstable is de�ned to

be stable. It can be proven that any arbitrary preference matrix admits to a solution. The

original algorithm proposed by Gale and Shapley comes in two 
avours - the male optimal

and the female optimal. In the male optimal version an unmatched man proposes to the

woman next on his preference list. If that woman is unengaged she accepts his proposal. If

the woman is already engaged and if she prefers him to her current partner then she breaks

o� her engagement and accepts his proposal. If the woman rejects his proposal the man drops

her from his preference list and goes on to his next choice. The algorithm is guaranteed to

terminate with every man and woman engaged.

Note that a new proposal might result in a cascade of changes. This algorithm is di�erent

from traditional graph matching algorithms in that edges that are formed may be dropped at

2



a subsequent stage. Although the original problem considered the case of complete preference

lists, the same algorithm works for incomplete preference lists. The instances of the stable

marriage problem encountered in switch scheduling algorithms have this property. In such

a case the algorithm terminates with a set of men and women who cannot be matched and

a set of stable pairings. It can be shown that in the worst case the algorithm can take up-to

O(N2) steps. Another interesting aspect of the algorithm is that the resulting match is male

optimal in the sense that each man receives the best partner that he could have in any stable

matching.

2.1 The Parallel version

A few researchers have proposed parallel versions of the Gale-Shapley algorithm. But some

of them are complex and cannot be implemented in a high speed switch in hardware. We

look at a simple parallel iterative version which is similar to the PIM (Parallel Iterative

Matching) algorithm presented in [AOST93]. This algorithm proceeds in a sequence of

iterations. In the �rst iteration all the men propose to the woman of their �rst choice. Each

woman selects the best candidate from amongst the proposals that she receives. The men

who remain unengaged advance to the next woman on their preference list and participate

in the next round. It can be shown that this algorithm could still take O(N2) time in the

worst case. However in the instances encountered in switch emulation it can be shown that

the worst case complexity is O(N). Moreover some bounds on the average performance can

be obtained by relating this procedure to the serial algorithm .

3 Average Performance

We give a brief summary of the analysis presented in [Knu76] Although the worst case

complexity is O(N2) it has been shown in [Knu76] that the average case takes O(N logN)

steps. We present a brief description of the proof presented in [Knu76]. The problem is

reduced to the well known coupon collection problem. Consider for a moment that the

women's preference matrix is �xed. A sequence consisting of the women's names can be

mapped to particular instance of the men'smatrix and the length of the sequence corresponds

to the number of steps in the serial algorithm. The condition for this to occur is that the

sequence should contain all the name of the women. This is the classic coupon collection -

In a single trial , each type of coupon is equally likely to be drawn. It can be shown that the

average number of independent trials to obtain all coupons is related to the harmonic sum

Hn. Hence we expect in the average case the number of steps is O(N logN).

3



This analysis can be related to the parallel version in the following way. A consequence

of the above analysis is that on the average each man makes about logN proposals. However

the number of times a woman changes partners is lesser than this value. If a woman receives

k proposals, we can make a rough approximation of the average number of times she changes

partners by observing that she is likely to settle on the ith proposal with equal probability.

The number of changes given k is roughly O(log k). Since k is O(logN) the total number

of change of partners made by a woman is O(log logN). In the parallel version if no woman

changes her partner during an iteration, the current matching can be shown to be stable.

Hence we can conjecture that the number of iterations is upper bounded by O(N log logN)

for the average case of the parallel algorithm. As we will see later the performance can be

improved considerably

4 Stable Matching and Output Queue Emulation

In this section we discuss in detail the implementation of the output queue emulation pre-

sented in [CGMP98]. In this model the crossbar fabric and the output queues utilize a

speedup factor to improve performance. Traditional output queued switches are able to

transfer all the cells with the same destination within a time slot to the corresponding out-

put. In contrast in an input queued switch only one cell can be delivered to a particular

tagged output in a single time slot. This causes the phenomenon of HOL blocking - a cell at

the head of the line which loses in the current slot prevents other cells behind it from getting

access to the crossbar. Various proposals have been made to improve the performance of

input queued switches.

Recently it has been shown that a moderate speedup of S for a combined input output

queued switch results in a high overall throughput. A switch with a speedup of S can remove

up-to S packets from each input port and transfer up-to S packets to a particular output

port. We can consider the speedup of pure output queued switches to have a speedup of N .

(where the switch is of size N x N). In contrast input-queued switches have a speedup of

just 1. It has been proven in [CGMP98] that a speedup of 2�1=N is necessary and su�cient

to emulate an output queued switch. This means that if the same input tra�c is applied to

the CIOQ switch and the shadow output queued switch the departure process for the cells

should be indistinguishable. Note that no restrictions are placed on the arrival patterns of

the input tra�c. This is a general approach as compared to the approach in [CPK94] where

it is shown that switch speedup can be used to increase the throughput for certain tra�c

patterns.

In our discussion we will assume that the speedup is exactly two. The input ports

4



maintain a preference list based on the cells waiting at that input. The output ports also

maintain a preference list based on the cells which are destined to themselves. The proof of

the algorithm relies on the de�nition of the output cushion, time of departure, input thread

and slackness of an individual cell.

� Time of Departure(TOD) is the time that a cell c would have left the shadow output

queued switch that we are emulating.

� Output Cushion(OC) of a cell c is the number of cells waiting at cell c's output port

(in the CIOQ switch) which have a lower time of departure than cell c.

� The Input Thread (IT) of a cell is the number of cells ahead of it in its input priority

list.

Intuitively, if the output cushion is small or zero the scheduling algorithm should try to

deliver the cell urgently when its time of departure is reached. Alternately it is undesirable

to have a large input thread which is approaching its time of departure. The output cushion

may increase if more urgent cells destined for that output. The input thread decreases for

a cell if a cell ahead of it departs during the current slot and it increases if a newly arrived

cell is placed ahead of it in the input priority list. We should avoid a large input thread for

a cell with a small output cushion. This motivates the de�nition of slackness.

� The slackness of a cell is the value of the input thread minus the value of the output

cushion.

Slackness indicates the relative urgency of a cell after adjusting for its input thread and

output cushion. The proof is based on the observation that the slackness is non-decreasing

from time slot to time slot. Moreover if the initial slackness is non-negative the cell is

guaranteed to reach its output before or at its time of departure.

The CIOQ switch functions in four phases. In the arrival phase the newly arrived cells

are placed in an appropriate position in the input queues. In the �rst scheduling phase the

cells with slackness zero participate and the stable match is used to establish the transfer

matrix. In the departure phase one cell departs from every non-empty output queue. In the

second scheduling phase again the cells of slackness participate in the stable matching and

matched cells are transferred. The reason behind considering only cells of slackness zero is

that this reduces the number of iterations for convergence of the parallel stable matching

algorithm. It is shown in [CGMP98] using a dependency graph that the number of iterations

cannot exceed N . The input preferences are based on the order in which cells occur in the

input queue. If several cells destined to the same output want to participate it is enough to

5



consider the one that occurs �rst in the input priority queue. The output preferences are

based on the time of departures. It is important to understand that if a cell participates

in the stable matching its slackness is guaranteed to increase. In other words either a cell

which is more urgently desired at its output or input is transferred.

5 Our implementation

We have simulated this algorithm using the SIM simulator package. The simulation proceeds

in terms of slotted time. The input queues use V OQs to store cells destined for di�erent

outputs separately. At each input port we maintain a relative ordering of the di�erent non-

empty VOQs at that port. When a cell for a non-empty VOQ arrives the output port number

has to be inserted in the voqArray which maintains the relative ordering of the VOQs. One

of the advantages of maintaining V OQs is that only the cells at the heads of the VOQs

need to be considered. We also time-stamp a newly arrived cell with its projected time of

departure in the shadow output queued switch.

During each scheduling phase we have to determine the output cushion of the �rst cell in

each VOQ. This could be a potentially costly operation. To reduce the cost of this operation

the output queue would have to be sorted. But this entails some complexity at the end of

each transfer. We should also observe that this computation might have to be done at a

particular output for several cells. Hence this could be a potential problem for a hardware

implementation. Once we �nd the output cushion we can index into the VOQ ordering

array for this input and compute its input thread. Thus the slackness can be determined

using these two values. Another problem in a practical implementation would be the need

to serialize the computation of the slackness for di�erent V OQs at a particular input. This

is so as we have to traverse the V OQs in the order dictated by the voqArray. To avoid this

we would have to maintain the cumulative sum of the lengths of the V OQs but many of

these would have to be updated on the arrival or transfer of a cell. Since we consider cells

of slackness zero at each scheduling phase every cell is guaranteed to have a slackness of at

least 1 before the next arrival phase.

Once we obtain the input and output preferences these are passed to the stable matching

algorithm. In each a list of participants is obtained. Due to the incomplete nature of

the preference lists some men and women may have small preference lists. An input can

participate in the current round if its unmatched and if it has some preferences left in his

list. The algorithm stops when the number of a participants in the round becomes zero. We

recorded the number of iterations required for convergence during each scheduling phase.

6



6 Results and Observations

Somewhat surprisingly we found that the number of iterations is rather much lower than the

worst case bound of O(N). For instance even for a 64 x 64 switch we found that the number

of iterations was lesser than four during a simulation period of 1,00,000 time slots. The

iteration count and the frequency is presented below for di�erent switch sizes. Interestingly

the number of iterations was quite insensitive to the arrival patterns of the tra�c. We set

some of the inputs to produce bursty tra�c, some produced Bernoulli tra�c. The utilization

values of the input ports also did not increase the number of iterations beyond four. The

table below gives the distribution of the iterations and the corresponding frequency. For

a 32 x 32 switch the majority of the scheduling phases require only one or two iterations.

The length of the simulation also did not a�ect the results in any signi�cant manner. Out

Iterations Frequency

1 21191

2 27335

3 1455

4 19

Table 1: Iterations for 32 x 32 switch

of 50,000 schedulings only 1474 take more than 2 iterations which is less than 3% of the

iterations. A similar experiment for a switch with 64 inputs and outputs was conducted.

The results were still low. There was a slight increase in the number of schedulings of 4

iterations but large increase in the number of schedulings with iterations of value 2. So the

overall average is closer to two but it was still surprisingly low considering the fact 64 men

and women participate. These results are presented below. Again we used a similar tra�c

pattern of bursty and Bernoulli arrivals. Though the average number of iterations increases

slowly with N fewer than O(logN) iterations are required most of the times.

Iterations Frequency

1 13598

2 34262

3 2111

4 29

Table 2: Iterations for 64 x 64switch

These low numbers seemed to indicate the average sizes of the preference lists must be

rather low. We investigated this value. We observed that the input preference lists have

7



pretty low average lengths. For example in the �rst 1000 iterations for a 32 x 32 switch

we noticed that only in fewer than thirty schedulings were the input preference lists more

than one and even then for the �rst iterations this average was close to two. Thus they

would become ineligible to participate within one or two rounds. On the other had the

output preference lists grow to sizes of 5, 6 frequently. This seemed to indicate that the low

convergence time was due to the fact the number of cells of slackness zero at a particular

input was rather low. It is not known yet whether we can bound the number of cells of

slackness zero at a particular input.

We noticed that the simulation slows down tremendously for a 64 size switch. This

probably is due to the overhead of determining the slackness and output cushion of the �rst

cells in the VOQs. For a 64 x 64 switch the simulation over 100,000 slots took around 2

hours to complete. However the 32 size switch took only about 15 minutes to complete. The

implementation of the algorithm in the algorithm might prove to be di�cult due to the need

for computing per cell values. It would be interesting to see what the e�ect of limiting the

number of iterations to a �xed maximum. A few cells would have their times of departure

violated but this might be acceptable if most of the cells got through.

7 Conclusion

We have looked at the usage of the stable marriage algorithm for crossbar scheduling in

combined input output queued switches. Approximate estimates for the average case per-

formance of the general problem are much higher than the observed values for the CIOQ

switch. For reasonable sized switches of 32 or 64 ports, the average number of iterations

is close to two. This number increases slowly with the switch size. The reason behind this

phenomenon seems to be the fact the the average input preferences are very small. From a

practical viewpoint the drawback seems to be the computation of slackness for many cells.

It remains to be seen whether the number of cells that participate in a scheduling phase can

be bounded.

References

[AOST93] T. E. Anderson, S. Owicki, J.B. Saxe, and C. Thacker. High speed switch

scheduling for local area networks. ACM Transactions On Computer Systems,

11(4):319{352, 1993.

8



[CGMP98] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing

with combined input output queueing. Technical Report, Stanford CSL-TR-98-

758, 1998.

[CPK94] C.Y. Chang, A.J. Paulraj, and T. Kailath. A broadband packet switch architec-

tire with input and output queueing. IEEE Globecom, 1:448{452, 1994.

[GS62] D. Gale and L.S. Shapley. College admissions and the stability of marriage.

American Mathematical Monthly, 69:9{15, 1962.

[Knu76] D. E. Knuth. Mariages stables. 1976.

9


