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Abstract

This thesis presents a new structure called the Kinetic Vertical Decomposition Tree (KVD-

tree), used for the dynamic maintenance of visibility information for a set of moving objects

in space. Visibility information is important in many applications, including graphical

rendering, animation, motion planning, etc. Yet visibility is expensive to compute and

di�cult to update as the objects in the environment move and occlude each other and the

observer(s).

The KVD-tree is a single structure that not only (1) allows dynamic maintenance of

visibility, but also (2) represents a vertical decomposition of the space, (3) allows collision

detection among moving objects, and (4) it is kinetically maintained based on the kinetic

data structures framework.

In terms of structure, the KVD-tree is a special type of Binary Space Partition tree

(BSP-tree), a hierarchical data structure commonly used in solid modeling and computer

graphics for feature classi�cation and visibility determination. For a scene composed of

polygonal objects, the BSP-tree corresponds to a hierarchy of binary partitions of space

using the hyperplanes that support the faces of the polygons as partitioners. In the KVD-

tree, additional cuts are introduced from edges and vertices, so that a vertical decomposition

induced by the polygonal model is formed. The bounded complexity of the cells in this

decomposition allows the creation of certi�cates that indicate times when the movement

of objects causes a change in the decomposition. These certi�cates are used within the

framework of kinetic data structures to identify when the structure of the KVD-tree changes.

The update of the KVD-tree involves a series of local changes in the tree, accomplished by

special update algorithms. The certi�cates can be used to detect collisions of objects in the

scene, which can then be avoided by providing appropriate actions to the update algorithms.
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Chapter 1

Introduction

1.1 Motivation

Visibility is a central notion to a number of disciplines dealing with the computer modeling

of the physical world. In the �eld of Computer Graphics, for instance, visibility information

is used to compute parts of objects that are visible from a viewpoint (into an image plane).

Historically, computer graphics was the �rst branch of computer science to have faced the

visibility problem, which gave rise to the famous hidden-surface elimination problem [24].

The existence of many di�erent solutions to the hidden-surface elimination problem

illustrates the fact that there are many ways to approach it, with many tradeo�s to be

considered, depending on the application. For real-time visualization, for instance, high

frame-rates may be achieved by reducing the amount of realism in each picture generated.

In other situations, like a computer generated movie picture, the need for high realism

drastically slows down the generation of images. Both examples illustrate the tradeo�

between quality (realism) and speed necessary to generate each image. In the design of

visibility algorithms, these tradeo�s need to be taken into consideration.

There are important properties that are common to many of the visibility algorithms.

Sorting, for instance, is an example of such a common notion. The possibility of having one

object occlude another (with respect to a viewer), illustrates the fact that the distance to

the viewer can be used to de�ne a sorting order. Intuitively, such an ordering (also called

a visibility ordering or depth ordering) can be used to render objects in a far-to-near

1
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approach, where objects far from the viewer are drawn before near objects. This process

is also called the painter's algorithm[20], because it simulates to some extent the order

of actions performed by a painter when creating a picture. The e�ciency of the visibility

computation depends on how fast the visibility ordering can be obtained.

A second important notion applicable to visibility problems is coherence, which rep-

resents a tendency for some properties of a given problem to be locally constant. Image

coherence, for instance, describes the fact that neighbor pixels in the image space are likely

to have similar colors. The notion of object coherence pertains to the likelihood of close

points in object space to belong to the same object. In �gure 1.1 the di�erent types of

coherence are illustrated. Visibility algorithms exploit these types of coherence, either sep-

arately or together, to reduce the computational e�ort. Algorithms that exploit only image

space coherence are classi�ed as image-space algorithms, while algorithms that use object

space coherence are called object-space algorithms.

(a) (b)

Figure 1.1: Coherence information. (a) Image-space. (b) Object-Space.

The simple formulation of the visibility problem allows only static objects and a single

static viewpoint position. Generalizing to a moving viewpoint is the easiest extension that

we might consider. In this case, the representation of the world remains static, but the

algorithms that extract visibility information need to take into account the movement of

the viewpoint. The fully general problem happens when both objects and the viewpoint
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move. In this case, the representation of objects needs to be updated every time the objects

move, which becomes a challenging task when combined with the extraction of visibility

information in an e�cient manner.

Motion problems typically possess another type of coherence called temporal coherence.

In a dynamic scene, objects usually move along continuous paths and the visibility ordering

computed from a previous frame is likely to stay the same in a succeeding frame, with a

small expected number of changes. In �gure 1.2 we illustrate a small example with moving

objects, to illustrate some changes in visibility relationships caused by objects occluding or

being occluded by other objects.

3D

2D

3D

2D

(a) (b)

Figure 1.2: Dynamic Visibility Problem. (a) sample scene (b) changes in scene due to the movement

of objects.

The challenge here is to design a data structure that can quickly extract visibility

information, while using as much temporal coherence as possible. In this work, we solve

this problem by �rst considering a data structure that can be used to extract visibility

information for static scenes, and propose techniques to update this structure. We use as

much as temporal coherence as possible. In order to do this, we change the problem of

maintaining dynamic visibility information into a similar problem of maintaining a data
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structure that can be used to extract visibility information in a dynamic scenario.

This new data structure is called the Kinetic Vertical Decomposition Tree (KVD-tree

or simply KVD). The KVD is a special type of binary space partition tree (BSP tree or

just BSP). The BSP is a data structure commonly used in solid modeling and computer

graphics for feature classi�cation and visibility determination. The BSP is in essence a

static structure, although some approaches to create dynamic BSPs have been explored in

the literature ([17][26][7]).

In this work we choose to use the framework for designing kinetic data structures

(KDS) proposed in [4]. KDS's are speci�cally designed for continuously moving objects,

and we apply that framework to the problem of dynamic maintenance of a BSP. Similar

approaches have been considered in the literature [2] [1], mainly from a theoretical point of

view. Our approach here is grounded in practice, in other words, the KVD corresponds to

a fully implemented 3D kinetic BSP.

This work is motivated by the observation that many changes in the BSP are local, and

therefore require updates in just a few places of the tree. The design and implementation

of a kinetic BSP structure that has local update algorithms and has a set of certi�cates

that identify combinatorial changes in the tree is the major contribution of this thesis.

In this chapter we review the fundamental concepts involving BSPs and Kinetic Data

Structures framework. An informal presentation of the KVD tree is given next. We conclude

the chapter with a summary of the contributions of this thesis and the organization of the

text.

1.2 Binary Space Partitioning Trees (BSPs)

Binary Space Partitioning trees (BSP-Trees) are spatial search structures used in many

di�erent aspects of Computer Graphics and Geometric Modeling. Applications in solid

modeling [14] [16] [25] [27], visibility orderings [10] [11] [26] and image representations [18] ,

among others, can be found in the literature. In order to describe the concepts of BSP-Trees,

it is always nice to �rst explain the relation it has with Binary Search Trees.

Binary Search Trees have been used in Computer Science in many ways, but mostly

as a data structure to accelerate search queries based in symbolic values. A geometric
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interpretation of this data structure is as a hierarchy of binary partitions of the real line

(see �gure 1.3), where the partitioner is a point and each partition obtained represents an

interval.
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Figure 1.3: BSPs in 1D and 2D

The problem with this interpretation is that it does not appear to directly generalize to

higher dimensions, as points do not partition higher dimensional spaces. A useful general-

ization can be obtained when the partitioner is in fact a hyperplane, rather than a point.

In general, for a d-dimensional space, the partitioner corresponds to a d - 1 hyperplane,

and the partition has the same dimension of the underlying space. For example, in two

dimensions the partitioner is a line, and in three dimensions it is a plane. BSP-Trees and

Partition Trees [12] use this analogy to extend the concepts of Binary Search Trees to higher

dimensional spaces. One of the great advantages of BSPs is its natural ability to combine a

search structure with a data structure that can represent a polygonal object. This property

motivates the use of BSPs in solid modeling applications.

Visibility information can be extracted from the BSP in a very simple way, and we

illustrate this with an example in 2D (�gure 1.4).

In this case, the input set consists of line segments, which are used to create the parti-

tioner or cuts in the BSP. At the nodes of the BSP we store the equation of the line segment

that de�nes the corresponding cut. We also store the intersection of the de�ning segment
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Figure 1.4: Extracting visibility from the BSP (a) BSP subdivision (b) BSP tree and visibility

ordering for two viewpoints.

with the current partition of the BSP, which we call the segment fragment. In the �gure

1.4, segment 5 generates two nodes in the BSP, each with the proper segment fragment.

For any given viewpoint, a visibility ordering can be obtained by performing a back-

to-front traversal of the BSP, as follows. We traverse the BSP tree one node at a time,

beginning at the root. For every node, the subtree that does not contain the viewpoint is

visited �rst, followed by the node itself, �nally the subtree that contains the viewpoint is

visited. The resulting visibility order for two example viewpoints is illustrated in the �gure

1.4. The complexity of this operation is clearly proportional to the number of nodes in the

tree.

1.3 Kinetic Data Structures

Data structures are fundamental to the study of algorithms. Often they involve a delicate

compromise between di�erent operations on data, each of which may be easy to implement

in isolation, while their union generates conicting requirements. Usually this conict

arises between operations which produce a desired attribute of the data, say the largest

value among a set of numbers, and those that update the data, say by adding or deleting
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numbers from the set. Data structures supporting insertions and deletions of objects are

referred to as dynamic. In this work we focus instead on kinetic data structures (KDS for

short), in which we want to maintain the attribute of interest under continuous changes

in the data. This framework for data structure design was proposed in [3], where the

attributes to be maintained are named con�guration functions. In the context of this

work, the attribute we maintain is a representation of the combinatorial structure of a BSP,

which is used to extract the visibility information among the objects.

(a) (b)

Figure 1.5: Moving balls inside a rectangle. (a) Fine sampling may lead to unnecessary work, while

coarse sampling may miss some events. (b) Certi�cates that serve as a proof that the balls stay

inside the rectangle

Here we briey review some of the key issues regarding kinetic data structures. Consider

the example in �gure 1.5, where we want to maintain a set of moving balls inside a rectangle

at all times, while bouncing the balls from the walls whenever they try to escape. Suppose

that each ball has a posted ight plan that gives full or partial information about its current

motion. A simple approach to animating this scenes would be to test at frequent intervals

of time whether a ball leaves the rectangle. This may lead to unnecessary work, because

most of the times the balls are inside the rectangle and no ight plan update is necessary.

On the other hand, if we sample the movement the balls too coarsely we may miss critical

times when balls leave the rectangle.
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A better approach for our purposes is as follows. We maintain for each ball the vertical

and horizontal distances to each one of the walls. Because we have the ight plan for each

ball, we are able to precisely calculate the event times the balls hit the rectangle. The

enumeration of a set of conditions that can be used to prove that a combinatorial struc-

ture correctly describes the current situation, combined with a mechanism that computes

event times when the structure changes, form the foundation of the kinetic data structure

framework.

For general problems, a ight plan update can occur because of interactions between an

object and other moving objects, the environment, etc. For example, a collision between

two moving objects will in general result in updates to the ight plans of both objects.

The interface between the kinetic data structures and the object motions is through a

global event queue. A key aspect is that we have special de�nition for motion. What we

mean by this is that the kinds of events we have in the event queue correspond to possible

combinatorial changes involving a constant (and typically very small) number of objects

each. For example, in the case of visibility maintenance, one type of event we might use is

\the points A and B become occluded by edge e of opaque triangle T". Indeed, it will turn

out that the correctness of whatever con�guration function we maintain can be guaranteed

by a conjunction of similar low-degree algebraic sign conditions, each involving a bounded

number of objects each, We call these conjunctions the certi�cates of the KDS.

At any one time, the event queue will contain several KDS events corresponding to

future times when certi�cates might change sign. The times for these events are calculated

using the posted ight plans of the objects involved. If, because of other events, the ight

plan of an object is updated, then all certi�cates involving that object must be located

and have their `sign change' time recalculated according to the new plan. In this way the

event queue adapts to the evolving motions of the objects. In general the approach taken is

that each moving object needs to be aware of all the events in the event queue that involve

it and the validity assumptions about its motion on which these events are based. If the

motion of the object changes so that any of these assumptions is no longer valid, then it is

the responsibility of the object to take the steps necessary to have these events rescheduled

at the times appropriate for its new motion.
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To summarize, kinetic data structures are di�erent from classical dynamic data struc-

tures: though we can (and often want to) accommodate insertions and deletions, our focus

is on continuous motions, rather than arbritrary modi�cations. Furthermore, the structures

are on-line and can be used to implement correct simulations even when the object ight

plans change because of interactions between the objects themselves or the objects and

their environment, or even when only partial information about the motions is available.

1.4 Kinetic Vertical Decomposition Trees

The advantage of the kinetic data structure framework to this problem is that it focuses

our attention to those spatial relationships between the data in the scene which are crucial

in forming the BSP. Thus, as long as the certi�cates de�ning the KDS do not change,

the current BSP stays valid combinatorially | even though objects may have moved in the

meantime. When one of the certi�cates does fail, the continuity of the motion which caused

it to fail makes it likely that the required change in the BSP will be a local one. These local

structural changes to the BSP are operations akin to rotations in classical binary search

trees [9], though of course more complex: BSPs represent multidimensional data, so that

each node may point to lower-dimensional structures, etc.

From the point of view of kinetization, it seems advantageous to form a BSP by using

cuts which are as uniform as possible | for example, for a set of non-intersecting lines

in two dimensions, an approach where all cuts are parallel to a given axis (except cuts

through lines) has been suggested [19]. The decomposition created in this case corresponds

to the vertical decomposition of the set of lines. The advantage of such uniform cuts is

that the combinatorial changes in the structure of the tree happen at speci�c times when

the parallel cuts cross each other. The extension to three dimensions { for example, for a

set of non-intersecting triangles, can be done in a similar way using the three-dimensional

notion of vertical decompositions. As with several other problems, the extension to a higher

dimension creates many more complex cases, but it is still possible to de�ne a �xed number

of critical events.

The structure we propose is called the Kinetic Vertical Decomposition Tree (KVD).

It is a special type of BSP that represents the vertical decomposition for a set of triangles
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in R
3 . In the KVD, additional cuts are introduced from vertices and edges along speci�ed

directions. In some cases, the viewpoint or light source is used in the speci�cation of these

directions, allowing recovery of view-dependent (or light-source) visibility. The update of

the KVD involves a series of local changes in the tree, accomplished by special update

algorithms. The certi�cates of the KVD can be used to detect collisions of objects in the

scene. These collisions can be prevented by assigning appropriate actions to the update

algorithms.

In summary, the KVD is a single structure that has the following characteristics:

1. Hierarchical representation of a dynamic vertical decomposition.

2. Dynamic maintenance of visibility ordering.

3. Viewpoint or light source dependent visibility information available.

4. Certi�cates detect combinatorial changes.

5. Collision detection among moving objects built-in in certi�cate structure.

6. Local update algorithms.

1.5 Organization of dissertation

The text is organized as follows. In chapter 2 we review the main properties of BSPs, and

discuss some new techniques to help in its visualization. In chapter 3 we review previous

work on dynamic and kinetic BSPs. In chapter 4 we present a general introduction to

Kinetic Vertical Decomposition Trees, and discuss the main characteristics of this structure.

The next three chapters describe in detail important parts of the KVD. In chapter 5 we

discuss issues regarding its representation and construction. In chapter 6, we discuss the set

of events used to detect combinatorial changes. Chapter 7 is devoted to the algorithms used

to perform structural updates in the tree. We evaluate the performance of the KVD and

discuss some of these results in chapter 8. We conclude with chapter 9, where we discuss

the main contributions of the thesis, and �nish with a presentation of future directions and

work.



Chapter 2

BSP Concepts

2.1 Definitions

BSP algorithms involve many concepts and de�nitions, which for clarity and terminology

are presented in detail in this section. Let us consider a scene in d-dimensional space.

The partition of this space is done by means of a hyperplane, described by the following

equation:

h ≡ f(x1; :::; xd) j a1x1 + ::: + adxd + ad+1 = 0g (2.1)

The hyperplane separates the space in two halfspaces, the positive and the negative

halfspace. As a convention, the positive halfspace is also called the IN halfspace, while the

negative halfspace is called the OUT halfspace. The normal of the hyperplane is de�ned

by the vector (a1; a2; :::; ad).

A BSP node contains data describing the binary partition being performed on the

space. It consists of a partitioning hyperplane, node-speci�c information and left and right

children that point to BSP representations of the positive and negative halfspaces. The

hyperplane that de�nes the node n is denoted by h(n). A BSP leaf contains attributes

associated with a given region. Many attributes may be stored at the leaves, like whether

the region is part of a solid, its color, density, etc. We call the special case of BSPs with

solidity attributes in the leaves of the tree by a solid BSP.

11
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A region path of a node corresponds to the path through the tree that leads up to

the root of the tree. This path consists of all ancestors of the node in the tree and is

represented by an ordered list of nodes L. A region of a given node represents the geometric

interpretation of the partition de�ned by the region path RP(n). It corresponds to the

intersection of all halfspaces in the region path.

In polygonal models, the planes that support the faces of the model are used to de�ne

cuts in the tree. During the construction of the BSP, the insertion of a cut corresponding

to a face is done by locating the leaves in the BSP that contain the face. For each leaf node

reached, a new node is created, containing the fragment of the face that survived to that

particular location. Together, all nodes created from a given face contain fragments of the

original face, and their union reconstructs the face.

The visibility ordering extracted from the BSP is given by the enumeration, in back-to-

front ordering, of the fragments stored in the nodes of the tree. In �gure 2.1 we illustrate

some of the concepts we have seen so far.

The auto-partition BSP is a special type of BSP where the choice of cutting hyperplanes

used during the construction of the BSP is limited to planes that support the faces of the

input model, as in the example above. The main advantage of this limitation on cuts is

that the set of partitioner planes is minimal. For convex objects, however, the use of auto-

partition cuts results in a tree of linear depth, which follows directly from the fact that no

splitting of fragments happens. In this case, operations that have running time proportional

to the depth of the tree may become expensive. One solution to reduce the depth of the

tree is to use external cuts to extend the set of auto-partition cuts. The price to be paid

in this case is related to the appearance of splitting operations that partition the nodes

and increase the overall number of nodes in the tree. We usually use the term BSP for the

type of BSP that has no restrictions on the types of cuts, allowing use of external cuts if

necessary.

2.2 BSP Operations

BSP algorithms range from numerical procedures (classi�cations, partition of fragments) to

tree speci�c procedures (construction, merging and partition of trees). In this section we



CHAPTER 2. BSP CONCEPTS 13

5b

4

2

3 1

5

11

22

33 5a5a 5b5b

44

in out

5a

Fragments

Region Path

Region

5a

5a

5b

=

Figure 2.1: BSP Concepts. Sample subdivision, the corresponding tree representation, fragments,

a region path and the corresponding region (in yellow).

explain in detail all these operations and provide several examples.

2.2.1 Classification

Classi�cation methods compute the spatial relationship between fragments and hyper-

planes. In the construction algorithm, for instance, the insertion of an element in the tree

uses this operation to �nd which halfspaces of the root node are occupied by the the ele-

ment. If the element crosses the node hyperplane, a partition of the element into fragments

is done and the process continues with the fragments in the subtrees of the node. On the

other hand, if an element belongs entirely to one of the halfspaces no partition is required

and the insertion continues in just one of the subtrees. The classi�cation operation re-

turns a code that represents this relationship between the node in the tree and the inserted
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fragment.

Let nh and ns represent two BSP nodes. The classi�cation of ns against nh (cl(ns; nh))

returns one of six results:

• CL IN: If frag(ns) is contained in h+(nh)

• CL OUT: If frag(ns) is contained in h-(nh)

• CL ON IN: If frag(ns) is contained in h(nh), with normals facing IN halfspace.

• CL ON OUT: If frag(ns) is contained in h(nh) with normals facing OUT halfspace.

• CL ON: If frag(ns) is contained in h(nh) (when a normal is not de�ned for frag(ns)).

• CL CROSS: If frag(ns) belongs both to h+(nh) and h-(nh).

In order to implement this operation we compute the dot product of each point in

the fragment frag(ns) against the hyperplane h(nh), as the resulting sign represents the

halfspace in which the point is located. The classi�cation types are illustrated in �gure 2.2.

1CL_IN
CL_OUT

CL_CROSS

CL_ON_OUT

CL_ON_IN

Figure 2.2: Possible results for the classi�cation operation.
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2.2.2 Partition of a fragment

The fragments are used to control the insertion of cuts in the BSP. For simplicity, fragments

are stored as an ordered list of vertices, and the edges of the fragment are de�ned by

consecutive vertices in this list. In order to decide which halfspaces are occupied by a given

edge we use the classi�cation operation described above. If any edge fragment crosses the

hyperplane, a partition is required to create the corresponding fragments in each one of the

halfspaces. In �gure 2.3 we illustrate some cases of fragment partitions.

Figure 2.3: Partition of a fragment. Points of the fragment are classi�ed in order against the

partitioner. Special cases where a point lies in the partitioner may create special situations in the

partition algorithm.

The algorithm to partition a fragment by a hyperplane performs a classi�cation op-

eration for every vertex of the fragment. The results of the classi�cation operations are

evaluated in order to decide whether an edge of the fragment crossed the hyperplane. Two

lists of vertices, containing points in IN and OUT halfspaces are created in this process.

The fragment list is an implicit representation of the edges, and every time two consecutive
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points have di�erent classi�cation results an action must be taken. In the simple case,

where the points are in both halfspaces of the cut (one classi�cation is CL IN and the other

CL OUT - or vice-versa), an intersection vertex is created and inserted in both IN and OUT

lists.

The possibility of a point lying exactly on the partitioner creates an additional di�culty.

Assuming the numerical precision of the classi�cation operation for this case is su�cient,

we wait until another point is found whose classi�cation is di�erent than CL ON. This new

classi�cation result is compared against the last classi�cation result obtained before the

CL ON was received. If the classi�cation results are di�erent, we insert the CL ON vertex

in both lists. Otherwise, we insert the point in only one of the lists, the one indicated by

the last classi�cation result.

2.2.3 Partition of a BSP

The partition operation can be extended to objects represented by BSPs as well. The

result of this operation creates two new trees, corresponding to the BSPs in the positive

and negative halfspaces of the partitioner. In �gure 2.4 we illustrate a simple example of

this partition operation.

The classi�cation operation is used to decide in which of the output trees each node of

the original tree belongs. The fragments associated with each node are used in this process.

For the case that a fragment is completely inside one of the halfspaces of the partitioner,

the node is inserted in only the the output tree of the corresponding halfspace. For the

case of a fragment that crosses the partitioner, a partition of the fragment is done using the

partition operation described before, and two nodes are inserted with the proper fragments

in the output trees.

The algorithm that creates the partition performs a traversal in the tree, computing the

classi�cation of the fragment of each node. Depending on the result, nodes are inserted in

the proper trees. In the example of �gure 2.4 we have a simple case of a BSP composed of

three cuts. The �rst node to be tested, node a, is contained in one of the halfspaces and

only inserted in one of the subtrees. The traversal continues in node b, which is fragment in

two nodes, b1 and b2, each inserted in one of the output trees. Similar behavior is observed

for the last node in the tree.
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2.2.4 Merging Operation

The merging of two BSPs is a very powerful operation used to combine two BSP represen-

tations. If we consider each BSP as a representation scheme, it becomes natural to de�ne

an algebra that allows us to combine di�erent BSP representation. In solid modeling, for

instance, the merging of BSPs is used to create a new BSP that results of a boolean combi-

nation of the BSPs (union, intersection or di�erence). In �gure 2.5 we illustrate the merging

of two BSPs corresponding to their union.

The simple way to combine BSPs is to keep one of the BSPs static, while inserting the

second tree into it. Because the cells of the BSP may contain attributes, such as solidity

or color, it is important to maintain the structure of the tree to be inserted, rather than

inserting one node at time. The merging operation is accomplished by a recursive algorithm

that performs a traversal of the static tree. For each visited node in the static tree, we use
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Figure 2.5: Tree Merging.

the partitioner of the node to cut the inserted tree, using the operation described before

to partition a BSP. Each one of the trees we obtain in this process is passed along to the

subtrees of the node, and the process is repeated. We keep repeating this process until a

leaf is reached, which is replaced by the current �ltered tree.

For the example in �gure 2.5, the partition of the inserted tree does not create an

additional tree when compared against node a, but it creates two trees when compared

against node b. The result of this process is passed along the subtrees of b, and the tree

that faces node c is again partitioned. The moment the tree reaches a leaf node, the �ltered

tree replaces the previous leaf node. In the case that a solidity attribute is present, this

�nal stage needs to combine the solidity information of the leaf with all nodes of the �ltered

tree.
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2.3 Good BSPs

The process of choosing the set of cutting partitioners in the BSP leads to the question of

constructing optimal BSPs. The de�nition of an optimal BSP is not well established, since

several independent properties can contribute to improved performance. In some situations,

the depth of the tree is the overriding consideration, but obtaining lower depth trees may

require increased splitting. If the number of nodes in the tree is important, then splitting

may be reduced at the expense of increasing the height of the tree. Another property that

a�ects the quality of a BSP is the amount of geometry per region. In �gure 2.6 we see the

example discussed in [15] that compares a balanced cut with a cut that allocates as much

geometry as possible in small volumes of space. In cases where geometry is not uniformly

distributed the balanced cut is not optimal because the subtrees that are obtained contain

lines that have a greater probability of cutting other lines in the same subtree.

Figure 2.6: A Balanced BSP versus a BSP that prefers allocation of large number of geometry in

small regions.

Besides the fact that we have conicting properties, the evaluation of all possible com-

binations of BSPs requires exponential work, and approximate solutions become the right

approach to achieve good BSPs with reasonable computation times. Some e�orts in the

literature discuss near-optimal solutions. In [15], the use of expected models that take into

account balancing, splitting and the geometry distribution of objects is discussed. The use

of evolutionary techniques such as genetic programming is discussed in [5]. The basic idea
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is to formulate the BSP construction as an optimization problem, and use similar expected

models as before to drive a genetic simulation that evolves a BSP with changes until a good

BSP is obtained. A rather simpler approach is to randomly select a partitioner cut from the

set of partitioner candidates. The resulting BSP, called a randomized BSP, is discussed

extensively in [13], where expected bounds on the height and size of the BSP are showed

to be optimal.

2.4 Visualizing the structure of a 3D BSP

In this section we illustrate how visualization can be helpful for understanding the structure

of 3D BSPs. We have created a framework for visualizing BSPs that focuses on important

properties of the tree, combined with a selection mechanism that narrows the set of nodes

used in the visualization. Some applications that can bene�t from this type of visualization

tool include: design of heuristic strategies for BSP construction, manual scene analysis,

performance evaluation of BSPs and debugging of dynamic BSPs.

Many applications in Computer Graphics require the manipulation of complex spatial

data, and the representation of this information in a way that is e�cient and economical in

terms of storage is a major design challenge. Hierarchical data structures, like quadtrees,

octrees and binary space partition trees (BSPs), allow the representation of complex models

in a hierarchical fashion, using the divide-and-conquer strategy. Many algorithms in the

literature describe di�erent ways to construct hierarchical structures for a great variety of

models[22][21].

Among these hierarchical models, the BSP is the one that allows the greater exibility

in the creation process. Unlike octrees and quatrees, that constrain cuts to be aligned with

�xed directions, the BSP allows cuts of the space using hyperplanes of arbitrary orientation.

This exibility increases the number of di�erent BSPs that can be constructed, and raises

questions on how to evaluate and compare di�erent trees. As the de�nition of an optimal

BSP is not clearly de�ned, heuristic strategies have been proposed to produce near-optimal

solutions [5][15]. The design of such heuristics is based on the evaluation of qualitative and

quantitative properties a BSP should have in order to perform a given set of operations

e�ciently.
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Similarly to binary search trees, balanced BSPs are usually desirable. As pointed out by

Naylor[15], the notion of balancing in the BSP not only involves the structure of the tree,

but also how geometry is partitioned by the tree. This observation motivates the use of

heuristics that also take into account geometric information. Therefore, a tool to visualize

the resulting BSP, not only by its structure, but also by the geometric decomposition it

creates, is extremely useful in the performance evaluation of such heuristics.

Even if good heuristics have been designed, it may be the case that an automatic

BSP generator is not a suitable choice, and a user-controlled partition may be necessary.

For instance, in the creation of large environments the user may call an automatic BSP

generator to create an initial BSP representation of the scene, and perform a manual �ne-

tuning process to �x or improve the initial solution by interactively rearranging nodes in the

BSP. This manual process can only be accomplished with the visualization of the geometric

information of the BSP.

Our visualization tool has been particularly helpful during the debugging and evaluation

of the KVD implementation. The KVD changes at critical times, resulting from changes in

the structure and the geometric information stored in the tree. As the large combinatorial

complexity of the KVD may distract the user from �nding the possible source of problems

in the code, a visual tool can substantially increase the chances of locating such problems.

Also, if the KVD is used as a search structure, a visualization of frequently visited nodes

or costly search operations may be done by a visual inspection of the nodes involved. In

some cases, a visual inspection may lead to the conclusion that some modi�cation in the

structure of the tree is necessary to improve performance.

In this section we discuss issues in the visualization of BSPs. The visualization process

combines the enumeration of desirable properties of the BSP, the binding of these properties

with display methods, and the selection process that helps identify subsets of the structure

of the tree. We illustrate the results with many examples at the end.
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2.4.1 Display techniques

Properties

The nodes of the BSP contain many di�erent sources of information helpful to understand

the structure of the tree. We separate the information associated with a tree into two

categories: geometric and statistic. In the geometric category we include geometric data,

like the hyperplane, fragments, normal and regions associated with nodes in the tree. The

visualization of each of these properties is done by displaying the geometric information

they encode using speci�ed material properties (often color and transparency).

The statistic category contains scalar data associated with nodes in the tree. Examples

of statistical information are: number of subtree nodes, maximum subtree depth, volume

or area of a node, etc. Each piece of statistical information is represented as a di�erent

function, and we call the set of all statistical functions the universe of statistical functions.

The statistical properties do not have an obvious geometric realization, and we visualize

them by creating such realizations. We establish a correspondence between statistical data

and geometric data, and use material properties to change the visual aspect of the geometric

data. After the binding of statistical to geometric data is done, we specify a mapping from

scalar values to material properties (color or transparency). For example, we can draw the

region associated with a node with a mapped color, corresponding to a certain statistical

property of the node. Statistical data is also used in the selection process to de�ne the

subset of a nodes you want to display information.

Selection

Once we de�ned properties about nodes in the tree, the question arises as to which nodes

we will select to display such information. As the BSP is a hierarchical structure, it is

natural to narrow the selected set of nodes. In this section we discuss the selection process,

and discuss three di�erent ways to select nodes in the tree: procedural selection, interactive

navigation and intersection plane.
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Procedural Selection

The universe of statistical functions de�ne properties associated with nodes in the BSP. In

the procedural selection scheme the user de�nes a logical expression combining functions

from the universe of statistical functions. For instance, if depth(n) speci�es the depth in

the tree of a given node, the expression (depth(n) < 5) de�nes a valid range of depth

values. The selection occurs by evaluating the expression, and only nodes that satisfy this

expression are selected and displayed.

In general, the selection expression can be any logical expression using the universe of

statistical functions. This type of selection function is useful when a global property of the

tree needs to be evaluated.

Interactive Navigation

In this selection method the user is interested in understanding the topological structure of

the tree. Unlike the procedural selection, where a set of nodes may be used for visualization,

here the emphasis is in the evaluation of a single node at time.

In this case, a node in the tree is de�ned as the current selected node. The structure

of the tree gives possible choices to move from the current to a new selection, and typical

choices involve moving to adjacent nodes in the tree. In the BSP, these pointers correspond

to parent, left and right pointers associated with a node.

More complex movements can be de�ned in terms of di�erent ways to traverse the

tree. For example, from the current node, we can �nd the next or previous node in a

given traversal procedure of the tree (e.g. �nd next node in a pre-order visit of the tree).

The ability to navigate interactively through the nodes of the tree can be very helpful for

understanding the topological structure of the tree.

Intersection Plane

One of the great di�culties in the visualization of the geometric information in the BSP is

the fact that the visualization may contain occlusion. In the intersection plane approach, a

plane is intersected against the structure of the tree, and the resulting cuts of the BSP are

displayed over the plane, reducing the dimension of the displayed information.
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The selection of nodes using this approach is di�erent than the previous two approaches,

as the selected nodes are obtained by intersecting the tree against the intersection plane.

This selection method helps to understand portions of the tree that are cluttered with a

lot of regions.

2.4.2 Results

In �gure 2.7 we illustrate some results that show the application of the techniques described

above. The �rst six examples discuss di�erent visualization techniques for a sample scene

composed of blocks (�gure 2.7.a). In �gure 2.7.b we show the visualization of all hyperplanes

in the corresponding BSP for the blocks model. The use of transparency in this example

is fundamental because it allows the visualization of the structure of the tree even though

many hyperplanes occlude each other. It is important to mention that the compositing of

alpha values to simulate transparency is done correctly using the visibility ordering provided

by the BSP.

The visualization of all hyperplanes in the tree is important because it helps to under-

stand the global structure of the tree. If a local visualization is also important, one solution

is to use the intersection plane selection. In �gure 2.7.c we give an example that shows a cut

in the BSP by an intersection plane. In this case, the user bene�ts most by this technique

tool if the intersection plane can be moved through the BSP while showing the resulting

cuts. For example, a sweep along a speci�ed direction of the intersection plane can very

helpful to understand scenes with many orthogonal cuts. This will usually be the case in,

for example, architectural models.

The interactive navigation of the tree is illustrated in the next three �gures. In a simple

navigation, the user is located at a selected node and has the possibility to move up (parent

node) or down the tree (left or right nodes). In order to help the user to choose between

the left and right nodes, the regions associated with them are displayed. In �gure 2.7.d, the

current selected node is the root of the tree and the regions of the left and right nodes are

displayed with di�erent colors (blue for the left node, green for the right node). In �gures

1.e and 1.f we have the same kind of visualization for the left and right nodes of the root.

The display of regions in the interactive navigation is very important because it gives the

user geometric information about nodes in the tree. This geometric information can then
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be used to locate critical parts of the tree.

In Figure 2.7.g we visualize all hyperplanes for a simple scene illustrating a cycle in

the visibility graph. In Figure 2.7.h, we show a more complex BSP called Shadow Volume

BSP[6], that has additional cuts de�ned by edges of the model and a particular point (a

light source or a viewpoint). Structures like this one are used in applications to accelerate

shading calculations or to perform occlusion culling. The greatest bene�t occurs when a

front-to-back traversal of the BSP discards the traversal of large parts of the BSP because

it contain objects that are occluded by already visited objects.

The last example shows how statistical properties of the tree can be used to help the

visualization of complex objects. In this case, the number of hyperplanes can grow to be

very large, cluttering the visualization. It is possible to understand part of the structure

of the model by limiting the set of nodes using the procedural selection. In �gure 2.7.i the

depth of the tree was used to limit the nodes of the tree, with only the the �rst �ve levels in

the BSP used in the visualization. The ability to limit the set of nodes in the visualization

of BSPs is very important, because it not only reduces the complexity of the tree but also

allows the user to focus on important properties of the data.

Finally, the use of this visualization tool is illustrated along this dissertation by the

�gures used to explain concepts of the KVD. As mentioned before, this tool was crucial to

debug the implementation of a complex structure such as the KVD.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.7: Examples of the visualization of BSPs. (a) Scene with blocks, (b) All hyperplanes in the

BSP, (c) Intersection Plane Selection, (d) Root hyperplane of the tree and the positive and negative

regions, (e)(f) Same information for the left(right) subtrees of the root, (g) All hyperplanes of scene

illustrating cycle in the visibility graph, (h) Shadow Volume BSP for a scene composed of triangles

and (i) First 5 levels of hyperplanes in a tree for a complex object.
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BSPs for moving geometry

One of the greatest advantages of BSPs for visibility computations is that no re-computation

of its structure is necessary when the viewpoint moves. The extraction of visibility informa-

tion from the BSP is accomplished with a traversal of the tree in a speci�c order determined

by the position of the viewpoint. Although the traversal may not be the same for di�erent

viewpoints, the BSP remains the same.

The same can not be said if the objects that de�ne the BSP move. In this case, the

movement of objects has a direct a�ect on the BSP that is constructed from them. This

direct relation between objects and the structure of the tree may create an inconsistent

situation if the partitioning de�ned by the BSP is violated, as will happen, for instance,

when a polygon moves from one halfspace to another. If no change in the BSP is performed,

the resulting visibility ordering may be incorrect.

The static nature of the BSP motivated several people to work on extensions of BSPs

to represent moving geometry. In this section we review previous work in two categories.

The �rst category, called Dynamic BSPs, is concerned with the update of BSPs as quickly

as possible, using a brute-force approach such rebuilding the BSP. The solutions presented

in this category emphasize on the implementation aspects of the problem. The second

category, called Kinetic BSPs, discusses solutions that try to exploit temporal coherence as

much as possible to avoid rebuilding the BSP every time an object moves. The identi�cation

of speci�c times that require a change in the BSP, combined with local updates in the

BSP, are the main points of this approach. Unlike the �rst category, this work is focused

27
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in theoretical aspects of the problem, providing high-level descriptions of algorithms and

analyses of the complexity characteristics of algorithms.

The work we present in this dissertation is based on algorithms of the second category,

with two major di�erences. First, we propose a structure that is a fully 3D BSP. As we

will see later, the kinetic solutions we review do not provide an event mechanism that works

in the structure of the BSP in 3D, but rather control events in the projection of the BSP

onto a 2D plane. Second, we present a fully working implementation of kinetic BSPs,

with a description of the details of the algorithm, rather than focusing in the complexity

analysis. For this problem, there is a big gap between the description of the algorithm at

a high-level and its actual implementation. The fact that many cases can be described by

simple reections of a small number of base cases simpli�es the description of the algorithm.

In the implementation, however, the need to have a correct solution for every single case

makes the problem much harder. Obviously, similar behavior in di�erent cases needs to

be exploited, and allows the problem to be treated in a reasonable manner. As in similar

situations, many problems not discussed in higher-level descriptions of the algorithms need

to be addressed.

3.1 Dynamic BSPs

In [26] a new structure called a Dynamic BSP is proposed. The motivation is to insert

additional planes in the BSP in order to reduce the number of situations that require

changes in the BSP. In practice, this approach localizes the updates needed for deletion and

reinsertion of moving objects in a BSP. This approach does try to exploit, by introducing

additional planes, the spatial coherence of the dynamic changes in the tree. The proposed

structure contains four new types of planes. The �rst type is called a �rst range separating

plane, and corresponds to a plane that linearly separates objects in two regions. For cases

where a linear separation is not possible, a second range separating plane is introduced to

de�ne which object will stay the same, and which one is going to be partitioned. To avoid

extra splitting, wrapping planes are used around objects to serve as a bounding volume.

Finally, user-introduced planes are called divisor planes. In �gure 3.1 we illustrate an

example of this structure.
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Figure 3.1: Dynamic BSP using separating, wrapping and user-de�ned cuts. (a) Divisor cuts (D*,

blue), �rst range separating planes (F*, red) and second range separating planes (S*, green) are

added before the objects. (b) Resulting BSP.

Once the structure is created with the addition of external planes, the update due to the

movement of an object is done with a brute-force procedure that checks a�ected parts by

the object and rebuilds the tree if necessary. In some situations, where the moving object

remains isolated by a valid separating plane, no reconstruction is necessary.

In [17] a method to implement dynamic changes in a BSP-tree is described, where the

static objects are represented by a balanced BSP tree (computed in a pre-processing stage),

and then the moving objects are inserted at each time step into the static tree. Only

insertions are required, as a copy of the static world is used, and no constraints on the path

of the inserted objects are de�ned.

In [7] a more general approach is proposed (but only for BSPs in two dimensions), which

does not make any distinction between static and moving objects. By keeping additional

information about topological adjacencies in the tree, the algorithm performs insertions and

deletions of any node in a more localized way. The augmentation by topological pointers of

BSP trees in higher dimensions is also discussed in [8], but not in the context of dynamic

changes. All these prior e�orts boil down to deleting moving objects from their earlier

positions and reinserting them in their current positions after some time interval has elapsed.

Such approaches su�er from the fundamental problem that it is very di�cult to know how
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to choose the correct time interval size: if the interval is too small, then the BSP does not

in fact change combinatorially, and the deletion/re-insertion is just wasted computation; if

it is too big, then important intermediate events can be missed which a�ect visibility.

The use of parallel BSPs is described in [28]. The application here is related with

the real time visualization of ultrasound volumes, and BSPs are responsible for providing

a visibility ordering, used in the accumulation of opacity values. The input data consist

of a set of slices of the data set, and a �xed number of slices are combined to generate a

�nal image. A great deal of coherence is present, because one slice is discarded and one

inserted at every step. In order to avoid the problem of deleting and rebuilding the BSP

every time a new slice is processed, deleted slices are marked as invalid in the BSP. In order

to speed-up the process of marking invalid slices, a second copy BSP (called replacement)

corresponding to a di�erent phase in time is maintained. The visualization uses one of

the BSPs (called active) to render images. After a certain number of frames is processed,

the replacement BSP starts to be formed until the number minimum of slices is reached,

when the role active and replacement BSPs is interchanged, and the old active BSP is

reinitialized. This approach is claimed to produce a near constant frame rate, important in

the real time visualization.

3.2 Kinetic BSPs

The problem of maintaining visibility when the geometric entities of the scene start to move

requires fast updates in the BSP-tree. These updates are traditionally handled by deleting

the moving element from its old location in the tree, and re-inserting it again in its actual

location.

One disadvantage of such an approach is the fact that the structure of the tree (which

represents the topology of the subdivision) may not change at every movement, leading

to useless computation. Also, the changes that need to be performed in the tree are local

to some parts of the tree. The traditional process of deletion/insertion does not take this

property into account, instead performing a global update in the tree.

The second category of BSP algorithms for moving geometry is based on the use of the

framework of kinetic data structures. The movement of objects does not always require the
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update of the BSP, and kinetic BSPs exploit this fact for the case of continuously moving

geometry. More speci�cally, the idea is to establish certi�cates that serve as proof that the

BSP remains combinatorially valid (i.e., does not require an update). These proofs are used

to establish the critical times when the BSP requires changes. A BSP that is maintained

following this approach is called a Kinetic BSP.

One of the major di�culties of designing kinetic BSPs (and kinetic data structures in

general) is the design of certi�cates. We discuss this issue in much more detail in the next

chapter, and briey just state here that one of the major di�culties is related to the fact

that the BSP represents an arrangement that contains cells of unbounded combinatorial

complexity. The solution to this problem, used in previous work and also used in this

thesis, is to include external cuts from the objects along pre-de�ned directions. These cuts

are called cylindrical cuts, because they transform a general arrangement into an array

of cells with bounded complexity (trapezoids in 2D or rectangular prisms in 3D - called

cylindrical cells).

In [2] an algorithm is presented to maintain a kinetic BSP for n non-intersecting seg-

ments moving continuously in the plane. Two types of cuts are present in this BSP: edge

cuts (along segments) and point cuts (along a speci�c direction and passing through an

endpoint of a segment). Events that change this kinetic BSP happen when two endpoints

switch x-order (or y-order, depending on the convention for the point cuts). When an event

occur, a trapezoid of the subdivision disappear. In �gure 3.2 we illustrate the BSP created

for a set of line segments, and shade with di�erent colors the trapezoids that will disappear

when one particular line segment moves.

The detection of event times that change the BSP allows the algorithm to avoid re-

building the BSP every time an object moves. This is not the only bene�t of the kinetic

approach to BSPs. Because the events have information about the speci�c nodes that re-

quire changes in the BSP, a local reconstruction of the a�ected parts of the BSP can be

done, instead of a complete reconstruction of the BSP. The nature of the local algorithms

involves movement (deletion and insertion) of nodes in the tree, and a �nite set of possible

cases can be identi�ed. Using local updates, the paper claims that is possible to update

the BSP in O(logn) expected time. The construction time is expected O(nlogn), and the

expected height of the tree is O(logn).
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Figure 3.2: Kinetic BSPs in 2D

The extension to three-dimensions of this work is presented in [1], where a kinetic

BSP is proposed for continuosly moving non-intersecting triangles in 3D. The approach

to extending the algorithm to 3D requires �rst extending the previous algorithm in 2D to

the case of intersecting line segments. The possibility of having intersecting lines creates

many more cases that can change the BSP, a�ecting both the set of certi�cates and the

local update algorithms. One di�culty comes from the fact that additional cuts need to be

inserted at the intersection point of two line segments.

Once this new algorithm is in place, the 3D algorithm can be explained. A 3D BSP

is constructed from a set of non-intersecting triangles with cuts from vertices (point cuts),

edges (edge cuts), intersections of edge cuts (intersection cuts) and triangles (triangle cuts).

If all cuts are projected into a single plane, the BSP induced in the plane by the 3D BSP

is called shadow BSP. In �gure 3.3 we illustrate a sample scene with two triangles and the



CHAPTER 3. BSPS FOR MOVING GEOMETRY 33

corresponding shadow BSP projected onto one of the walls of the bounding box.

Figure 3.3: Kinetic BSPs in 3D

Instead of de�ning certi�cates in the 3D BSP, the authors of [1] propose maintaining

certi�cates in the shadow BSP. Because there are no intersecting triangles, changes in the

3D BSP correspond to changes in the shadow BSP. The opposite is not true, as events

may occur in the shadow BSP but not in the 3D BSP. The shadow BSP corresponds to a

set of intersecting line segments in the plane, which can be maintained by the algorithm

discussed previously. Although the resulting BSP works in 3D, events are de�ned in a

2D BSP. The complexity bounds obtained are (all expected times): depth (O(logn)), size

(O(nlog2n+k ′), where k ′ is the number of intersections between pairs of edges in the

projection plane), construction time (O(nlog3n+k ′logn) and update time (O(log2n)).



Chapter 4

Kinetic Vertical Decomposition Trees

4.1 Motivation

The kinetization of a BSP is another problem where the choice of cutting planes involves

tradeo�s. In this case, topological changes in the structure of the tree happen when there is

a change in the topology of one of the cells of the subdivision. In auto-partition BSPs, for

example, cells may have unbounded complexity, which makes the maintenance of the topo-

logical structure much more di�cult. The example in �gure 4.1 illustrates two situations

where a BSP constructed with auto-partition cuts is de�ned using a moving line segment

(red) and several static segments (blue).

Figure 4.1: Example of events in the traditional BSP

34
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In both situations, events that change the BSP correspond to a point passing through

a line (or vice-versa), or two segments passing through each other. This last case is not a

problem because we assume in this discussion that the segments are non-intersecting. In

order to discuss the principal case, a line passing through a point (or vice-versa), it is �rst

necessary to discuss the possible types of points and lines in the subdivision. The lines are

of only one type, corresponding to the lines that support the input line segments. We have

two types of points, de�ned by the endpoints of the line segments or by the intersection of

two lines. Note that this last type of point does not belong to the input set of objects but

rather is de�ned by the cuts of the auto-partition BSP.

For the �rst situation, the movement of the segment inside the region will require a

change in the BSP when one of its endpoints passes through one of the seven lines that

de�ne the region that encloses the segment. In order to detect such an event, it would be

necessary to maintain the topological structure of the cell that contains the line segment.

In the second situation, the segment was split into three parts. In this case, for the middle

part of the segment, an event happens when it passes through the green vertex, which

corresponds to one of the points of the region that encloses the segment.

From these two examples we conclude that events occur when a moving feature (a seg-

ment) passes through the lines or points that de�ne the enclosing region. This requires the

representation of the topological structure of the arrangement, which in itself is a challeng-

ing problem if the features of the arrangement move. The fact that some events involve

points that do not belong to the input objects is a major reason why this representation is

necessary. Moreover, additional complexity arises because regions in the arrangement are

organized in a hierarchical fashion, corresponding to the intersection of halfspaces along

paths in the BSP (see chapter 2 for a discussion of BSP regions).

In our approach we explore how the addition of auxiliary planes can limit the topology of

cells, and as a consequence, simplify the kinetization process. More speci�cally, we include

additional planes during the construction of the BSP in such a way that the subdivision

created by the BSP corresponds to a hierarchical vertical decomposition of the input objects.

The decomposition that we obtain for the example before is illustrated in �gure 4.2.

Compared to the auto-partition approach, the BSP with additional planes has several

advantages. The most important di�erence is that we do not need to explicitly maintain
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Figure 4.2: Example of events in BSP with additional cuts to form a vertical decomposition

the combinatorial structure of the arrangement. This is only possible because the vertical

decomposition limits the special types of points that involve events to points of the input

objects. Also, the fact that cells have bounded complexity simpli�es the identi�cation of

regions that enclose features, and the structure of the tree can be used to extract them

without need for an explicit representation.

The goal in this chapter is to give an overview of the main ideas concerning the structure

that combines a BSP-tree representation of a vertical decomposition with a kinetic structure

to allow the detection of changes in the topology of the cells. We call this special type of

BSP the Kinetic Vertical Decomposition tree (KVD-tree or simply KVD).

We start the presentation with reviews of important basic concepts, such as Pl�ucker

coordinates and vertical decompositions (in 2D and 3D). Next we review the main issues of

the kinetic data structures framework, and present the KVD structure, discussing briey

its main components, which will be fully explained in the following chapters.

4.2 Plücker Coordinates

Homogeneous coordinates are very important in many applications in Computer Graphics,

because they allow a simple and uni�ed representation of projective spaces. The generaliza-

tion of homogeneous coordinates to higher dimensions is also called Pl�ucker (or Grassmann)
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coordinates (see [23]). The use of Pl�ucker coordinates in this work is motivated by the fact

that vertical decompositions require the computation of walls that are de�ned by a com-

bination of features of the model (vertices and edges) and directions. Replacing directions

with points in Pl�ucker coordinates turns out to be an elegant, robust and generic way to

generate the requisite plane equations.

In this discussion we restrict ourselves to the representation of points, lines and planes

in three dimensions, which are described as follows:

• A point p is represented in Plucker coordinates in 3D as the array [a0; a1; a2; a3],

which corresponds to the euclidian point (a1=a0; a2=a0; a3=a0).

• A line l is represented in Plucker coordinates in 3D as the array [l0; l1; l2; l3; l4; l5].

• A plane m is represented in Plucker coordinates in 3D as the array [m0;m1;m2;m3].

It corresponds to the plane m0 +m1x+m2y+m3z = 0.

The manipulation of Pl�ucker coordinates requires a special set of formulas (a complete

set of formulas can be found for up to four dimensions in [23]). In particular, two formulas

are used here to compute plane equations, corresponding to the formula that computes a

line representation given two points, and the one that computes a plane given a line and a

point. Both of these formulas are given in table 4.1.

line l  point p
∨

point q

l0  p0q1 - p1q0

l1  p0q2 - p2q0

l2  p1q2 - p2q1

l3  p0q3 - p3q0

l4  p1q3 - p3q1

l5  p2q3 - p3q2

plane m  line l
∨

point p

m0  -l2p3 + l4p2 - l5p1

m1  l1p3 - l3p2 + l5p0

m2  -l0p3 + l3p1 - l4p0

m3  l0p2 - l1p1 + l2p0

Table 4.1: Useful Pl�ucker Formulas in 3D
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4.3 Vertical Decompositions

4.3.1 2D Vertical Decompositions

Let S = fs1; :::; sng be a collection of n non-intersecting line segments in R
2 . We call

the vertical decomposition Vx̂(S) of S the subdivision formed by the segments of S and

walls (lines in 2D) erected from the endpoints of each segment in S. The resulting cells of

this decomposition are called trapezoidal cells, with bounded complexity of at most four

sides. An example of a vertical decomposition is shown in �gure 4.2. In traditional vertical

decompositions, walls are extended along the speci�ed direction until a segment is reached.

In another approach, that we call a hierarchical vertical decomposition, segments are

inserted in order, together with the walls they create. Unlike the traditional type, walls are

extended until a segment that was already inserted in the vertical decomposition is reached.

This type of vertical decomposition is important because it allows its representation by a

hierarchical structure such as the BSP. In the discussion to follow, the notion of a vertical

decomposition corresponds to the hierarchical variant.

There are no constraints on the direction x̂. In most �gures in the plane we use the

direction of x-axis, for the simple reason of personal preference. In the literature, however,

the y-axis is the preferred choice, which also justi�es the name of vertical decomposition.

The use of a di�erent direction also emphasizes the fact that a general direction can be

speci�ed.

Vertical decompositions are very useful because they are composed of cells of bounded

complexity. For general arrangements, the fact that cells can have complex topologies

make the task of performing operations and representation much more di�cult. In terms

of complexity, the vertical decomposition is optimal in two dimensions, which means that

it has the complexity of the underlying arrangement.

4.3.2 3D Vertical Decompositions

Let T = ft1; :::; tng be a collection of n non-intersecting triangles in R3 . We call the vertical

decomposition Vx̂;ẑ(T) of T the subdivision formed by the three types of walls (planes in

3D), erected from the vertices, edges and triangles in T. The �rst type of wall is called

a P-wall, and corresponds to the wall extended from a vertex v of a given triangle along
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Figure 4.3: Example of vertical decomposition in 3D

the plane de�ned by v and the two directions x̂ and ẑ. The second type of wall is called

an E-wall, and corresponds to the wall extended from an edge e of a given triangle along

the plane de�ned by e and the direction ẑ. The �nal type of wall is called a T-wall, and

corresponds to the wall de�ned by the plane of a triangle.

The resulting cells of this decomposition are called cylindrical cells, with bounded

complexity of at most six sides. The direction orthogonal to x̂ and ẑ is called ŷ. As in

the 2D version, the directions that de�ne the vertical decomposition may be given by any

two non collinear vectors. In addition, we represent directions using Pl�ucker coordinates,

which allow the representation of directions as points at in�nity. Here, the representation

of directions as points in Pl�ucker coordinates gives us the exibility to replace directions

by euclidian points (points that do not have a zero homogeneous coordinate). Therefore,

instead of having walls of the same type parallel to each other, we have walls that converge

from one element of the triangle (either a vertex or edge) into a single point. This is useful

if this single point corresponds to the viewer position or a light source in a scene. In the

�rst case, the vertical decomposition will be directly related to the visibility information
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associated with the viewer, which can be very useful during the computation of the visibility

ordering. If this point is a light source, then the vertical decomposition encodes information

that can be useful to compute shadow information.

In terms of complexity, the vertical decomposition of a set of n triangles in three-

dimensional space is near-optimal, and is de�ned by O(n2+�+K), where K is the complexity

of the arrangement of the triangles.

4.4 Kinetic Vertical Decomposition Trees

4.4.1 Representation and Construction

A KVD is a special type of BSP, with the addition of cuts to form a vertical decomposition

of the space. For the case of triangles in R
3 , the KVD contains three di�erent types of

cuts. A point cut (P-cut) is de�ned by a plane that passes through the triangle vertex,

and is parallel to directions x̂ and ẑ. An edge cut (E-cut) is de�ned by a plane de�ned

by two vertices of an edge and parallel to ẑ. A triangle cut (T-cut) is a cut along the

supporting plane of the triangle. In �gure 4.4 we illustrate the di�erent types of cuts for a

single triangle.

(a) (b) (c)

Figure 4.4: KVD-Tree Cuts. (a) Point Cuts, (b) Edge Cuts, (c) Triangle Cuts

There are many issues to be discussed regarding the representation and the construc-

tion of the KVD (see chapter 5). The representation of dynamic information is always a



CHAPTER 4. KINETIC VERTICAL DECOMPOSITION TREES 41

challenging task, especially in the case of geometric algorithms, which combine both geom-

etry and topological data. In our case, the geometry is associated with the representation

of the input model (vertices, edges and triangles) and cuts in the tree (hyperplanes and

fragments). Similarly, topological data comes from the model (adjacency relations between

vertices, edges and triangles) and the structure of the tree. We will see that it is conve-

nient to replace geometric information stored explicitly in the tree by external indexes to

a geometric structure.

The construction of the KVD corresponds to an incremental insertion of triangles and all

associated cuts. We will establish a �xed random order for this insertion, called the priority

order. The use of a random order can be proved to provide e�cient results regarding depth

and size of the KVD. Moreover, it also provides a way to check the correctness of the

updates in the KVD.

Other issues regarding the implementation will also be discussed. The representation

of binary trees involving di�erent types of nodes but with many similar procedures can be

exploited nicely in the framework of object-oriented languages.

4.4.2 Events and Certificates

The KVD-tree represents under the kinetic framework a vertical decomposition for a moving

set of triangles. The movement of triangles a�ects the cylindrical cells of the vertical

decomposition, and the identi�cation of speci�c times when the topology of the cylindrical

cells changes is one of the core tasks in the kinetic simulation. These changes are also

important because they represent changes in the combinatorial structure of the tree. The

example given in �gure 4.5 describes the case where the movement of two point cuts may

cross each other, destroying the cell between them. For better understanding of the case, a

line is used to connect the vertices that de�ne both cuts.

There is a limited number of events that create changes in the tree. Based on the

enumeration of all these cases, it is possible to de�ne a set of certi�cates that encode the

combinatorial structure of the tree. As long as this set remains invariant, the structure

of the tree stays the same. Every time a certi�cate fails, an algorithm to perform a local

change in the KVD is invoked.

The set of certi�cates is a�ected by changes in the tree, with new certi�cates to be
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Figure 4.5: A KVD event corresponding to two point cuts passing through each other.

added, and others to be deleted. The e�cient update of the set of certi�cates relies on the

fact that certi�cates are associated with nodes in the tree. Because of this, the certi�cates

to be updated correspond to nodes that are a�ected by the changes in the structure of

the tree. Therefore, there is a big connection between the algorithms that update the tree

and the update of the certi�cates. This observation motivates the storage of certi�cates at

nodes in the tree, rather than in a external structure, which simpli�es the updates in the

certi�cates by the algorithms that update the tree.

In addition, the storage of certi�cates at nodes in the tree allows the use of the structure

of the tree to represent a priority queue containing certi�cates ordered by event times. This

is explained in more details in 6, but the basic idea is that each node contains, besides its

certi�cates, the next certi�cates to happen in time. As a result, the root of the tree always

contains the next certi�cates to fail in the kinetic simulation. This ability to incorporate

the priority queue into the data structure being kinetized is a novel extension to the kinetic

data structures framework.

4.4.3 Update Algorithms

A topological change in the cells of the KVD-tree requires an update of the structure of the

tree. Based in the events and certi�cates of the KVD, it is possible to describe the actions
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that need to be performed in the tree for each speci�c situation. Di�erent behaviors are

described in separate update algorithms, and each one of them is described in chapter 7.

The existence of many update cases makes it di�cult to implement the update algorithms.

In order to describe all possible cases into a smaller number of algorithms, more complex

BSP operations are de�ned.

A KVD has a more complex update procedure than traditional BSPs because addi-

tional cuts are created for every triangle. The incidence relations de�ned in the topology of

the input model creates an additional relationship between all nodes derived from a single

triangle. This relation is not directly stored in the tree, where nodes that have such rela-

tionships may be stored at di�erent locations. If one of these nodes is a�ected by a change,

the remaining nodes connected by the topology of the model are also a�ected. Therefore,

the topological relations need to be taken into account when updating the tree.

The use of a new operation, called a tree dragging, is de�ned to move nodes in the

tree with the above behavior. Usually, changes in the KVD correspond to one node (called

moving node) crossing a hyperplane de�ned by another node (called crossing node) in

the tree. This requires the deletion of the moving node from the subtree it is located

(corresponding to the old halfspace), and insertion into the other subtree of the crossing

node (the new halfspace). The deletion of the moving node requires the merging of its

two subtrees. Also, because of connectivity relations, some nodes that are incident to the

moving node may also need to move into the new subtree. The dragging operation is a more

complex operation that performs both actions described above. It consists of a merging

algorithm that checks the incidence relation of the subtrees against the moving node. If a

node incident to the moving node is found, the behavior of the movement of the incident

node is computed, and the appropriate actions to the incident node are taken.

The use of a �xed priority order in the construction of the tree creates the need to insert

nodes into new locations in the tree, which may contain lower priority nodes. This may

result in the insertion of a node in a position di�erent than a leaf of the tree, and may

require the splitting of subtrees. This behavior is di�erent than traditional BSPs, and new

insertion algorithms and merging procedures are described to take into account the priority

of the nodes in the tree. These operations are described in detail in chapter 7, before the

presentation of all update algorithms.



Chapter 5

KVD Representation and Construction

5.1 Symbolic Representation of Geometry

It is common practice in the implementation of static BSPs to store the geometric informa-

tion about hyperplanes and fragments explicitly in the tree. This can be important during

the rendering of the BSP, where quick access to fragments in visibility ordering is necessary.

In the scenario of moving geometry, however, hyperplanes and fragments change frequently,

and the cost of updating their representation in the tree overcomes the advantages of ex-

plicit storage. For the simple case of a moving face, the updates required in the tree include

all nodes that the face generates in the tree, each containing fragments of the original face.

Because these nodes are stored in di�erent places in the tree, it becomes harder to recover

and update all of them. In addition, the structure of the tree itself may change with mov-

ing geometry, but not as frequently as the fragments and hyperplanes. These observations

suggest removing geometric information from the tree.

Indirection is a key concept to be exploited in this situation. Explicit storage of hyper-

planes and fragments is replaced by a new representation that does not involve geometric

coordinates, but instead indexes to an external structure. This structure, called the scene

structure, contains geometric and topological information about all objects, such as the

vertices, edges and faces of the model and their adjacency relations. Unlike the explicit

storage approach, moving geometry may not require changes in the tree, and be handled

entirelly with updates in the scene structure. The situation where the tree changes requires

44
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special treatment, but as it happens with less frequency, the index approach still can be

very useful because it optimizes the most frequently ocurring cases.

The indexing scheme will be responsible for representing all possible types of hyper-

planes and fragments in the tree. The KVD has three di�erent types of nodes: point, edge

and triangle nodes. They store information about three di�erent types of cuts: P-cuts, E-

cuts and T-cuts. The hyperplane that de�nes a triangle node, for instance, corresponds to

the plane equation that supports the triangle used to de�ne the cut. In the new approach,

the index of this triangle is stored in the node instead of the hyperplane, and the hyperplane

equation can be easily recovered by accessing the scene structure with the stored index.

Similarly, point and edge nodes contain the indices of vertices and edges. In both of those

latter cases, the computation of the hyperplane equation is not a simple lookup process in

the scene structure, because the main directions of the vertical decomposition need to be

taken into account. The computation of the hyperplane equation is therefore enclosed in

the scene structure, and the hyperplanes are represented for the di�erent types of nodes by

a single index (vertex, edge or triangle).

The representation of the fragment is more subtle, because it depends on the location

of the node in the tree. For a triangle node de�ned by a triangle t, for instance, a triangle

fragment corresponds to the intersection of t with the halfspaces of all ancestor nodes. The

triangle fragment is obtained by repeated partition operations that are performed when

the node is inserted in the tree. For edge nodes, the edge fragment corresponds to the

partition created over the edge that de�nes the cut (a subset of the original edge). Point

nodes are special because no partition happens over vertices. In this case the fragment is

simply the vertex that de�nes the cut. Therefore, the only types of fragments that require

a special representation are edge and triangle fragments. It is important to observe that

edge fragments are only de�ned over edges of the input model, and not over edges obtained

in the partitioning process. The internal edges are only represented in triangle fragments.

An edge fragment is represented by two vertex and one edge descriptors, while a triangle

fragment is composed of a collection of vertices and edge descriptors. Because the KVD

has only three di�erent types of planes, it is possible to create a symbolic representation

to encode all possible types of vertices and edges that can appear in edge and triangle

fragments. The possible types are shown in �gure 5.1. We illustrate the new types of
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vertices and edges that arise every time a new cut is introduced in the KVD.

Based on the enumeration of all possible cases, an index scheme is proposed, which

relies on the creation of a symbolic representation of the vertices, edges and planes. The

notions of a symbolic plane (SP), edge (SE) and vertex (SV) are de�ned to be used in the

representation of hyperplanes and fragments. In the discussion to follow we use P, E and

T to represent the cuts created respectively by the vertex v, edge e and triangle f of the

scene structure.

5.1.1 Symbolic Plane

A symbolic plane is used in the representation of hyperplanes at each node of the tree.

The representation is straightforward, de�ned as a function of the types of cuts used in the

KVD, de�ned as follows.

• SP(V) = (v), the index of the vertex used to de�ne the P-cut.

• SP(E) = (e), the index of the vertex used to de�ne the E-cut.

• SP(F) = (f), the index of the triangle used to de�ned the T-cut.

The hyperplane that de�nes a T-cut can easily be obtained by accessing the scene

structure with the symbolic plane index. In this case the index refers to a triangle index,

and the corresponding plane equation of the triangle is used to de�ne the hyperplane for

the node.

For P-cuts and E-cuts there is no direct correspondence between an index in the node

and the hyperplane equation. For the P-node, the hyperplane is de�ned by computing

the plane that passes through the vertex that de�nes the node, and the two directions of

the vertical decomposition. Similarly, the E-cut is de�ned by the primary direction of the

vertical decomposition and the two vertices that de�ne the edge used in the node.

5.1.2 Symbolic Edge

The symbolic edge represents all possible partitions that can occur over an edge of the

input model. This representation does not include all types of edges that can occur in the
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Figure 5.1: Possible types of vertices and edges that can appear in edge and triangle fragments. (a)

Sample scene with one point cut. Types of vertices (b) and edges (c) corresponding to scene in (a).

(d)-(f) Scene, vertices and edges for one point and edge cut. (g)-(i) Scene, vertices and edges for

one point and two edge cuts.
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cylindrical cells of the vertex decomposition. A general representation would require the

additional of several other cases. Because the only subset of edges to be represented are

over triangles of the input model, the following code is simpli�ed to represent only the

necessary cases, described as follows (see Figure 5.1):

• SE(e) = (e), the index of the edge used to de�ned the E-cut.

• SE(V;T) = (SP(V); SP(T)), the edge obtained by the intersection of a P-plane and a

T-plane.

• SE(E; F) = (SP(E); SP(F)), the edge obtained by the intersection of an E-plane and a

T-plane.

5.1.3 Symbolic Vertex

The simplest representation for a symbolic point would be the indexes of the three planes

that intersect to create the vertex. Some of the planes of the vertical decomposition do

not have an index, as they are de�ned by the combination of vertices and edges with

speci�ed directions, and therefore another representation is necessary. The symbolic vertex

representation has �ve di�erent types, described as follows(see Figure 5.1):

• SV(v)= (v), a vertex index of the input model. We refer to this vertex as an endpoint

vertex.

• SV(e; E) = (e,SP(E)), the intersection of an edge of the input model with the plane

that de�nes an E-cut. We refer to this vertex as an intersection vertex.

• SV(e;V)= (e,SP(V)), the intersection of an edge of the input model with the plane

that de�nes an P-cut. We refer to this vertex as a thread vertex.

• SV(E1; E2; T) = (SP(E1),SP(E2),SP(T)), the intersection of a triangle of the input

model with the planes that de�nes two E-cuts. We refer to this vertex as an internal

intersection vertex.

• SV(V;E; T) = (SP(V),SP(E),SP(T)), corresponding to the intersection of a triangle of

the input model with the planes of a P-cut and an E-cut. We refer to this vertex as

an internal thread vertex.
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The representation of fragments is more involved because it represents a convex region

over the hyperplane. For edge fragments a single tuple of the form (SV1, SV2, SE) is used.

For a triangle fragment with n vertices, we use n tuples of the format (SV, SE) to represent

every vertex and edge in this region oriented along a pre-de�ned orientation (clockwise or

counter-clockwise).

5.2 Data Structures

The current implementation of the KVD uses C++. The use of a programming language

like C++ that allows object-oriented data types was essential in simpli�ng the design and

implementation of a data structure like the KVD. The implementation is composed of three

major data structures: the scene structure, the KVD tree and the KVD global.

The scene structure stores information about the various objects that compose the scene.

For each object it maintains a list of vertices, edges and triangles and the corresponding

incidence information. Additional information, like bounding volume information and direc-

tions of the vertical decomposition are stored in the scene structure as well. The description

of this structure as a C++ class follows:

class Scene {
private:

gmVector4 xhat, zhat; // vertical decomposition directions

gmVector3 minBox, maxBox; // bounding box

Object * objects; // static and dynamic objects information

Priority * priority; // priority order

Vertex * vertices; // vertex information

Edge * edges; // edge information

Triangle * triangles; // triangle information

public:

// Query methods: access information regarding vertices, edges, hyperplanes, etc

// Update Methods: update private data

// Display Methods: print or draw in 3D representations of private data

// Classi�cation Methods: classify fragments with respect to hyperplanes

}

The KVD is the binary tree structure that represents the partition of the space. Each
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one of the di�erent cuts in the KVD has its own characteristics, and therefore is represented

using di�erent node types (point, edge and triangle nodes). Although the representation

using di�erent nodes seems natural, some common structure exists between them. For

example, many methods are common to all node types, especially tree traversal methods.

The inheritance mechanism available in C++ is used to remove this redundancy of repre-

sentation. The class KVDTree is de�ned to contain methods and common �eld structures

that are shared by the di�erent types of nodes, and all node classes are derived from this

base class. This class is described as follows:

class KVDTree {
private:

KVDTree* left, right, parent; // tree pointers

KVDGlobal* global; // global information structure

SymbolicPlane hyperplane;

// hyperplane used to partition the space;

...

public:

// Query methods: access information about private data. hyperplanes, etc

// Update Methods: update private data

// Display Methods: print or draw in 3D representations of private data

// Classi�cation Methods: classify node fragments against hyperplanes

// Events and certi�cate operations.

// Basic tree operations: merge, partition, etc.

// Local update algorithms

...

}

There are three classes that are derived from the KVDTree to contain speci�c informa-

tion about each type of node: KVDPointNode, KVDEdgeNode and KVDTriangleNode.

Speci�c information de�ned for each node includes: fragment representation, certi�cates

and events, methods that perform updates in the KVD, display information, etc. The three

di�erent types of nodes in the KVD are described as follows:

class KVDPointNode: public KVDTree {
private:
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// Point node certi�cate information

public:

...

}

class KVDEdgeNode: public KVDTree {
private:

// Edge node certi�cates

EdgeFragment eFragment;

public:

...

}

class KVDTriangleNode: public KVDTree {
private:

TriangleFragment tFragment;

// triangle node certi�cates

public:

...

}

Many of the node methods require access to global information that is unique and

common to all nodes in the tree. In order to avoid redundancy, we store this information

in a common structure, called KVDGlobal . We include a reference to this structure in

the base class KVDTree. Every time a given method requires access to global information,

the pointer to the KVD global is accessed to return the desired information. This solution

scales really well, as every new common property can be easily added to the KVD global

abstract node class without having to make any changes in the abstract types of the nodes.

Some examples of common properties stored as KVD global information are: display ags

(control the display information), and pointers to other general structures (KVD, scene

structure, kinetic simulation structure). The class de�nition follows:

class KVDGlobal

{
private:
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KVDTree * root; // Root of the KVD

KVDPPointNode * pointNode; // Point nodes in the tree

Scene * scene; // Scene data structure

...

// Viewpoint and light source information

// Display properties

// Simulation information

// Statistics information

}

5.3 KVD Construction

The KVD is constructed from a scene composed of non-intersecting triangles in R3 . A small

random perturbation is initially applied to the coordinates of all points in the scene, so that

degenerate cases where points have the same x, y or z coordinates are removed. A universe

bounding box is de�ned to enclose the entire input scene.

The construction of the KVD proceeds by incrementally inserting of cuts in the tree.

Before describing the construction algorithm, we revisit the classi�cation operation used in

the construction of BSPs and discuss how the symbolic representation can make it more

robust. Next we discuss one of the more important aspects of the structure of the KVD, the

priority order of insertion of cuts in the tree. This is very important, because it will provide

a way to check the correctness of the KVD. We conclude this chapter with a presentation

of the construction algorithm and give examples of KVDs obtained for sample scenes.

5.3.1 Classification Operation

The classi�cation methods compute the spatial relationship between fragments and hyper-

planes, used in many of the KVD algorithms. The existence of di�erent types of fragments

for each of the KVD nodes result in new types of classi�cation operations, described in

�gure 5.2.

The essential computation of the classi�cation operation is the dot product between a

point and the normal of a plane equation. Because of numerical imprecision, points that

lie in a plane usually return values close but not equal to zero. This imprecision may lead

to wrong classi�cation results. In order to �x this problem, classi�cation algorithms use
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Figure 5.2: Possible Types Of Classi�cation Results

epsilon intervals to evaluate the result of a dot product. A dot product within an epsilon

distance to zero are classi�ed as lying on the plane. This solution works reasonably well

in practice but requires the speci�cation of an epsilon value, which may need to change

depending on the scale of the geometry coordinates of the model. Also, for large models

with objects of di�erent scales, more than one epsilon may be required.

In the KVD classi�cation procedures, the fact that we have a symbolic representation

of fragments is used to make the classi�cation operation more robust. Because most cuts

are de�ned by points, edges and triangles of the input model, many situations arise where

a point is classi�ed against a plane that already contains the point. If the symbolic repre-

sentation of the point and the plane are compared, cases where a point lies over the plane

can be detected without computing the dot product.

5.3.2 Priority Order

Techniques to construct good BSPs were briey discussed in chapter 2. Approximation

techniques based on the evaluation of cost models are the preferred choice for selecting cuts

to be used in the tree. This solution works well for static BSPs, but for the case of moving

geometry it becomes unclear how to allow the cost models to evolve with time and still

produce reasonable results.

The randomized approach is another technique used to build BSPs. The resulting BSP,

called a randomized BSP, is discussed extensively in [13], where expected bounds on the

height and size of the BSP are showed to be optimal. The construction of randomized BSPs

is done by an incremental insertion of triangles following a random order (called priority
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order). In the case of moving geometry, changing the priority order seems to be the right

choice to maintain the expected bounds. The use of a static priority order, however, is

showed to produce near optimal results if objects move along pseudo-algebraic trajectories

([2][1]). This observation motivates the use of a randomized approach with static priorities

in the KVD.

The use of a static priority order has the additional property of providing a way to

verify the correctness of the KVD. Changes in the structure of the KVD are local most

of the times, which can be exploited by the algorithms that update the KVD. The use

of local updates is always better than a global reconstruction of the tree. However, using

local updates creates the need to check that no inconsistencies are created in the tree. An

inconsitency may lead to wrong visibility ordering information. Because a static priority

order is used, one way to check the correctness of the local updates is to compare the locally

modi�ed KVD with a KVD built from scratch for the same geometry. The existence of a

mechanism to verify correctness is especially important during the implementation of the

KVD.

The static priority order in the KVD is de�ned for each cut to be inserted in the tree.

There are two levels of ordering, one among the triangles, and another among the cuts

generated from a triangle. The triangle priority order (TPO) is de�ned for the set of all

the input triangles by a random permutation of all triangle indexes. Because scenes can

be composed of static and dynamic triangles, static triangles are assigned higher priority

values than any of the dynamic triangles. The separation of static and dynamic triangles

is important because static triangles will create nodes that will not change, unlike dynamic

triangles that will create nodes that cause changes in the tree. We prefer to have static

nodes higher in the tree (closer to the root), and dynamic nodes close to the leaves, since

movement of nodes almost always require deletions, which are easily performed at the leaves.

The second level of ordering is called the cut priority order. For every triangle seven

cuts are introduced in the KVD (three from vertices, three from edges and one from the

triangle). The cuts from vertices have the highest priority, and are inserted �rst in the

KVD. Among vertex cuts, the vertex with smallest index has the highest priority. The next

cuts in the cut priority order correspond to cuts from edges, and similarly smaller edge

indexes have higher priority. Finally, the triangle cut has least priority.
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In summary, to retrieve the priority order of a single cut of a triangle the following

functions are used:

• Vertex cuts: given vertex index i(i = 0::2) of a triangle t, the priority(t,vertex(t,i)) is

equal to 7 * TPO(t) + i.

• Edge cuts: given edge index i(i = 0::2) of a triangle t, the priority(t, edge(t,i)) is

equal to 7 * TPO(t) + 3 + i.

• Triangle cuts: given a triangle t, the priority(t) is equal to 7 * TPO(t) + 6.

5.3.3 Construction Algorithm

The construction algorithm performs an incremental insertion of cuts in the tree, based in

the triangle and cut priority order. For every cut to be inserted in the KVD, a node is

created with all information concerning the cut. The symbolic representation of vertices,

edges and planes is used in the representation of hyperplane and fragments of the node. For

a point node, both hyperplane and fragments are de�ned by the index of the vertex used

to created the node. For edge cuts, the hyperplane is described by the edge index, while

the fragments contain the two vertex endpoints and the edge index. For triangle cuts, the

hyperplane is de�ned by the triangle index, and the fragment is de�ned by the indexes of

the vertices and edges of the triangle. Once all relevant information is stored in a node,

the cut is inserted into the tree by �ltering its descriptor node in the tree, partitioning the

node into additional nodes if necessary, until the leaves of the tree are reached.

For a point node, the process of �ltering a node in the tree involves a classi�cation

operation of the point that de�nes the cut against the hyperplanes of nodes in the tree.

The result of this operation indicates the subtree where the process will continue, until

leaf of the tree is found. Note that in this case no partition happens, and this operation

becomes very similar to a point location procedure that �nds the region of a leaf node that

contains the query point.

The insertion of an edge cut has similar behavior, however the fragment now corresponds

to a line segment. Unlike point nodes, partitioning may happen because the edge fragment

may be cut by hyperplanes of point and edge nodes. The scene is assumed to always have
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non-intersecting triangles, therefore an edge fragment can not be partitioned by a triangle

node. The other cases may still happen because they do not represent an intersection of

triangles, but an intersection of the external planes de�ned by points and edges with the

input model.

The partition of an edge fragment by a point node creates two new edge nodes, which

contain the representation of the node in each of the halfspaces of the partitioner. The frag-

ment of the original edge node is also partitioned in two, with the creation of an additional

vertex (a thread vertex).

The case where the partition of the edge fragment is done by an edge node requires

special attention. The new vertex to be created in the fragment is an intersection vertex.

In order to maintain cells with bounded complexity in the vertical decomposition, it is

necessary to add point cuts for each intersection vertex created. In this case, two point

nodes need to be inserted, corresponding to the same intersection vertex used in the two

fragments created by the partition of the edge fragment. Instead of adding these cuts at

the time they are created, we postpone their addition until after all types of cuts have been

inserted in the tree.

The cut de�ned by the triangle is inserted after all point and edge nodes. This insertion

also may generate partitioning, and new types of vertex may arise. The partition of a

fragment is similar to the algorithm described for traditional BSPs in chapter 2, with the

di�erence that the creation of new vertices uses the symbolic representation of vertices and

edges.

After cuts are inserted for all triangles, we need to handle the intersection cuts. The fact

that intersection cuts are handled at the end is a major di�erence in the order of insertion

of cuts if compared to the approach described in [1], where intersection cuts of a triangle are

added after the insertion of the edge cuts of the triangle. The insertion of intersection cuts

after all other cuts at the end has the important property of not creating any partitioning

in any nodes in the tree. This is an interesting result, because the number of partition

operations directly a�ects the size of the tree. Although the addition of intersection cuts is

required by the vertical decomposition, we use the fact that all intersection cuts are stored

in the leaves of the tree to not insert them at all in the tree, but to treat them instead

as if they were inserted for the events that control the structure of the tree. This implicit
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representation of intersection cuts is done through the edge nodes, which contain the in-

formation in the fragments about all intersection cuts in the tree. The only need to have

such nodes in the tree happens when the set of certi�cates that control the combinatorial

structure of the tree is designed. Using the information stored in edge nodes, it is possible

to add all certi�cates that involve intersection cuts without explicitly storing them in the

tree.

The construction algorithm can then be summarized as follows:

1. For every triangle in the scene in triangle priority order

• Insert P-cuts in cut priority order from all vertices of the triangle.

• Insert E-cuts in cut priority order from all edges of the triangle.

• Insert T-cut corresponding to the triangle.

5.3.4 KVD structure examples

In this section we present some examples of KVD constructions. In �gure 5.3 a step-by-step

construction of a KVD for a scene composed of a single triangle is illustrated. The insertion

of cuts for the triangle follows the cut priority order, �rst with point nodes, followed by edge

nodes and the triangle node. In �gure 5.4 we have a KVD for a scene with three triangles

that causes a cycle in the visibility graph. Figures 5.5 and 5.6 illustrate the structure of

the KVD for scenes composed of a greater number of triangles.

In �gure 5.7 we illustrate the vertical decomposition created for a scene with three

triangles that causes a cycle in the visibility graph. In �gure 5.8 we give an example that

uses a Euclidean point instead of the traditional directions in the vertical decomposition,

which creates a decomposition similar to shadow-volume BSP.
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Figure 5.3: Incremental construction of the KVD for a single triangle. Point nodes are the �rst ones

inserted (red nodes), followed by edge nodes (green) and triangle nodes (blue).
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Figure 5.4: KVD tree for a scene with three triangles that cause a cycle in the visibility graph.
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Figure 5.5: KVD for a scene with 10 triangles.
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Figure 5.6: KVD for a scene with 100 triangles.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: KVD decomposition for a scene with three triangles that causes a cycle in the visibility

graph.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: KVD decomposition with for a scene with two triangles with one direction of the vertical

decomposition given by a euclidian point.



Chapter 6

KVD Events and Certificates

The certi�cates are one of the most crucial aspects of a kinetic data structure. For the sim-

ple case of maintaining a set of moving balls inside a rectangle at all times, the certi�cates

represent a set of conditions that guarantee that the balls stay inside the rectangle. The

violation of one of these certi�cates creates an event. This event may require an update of

the underlying kinetic data structure, combined with the reconstruction of the set of cer-

ti�cates. In this simple example, changes in the movement of the violating point combined

with the update of its certi�cates su�ces. In general, however, events require complex

updates in both the data structure and the set of certi�cates.

The KVD is a special type of BSP that represents a vertical decomposition for a moving

set T of triangles in R
3 . Every time a triangle moves, the geometry of the cylindrical cells

induced by the triangle in the vertical decomposition changes. The topology of these cells,

however, may stay the same. The speci�c time when the topology of the cylindrical cells

changes produces an event, which requires an update in the combinatorial structure of the

tree.

In this chapter we discuss the kinds of events that require reconstruction of the KVD,

and present a set of certi�cates that are used to compute the time that such events occur.

We also discuss practical issues regarding the maintenance of certi�cates in our current

implementation.

64
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6.1 Topological changes in the structure of the KVD

The KVD is a combinatorial structure represented by a binary tree. The construction of

the tree involves an incremental insertion of cuts de�ned by the triangles in the scene. An

insertion uses a classi�cation operation, that compares the fragment of the inserted node

with hyperplanes of nodes in the tree. The result of every classi�cation operation represents

the halfspace(s) occupied by the inserted element. Depending on the classi�cation result,

a partition operation that divides the fragment in two may occur. The insertion continues

recursively in each subtree of the node with the appropriate fragments obtained from the

partitioning step. Because the classi�cation results determine the location of a node in the

tree, we conclude that there is a direct correspondence between these classi�cation results

and the structure of the tree. We explore this correspondence to de�ne certi�cates for

combinatorial changes in the tree.

Let CL represent the set of all classi�cation operations performed during the construc-

tion of the tree. This set is composed by tuples of the format cl(n; ancestor(n)), as every

node inserted in the tree is classi�ed against one of its ancestors. The KVD has three

di�erent types of nodes: P-nodes, E-nodes and T-nodes, which leads to nine di�erent types

of tuples: cl(P; P), cl(P; E), cl(P; T), cl(E; P), cl(E; E), cl(E; T), cl(T; P), cl(T; E) and cl(T; T).

Because we assume that the priority order of insertion is maintained at all times, the only

way that the set CL may change is when one of the classi�cation results is modi�ed. The

invariance of the set CL represents a proof that the combinatorial structure of the tree stays

the same, which is used as basis for the creation of the certi�cates.

The enumeration of all classi�cation comparisons used during construction creates a set

of certi�cates that represents the combinatorial structure of the tree. The disadvantage of

this approach is the large number of classi�cation results (at most O(nlog2n)) for a tree

of height O(log(n)). We reduce the size of this set using the fact that the structure of the

vertical decomposition limits how classi�cation results change.

We illustrate this observation with an example. Suppose we build a KVD using only

point cuts. In �gure 6.1, we have a simple case with �ve point cuts, with illustrations of

both the decomposition created by the point cuts and the tree structure they create. In this

particular situation the tree will only change its combinatorial structure when two P-cuts
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Figure 6.1: KVD containing only point cuts. (a) vertical decomposition, (b) tree structure.

pass through each other. If we enumerate all possible types of classi�cation results computed

during the construction of the tree, it would require more results than are actually necessary.

For instance, the deepest node in the tree can produce three classi�cation results, while it

is easy to see that only two certi�cates are necessary for each point, containing P-cuts of

ancestor nodes directly above and below each point. We conclude from this example that it

is possible to explore the additional constraints given by the decomposition to substantially

reduce the number of certi�cates.

In the general case of the vertical decomposition described in previous chapters, the

cylindrical cells limit the number of planes that can be crossed by moving geometry (points,

edges and triangles). In the KVD, every node in the tree has an associated region (a

cylindrical cell), obtained by the intersection of the halfspaces of all ancestors of the node.

Because cylindrical cells have bounded complexity (�ve or six sides), the number of ways

that classi�cation results may change is also bounded by the cell complexity. In the �gure

6.2 we illustrate the two possible types of cylindrical cells.

Besides the fact that the cylindrical cells have bounded complexity, a clear structure in

the types of walls can be seen from the example. For six-sided cells, opposing faces have

the same type of cut. In addition , all three di�erent types of cuts (P-cut, E-cut and T-cut)
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(a) (b)

Figure 6.2: KVD cylindrical cells. (a) six-sided cells, (b) �ve-sided cells

are used, which leads to the existence of at most two faces for each of the possible cuts. For

�ve-sided cells, there is one fewer P-cut, the other faces remain the same as before. This

structure in the formation of the cells becomes important because the identi�cation of the

closest faces to a given point can be limited to a certain type of cut, as we will see in the

de�nition of certi�cates.

6.2 KVD Events

In this section we discuss in detail the di�erent types of events caused by changes in classi�-

cation results. We separate the set of events according to the type of node fragment that is

moving: vertex, edge, triangle and intersection events. The intersection events correspond

to events that involve intersection points. They are similar to vertex events, but have a

di�erent behavior because intersection nodes are not explicitly stored in the tree.

6.2.1 Vertex Events

A vertex event happens when the classi�cation of a point node (de�ned by a triangle

vertex) changes with respect to the hyperplane of an ancestor node. Because the vertical

decomposition is composed of cylindrical cells, the ancestors that may cause such vertex

event are reduced to the ones that de�ne the walls of the cylindrical cell that encloses the
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point node.

From this observation we conclude that a vertex event will only happen when the

vertex moves through one of the walls of its corresponding cylindrical region. Because the

cylindrical cell is composed of only three di�erent types of cuts, the only vertex events that

can happen are:

• VV : a vertex crossing a plane de�ned by a point node. (The point node is de�ned

by a vertex of a triangle).

• VE : a vertex crossing a plane de�ned by an edge node.

• VT : a vertex crossing a plane de�ne by a triangle node. This is a collision event.

In �gure 6.3 we illustrate the types of vertex events. The di�erent cases are described

using an illustration in 3D, followed by a 2D illustration that corresponds to the same

situation, only projected into one of the walls of the cylindrical region. When drawing

certi�cates, we often use a 2D illustration instead of the 3D counterpart, because these

illustrations simplify the discussion while preserving the essential properties of the 3D

situation.

6.2.2 Edge events

The edge events correspond to the movement of an edge segment through one of the planes

of its cylindrical cell. As with vertex events, the only ancestors that may cause a change in

the classi�cation results are the ones de�ning the enclosing cylindrical cell. The di�erent

types of walls of the cylindrical cell de�ne the type of edge events that can happen.

• EV : The edge fragment of an E-node passes through the plane de�ned by a point

node.

• EE : The edge fragment of an E-node passes through the plane de�ned by an edge

node.

• ET : The edge fragment of an E-node passes though the plane of a triangle. This is

a collision event.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Vertex events. (a) VV event in 3D and (b) corresponding 2D view. (c) VE event in 3D

and (d) corresponding 2D view. (e) VT event in 3D and (f) corresponding 2D view.
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The edge events correspond to the most complex set of events that can change the KVD.

Although the classi�cation proposed above express all possible ways that an edge can leave

a cylindrical cell, it becomes necessary to detail each of these cases a little further to have a

better understanding of all scenarios that can happen. We use an alternate way to classify

edge events to discuss more detailed cases, and establish a connection with this previous

classi�cation.

A di�erent way to classify the possible ways that an edge can leave a cylindrical cell

is to use the last feature of contact with the cell. Let us call the faces, edges and vertices

of the enclosing cylindrical cell c-faces, c-edges and c-vertices, respectively. Let the edge

partially or completely leaving the cell be called an exiting edge. We call the last feature of

contact (LFC(f)) the feature (face, edge or vertex) of smallest dimension of the cylindrical

cell that makes contact with the exiting edge.

Suppose the exiting edge leaves a cylindrical cell by just one c-face. In this case, the LFC

is simply a c-face. If the edge leaves by two c-faces and a c-edge, the last feature of contact

is called a c-edge, because it leaves the cell by the c-edge that connects the two c-faces.

The case of an exiting edge leaving the cylindrical cell by three c-faces has a c-vertex as

the last feature of contact, but this case does not happen because of the general position

assumption on the trajectories of the objects.

Therefore, only two cases of last feature of contact may happen. The case where the

last feature of contact is a c-face creates an event that was already described before in the

vertex events. Because the exiting edge leaves by a c-face, the endpoints of the exiting edge

also need to cross the exiting face. We assume that this type of edge event is detected by

the vertex event that happens at the same time and there is no need to have an additional

edge event.

The case where the last feature of contact is a c-edge represents the only new type

of event that arises from edge events. Let us call the previous features of contact

(PFC(cf1; cf2)) the two c-faces that are crossed by the exiting edge before it crosses one

of the edges of the cylindrical cell. The possible pairs of c-faces in the PFC is limited by

the known structure of the walls of the cylindrical cells. For six-sided walls, for instance,

no face is adjacent to a wall of the same type, while for �ve-sided cells only edge walls

are adjacent to walls of the same type. Moreover, we assume that no intersections of the
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triangles themselves happen at any time, therefore a c-face of a T-cut will never be one of

the previous regions of contact. The only pairs of previous regions of contact are: PFC(P; P),

PFC(P; E) and PFC(E; E).

• PFC(P,P): This corresponds to the EE and ET cases above.

• PFC(P,E): This corresponds to the EV and EE cases above.

• PFC(E,E): This corresponds to the EV and EE cases above.

In �gure 6.4 and �gure 6.5 we illustrate the possible edge events in cylindrical cell with

�ve and six sides.

6.2.3 Triangle Events

The triangle events that can happen are identi�ed in most situations by the previously

described vertex and edge events. Like vertex and edge events, triangle events correspond

to all possible changes in classi�cation results of a triangle node against one of its ancestors:

• TV : The fragment of a T-node passes through the plane of a vertex node.

• TE : The fragment of a T-node passes through the plane of an edge node.

• TT : The fragment of a T-node passes through the plane of a triangle node.

The TE and TV events only occur at the same time that one of the vertex or edge

events that involve triangle happens. In other words, whenever a triangle passes through

the plane of a P-cut or an E-cut, either its vertices or edges will also cross the plane. We

assume that the vertex and edge events are responsible for detecting such events.

Because the input is assumed to contain no intersecting triangles, the TT event may

only happen after triangles are allowed to intersect. There are two ways that two non-

parallel triangles may intersect: a vertex-triangle collision, or an edge-edge collision. We

inspect the previous vertex and edge events to check if previously de�ned events cover all

situations of TT events.

The edge-edge collision case is the simplest to evaluate, because the edge events EE and

ET include all possible situations that may happen. The vertex-triangle collision is subtle



CHAPTER 6. KVD EVENTS AND CERTIFICATES 72

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Edge events in six-sided cylindrical cells. The edge of the cyindrical cell that is crossed

by the exiting edge is highlighted. (a) PFC(P,P) case in 3D and (b) corresponding 2D view. (c)

PFC(P,E) case in 3D and (d) corresponding 2D view. (e) PFC(E,E) and corresponding 2D view.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Edge events in �ve-sided cylindrical cells. (a) PFC(P,E) case in 3D and (b) corresponding

2D view. (c) PFC(E,E) case in 3D and (d) corresponding 2D view. (e) PFC(P,P) and corresponding

2D view.
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because the vertex event VT only takes care of the case of a lower priority vertex passing

through the plane of an ancestor triangle node. For the opposite case of a lower priority

triangle passing through a higher priority vertex a new TT event arises. Note that this is

not a TV event, because the triangle is not passing through the plane de�ned by a vertex

node, but through the vertex itself. This new situation is the only triangle event that is

not covered by any of the events described before, and is described in �gure 6.6.

(a) (b)

Figure 6.6: TT event cause by a triangle-vertex collision. (a) 3D view and corresponding 2D view.

6.2.4 Intersection Events

In the construction of the vertical decomposition every time an E-cut partitions an edge of

the model, additional P-cuts from the intersection point need to be inserted to guarantee

that the resulting decomposition has cells of bounded complexity. The cuts de�ned by the

intersection points have the same type of vertex cuts, and are supposed to be inserted in

the tree after all other types of cuts. In the current implementation these additional cuts

are not stored explicitly in the tree, but it is still necessary to maintain the events they

generate (called intersection events).

Because intersection cuts can not cut any of the nodes in the tree, the only events that

can happen are the ones where an intersection point passes through the cut de�ned by a

vertex or another intersection point. In �gure 6.7 we illustrate all possible situations of

intersection events, described as follows:
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• IV :Intersection point passes through a P-cut de�ned by another vertex.

• II :Intersection point passes through a P-cut de�ned by another intersection point.

(a) (b)

(c) (d)

Figure 6.7: Intersection events. (a) 3D view and corresponding 2D view of a IV event. (b) 3D view

and corresponding 2D view of an II event.

It is important to note that there is a direct relationship between many of the intersection

events and the edge events described before. Unlike the other events, the presentation of

intersection events does not rely on the previously de�ned events. We will explore the

connection between intersection and edge events when certi�cates are de�ned next in the

chapter.
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6.3 KVD Certificates

6.3.1 Definitions

The di�erent event types described in the previous section represent all possible situations

that can cause a combinatorial change in the structure of the tree. In this section we discuss

the creation of certi�cates that are used to represent all types of events. In addition, the

certi�cates use the equation of motion of the objects to compute critical times when the

certi�cate fails.

The certi�cates are divided in several categories: PP-certi�cate, VE-certi�cate, VT-

certi�cate, ET-certi�cate, IV-certi�cate and II-certi�cate. Each certi�cate contains infor-

mation about the nodes in the tree used to de�ne the event they represent. The storage

of pointers to nodes in the tree is very important because it allows a local reconstruction

of the tree by the update algorithms described in chapter 7. Before describing each of the

certi�cates, we introduce terminology and de�ne useful operations that will be necessary

in the presentation.

Let p(�) represent a polynomial equation of degree n in the variable � (time) as follows:

p(�) ≡ a0 + a1� + a2�
2 + ::: + an�

n (6.1)

The motion of an object in a scene is speci�ed by four polynomial equations, one for

each of the i-th coordinates (i=0..3). In the notation used, the x-, y-, z- and w-coordinates

corresponds to the 0-, 1-, 2- and 3-rd coordinates. The de�nition of the motion of an object

is expressed as:

mo(�) = fm0

o(�); m
1

o(�); m
2

o(�); m
3

o(�)g (6.2)

Objects are assumed to have rigid motions, and therefore every vertex, edge and triangle

of an object n are subject to the same equation of motions of the object where they are

de�ned. Let vin(�) represent the polynomial equation of motion of the i-th coordinate

(i=0..3) of the n-th vertex. Let ei
n
(�) and ti

n
(�) represent the polynomial equation of
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motion of the i-th coordinate of the n-th edge and triangle in a scene. We call ev(n; k) the

k-th vertex (k=0..1) of the n-th edge, and et(n; l) the the l-th vertex (l=0..2) of the n-th

triangle.

Let x̂ and ẑ represent the main directions of the vertical decomposition. Because we

represent both directions using Pl�ucker coordinates, each of these directions corresponds to

a point in P3. Let x̂i(�) and ẑi(�) represent the i-th polynomial motions of x̂ and ẑ.

In many events it will become important to recover the motion of an intersection point,

which corresponds to the point of intersection between the plane de�ned by an edge cut

ei, and another edge ej of the scene. Let s(i; j) represent this intersection point. The

computation of the equation of motion of s(i; j) needs to take into account the equations

of motions of ei and ej. We call s(i; j)i(�) the equation of motion of the i-th coordinate of

the intersection point.

The fundamental operation used to compute event times is detecting when four moving

points become coplanar. One way to compute this time for the moving points v0, v1, v2

and v3 is to evaluate the following determinant:

coplanar(v1; v2; v3; v4) = det
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(6.3)

This matrix is composed of elements that are polynomial equations of motion, and its

determinant represents a polynomial equation in �, with the roots corresponding to times

where the four points become coplanar. In the discussion of the certi�cate types, this

coplanar primitive will be used to compute the death time of each type of certi�cate.

All certi�cate classes are derived from a base class that contains shared information

among all certi�cates, described in a C++ class as follows:

class KVDcerti�cate {
public:

timestamp deathTime;

private:



CHAPTER 6. KVD EVENTS AND CERTIFICATES 78

void processDeath();

public:

// Query methods: access information, like the death time

// Update methods: update information of private data

// Death Methods: process actions related with the death of the certi�cate

// Display Methods: print or draw in 3D representations of private data

}

6.3.2 VV-certificate

The VV-certi�cate is used to represent the VV event, where a vertex v1 crosses the plane

of an ancestor point node v2. The time that the event happens correspond exactly to the

time that v1 becomes coplanar with the plane of v2, which can be formulated as:

4VV(v1; v2) = coplanar(v1; v2; x̂; ẑ) (6.4)

The VV-certi�cate needs to store both point nodes that create the event. It is described

by a C++ class as follows:

class VVcerti�cate: public KVDCerti�cate {
private:

KVDPointNode * pLowerPriority, * pHigherPriority;

public:

...

}

In �gure 6.8 we show a VV-certi�cate in a simple scene. In order to identify the cer-

ti�cate, a line is drawn over the KVD structure connecting the vertices that de�ne point

nodes used in the certi�cate .

6.3.3 VE-certificate

A VE certi�cate represents the event of a vertex vi passing through the plane of an edge

node de�ned by an edge ej. It can be used to represent the two possible cases when the
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Figure 6.8: VV certi�cate.

point node has a higher or lower priority than the edge node. The death time of this

certi�cate is given by the following formula:

4VE(vi; ej) = coplanar(vi; ev(ej; 0); ev(ej; 1); ẑ) (6.5)

The VE-certi�cate structure contains both the point and edge nodes that create the

event. It is expressed by the following class:

class VEcerti�cate: public KVDCerti�cate {
private:

KVDPointNode * p;

KVDEdgeNode * e;

public:

...

}
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In �gure 6.9 we show a VE-certi�cate in a simple scene. In order to identify the certi�-

cate, two lines are drawn in the KVD structure connecting the vertex to the endpoints of

the edge.

Figure 6.9: VE certi�cate.

6.3.4 VT-certificate

A VT certi�cate represents the event of a vertex vi passing through a triangle plane tj. It

can be used to represent both situations where the vertex has a higher or lower priority

than the triangle. The death time of this certi�cate is given by the following formula:

4VT(vi; tj) = coplanar(vi; tv(tj; 0); tv(tj; 1); tv(tj; 2)) (6.6)

The VT-certi�cate contains both the point and triangle nodes. It is expressed by the

following class:
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class VTcerti�cate: KVDCerti�cate {
private:

KVDPointNode * p;

KVDTriangleNode * t;

public:

...

}

In �gure 6.10 we show a VT-certi�cate in a simple scene. In order to identify the

certi�cate, three lines are drawn in the KVD structure connecting the vertex to the vertices

of the triangle.

Figure 6.10: VT certi�cate.

6.3.5 ET-certificate

The ET certi�cate represents the cases where an edge ei collides with another triangle by

one of its edges ej. The two edges involved in the collision create an intersection node

s(ei; ej), that is stored in the edge with lower priority ei. The death time of this certi�cate

is given by the following formula:
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4ET(ei; ej) = coplanar(s(ei ; ej); ev(ej; 0); ev(ej; 1); x̂) (6.7)

The ET-certi�cate contains both edge nodes (one containing the intersection point node),

and is expressed by the following class:

class ETcerti�cate: KVDCerti�cate {
private:

KVDEdgeNode * ei;

KVDEdgeNode * ej;

public:

...

}

In �gure 6.11 we show a ET-certi�cate in a simple scene. In order to identify the

certi�cate, one line connecting the edges that cause the event is drawn in the KVD structure.

Figure 6.11: ET certi�cate.
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6.3.6 IV-certificate

The IV-certi�cate is used to represent the case where an intersection point s(eu; ev) passes

through the plane of a point node vn de�ned by a point node. The death time of this

certi�cate is given by the following formula:

4IV(eu; ev; vn) = coplanar(s(eu; ev); vn; x̂; ẑ) (6.8)

The certi�cate stores the pointers of edge node that contains the intersection point, and

the crossed point node, and is represented by the following class:

class IVcerti�cate {
private:

KVDPointNode * p;

KVDPointNode * i;

KVDEdgeNode * e;

public:

...

}

6.3.7 II-certificate

The IV-certi�cate is used to represent the case where an intersection point s(eu1; ev1)

passes through the plane of another intersection nodes s(eu2; ev2). The death time of this

certi�cate is given by the following formula:

4IV(eu1; ev1; eu2; ev2) = coplanar(s(eu1; ev1); s(eu2; ev2); x̂; ẑ)) (6.9)

The certi�cate contain the pointers of both edge nodes where the intersection node are

de�ned, and is represented by a C++ class as follows:

class IIcerti�cate {
private:
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KVDEdgeNode * eu1;

KVDEdgeNode * eu2;

public:

...

}

6.4 Using certificates to represent events

The certi�cates are de�ned to represent all possible events that can happen because of a

change in the classi�cation result between a node and of one its ancestors in the tree. In

this section we review the events generated for each node in the tree, and explain how the

event is detected by one of the certi�cates described above.

In order to de�ne certi�cates, the enclosing cylindrical cell of each node needs to be

computed. The creation of a certi�cate involves the location of an ancestor node that

de�nes one of the walls of this enclosing cylindrical cell. The cylindrical cells are not

stored explicitly in the tree, therefore it becomes necessary to de�ne a procedure to quickly

compute them.

The cylindrical cell has a particular structure that is used to simplify this calculation.

The computation of the enclosing region of a node can be done by checking the proximity

to ancestor nodes along the six possible directions given by the vertical decomposition: x̂+,

x̂-, ẑ+, ẑ-, ŷ+ and ŷ-. Because of the way that the walls of the cylindrical cell are de�ned,

point nodes need to be checked for proximity only along the ŷ directions, edge nodes along

the x̂ directions and triangle nodes along the ẑ directions.

Based on these observations, a quick computation of the cylindrical cell of a node can

be de�ned. We perform a traversal from the node up in the tree until the root is reached.

For each node visited, a distance along a certain direction from the node fragment until the

ancestor node fragment is computed. The direction used in this computation is given by

the type of the node, as described above. The nodes with minimum distance along the six

possible directions are maintained, and at the end of the computation they correspond to

the walls of the cylindrical cell.

Let pu and pd represent the point nodes that de�ne two of the walls of a six-sided

cylindrical cell. For �ve-sided cells, only one point node appears, and either pu or pd is
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used to represent this wall. For both �ve- and six-sided cells, let el, er de�ne the edge nodes

and tf and tb the triangle nodes that represent the remaining four walls of the cylindrical

cell.

For each type of node di�erent events were described, and in the remainder of this section

we show how each type of event can be represented using the basic set of certi�cates.

6.4.1 Representation of Vertex Events

The vertex events of a point node pn correspond to situations where the vertex that de�nes

the node leaves its cylindrical cell. Three types of events were de�ned, corresponding to

the di�erent types of walls of the cylindrical cell. All of these events can be represented by

the following certi�cates:

• VV events: VV(pn; pu) and VV(pn; pd)

• VE events: VE(pn; el) and VE(pn; er)

• VT events: VT(pn; tf) and VT(pn; tb)

6.4.2 Representation of Intersection Events

An intersection node pi represents information about the intersection of an edge e1 with

the plane de�ned by another edge node e2. The intersection node is not inserted as a node

in the tree, but instead is stored at the edge node that was used to create it, in this case,

pi is stored at the e1 node.

Intersection nodes are similar to point nodes de�ned by vertices, because the planes

they de�ne use the same construction. The resulting events that can be created are of

only two types: IV and II. For each intersection node, two certi�cates can be constructed

corresponding to the enclosing point node walls.

Because intersection nodes are considered to be implicitly stored at the leaves of the

tree, the computation of proximity information is di�erent for intersection nodes. The

problem arises because the intersection nodes are stored at edge nodes, and the proximity

computation checks the ancestor nodes starting from this edge node. In some cases, the

closest wall corresponds to a point node that is not in this path, but in one of the subtrees
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of the edge node. Note that the proximity computation would not have this problem if the

intersection nodes were to be explicitly stored at the leaves of the tree.

The solution to this problem is to change the way that proximity computation is done

for point nodes. For every ancestor edge node visited, not only the proximity distance to the

edge node is computed, but also the proximity distance for every intersection node stored at

the edge node with respect to the point node. Therefore, the right proximity computation

for an intersection node is achieved not by the traversal started by the edge node, but by the

traversal started by the point node down the tree. This is a global solution, that requires

proximity information to be evaluated for every node in a tree or subtree. Because most of

the time the certi�cates need to be computed or updated for entire subtrees, this solution

works really well.

Once the closest point nodes along the ŷ directions are computed, it remains to construct

the certi�cate. The enclosing point node in one of the directions can be either be de�ned

by a vertex (pu or pd), or by another intersection node pj stored at an edge node e3,

corresponding to intersections with a plane de�ned by another edge node e4. For this

direction, the certi�cate is de�ned based on the type of the point node:

• Vertex point node: IV(e1; e2; pu)

• Intersection point node: II(e1; e2; e3; e4)

Events are de�ned along the other direction in the same way as above.

6.4.3 Representation of Edge Events

The edge events were the most complex types of events described before. We explore the

fact that some edge events can be identi�ed by intersection events to substantially reduce

the number of edge certi�cates to be de�ned.

Let e be an edge node. The edge fragment of e is de�ned by two endpoints, which can

be either a vertex, a thread vertex or an intersection vertex. Let pi be a point node that we

will create depending on the type of the edge endpoint. If the endpoint is a vertex, let pi

represent the point node de�ned by this vertex. If the endpoint is an intersection vertex,

let pi represent the intersection node stored at e. If the vertex is a thread vertex, let pi

represent the point node used to partition e and create the thread vertex.
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One edge certi�cates is created for each edge endpoint, depending on its type:

• Vertex endpoint: No certi�cates are de�ned.

• Intersection endpoint: ET(pi; e)

• Thread endpoint: VE(pi; e)

The simplicity of these certi�cates does not suggest that they can handle all edge events.

There are cases that are not detected by these certi�cates, but because they are detected by

certi�cates de�ned by intersection nodes, there is no need to create additional certi�cates.

The possible cases of edge events were described in �gures 6.4 and 6.5. For the cases

where the previous feature of contact is of types PFC(P,E) or PFC(E,E) (�gures 6.4(c)(e),

6.5(a)(c)), an intersection node is involved. In this case, an edge fragment passes through

an edge or point wall at the same time that an intersection wall passes through points or

intersection walls, and therefore these events are detected by the intersection certi�cates

described before.

The type of event de�ned by a previous feature of contact PFC(P,P) can also be handled

by the previous certi�cates, but the justi�cation is more involved. If the edge passes through

a triangle, either the endpoint of the edge crosses the triangle, or two edges collide. The

�rst case is detected by one of the previous vertex certi�cates. In the edge-edge collision, it

must be the case that an intersection node is de�ned by the intersection of the edges, and

therefore the ET certi�cate described above for the edge handles this situation.

If the edge e passes through an edge wall de�ned by another edge node e2, than this

case will only be missed by the intersection events if the two edges do not intersect in an

adjacent cell. This situation is illustrated in �gure 6.12(b). If they do intersect (�gure

6.12(a)), the intersection event in the adjacent cell happens at the same time that the edge

leaves the cell. Like before, this intersection event is used to de�ne this edge event.

If the edges do not intersect, then it must be the case that e is passing through one of

the endpoints of e2. Because the endpoint of e2 cuts the edge fragment of an edge, a thread

endpoint is de�ned and the VE certi�cate described above for the edge event covers this

situation.
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(a) (b)

Figure 6.12: Cases that can happen for the PPC(P,P) case and the edge passing through an edge

wall.

6.4.4 Representation of Triangle Events

The only triangle event de�ned (TT) represented the situation where the triangle would

pass through a vertex that de�nes an ancestor point node. It must be the case that the

vertex partitions the triangle, and therefore it belongs to the triangle fragment associated

with the triangle node. More speci�cally, the vertex is used to de�ne an edge of the triangle

fragment, corresponding to the intersection of the triangle with the plane de�ned by the

vertex node. Because of the structure of the cylindrical cells, such edges can appear only

twice in each triangle fragment, corresponding to two vertex nodes.

The triangle certi�cates of a triangle node t are de�ned by inspecting its triangle frag-

ment, and creating one certi�cate for each cutting point node pu and pd:

• VT(t; pu)

• VT(t; pd)

If the cutting vertex is one of the other vertices of the triangle, then no certi�cate needs

to be created.
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6.5 Kinetic Priority Queue

The set of certi�cates stored at the nodes of the tree gives a way to detect combinatorial

changes in the KVD. If the equations of motion of the objects are known a priori, it is

possible to establish event times (or death times) where a given certi�cate will fail. In

order to maintain the correctness of the KVD at all times, it is necessary to quickly recover

the time that the �rst certi�cate will fail, and process the corresponding changes in the

tree. Eventually, old certi�cates will expire and need to be marked as invalid after these

updates are performed, which may to lead to the creation of new certi�cates or deletion of

old ones.

The priority queue is an e�cient tree structure to recover the minimum value of a set of

n elements in O(log n) time. In the problem of �nding the �rst certi�cate to fail, a priority

queue that contains death times as values can be constructed. The minimum element of

this priority queue will correspond to the death time of the �rst certi�cate to fail. Because

the certi�cates change in a kinetic way, the priority queue only needs to be updated when

certi�cates fail. The moment a certi�cate fails requires deletion of expired certi�cates and

insertion of new certi�cates in the tree. The deletion step is the most di�cult, because

it requires �nding the location of the expired certi�cate in the priority queue. Locating a

certi�cate in the priority tree can be done either through an ordinary search, or by keeping

pointers directly from the certi�cate structure into the priority queue nodes.

For other kinetic problems this solution works really well. In our problem, however, we

explore the fact that the kinetic structure that we maintain is itself a binary tree. We de�ne

a new structure, called Kinetic Priority Queue(KPQ), that uses the tree structure of the

KVD as the supporting tree structure of the priority queue. The KPQ stores at each node

the minimum certi�cates among all certi�cates de�ned at the node and in all nodes of its

subtrees. Following this construction, the root of the tree contains the minimum certi�cates

of the entire tree, which correspond to the �rst certi�cates to fail.

Because changes to be performed in the tree are local, only the nodes in the tree a�ected

by changes need to have their certi�cates updated. Once all certi�cates for a�ected nodes

are computed, the minimum certi�cates are updated for every node that belongs to a path

from an a�ected node to the root of the tree. We call this process a kinetic tournament,
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because we confront the certi�cates of a node with the certi�cates of its parents, and the

minimum certi�cates (winners) are propagated up in the tree.

The integration of the KVD with a priority queue has several advantages. The identi�-

cation of which certi�cates need to be deleted is done naturally by the update algorithms.

Every time a change happens, the certi�cate that fails contains pointers to the nodes that

caused the changes in the tree. The a�ected nodes can be identi�ed during this update,

and a reconstruction of their certi�cates is requested. Another advantage is that a single

tree structure is maintained, and therefore no additional tree re-balancing is necessary.

In addition to ordinary priority queue operations, the KPQ maintains all elements

within an � distance of the minimum. This is important because it is possible to have

more than one certi�cate failure at a given time. More speci�cally, there is the possibility

of many certi�cate failures at exactly the same time. In order to guarantee that numerical

imprecision in the calculation of certi�cate death times results in processing distinct events

as though they are simultaneous events, we maintain not only the �rst certi�cate to fail,

but a set of certi�cates within an � range from the �rst one. The maintenance of a set of

�rst certi�cates allows a scheduling algorithm to combine multiple events into one.

Before describing the set of minimum certi�cates stored at each node, we �rst de�ne

the notion of an �-minimum is de�ned to an ordered set T as follows:

�min(T) = min(T) ∪ ft j t ∈ T and (t -min(T) < �)g (6.10)

The �-minimum of an ordered set is used to de�ne the �-minimum of a node in the tree.

Let us call certificates(n) the ordered set of all certi�cates associated with a given node

in the tree, computed as described in the previous section. The ordering relation for this

set corresponds to the order de�ned by the certi�cate death times. The �-minimum of a

node in the tree is computed from the set of certi�cates stored at the node, together with

all certi�cates stored in the subtrees of the node. We use the following recursive de�nition

of an �-minimum of a node n:



CHAPTER 6. KVD EVENTS AND CERTIFICATES 91

• n = NULL ! �min(n) = ∅:

• n 6= NULL ! �min(n) = �min( �min(left(n)) ∪

�min(right(n)) ∪

certificates(n))

The resulting �-minimum set of a node contains the minimum certi�cates within an

� distance of all certi�cates stored at all nodes in the subtree rooted at the given node.

Because we want to maintain these sets for all nodes in the tree, a post-order traversal

of the tree accomplishes the task by computing �rst the �-minimum sets for nodes close

to the leaves. The computation for nodes higher in the tree uses the information about

�-minimum computed and stored at the subtrees.



Chapter 7

KVD Update Algorithms

The topological change in the cells of the KVD requires an update in the structure of the

tree. This update usually involves the movement of nodes in the tree, with insertion of new

nodes and removal of old ones. The fact that additional cuts from edges and vertices are

introduced in the KVD for every triangle makes the update more complex than traditional

BSPs. The complexity arises because all nodes originated from a single triangle must

preserve the incidence relations de�ned in the topology of the input model. For instance,

a point node de�ned by a vertex v of the input model has incident edge nodes de�ned by

all edges ei incident to v in the scene. Every movement of a node in the tree needs to take

into account the incidence relations, which may cause the additional movement of incident

nodes.

Another important aspect to consider in updates is the fact that the priority order

assigned to triangles remains unchanged during the kinetic simulation. In chapter 5, the

priority ordering was used to de�ne the order of insertion of cuts in the KVD. The mainte-

nance of the priority order at all times can be used as a way to check the correctness of the

KVD after local updates are processed, which is extremely useful during debugging stages

of the implementation. The KVD obtained must be equivalent to one built from scratch

using the new geometric information of the scene. Besides the correctness aspect, the use

of a �xed priority order can be used to claim several performance bounds of the algorithm,

related to the depth of the tree, size and number of events.

The update of the KVD following a �xed priority scheme creates a new behavior in

92
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certain tree operations. During the �rst construction of the KVD, triangles were inserted

in priority order and partition operations only occured for elements being inserted in the

tree, and not for elements already at the tree. Consequently, inserted elements would

always be stored at the leaves of the tree. The subsequent insertions due to the movement

of nodes can be more complex because partitions may occur for nodes already in the tree,

as a consequence of the priority preservation policy. This new behavior a�ects operations

like the merging of trees, and all insertion operations.

In this chapter we discuss algorithms that perform updates in the structure of the

tree. We �rst review the consequences of the movement of nodes in the tree and describe

actions to be performed for each situation. A new insertion operation that takes into

account priority orders is described. A new BSP operation, called the dragging of a tree,

is presented to accomplish the deletion of moving point nodes. Besides the merging of

subtrees, this operation also checks the nodes a�ected by the moving node and perform

appropriate actions, which may require additional deletions, or insertion of new nodes in

another locations in the tree.

Once the new set of operations is presented, we discuss the update algorithms for each

type of certi�cate presented in chapter 6. Three algorithms are su�cient to perform all

types of updates in the tree: V-update, E-update and X-collide. Each presentation discusses

simple examples that illustrate the necessary changes both in the topology of the cells and

in the structure of the tree, and concludes with the description of the algorithm. For

simplicity, we illustrate the changes in the subdivision with �gures in the plane, as the

extension to three dimensions is straightforward and not necessary for the understanding

of the situation.

7.1 Update Effects in the Tree

The update of the KVD is necessary when certi�cates fail, which corresponds to a node

moving across the hyperplane of one of its ancestors. This situation requires the deletion

of a node from its current location, and insertion into the other subtree of the parent node

that contains the crossed hyperplane. Unlike traditional BSPs, the insertion and deletion

operations to be performed have a more complex behaviour.
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For the insertion operation, the di�culty arises because a priority order is preserved

at all times. As a result, the insertion of nodes are not anymore guaranteed to be at the

leaves of the tree. If a node is inserted into a subtree that contains lower priority nodes,

the preservation of priority order will require that this node be inserted at a location that

no node with lower priority is one of its ancestors. The subtree of lower priority nodes is

then replaced by the inserted node, and its subtrees are computed using a tree partitioning

operation.

An additional di�culty in these operations arises because the certi�cates were designed

to allow vertex events to also detect some edge and triangle events, and to allow edge events

to also detect some triangle events. The updates required in the tree when a vertex event

happens are not only accomplished by the updates caused by this event, but also by related

edge and triangle events. Therefore, the movement of a single node in a vertex event is not

enough to update the tree, but it becomes necessary to look at incident edge and triangle

nodes and decide which actions need to be taken. Because point nodes are inserted before

other types of nodes, it su�ces to check the subtrees of a point node to �nd its incident

edge and triangle nodes. In addition, not only incident nodes are a�ected by a deletion,

but all nodes that are partitioned by the deleted node. For all these nodes, an update of

their fragments is necessary to reect the removal of the partition caused by the deleted

node.

In �gure 7.1 we have an example of a VV-event, which is de�ned by a point node

p2 crossing the plane de�ned by an ancestor point node p1. The initial con�guration is

described in �gure 7.1(a), with the regions corresponding to the two subtrees of p2 drawn

with di�erent colors. The �rst step in processing the update caused by the movement of

p2 is described in �gure 7.1(b), which shows the con�guration with the removal of the cut

introduced by p2. Note that the nodes in the orange subtree were all removed, because the

corresponding region disappears when p2 passes through p1. In �gure 7.1(c) we insert p2

into its new location, which partitions some of the nodes of this subtree (the edge e3a for

example is split in two). Finally, the incident edge node that moved together with p2 is

inserted into the con�guration (�gure 7.1(d)).

The incident nodes play an important role in the updates in the tree, depending on

the e�ect that the movement causes over them. Only two possible e�ects are identi�ed on
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Figure 7.1: Sample example describing updates in a VV-event. (a) Initial con�guration. (b) Con-

�guration after removing point node. (c) Insertion of point node in its new location. (d) Insertion

of incident nodes in new location.

incident nodes:

• EFFECT MERGE: The node needs to be deleted from the tree, because it is going

to be merged into an adjacent node.

• EFFECT SPLIT: The node is split in two due to a partition operation. The old node

is re-used and stays in the original tree, while the new node is inserted into another

subtree (the same that now contains the original moving node).

The behavior of incident nodes can be used to guide the updates in the tree because

they encode additional information about nodes, other than the moving node, that need
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to be deleted or inserted in the tree. The evaluation of incident nodes can be done while

processing the changes caused in the tree by the moving node, because all incident nodes are

contained in the subtrees of the moving node. One approach to performing this evaluation

is to include it inside the merging algorithm that combines the subtrees of the moving

node. This more complex operation becomes capable of not only merging two trees, but

also deleting the merge nodes, and inserting split nodes into another places in the tree.

This new operation is called a dragging of a tree and is described in more detail later.

7.2 Extended Tree Operations

7.2.1 Priority-Based Merging of Trees

The movement of nodes in the tree requires the deletion and insertion of nodes. In the

deletion case, a node can be easily removed if both of its subtrees are empty, by simply

assigning an empty subtree to the parent of the node. Even if one of the subtrees is empty

the deletion is trivial, because the node can be removed and replaced by the non-empty

subtree. The complex deletion case happens when both subtrees are not empty, which

requires the merging of the subtrees and the assignment of the resulting merged tree to the

parent of the node.

The merging process takes two subtrees t1 and t2 and returns a merged subtree tm. In

classic BSPs, the merging of trees is a very useful operation to combine trees using boolean

operations, like union, intersection or di�erence, which can be used in solid modeling ap-

plications like Constructive Solid Geometry (CSG). Most merging algorithms described for

classic BSPs maintain the structure of t1 unchanged, while inserting each element of t2 into

t1. This process is usually referred to as inserting a tree into another tree.

The merging operation has a slightly di�erent behavior when priorities are taken into

account. In general, we do not keep one of the subtrees unchanged, but instead we compare

the priorities of nodes to decide which node will be used in each step of the merging

algorithm. For the nodes n1 of t1 and n2 of t2, we decide which one has higher priority,

and use it as the root of the new merged tree. If n1 is the node with higher priority,

the process will continue to build the new left and right subtrees of n1. This requires

the partitioning (or splitting) of the tree t2 by the hyperplane de�ned by n1. In the case
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that nodes have the same priority, the nodes correspond to the same element but with

di�erent fragments. The solution is to join the nodes into a single one, while combining

their fragments.

The code for the priority based merging algorithm is described in �gure 7.2. The

paremeters to this procedure consits of two pointers to root nodes of the trees to be merged.

KVDTree* KVDTree::priorityMerging(KVDTree *t1, KVDTree *t2)

{
if (t1 == NULL) return t2;

if (t2 == NULL) return t1;

switch (t1.comparePriorities(t2)) {
case PRIORITY LOWER:

switch (t1.classifyNode(t2))

case CL IN:

t1.assignLeft(priorityMerging(t1.left(), t2); break;

case CL OUT:

t1.assignT2(priorityMerging(left.right(), t2); break;

case CL CROSSING:

t2.splitTree(t1, newLeft, newRight);

t1.assignLeft(priorityMerging(t1.left(), newLeft);

t1.assignRight(priorityMerging(t1.right(), newRight); break;

}
return t1;

case PRIORITY HIGHER:

// Similar to previous case, replacing t1 by t2 and vice-versa
case PRIORITY EQUAL:

KVDTree oldT1 = t2.left(), oldRight = t2.right();

t1.mergeNode(t2);

t1.assignLeft(mergeTrees(t1.left(), OldLeft));

t1.assignRight(mergeTrees(t1.right(), OldRight));

return t1;

}
}

Figure 7.2: Priority-Based Merging

7.2.2 Out-Of-Order Insertion of Nodes

The movement of nodes across subtrees may require the insertion of a node in a subtree

that contains nodes of lower priority. In order to preserve the priority order of insertion, it

is necessary to re-arrange the lower priority nodes to be descendants of the higher priority



CHAPTER 7. KVD UPDATE ALGORITHMS 98

node. This was not a problem the �rst time that the tree was built, because nodes were

inserted in priority order, and therefore new nodes would always go to the leaves of the

tree.

The insertions of nodes that do not follow the priority order are called out-of-order

insertions. The insertion of a node nh under these new circumstances is similar to the

traditional insertion method until a node nl with lower priority is found. Because priority

order is maintained at all times in the tree, the subtree rooted at nl node has only nodes

with smaller priorities. The node nh replaces nl in the tree, and the two subtrees of nh are

obtained by a splitting operation of the tree rooted at nl with the hyperplane that de�nes

nh. The code for a general insertion operation is described in �gure 7.3.

void KVDTree::outOfOrderInsertion(KVDTree *node)

{
if (comparePriorities(node) == PRIORITY LOWER) {
// Traditional insertion: the node has a lower priority
switch(classifyNode(node)) {
case CL IN:

if ( left != NULL) left.outOfOrderInsertion(node);

else assignLeft(node);

break;

case CL OUT:

Similar to case above, using the right subtree instead
case CL CROSSING:

KVDTree *aux = splitNode(node);

if ( left != NULL) left.outOfOrderInsertion(node);

else assignLeft(node);

if ( right != NULL) right.outOfOrderInsertion(aux);

else assignRight(aux);

break;

}
else {
// Insertion is changed to preserve priority
if (parentSubtree() == CL IN) parent().assignLeft(node);

else parent().assignRight(node);

KVDTree *newLeft, *newRight;

splitTree(node, newLeft, newRight);

node.assignLeft(newLeft);

node.assignRight(newRight);

}
}

Figure 7.3: Out-Of-Order Insertion
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7.2.3 Dragging Trees

The dragging operation is designed as a special merging operation to combine the subtrees

of a node that is moving into another location in the tree. Unlike the previous merging

procedure, the dragging operation not only combines trees, but inspects the nodes of the

trees for possible e�ects that the movement may cause.

Let nl represent a node to be moved across subtrees of an ancestor node nh. First we

delete nl from its current location, and then insert it into the other subtree of nh. Because

nl may have non-empty subtrees before the movement, it becomes necessary to merge its

subtrees into a single tree. During this merging process, every node is checked for incidence

to nl and the e�ect that the movement causes in the node is computed. If the incident node

has a split behavior, a split of the node is performed, and a new node is inserted in the same

subtree that that contains nl. If a node has a merging behavior, the node is deleted from its

location, and its subtrees are merged using the same process recursively. Some nodes that

were orginally partitioned by nl may be joined together because the partition is removed.

After the additonal actions required by incident nodes are performed, the merging proceeds

in a recursive fashion.

In �gure 7.4 we illustrate a step-by-step execution of the dragging operation with a

simple example, where p2 moves across the subtrees of p1.

The geometric con�guration is described in �gure 7.4(a), with a partial tree correspond-

ing to the subtrees of p2 described in �gure 7.4(a). After p2 is inserted into the new subtree

of p1, we need to merge its subtrees. The incident nodes e1a and e2a have merging (orange

highlight) and splitting (blue highlight) e�ects due to this movement. The dragging oper-

ation needs to merge the subtrees of p2, while deleting e1a, and splitting e2a in two nodes,

one that will stay at the tree (e2a), and another that will be inserted in the other subtree

of p1. The operation starts with the two subtrees as parameters and check the roots of the

tree for incidence with the moving node (�gure 7.4(c)). Because the �rst root is incident

to p2, the e�ect is processed. In this case, the node is deleted and a new dragging opera-

tion is called to merge its subtrees (�gure 7.4(d)), which in this case is a simple merging

procedure. After the e�ect is processed for the �rst root, the second root is evaluated and

another incident node is discovered. This time the node has a split behaviour, which creates

an additional node e2a2, that will be inserted into the other subtree of p1. Finally, after
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Figure 7.4: Dragging trees example.
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both e�ects are processed, the priority merging is performed, and the node e2a is chosen

to be the root of the merged tree because of its higher priority (�gure 7.4(e)). The left

and right subtrees of e2a are obtained with recursive calls of the dragging operation. Note

that when forming the left subtree of e2a two nodes with the same priority are compared,

corresponding to di�erent fragments of the same edge e3. In this case, a single node e3b

replaces both nodes, with a fragment that corresponds to the union of the fragments of

the previous nodes. The resulting tree is showed in �gure 7.4(h), with the only split node

created displayed in the upper-right corner of the �gure.

The code for the dragging algorithm is described in �gure 7.5. The input for this algo-

rithm corresponds to two pointers to subtrees (t1 and t2), and the lower(nl) and higher(nh)

priority nodes that creates the event that required the dragging operation. The node nl

corresponds to the moving node and is used to check incidence of nodes in t1 and t2, and

both nl and nh are used to detect the e�ect that the movement causes in incident nodes.

A simpler version of the dragging operation with one tree as parameter (dragOneTree) is

used in cases that the process continues with only one subtree (the code is very similar to

the dragTrees procedure). The actions that process the e�ects caused over incident nodes

are encoded into the processE�ect procedure.

7.3 Update Algorithms

7.3.1 Algorithm V-update

The V-update algorithm describes the actions necessary to process two of the three vertex

events: VV- and VE-events. The remaining vertex event, the VT-event, is handled by the

X-collide algorithm described later. In �gure 7.6 and 7.7 we show some of the events that

are handled by the V-update algorithm.

Let pl represent a point node, and let nh represent the ancestor that de�nes the hyper-

plane that is crossed by pl. The node nl can be of two types: either another point node

(representing a VV-event), or an edge node (a VE-event). The update to be performed here

consists of the following tasks:

• Save the subtrees left(pl) and right(pl) for further actions.
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KVDTree* KVDTree::dragTrees(KVDTree *t1, KVDTree *t2, KVDTree *nLow, KVDTree *nHigh)

{
if (t2 == NULL && t1 == NULL) return NULL;

if (t2 == NULL && t1 != NULL) return dragOneTree(t1,nLow,nHigh);

if (t2 != NULL && t1 == NULL) return dragOneTree(t2,nLow,nHigh);

while (t1 != NULL && t1.e�ect(nLow,nHigh) == EFFECT MERGE) {
KVDTree *auxLeft = t1.left(), auxRight = t1.right();

t1.processE�ect(EFFECT MERGE,nLow,nHigh);

t1 = mergeTrees(auxLeft, auxRight);

}
while (t2 != NULL && t2.e�ect(nLow,nHigh) == EFFECT MERGE) {
KVDTree *auxLeft = t2.left(), auxRight = t2.right();

t2.processE�ect(EFFECT MERGE,nLow,nHigh);

t2 = mergeTrees(auxLeft,auxRight);

}
if (t2 == NULL && t1 == NULL) return NULL;

if (t2 == NULL && t1 != NULL) return dragOneTree(t1,nLow,nHigh);

if (t2 != NULL && t1 == NULL) return dragOneTree(t2,nLow,nHigh);

switch (t1.comparePriorities(t2)) {
CASE PRIORITY LOWER:

t1.processE�ect(t1.e�ect(nLow,nHigh),nLow,nHigh);

switch(t1.classifyNode(t2)) {
case CL IN:

t1.assignLeft(dragTrees(t1.left(),t2,nLow,nHigh));

t1.assignRight(dragOneTree(t1.right,nLow,nHigh));

break;

case CL OUT: // Similar to above, changing left and right subtrees of t1
case CL CROSSING:

KVDTree *newLeft, *newRight;

t2.splitTree(t1,newLeft,newRight);

t1.assignLeft(dragtTrees(t1.left(),newLeft,nLow,nHigh));

t1.assignRight(dragtTrees(t1.right(),newRight,nLow,nHigh));

}
return t1;

CASE PRIORITY HIGHER: // Same as above, interchancing t1 with t2
CASE PRIORITY EQUAL:

KVDTree *auxLeft=t2.left(), *auxRight=t2.right();

t1.joinNode(t2);

t1.processE�ect(t1.e�ect(nLow,nHigh),nLow,nHigh);

t1.assignLeft(dragtTrees(t1.left(),auxLeft,nLow,nHigh));

t1.assignRight(dragtTrees(t1.right(),auxRight,nLow,nHigh));

return t1;

}
}

Figure 7.5: Dragging of Trees
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Figure 7.6: VV Update Example.

• Remove pl from its current location.

• Insert pl in its new location. This is accomplished by using an out-of-order insertion

operation of pl into the other subtree of nh.

• Perform a dragging operation with the saved left and right subtrees of pl. The result

of this operation will be a tree, that is assigned to the old location of pl. Nodes that

were incident to pl that need to be split, are inserted by the dragging operation in

the same subtree that pl was inserted.

The actions described above are explained in more detail in the code for the V-update

algorithm described in �gure 7.8. The input to the algorithm consists of the moving point
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Figure 7.7: VE Update Example.

node and the ancestor node. Note that the nodes that are a�ected by changes need to have

its certi�cates updated. This is accomplished by marking a certi�cate ag at these nodes.

During the next traversal of the tree performed during rendering, every node that has this

ag set causes a recomputation of its certi�cates.

The importance of the dragging operation in this algorithm can be seen by the simplicity

of its description. Although the updates to be performed by these events are complex, the

complexity is mostly encoded inside the dragging operation. Another important aspect in

the design of this algorithm is that it can be used for both types of ancestor nodes (point

node and edge node) that can be crossed by a moving point node. The existence of a single
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void KVDTree::vUpdate(KBSPPointNode *pointNodeLow, KVDTree *nodeHigh)

{
// Compute new halfspace occupied by the node
Classi�cation cl = nodeHigh.classifyNode(pointNodeLow);

// Save pointer information
KVDTree *parent = pointNodeLow.parent();

KVDTree *left = pointNodeLow.left();

KVDTree *right = pointNodeLow.right();

// Recover which parent subtree the node was located
Classi�cation subtree = pointNodeLow.parentSubtree();

// Reset pointer information
pointNodeLow.resetPointers();

// Out of order insertion in the new location
nodeHigh.insertOutOfOrder(pointNodeLow);

// Indicate that new certi�cates need to be computed for the node
pointNodeLow.updateCerti�cates(1);

// Drag the previous subtrees to the new location, and assign
// the remaining subtree to previous parent node
if (subtree == CL IN)

parent.assignLeft(dragTrees(left,right,pointNodeLow,nodeHigh,cl));

else

parent.assignRight(dragTrees(left,right,pointNodeLow,nodeHigh,cl));

// New certi�cates need to be computed for the parent node
parent.updateCerti�cates(1);

}

Figure 7.8: Algorithm V-update

algorithm simpli�es the implementation, but one might argue that the VV-event has special

properties that could be explored if separate algorithms were designed. For example, the

merging of subtrees is extremelly trivial in the VV-event because one of the subtrees of

the moving node always disappears, and the merged tree simply corresponds to the other

subtree of the moving node. However, the merged subtree would need to be traversed

anyway to �nd incident nodes that have a split behavior. In addition, the nodes that are

not incident to the moving node need to be joined into a single node, while updating its

fragments. This was the case in the example used during the discussion of the dragging

trees procedures (�gure 7.4((f)). Therefore, the merged tree would also need to be traversed

to check for nodes that require fragment updates. It turns out that the approach using the

dragging operation does a better job because all fragment updates are obtained when the

merging procedure encounters nodes with the same priority. As a result, we choose to use
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the dragging operation for both cases.

7.3.2 Algorithm E-update

The E-update algorithm describes the actions necessary to process all edge and intersection

events that do not involve collisions, which are handled by the X-collide algorithm described

later. Edge and intersection events are closely related and often happen most of the times

concurrently. We explored this connection before to avoid creating duplicate certi�cates

to detect these events, and we again explore this connection in the design of the update

algorithms. The only intersection event that does not cause an edge event (Figure 7.9)

can be handled in a very simple way, with the update of the certi�cates of the intersection

nodes. From now on, the intersection events we discuss happen together with edge events.

(a) (b)

Figure 7.9: Intersection event that does not have an associated edge event.

Intersection events were used to detect edge events that involved intersection points.

Because intersection points are not explicitly stored in the tree, intersection events itself

do not cause changes in the structure of the tree, which are caused by the movement

of the edge nodes where the intersection points are de�ned. In summary, intersection

certi�cates are used to detect the events, but the update in the tree is done through edge

node updates. In �gures 7.10 and 7.11 we review some of the cases that are handled by

the E-update algorithm. We observe from these examples that many edge events de�ned

over a single edge may happen at the same time. This is a direct consequence of one edge
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Figure 7.10: Edge events detected by VI and II certi�cates.

being partitioned in several parts, each corresponding to a di�erent node stored in the

tree. The time an edge event happens corresponds to an edge passing through the plane of

an ancestor node, and usually adjacent edge nodes de�ned on the same edge are a�ected

by these events. The occurrence of multiple events in edge events motivates a di�erent

approach in the update algorithm than the one used for vertex events.

The types of e�ects that an edge event may cause on nodes are the same e�ects that

were observed in the discussion of the algorithm for vertex events. A node has a merging

e�ect (EFFECT MERGE) when it needs to be deleted from its current location, while a
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Figure 7.11: Edge events detected by II certi�cates.

splitting e�ect (EFFECT SPLIT) causes a node to be split into additional nodes. In the V-

update algorithm these cases were handled during the execution of the dragging operation,

with the e�ects being processed as visited. Here, we follow a di�erent approach, where we

separate the nodes in two groups according to the type of e�ect, and handle the updates in

each of these sets separately.

This grouping of events only makes sense because the edges involved in one of these

events correspond to nodes of the same edge in a scene. The reason to separate merged

edge nodes from splitting edge nodes is directly related to the fact that all edge fragments

of merging nodes collapse to a point when the event happens. Suppose we advance time

by an in�nitesimal amount after the event happened. New fragments may be just created
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giving rise to several nodes in another subtree, with new fragments that do not have any

connection with previous fragments. One way to create all these new nodes is to identify

every new location occupied by the edge and incident triangle nodes, and for each location

found, insert new edge and triangle nodes. Another way to accomplish the same result is to

perform othe insertion of a single edge node and its incident triangle nodes, starting from a

node higher in the tree. This higher node, however, needs to have an associated region that

is guaranteed to contain all the new nodes. The several nodes that need to be created are

naturally obtained in this approach, because as nodes are �ltered down the tree, partition

operations are applied and nodes are created. The replacement of several insertions of edge

nodes by a single insertion of an edge node suggests that we handle merging and splittind

nodes in groups.

The E-update algorithm �rst enumerate all edge nodes that are involved in an intersec-

tion certi�cate failure. This can be easily done because these certi�cates contain pointers

to the edges that de�ne the intersection nodes. We separate these edges into merging and

splitting sets depending on the e�ect that the event has on each edge node. The e�ects

caused by edges in the merging set are processed �rst. In this merging step, we delete all

edge nodes in the merging set from the tree, and replace it with the priority merging of

its subtrees. Note that we do not use the dragging operation here because it automatically

perform actions for splitting nodes, which we do not want at this point. The update of the

fragments of all nodes is done by the priority merging algorithm.

After all merging edge nodes were processed, we continue with updates caused by edge

nodes in the splitting set. For all these edge nodes, it is necessary to update its fragments,

because one of the endpoints of the edge node changes when the event is processed. In

addition, every node incident or cut by a splitting edge node may also require a fragment

update. More speci�cally, all fragments that contain the endpoint of the edge node that

changes when the event is processed need to have their fragment updated. After all frag-

ments are updated, it is necessary to perform a single insertion of an edge node into a

subtree that is guaranteed to contain all the new edge nodes. In the cases where an edge

passes through an ancestor point node, we use one of the subtrees of this point node as the

place of insertion. In the case of �gure 7.10(a) we would insert this edge node in the right

subtree of Ph. For the case that an edge nodes passes through another edge node (�gure
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7.11(a)), we would insert the edge node in the right subtree of E3. Finally, all triangles

that were incident to the moving edge in the scene are used to create triangle nodes, that

are inserted in the tree at the same place as above.

The code for the E-update algorithm is described in �gure 7.12. The input for the

algorithm consists of a set of edge nodes de�ned over the same edge of the scene, the

cardinality of this set, and a node that is guaranteed to contain all edge nodes to be

created. This node is used as the place to insert a new edge node and incident triangle

nodes.

void KVDTree::eUpdate(KBSPEdgeNode *edgeNode[], int nEvents, KVDTree *nodeHigh)

{
// Merging step
for (int i=0; i<nEvents; i++) {
if (edgeNode[i].e�ect(nodeHigh) == EFFECT MERGE) {
// Process merge. Delete node and merge its subtrees
edgeNode[i].processE�ect(EFFECT MERGE,nodeHigh);

}
// Splitting step
if (edgeNode[i].e�ect(nodeHigh[i]) == EFFECT SPLIT) {
// Update fragments of the edge node and all other nodes that
// depend on the endpoint that is changed in the edge fragment
edgeNode[i].updateFragments();

}
// Simple insertions creates all new nodes

KVDEdgeNode *auxEdgeNode = new KVDEdgeNode(edgeNode[0]);

// Out of order insertion in the new location
nodeHigh.insertOutOfOrder(auxEdgeNode);

Every triangle incident to the edge also need to be inserted
for (int i=0; i<auxEdgeNode.incidentTriangles(); i++) {
KVDTriangleNode *auxTriangleNode =

new KVDTriangleNode(incidentTriangleNode(auxEdgeNode, i));

nodeHigh.insertOutOfOrder(auxTriangleNode);

}
}

Figure 7.12: Algorithm E-update
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7.3.3 Algorithm X-collide

The algorithm X-collide is used to perform the necessary actions to handle the possible col-

lision events: VT-, TV- and ET- event. The solution to avoid collision includes modifying

the equation of motion of the objects that de�ne each of the nodes causing the collision.

This is accomplished in our implementation with the reversal of the direction of the equation

of motion of the objects.

Because objects are assumed to have rigid motions, every node that is created from

certain object needs to have its certi�cates updated. Instead of locating all of these nodes in

the tree, only the point nodes created from these objects are marked with invalid certi�cates.

This can be accomplished if we keep an array of pointers to all point nodes in the tree

indexed by the vertex index. In addition, because they are inserted before the other types

of edge nodes, marking a point node as having invalid certi�cates will require the update of

certi�cates for every node in the subtrees of these point nodes. The code for this algorithm

is described in �gure 7.13. The input to the algorithm correspond to the nodes that cause

the collision.

void KVDTree::xCollide(KVDTree *nodeLow, KVDTree *nodeHigh)

{
// The collision is avoided by reverting the objects motion
int nodeLowObject = nodeLow.object();

int nodeHighObject = nodeHigh.object();

revertEqMotion(nodeLowObject);

revertEqMotion(nodeHighObject);

// Every node create by these objects need to update its certi�cates.
// Mark as invalid the certi�cate ag of all point nodes of the object
setUpdateCerti�catesFlag(nodeLowObject, 1);

setUpdateCerti�catesFlag(nodeHighObject, 1);

}

Figure 7.13: Algorithm x-Collide
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7.4 Updates examples

The modi�cation that are created by a simple event are better understood if we visualize

the structure of the tree before and after updates. In �gures 7.14 and 7.15 we have two

examples corresponding to two successive tree updates in the tree. The nodes are drawn

using the same color scheme as before (red for point node, green for edge nodes and blue

for triangle nodes). Nodes have di�erent �lling styles, depending on the e�ect that the tree

update has over each node. The �lled nodes correspond to the nodes that are a�ect by the

update, with the node higher in the tree corresponding to the ancestor node that de�nes

the event. In �gure 7.14 we have an example of a VV update, where a point node passes

through the plane of another point node. In �gure 7.15 we have an example of a VE update,

where a point node passes thorugh the plane of an edge node.
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Figure 7.14: VV update example.
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Figure 7.15: VE update example.



Chapter 8

Results

In this chapter we evaluate the performance of the KVD. The presentation starts with

a description of the implementation, including a discussion on the user interface used to

visualize several aspects of the KVD. The KVD is tested by running kinetic simulations

through di�erent scenes. For each of these simulations, results are given regarding the

size, number of certi�cates and several statistics concerning the performance of update

algorithms.

8.1 Implementation

The implementation of the KVD was done using the C++ programming language, which

has been used throughout this text in the description of data structures and algorithms.

The di�erent parts of the code are all integrated in a single program movingWorlds, that

performs the kinetic simulation of moving scenes composed of objects with triangular faces.

The input to the movingWorlds program consists of a scene composed of static and

dynamic objects with triangular faces. Each object contains the description of vertices,

edges and faces of the geometric model. In addition, material properties such as color

values are also described in each model. Each dynamic object is assumed to have a rigid

motion, therefore a single equation of motion is speci�ed for each object. Other parameters

that are provided as input to the program include: the vertical decomposition directions

(x̂ and ẑ) and the value of �-min used in the kinetic priority queue.

115
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Given this input, the movingWorlds program creates an initial KVD tree using a ran-

domized priority order scheme. For this initial tree, all certi�cates associated with the tree

are computed, and the kinetic priority queue is updated to contain the information about

the next certi�cates to fail. Once the initial KVD is computed, the program is able to

start a kinetic simulation. At any moment during the simulation, the KVD can be used

to extract a visibility ordering for the scene. The most important tasks that the program

needs to accomplish are (1) the correct detection of when events happen, and (2) the correct

update of the KVD to conform to new positions of geometry.

There are two variants of the movingWorlds program. First, a non-graphical version

is just concerned with running the simulation, without producing any visual illustration

about the KVD. This program is very useful once the implementation is complete, and

therefore when our primary concern is to verify the correctness of the tree, and to evaluate

the performance of the updates in the KVD. A second version contains a graphical interface,

that is used to display most of the geometric and combinatorial structure of the KVD. This

version was extremely useful during the debugging stages of the implementation.

The ideas behind the graphical version were discussed in chapter 2. The user interface

is composed of two windows. The interaction window allows the user to control a series of

parameters that are used in the visualization of the three dimensional structure of the KVD.

The visualization window contains one view of the structure of the KVD as de�ned by the

interaction window, with a trackball mechanism that allows the user to interactively update

the projection used to compute the visualization. In �gure 8.1 we show the interaction

window, and some examples of the visualization window.

The interaction window is divided into several areas, either used to input user selections,

or to display properties present in the KVD. Each of these areas is described in detail below.

Visualization Section

This section of the interaction window contains ags that control several aspects of the

visualization of the KVD. There are three mechanisms used to select nodes in the tree:

interactive navigation, procedural selection, and sweeping plane. In the interactive naviga-

tion approach, one node is always marked as selected, and some properties are described

only about this node (e.g. a hyperplane or a region of a node). This selection mechanism
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(a) Interaction window.

(b) Sample scene (c) Fragments

(d) Sweeping plane (e) Regions

Figure 8.1: User interface and di�erent visualizations of the KVD
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is described in more details in the navigation section below.

In the procedural selection, there are several ags that specify properties of nodes which

are to be displayed. For each selected node, the fragments associated with the node are

displayed using a speci�c color for each type of node. The use of the alpha channel in the

speci�cation of colors allow the simulation of transparency, which is useful when displaying

a complex structure such as the KVD. The visibility ordering provided by the KVD is used

to correctly compose the alpha channels of the fragments displayed.

In this selection mechanism, the only nodes selected are the ones that satisfy a set of

properties, given by boolean expressions. A simple example of expression is de�ned by

a ag, that indicates if certain property is de�ned for a node. For instance, a ag that

indicates that point nodes may be used to indicate that point nodes are to be included in

the set of candidates to selected nodes. Similarly, edge and triangle node ags can be used

to indicate that edge and triangle nodes are also candidates. Another example of a boolean

expression used to select nodes is related with the speci�cation of an interval in which a

certain attribute is allowed to vary. The only nodes that are selected as candidates are the

ones that have this attribute within the given range. In the interaction window, we use

intervals of depth and priority values.. The ability to change the minimum and maximum

depth values allows the selection of di�erent nodes in the tree. The only nodes selected for

display are the ones that satisfy all boolean expressions de�ned in the interaction window.

The sweeping plane technique is used to illustrate a moving cross-section of the KVD.

For simplicity, we only use cross-sections perpendicular to a single �xed direction. The

user controls a single parameter, the depth of the plane, that allows the movement of a

sweeping plane between the front and back face of the universe bounding box. Finally, a

ag is de�ned to switch on or o� the display of the scene.

Navigation section

One node is always de�ned as the selected node from the tree, which is used by the region

and hyperplane display methods. The selected node is changed by moving to one of its

adjacent nodes in the tree (the parent or either one of its children). The arrows on the

display correspond to these alternatives. The region of a node is divided into two sub-

regions, each corresponding to the regions of the left and right subtrees. Instead of drawing
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the region of a node with a single color, we prefer to draw the sub-regions of its subtrees

with di�erent colors. Our convention is to always associate blue with the left subtree, and

green with the right subtree. This convention helps the user identify in the navigation

selection area which of the subtrees correspond with which children are associated to which

region.

The interactive navigation, combined with the visualization of the region of the node, is

a powerful tool for understanding the structure of the tree. Hierarchical structures are often

only evaluated by statistical evaluations, but the geometric structure can complement such

results. Figure 8.2 shows the structure of the tree with its accompanying regions, using

snapshots from the visualization process.

Events Visualization

The depiction of certi�cates in the structure of the KVD can be used to understand the

behavior of certain events. We apply the technique described in chapter 6, which consists

of drawing straight lines connecting points that are involved in the creation of the event. A

simple selection mechanism allows the display of no events, the �rst event to happen, and

all events for all nodes.

Statistics

The following statistics are displayed in the interface window:

• Scene statistics: contains information about the total number of vertices, edges and

faces contained in the input scene.

• KVD statistics: contains information about the di�erent types of nodes in the tree,

and the maximum height of the tree.

• Events statistics: Contains information about the current set of certi�cates.

• Simulation statistics: Contains several informations about the kinetic simulation:

number of events processed, current time of the simulation, next event death time,

cost to compute initial KVD, average cost to update the KVD with local algorithms,

maximum update cost, variance and standard deviations of the cost updates.
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Simulation Parameters

The simulation is started and stopped through the activation of small buttons in the simu-

lation properties parts of the interface. A play button is used to run the simulation until a

stop button is pressed. A play-and-pause button is used to run the simulation only until

the �rst certi�cate fails, when the simulation is stopped.

8.2 Kinetic Simulations

The properties displayed in the interaction window do not include all possible properties

that a�ect the operation of the simulation mechanism. The remaining options are speci�ed

by command-line arguments to movingWorlds.

During the debugging stages of the implementation, the result of every local update

of the KVD was compared with a KVD built from scratch, based on the new geometric

position of the scene. A validation procedure checked whether the structure of both trees

was exactly the same by performing simultaneous traversals in both trees, and comparing

each node of one tree against the corresponding node of the other. If the nodes had di�erent

types, or if the elements used to de�ne the node were di�erent, the validation procedure

failed. In addition, even if all these comparisons were valid, but the fragments stored in each

node were di�erent, the validation still failed. In cases where errors occurred, the validation

procedure reported the type of error encountered, the nodes that caused the error, and the

displayed the incorrect trees.

The performance of the KVD was tested with simulations of several scenes composed

of moving triangles inside a bounding box. Two di�erent types of data sets were created.

The �rst one, called the uniform scale, contains di�erent scenes with a increasing number

of triangles (25, 50, 100, 200, 400, 800). The triangles in all these scenes are congruent

triangles, and di�er only in position and orientation. A second data set, called uniform

density, contains scenes of triangles that are all congruent within a single scene, but have

di�erent sizes across scenes, depending on the number of triangles in the scene. The idea

is to create data sets that maintain the same density of occupation obtained in a base

scene with 100 triangles. Therefore, scenes with a smaller number of triangles than 100 are

composed of bigger triangles, and smaller triangles are used for scenes with more triangles.
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The construction of both sets was done in such way that the scenes with 100 triangles are

identical. In �gure 8.3 we show sample scenes from each of these sets.

(a) 25 uninform scale (b) 100 uninform scale (c) 200 uniform scale

(a) 25 uninform density (b) 100 uninform density (c) 200 uniform density

Figure 8.3:

8.2.1 KVD-Tree Construction Statistics

The �rst important statistic about the KVD is the size of the tree. In �gure 8.4 we show

the results obtained for each of the sets described above. We present these statistics in

graphical and tabular format. The edge and triangle nodes are most numerous because

they are the only ones that are partitioned by other cuts in the tree. The number of

point nodes corresponds exactly to the number of vertices in the input scene. For scenes

with 800 triangles, the uniform scale approach creates trees with more nodes, because more
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partitioning happens due to the fact that the density increases as more triangles of the same

size are inserted. On the other hand, scenes with uniform density produce more triangle

fragments when fewer triangles are present, because larger triangles are involved.
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KVD-Tree construction statistics - scenes with triangles - uniform scale

25 4s 50 4s 100 4s 200 4s 400 4s 800 4s

Vertices 75 150 300 600 1200 2400

Edges 75 150 300 600 1200 2400

Triangles 25 50 100 200 400 800

KVD P-nodes 75 150 300 600 1200 2400

KVD E-nodes 191 531 1489 4086 11195 30013

KVD T-nodes 96 283 835 2604 8020 28339

KVD total nodes 360 964 2624 7290 20415 60752

KVD Height 17 20 24 37 34 47

KVD-Tree construction statistics - scenes with triangles - uniform density

25 4s 50 4s 100 4s 200 4s 400 4s 800 4s

Vertices 75 150 300 600 1200 2400

Edges 75 150 300 600 1200 2400

Triangles 25 50 100 200 400 800

KVD P-nodes 75 150 300 600 1200 2400

KVD E-nodes 261 571 1489 3599 8822 21062

KVD T-nodes 147 320 835 2078 5345 13068

KVD total nodes 483 1041 2624 6277 15367 36529

KVD Height 18 28 24 29 37 42

Figure 8.4: KVD Construction Statistics.
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8.2.2 KVD-Tree Certificate Statistics

In �gure 8.5 we have statistics about the types of certi�cates created in each of the uniformly

scale and density datasets.
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KVD-Tree certificate statistics - scenes with triangles - uniform scale

25 4s 50 4s 100 4s 200 4s 400 4s 800 4s

PP Certi�cates 55 145 364 1098 3782 12496

VE Certi�cates 125 379 1048 2777 7550 18997

VT Certi�cates 66 153 344 932 2609 9388

ET Certi�cates 4 20 66 350 1580 5720

Total Certi�cates 250 697 1822 5157 15521 46601

KVD-Tree certificates statistics - scenes with triangles - uniform density

25 4s 50 4s 100 4s 200 4s 400 4s 800 4s

PP Certi�cates 71 164 364 894 2041 4640

VE Certi�cates 190 382 1048 2547 6361 14936

VT Certi�cates 82 176 344 673 1615 3526

ET Certi�cates 20 40 66 260 614 1416

Total Certi�cates 363 762 1822 4374 10631 24518

Figure 8.5: KVD Certi�cate Statistics.

The PP certi�cates include all certi�cates of types VV, VI and II. The type of certi�cate

VE contains the largest number of certi�cates. One reason to have a greater number of VE

certi�cates than PP certi�cates is because they are always de�ned twice for six- and �ve-

sided cells, while VV events are de�ned twice for six-sided cells, but only once for �ve-sided
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cells. The certi�cates of type ET are more numerous in higher density scenes (uniform

density with less than 100 triangles, uniform scale with more than 100 triangles).

8.2.3 KVD-Tree Simulation Statistics

In �gures 8.6 and 8.7 we have the results for several kinetic simulations. All reported times

are expressed in mili-seconds.
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Max Update

KVD-Tree simulation - 100% moving - uniform scale

25 4s 50 4s 1004s 200 4s

KVD Construction 281 1204 3109 9719

Average update 75 94 119 168

Max update 204 375 922 3000

Standard Deviation 24 38 69 177

Tree update / Total Update 0.79 0.75 0.72 0.68

Certi�cates update / Total Update 0.21 0.25 0.28 0.32

KVD-Tree simulation - 100% moving - uniform density

25 4s 50 4s 1004s 200 4s

KVD Construction 469 1547 3079 8156

Average update 87 114 119 153

Max update 329 750 921 1719

Standard Deviation 34 69 69 119

Tree update / Total Update 0.77 0.72 0.72 0.68

Certi�cates update / Total Update 0.23 0.28 0.28 0.32

Figure 8.6: KVD Simulation Statistics - All triangles moving.
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KVD-Tree simulation - 10% moving - uniform scale

25 4s 50 4s 1004s 200 4s

KVD Construction 532 1484 3485 10766

Average update 72 113 120 162

Max update 204 188 2656 2032

Standard Deviation 24 9 131 138

Tree update / Total Update 0.59 0.47 0.55 0.67

Certi�cates update / Total Update 0.41 0.53 0.45 0.33

KVD-Tree simulation - 10% moving - uniform density

25 4s 50 4s 1004s 200 4s

KVD Construction 687 1687 3735 8015

Average update 74 91 120 146

Max update 422 469 2672 1546

Standard Deviation 37 21 131 108

Tree update / Total Update 0.79 0.51 0.55 0.71

Certi�cates update / Total Update 0.21 0.49 0.45 0.29

Figure 8.7: KVD Simulation Statistics - 10% triangles moving.

For each one of this scenes, we ran a kinetic simulation until a �xed number of events

was processed, and we reported results based on the performance of the KVD during this

simulation. For the results reported below, 1000 events are processed. The motion of the

triangles in these scenes was always a linear motion, randomly generated. The simulation

statistics are described for two types of situations. The �rst one corresponds to having all

triangles in a scene moving. In the second situation, only 10% of triangles are allowed to



CHAPTER 8. RESULTS 127

move. The separation of static from dynamic triangles is used in the construction of the

KVD, with static triangles inserted before any of the dynamic triangles.

The average update time obtained in all simulations is considerably smaller than the

time to construct the entire tree. In some situations, the maximum update cost can be high,

but the percentage of the total simulation time used by the maximum update decreases as

the scene complexity grows. The time used to perform updates in the tree and in the events

structure is illustrated as percentages of the total simulation time. The tree update is most

of the times the most expensive operation.

In �gure 8.8 we compare the costs of locally updating the tree against an approach that

reconstructs the tree at given sampling intervals. Two construction times are presented.

The �rst one represents the cost to rebuild the KVD, while the second one builds a stan-

dard BSP for the set of triangles, with no additional point and edge cuts. The comparison

between the kinetic and the interval sampling during an interval of time t needs to take

into account the number of events e processed by the kinetic approach during this inter-

val, and the number of samples s processed during this interval. The kinetic approach is

advantageous over the interval approach if the average time of events times the number of

events processed is smaller than the construction time times the cost to construct the tree.

The di�erence between these values is de�ned as the kinetic gain:

kinetic gain = s ∗ construction cost - e ∗ average update cost (8.1)

The kinetic gain is usually bigger when the number of events is smaller, because the

time sampling parameter s is usually constant over a time interval. In cases where a lot of

events happen, the kinetic gain can become negative, and therefore the interval sampling

approach have a better performance. Ideas to combine both strategies are discussed in

chapter 8.

8.2.4 KVD-tree for occlusion culling and shadow computation

The KVD can be used to perform occlusion culling and shadow computation. For these

applications, the ẑ direction of the vertical decomposition is de�ned by an euclidean point,
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KVD-Tree update statistics - uniform scale

25 4s 50 4s 1004s 200 4s

KVD Construction 281 1204 3109 9719

BSP Construction 31 203 250 407

Average update 75 94 119 168

Average update / KVD Construction 0.110 0.168 0.081 0.041

Average update / BSP Construction 2.419 0.463 0.476 0.412

KVD-Tree update statistics - uniform density

25 4s 50 4s 1004s 200 4s

KVD Construction 469 1547 3079 8156

BSP Construction 46 187 266 344

Average update 87 114 119 153

Average update / KVD Construction 0.185 0.073 0.038 0.018

Average update / BSP Construction 1.89 0.609 0.447 0.444

Figure 8.8: KVD Update Statistics.

rather than as a point at in�nity. If the point used is the viewpoint of the scene, the KVD

can be used for occlusion culling. If the point used corresponds to the location of one light

source, then the KVD can be used to compute shadow information created by this light

source.

In the situation where the viewpoint is used, the KVD can perform occlusion culling by

simply not traversing one of the subtrees of opaque triangle nodes. Because the additional

cuts introduced in the KVD pass through the viewpoint, a triangle node serve as a single

occluder to all nodes in the subtree corresponding to the halfspace that does not contains

the viewer. The occlusion culling can be incorporated to the algorithm that traverses the

KVD to display triangle fragments. This simple modi�cation in the algorithm was tested

with the previous datasets and results are reported in �gure 8.9. The number of triangles

nodes that are culled are reported along the total number of nodes in the occluded subtrees.

For the uniform scale cases, as expected, there is an increase of the percentage of oc-

clusion culling as the number of objects increases. For the uniform density cases, the

percentage of occlusion culling varies little with the di�erent scenes. It is important to

note that this algorithm only de�nes a node n1 as an occluder of a node n2 if n2 is in

the occluded subtree of n1. In the opposite situation, where a node is occluded by several
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KVD-Tree Occlusion culling - uniform scale

25 4s 50 4s 1004s 200 4s 400 4s 800 4s

Triangle Nodes Culled 1 11 42 329 1679 8709

Triangle Nodes Total 78 295 832 2546 8129 26466

% Triangle Nodes Culled 1.28 3.72 5.04 12.92 20.65 32.90

Tree Nodes Culled 5 25 96 732 3388 16523

Tree Nodes Total 308 1008 2604 7285 20259 57094

% Tree Nodes Culled 1.62 2.48 3.68 10.04 16.72 28.93

KVD-Tree Occlusion culling - uniform density

25 4s 50 4s 1004s 200 4s 400 4s 800 4s

Triangle Nodes Culled 11 22 42 164 590 1329

Triangle Nodes Total 145 316 832 2105 5568 12926

% Triangle Nodes Culled 7.58 6.96 5.04 7.79 10.59 10.28

Tree Nodes Culled 27 53 96 361 1273 2994

Tree Nodes Total 489 1045 2604 6337 15931 36550

% Tree Nodes Culled 5.52 5.07 3.68 5.69 8.01 8.19

Figure 8.9: Occlusion culling using the KVD.

nodes that belong to one of its subtrees, this algorithm do not detect occlusion culling. In

order to this it would be necessary to combine occluders, which may be expensive.

A similar algorithm can be used to detect shadows if the position of a light source is

used in the de�nition of the vertical decomposition. Like the occlusion culling algorithm,

one of the subtrees of an opaque triangle node is entirely in shadow with respect to the light

source (shadow subtree), while the other subtree may be illuminated by the light source

(illuminated subtree). Unlike the occlusion culling algorithm, the shadow computation

algorithm requires the detection of the cases where nodes are in front (with respect to the

light source) to one of its ancestor nodes. For every triangle node, this corresponds to

computing the shadow cast by all triangle nodes in its illuminated subtree. Some solutions

for this problem have been presented in the literature [6][7]. One solution to this problem

is to project every triangle node against the planes of each ancestor triangle node. The

�nal image of the triangle node is obtained by drawing the entire fragment of the triangle

node, and all projected triangles obtained as above. Another solution is to �lter down

the fragment associated with a triangle node. In this case, only the illuminated subtree is
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traversed, and the nodes in this tree are used to partition the fragment. Only the fragment

parts that are not occluded by other triangle nodes are displayed.



Chapter 9

Conclusions

9.1 Main Contributions

The hidden-surface elimination problem is one of the oldest problems faced by the computer

graphics community. It consists of the computation of parts of objects that are visible to

a viewer, which are then combined to create an image that represents this information. A

challenging variant of this problem corresponds to situations where both the objects and

the viewpoint are not static, but are allowed to move. This scenario directly a�ects the

computation of visibility information, which has to be re-computed for every image frame

generated.

In this work we describe a new data structure that can be used to extract dynamic

visibility information. The Kinetic Vertical Decomposition Tree (KVD) is a special type of

BSP, that is used to represent a vertical decomposition of a set of triangles in R3 . Unlike the

standard BSP, the KVD introduces additional cuts from vertices and edges along speci�ed

directions.

For scenes composed of triangles moving along known trajectories, the KVD can (1)

detect when an update in its structure is necessary, and (2) perform updates only in the

a�ected parts, without requiring a complete reconstruction of the structure. The KVD was

designed to perform all these tasks in the following way. First, events and certi�cates were

de�ned to identify when the combinatorial structure of the KVD needs to be updated. This

was only possible through an evaluation of all cases that can create changes in the KVD.

131
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For each event, a certi�cate is de�ned to serve as proof that the KVD stays combinatorially

valid.

For every certi�cate that fails, the nodes that de�ne the certi�cate are examined, and

the tree structure is locally updated using an appropriate update algorithm.

In summary, the main contributions of this work can be enumerated as follows:

1. Design and Implementation of a 3D Kinetic BSP: This work describes the KVD,

the �rst fully 3D Kinetic BSP, and the �rst implementation of a kinetic BSP. Pre-

vious work concentrated on the theoretical analysis of kinetic BSPs. The kinetic

maintenance of a BSP is much simpler to describe than it is to implement. This

implementation was feasable because common substructures were identi�ed in the

many complex cases that can arise for the updates. The design of a small number of

certi�cates and update algorithms illustrate how similar situations were handled in a

uni�ed manner.

2. Visualization of BSPs: The implementation of a complex structure like the KVD

required a visual tool to display properties of the KVD during debugging. The ability

to display geometric properties of the nodes, combined with a selection mechanism

that reduces the set of nodes to be used in the visualization was extremely helpful,

and can potentially be applied to the visualization of other complex spatial partitions.

3. Algorithmic Aspects: Several contributions can be highlighted from the current work.

The idea of a symbolic representation of geometry for BSPs is extremely useful in

dynamic situations. New complex BSP operations were designed to accomplish the

updates in the KVD following a static priority scheme: priority merging of trees, out-

of-order insertion of nodes. The dragging operation is a novel BSP operation used to

merge trees while evaluating the behavior of certain nodes in the trees. This unique

operation is used in several of the update algorithms. Finally, the use of the KVD as

the supporting structure for a priority queue that detects the �rst certi�cates to fail

was important to reduce the time spent updating certi�cates in the tree. This was

only possible because the KVD is a binary tree, and therefore this approach may not

generalize to other kinetic problems. In any case, it was the �rst time that such a

combination was proposed.
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9.2 Future Directions

There are many possible ways to continue the work described in this dissertation. In this

section we review a few of these ideas.

9.2.1 Migration of Priorities

The insertion of cuts in the KVD follows a speci�c priority order, randomly assigned to

triangles in a scene. During a kinetic simulation, this order is maintained unchanged at

all times, which provides a mechanism to check the correctness of the local updates in the

tree. It can be proven that for objects moving along pseudo-algebraic trajectories, the use

of a �xed priority order results in trees of reasonable expected depth and size.

The worst situation for a �xed priority order approach happens when the tree updates

involve higher nodes in the tree. The fundamental cost of a tree update consists of moving

a node from one place to another in the tree. This movement is accomplished by �rst

deleting the node from its previous locations, followed by its insertion into a new location.

The deletion step requires an operation that merges the subtrees of the node, which is more

expensive for nodes closer to the roots of the tree. Because nodes with higher priority are

inserted �rst in the KVD, the nodes that create costly update operations correspond to

high priority nodes. In an ideal situation, the priority ordering would be de�ned in such a

way that the moving nodes are closer to the leaves, where the merging operation is usually

cheaper.

One approach to reducing the number of costly updates is to create a mechanism to

alter the priority ordering based on the events encountered during a number of updates

in the KVD. For a higher priority node that creates several costly updates in the tree, a

solution would be to change its priority in such way to reduce the costs of future events

involving the node. The change in the priority order, however, needs to be done in such

way that a mechanism to check the correctness of the tree can always be de�ned.

Suppose the nodes associated with a higher priority triangle create several events in the

tree that requires costly updates in the KVD. A possible implementation of this idea for

the KVD keeps a pointer to the locations of all point nodes in the tree, therefore all point

nodes associated with the given triangle can be quickly accessed. When the priority of the
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triangle is changed, starting at each one of the the point nodes of the triangle, we delete

every node de�ned from the points, edges and face of the triangle. This will completely

remove all the nodes created by the triangle in the tree. A new priority can then be assigned

to the triangle in such way that it is smaller than any priority present in the tree. Reinsert

all cuts originated from the triangle in the tree, which necessarily will go to the leaves of

the tree because of the small priority assigned to them.

We call this process a migration of priorities. In this solution, the information about

the events being processed is used to modify the priorities, in order to minimize the costs

of the events. This solution imposes a self-adjusting nature to the structure, which nicely

handles the situations that high priority nodes cause costly updates in the tree.

9.2.2 Combination of kinetic and interval sampling

The fundamental event that requires an update in the combinatorial structure of a BSP

corresponds to a change in the classi�cation result of a node against one of its ancestors.

In an auto-partition BSP, where cuts are de�ned only through the supporting planes of

the input faces, such events correspond to a vertex passing through a plane of an ancestor

node. Suppose a complex polygonal object passes through one of the cutting planes of the

KVD. In this case, for every vertex of this model that passes through the cutting plane, an

event is generated. In these situations, the kinetic approach may be too expensive, because

many events happen in time.

One solution for this problem is to use a mixed kinetic and interval sampling approach.

The kinetic sampling is extremely useful when no updates are necessary in the kinetic

structure for a large period of time. However, for situations such as the one described

above, an interval sampling approach, that deletes and inserts and object in speci�c time

increments may have better performance. In other words, instead of processing every event

caused when every vertex of the model crosses the plane in a kinetic way , an interval

sampling approach is used. After all events are processed, the kinetic mechanism would

resume control until new situations like this one happen again.
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9.2.3 Topological k-D-tree

The kinetic BSPs described in this and previous work are based on cylindrical decomposi-

tions of the space. The reason for this is that these decompositions contain cells of bounded

size, which allow for easier detection of events, at the expense of an increase in the size

of the tree. On the other hand, it would be much better if we knew how to maintain

auto-partition BSPs, but this would require maintaining all the subdivision of space, while

dealing with cells of arbitrary complexities.

An intermediate solution can be designed as follows. Suppose the construction of the

BSP creates some constraints on the cuts in such a way that the complexity of its cells is

always bounded. Let A be a rectangular (or cylindrical) region of the space. We de�ne a

valid cut in this region if it cuts opposite walls of this region. Note that the cut does not

need to be parallel to the walls of the region. This cut creates two new regions and we

de�ne valid cuts in these regions in the same way. In other words, cuts are made in space

in such way that the region is always de�ned by four sides (in the plane), and therefore

�xed-size cells are always obtained. The set of candidate cuts is composed of all supporting

planes of the input model. If all candidate cuts satisfy this property, the resulting structure

is an auto-partition BSP with cells of bounded complexity. We call the resulting structure

a topological k-D-tree, because a simple transformation in the cuts used can produce a

k-D-tree, a tree structure composed by cuts orthogonal to the coordinate planes of a space.

In general, such an auto-partition is hard to obtain, because in some situations no valid

cuts can be de�ned. In these cases, an external valid cut is created and inserted into the

tree. In summary, this approach uses auto-partition cuts as much as possible, and only

inserts external cuts when necessary. The reduction of the number of external cuts helps

improve the performance of the kinetic simulation. On the other hand, kinetic updates

become more complex, because new external cuts may need to be inserted, or even old ones

deleted when events are processed.

9.2.4 Kinetic k-D-tree

Suppose all objects in an input scene have associated aligned bounding boxes. Assume for

simplicity that either the objects are moving along linear trajectories, or that the motion
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is more complex but the bounding box contains the object for any possible orientation of

the object.

We create a kinetic BSP using the planes that support the faces of all bounding boxes

of objects. Note that the faces of the objects are not inserted in this tree. Because all the

faces are aligned, the resulting subdivision has cells of bounded complexity. In fact, this

structure is a particular case of the KVD, and can be easily implemented from the current

implementation of the KVD. We call this structure a Kinetic k-d-tree because the resulting

tree contains cuts that are orthogonal to coordinate planes (a k-d-tree).

The problem is that because no cuts were introduced by the objects, no fragments are

stored in the tree, and this structure can not be used as before to extract visibility ordering.

The idea is to use the structure of this tree to extract visibility ordering by a more direct

approach, that compares objects directly. The hierarchical structure of this tree can be

used to reduce the number of tests to be performed. In between updates in this structure, a

previously computed visibility ordering remains valid in a kinetic sense, which means that

it will only be violated when an certi�cate fails.

9.3 Conclusion

We hope that this dissertation motivates new research in an area that contains extremely

hard and exciting problems.
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