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Abstract

For over thirty years computer vision researchers have been proposing methods for

\early vision" tasks such as detecting edges and corners. One key assumption shared

by most previous methods is that image neighborhoods are constant in color or in-

tensity, with deviations modeled as noise. Due to computational considerations that

encourage the use of small neighborhoods where this assumption holds, these methods

remain popular.

This research models a neighborhood as a distribution of colors. Our goal is to

show that the increase in accuracy of this representation translates into higher-quality

results for early vision tasks on di�cult, natural images, especially as neighborhood

size increases. We emphasize large neighborhoods because small ones often do not

contain enough information. We emphasize color because it subsumes greyscale as

an image range and because it limits the number of valid models we should consider;

using only greyscale images allows assumptions that do not hold for color.

We start by developing the compass operator, a color edge detector that computes

the orientation of the diameter of a circle that maximizes the distance between two

color distributions. This distance is computed by using the earth mover's distance,

which �nds the minimal amount of work needed to transform one distribution into

another.

We continue with color corner detection, a generalization of color edge detection in

which the two sides no longer have the same size. Extracting corners is more involved

than extracting edges because multiple responses to the same corner are not allowed.

We show that corners are dependent on edge evidence and, therefore, an edge model

is required to con�rm the existence of a corner.
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Finally, we extend blue screen matting, a technique that extracts an object from

a constant color background, to backgrounds that are almost arbitrary. Given coarse

knowledge of the boundary between two objects, we compute the color distributions

on either side of a potential boundary pixel and estimate alpha, the proportion in

which a color from each side mixed to form that pixel's color. As a result, a user can

more easily move objects from one image to another while maintaining photorealism.
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Chapter 1

Introduction

The goal of computer vision since its inception in the 1960's has been to demonstrate

understanding of human vision by constructing systems that can perform visual tasks

of the same generality and robustness that humans are capable of. The year 2000

has found only minimal progress made toward this goal; a number of reliable vision

systems do exist in industry today, but the range of tasks they perform, such as

defect inspection, are very narrow in scope, and they work only in carefully controlled

environments. Consumer-level applications, for example visual interfaces, are on the

horizon but have not yet made an impact.

The principal di�culty in building robust, general-purpose vision systems is one

of representation: what information about the structure and visual appearance of

objects is encoded, and how? At the most abstract level we are consciously aware

of the names we associate with objects, we can understand the many relationships

between objects, and we can form \mental pictures" of objects. At the most concrete

level we know a great deal about the types of local stimuli that prompt responses

from cells in the retina and parts of the visual cortex.

However, between the two lies a gap that neither scientists nor engineers have yet

been able to cross. It is generally believed that one or more intermediate represen-

tations exist between what we can directly measure about our physiology and what

our conscious minds know. The number of representations, their descriptions, and

their relationships to one another are not known; a natural place to look is at the

1



2 CHAPTER 1. INTRODUCTION

boundaries between objects since they are presumably detectable without knowledge

of the objects themselves.

L.G. Roberts, generally considered to have authored the �rst computer vision

paper1 [81], created an intermediate representation of straight, connected line seg-

ments. A scanned image of an object formed the lowest-level input. By applying

a derivative �lter to the image and connecting the resulting short edges into longer

ones, the image was reduced to a line drawing. After �nding the corners, convex

polygons were extracted, and polygons sharing an edge were compared against a

model database. After choosing a model that met both topological and quantitative

constraints, the boundary points were used to �nd the transformation between the

frames of reference of the object and the model. In this way, new views of an object

could be synthesized. The framework even allowed for an object consisting of multiple

parts to be decomposed, with each part being recognized separately.

However, soon afterwards it became clear that, although the approach was (and

still is) regarded as reasonable, the real challenge lay in relaxing the simplifying

assumptions that were made. In the natural world, backgrounds are not constant,

surfaces contain markings, illumination is not di�use and uniform, and objects do not

consist of polyhedra joined together. A new �eld of study quickly formed.

Much e�ort has been spent since then trying to understand various aspects of

static (single image) and dynamic (image sequence) visual perception, and while a

great many milestones have been reached, we are still uncovering the complexity of

the problem. Vision research since then can be broadly divided into model-based and

image-based approaches.

Model-based approaches to computer vision begin with principles developed in

�elds as disparate as neurology, physics, and statistics, from which models of percep-

tion are formed, implemented, and tested. Historically, most research has followed this

path, from purely bottom-up algorithms that extract edges and corners to top-down

1Roberts' paper was published in 1965, but computer vision became an accepted term only around

1983, before which these techniques were grouped under image processing. The di�erence, at least

according to the computer vision community, is that computer vision algorithms output information

about the state of the world, while image processing algorithms output images. Examples of the

latter include enhancement, restoration, and compression/decompression. There is still much overlap

between the two, though.
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models of object representation and recognition under di�erent viewing conditions

to domain-speci�c applications such as medical imaging, head tracking, and gesture

recognition for sign language.

The image-based approach is more recent and rests on the idea that the principles

underlying vision are too complex or too interrelated to be extracted singly. Instead,

models are learned directly from image data. For example, image-based rendering

uses samples from images to synthesize novel views of objects without �rst identifying

them and estimating their poses. These views appear much more natural than could

be done by specifying models manually.

This research is model-based, even though image-based approaches are gaining

in popularity. Its primary goal is to answer the question, \What is the best way to

represent image neighborhoods and the boundaries between them?" Our answer for

representing a neighborhood is a distribution of pixel values, in which the frequency of

the dominant colors or intensities is recorded. We intend to show that this representa-

tion leads to more accurate results for detecting edges and corners, and in situations

more di�cult than have been attempted previously. We also consider boundaries, par-

ticularly of natural objects like hair, which are not well modeled by edges or corners,

and show an image-based rendering application that semi-automatically extracts an

object from its background.

The next two sections are devoted to a deeper understanding of the challenges of

early vision and our strategy for dealing with them.

1.1 Why is Early Vision a Di�cult Problem?

The most interesting challenge in explaining computer vision to the woman or man

on the street is convincing them that duplicating human vision is di�cult in the �rst

place. Long-term memory does not develop until after a person's visual system is

fully formed, so there is no experiential frame of reference: we have always been able

to see.

So why is it di�cult to build systems that perform visual tasks? We restrict

the scope of the question to the scope of this research, which is early vision. Early
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vision refers to the detection of features common to most objects in the world, such

as edges, corners, shapes, relative or absolute depth, visual texture (the spatially

repetitive patterns of an object's appearance), or motion. These features can ideally

be detected and described independently of the objects that give rise to them.

But what is the goal of early vision? As we said before, the problem is one of

constructing intermediate representations. These representations should satisfy two

requirements: they should be smaller than the original representation in terms of the

number of bits needed to encode them, and they should preserve the \content" of the

image.

Consider the image of a statue in the upper left of Figure 1.1. The image to its

right is an artist's rendering, which for hundreds of years was the only intermediate

representation of the world that could be e�ectively and instantly conveyed to other

people. Note that the drawing contains the salient features of the image, namely

that it is a statue on a pedestal against a background consisting mainly of a building.

There are a signi�cant number of di�erences, however, even though the artist had the

original image available throughout the drawing process.

The most evident observation is that the statue is neither the same shape nor size

as the original, and it is not in the same location as it would be if it were merely

traced. Because the statue is the focus of the image, it has been enlarged. Also, a

number of details have actually been added to the statue that are not apparent in

the original image. High-level knowledge has been used to incorporate features that

the artist believed must be in the world.

Just as important is the fact that many details were left behind. The two main

textures, bricks and bush leaves, would be exceedingly tedious to render accurately.

Also, the car on the left has disappeared, as well as the shoots of ivy that are crawling

up the wall. These details are not central to our understanding and would perhaps

distract the viewer from the statue.

We cannot hope to generate such an output automatically due to the preponder-

ance of high-level decisions that went into the drawing. A more realistic intermediate

representation for computer vision is a segmentation, or a partitioning of an image

into regions, each of which corresponds to a di�erent object. The bottom of Figure 1.1
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Image Artist's Rendering

Segmentation

Figure 1.1: Early vision strives to produce intermediate representations such as a line
drawing or a segmentation. (Drawing credit: Razael Cort�es)
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shows a segmentation hand-painted onto the original image.

The segmentation has the advantage of corresponding spatially to the original

image, and it also conveys the essence of the image while reducing the amount of

memory needed to store it. The proposed segmentation for the statue image is hardly

de�nitive, though. Two possibly important boundaries are missing: the boundary

between the ivy and the trees in the background on the left side, and the long,

vertical line where the two visible faces of the pedestal meet. The �rst boundary

could hardly be said to exist except for a slight change in texture from ivy to tree and

because the car, obviously further away than the statue, leads us to believe that what

is above it must also be far away. The second boundary is easier to detect near the

bottom of the pedestal than near the top. Adding this boundary to the segmentation

makes it easier to recover the 3-D shape of the pedestal, but it might not be necessary

to do so to recognize that it is a pedestal in the �rst place.

Also, one could argue that certain painted boundaries are superuous. Beneath

the hedge are a few regions in shadow. These regions are certainly di�erent in ap-

pearance from the hedge, but they do not correspond to di�erent objects, at least in

the sense we are comfortable with, and they might interfere with our recognition of

the hedge if we proceed by analyzing the shape of the region. We are thus forced to

conclude that even segmentation is too unwieldy a goal to pursue.

Furthermore, the state of the art in computer vision does not allow us to produce

even one segmentation out of the set of potential segmentations for an image. We

spend the rest of this section explaining why.

First, note that the boundaries in Figure 1.1 have a wide range of attributes. Some

are short, while others are long; some are sharp, while others are a little blurry. These

attributes involve the notion of scale, or the size of the neighborhood to be considered.

Long, sharp boundaries may be found at a wide range of scales, while short edges can

be found only at small scales, and blurry edges require larger scales to be resolved

properly. A boundary detection algorithm must be used at multiple scales, but it is

not clear how conicting information from di�erent scales should be combined. We

have already seen that some minute details in an image are very important, while

others are not, but there is no general way to distinguish between the two.



1.1. WHY IS EARLY VISION A DIFFICULT PROBLEM? 7

Solving the scale problem is beyond the scope of this work, but we mention the

two prevailing approaches for completeness. One is to consider the set of all edges as

a 3-D object, where the scale parameter varies to form the third dimension. An edge

now exists over a range of scales, which provides a more complete description. The

competing method is local scale control, where image statistics are used to select one

scale parameter value at each point, usually the minimum value that produces stable

output. Neither method solves the above problems, though.

Another problem concerns the inability of local operators, so named because they

analyze only one neighborhood at a time, to produce results that are globally optimal.

For instance, if the contrast between two sides of a boundary dips below a pre-

speci�ed value, no boundary will be detected, resulting in a gap. The output of local

operators is often post-processed to �x the most glaring mistakes, but detecting where

all mistakes were made is equivalent to knowing the right answer in the �rst place.

The natural response to this problem is to make global assumptions that guide the

work of a local operator. Unfortunately, even very general assumptions do not hold in

all cases. Imagine an algorithm designed to �nd the boundary of a person's head and

shoulders by �nding edges and then matching them against a template2. Figure 1.2

shows two potential inputs to this algorithm. The relevant edges in the �rst image

are found easily, and any anomalies will be corrected by applying the template. The

second image poses problems for the algorithm because the boundary between the

woman's hair and the background is not well-de�ned. Many edges do not match the

template, and vital edges are likely to be missed.

In truth, we have discovered an even more general assumption that has been

violated: the assumption that a boundary is always well represented by an edge. For

the image of the woman, any boundary drawn will include forest in the foreground,

or leave some of her hair in the background.

To sum up, vision algorithms always require assumptions, and no matter how

general we believe them to be, there are always cases where they do not hold. Fur-

thermore, there is no consensus as to the goal that is sought after, and so it is di�cult

to quantify the usefulness of any particular algorithm unless it is designed to perform

2Such an approach was actually used by a former Stanford student [43].
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Figure 1.2: The two people in these images have very similar contours, but the man on
the left is much easier to extract than the woman on the right because the boundary
between her hair and the background is not well represented by a curve.

one of a range of tasks that is very narrow in scope, and only in carefully controlled

environments.

1.2 What Lies Ahead

We have painted perhaps an overly grim picture of the state of computer vision

today. We may not be able to make signi�cant progress toward the twin goals of full

generality and robustness, but if we are allowed to restrict the set of input images

for our algorithms, the chances for success are much improved. Progress in the �eld

can be measured by judging one set of assumptions as more general than previous
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sets, as long as it is accompanied by proof that a system can be built using these

assumptions and produce adequate results.

This research is founded on a generalization of the representation of image neigh-

borhoods for detecting boundaries. Most (but not all) detection schemes have relied

on the assumption of constancy; in other words, the values of all the pixels on each

side of a boundary are ideally the same, and any variations must be due to noise in

the imaging process.

We instead represent image neighborhoods as distributions of pixel values. If a

neighborhood contains 65% red pixels and 35% yellow pixels, for example, then we

use this information in its original form rather than averaging the two to produce

some other color. We show that the increase in accuracy that comes from using

multiple values produces better edge and corner information than can be otherwise

obtained. The resulting framework can handle an image range of any dimensionality,

but we restrict our e�orts almost exclusively to color. Color is unique in that it is

three-dimensional, yet the retina can still perceive it directly.

Using distributions does not solve the problems discussed in the previous section,

but we believe it makes solving the scale problem a little easier. The constancy

assumption is far more likely to hold at small scales where few pixels are involved,

but we require information from large scales as well. The use of distributions increases

the quality of results at large scales where constancy cannot be assumed.

The remainder of this section de�nes the scope of the work pursued in this disser-

tation and how it is organized.

Chapter 2 outlines the principles upon which this research is based. In addition

to examining distributions in more detail, we also consider the notion of ow as a

means of comparing or interpolating between two distributions. We also explain our

method for computing distances between individual colors, a step that must precede

any computation between two color distributions.

In Chapter 3 we consider color edge detection, perhaps the most basic of all

computer vision problems. After reviewing previous work, we motivate and develop

the compass operator, which �nds the orientation of an edge that maximizes the

di�erence between two color distributions. This di�erence is the result of �nding
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the ow between two distributions that minimizes the amount of work needed to

transform one into the other. We also present a greyscale version that runs more

quickly.

Corner detection, the subject of Chapter 4, has also been thoroughly studied in

the literature. We present what we believe to be the �rst corner detector speci�cally

for color images. The formulation of our detector is similar to that of the compass

operator with the exception that the two color distributions are no longer the same

size.

Finally, we present in Chapter 5 an application of distributions to images where

boundaries are not well represented by edges or corners. In the �lm and video indus-

tries, the technique of blue screen matting is widely used to extract an object �lmed

against a constant-color background and to place it in another. We present an algo-

rithm that extends this technique to a much wider set of backgrounds by estimating

the color distributions outside a boundary region and measuring the \betweenness"

of a color that falls between the two distributions.

Chapter 6 evaluates the contributions of this research and presents avenues for

future exploration.



Chapter 2

Principles

If this research was to be compressed into a single sentence, it would be, \Use dis-

tributions to represent image neighborhoods." This chapter begins the main work

of this thesis by justifying this choice. We begin by examining the improvement in

accuracy that results from using distributions, followed by a discussion of ow, the

mechanism by which distributions are to be compared to each other. Finally, we

justify our use of color images and consider the problem of color distance.

2.1 The Use of Distributions

For the purpose of modeling image neighborhoods, the term distribution refers, in

its most generic sense, to any representation that allows multiple pixel values along

with their relative frequencies. The relative frequencies often sum to 1, in which case

this de�nition is equivalent to that of a probability density function. Distributions

have been used for many other purposes in computer vision, such as maintaining

multiple hypotheses during motion tracking [41] and representing the color content

of images for image retrieval [88], but not for extracting features like edges, corners,

and junctions. Planar surfaces have been used to represent neighborhoods, but these

are very restrictive types of distributions because they impose spatial constraints on

pixel values.

The notion of distributions is more closely related to �nding boundaries between

11
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di�erent textures. Many di�erent methods have been proposed for accumulating

statistics about image texture, the spatially repetitive nature of a region. The biggest

problem with texture is that it is a property of a neighborhood, not of a point like

color is. Therefore, one is often forced to know the boundaries of a region containing

texture before being able to describe it accurately. In addition, an e�ective texture

representation cannot be developed without multi-scale processing, and such infor-

mation is di�cult to compare reliably at di�erent scales. Finally, the very notion of

texture is not applicable to all images, such as o�ce scenes or faces in a group picture.

We start with the �rst and most fundamental choice: whether to use continu-

ous or discrete representations of distributions. Because image values are already

represented discretely by the camera or scanner, we use discrete distributions. In

Chapter 5, however, we will also use continuous distributions for the purpose of con-

structing functions that are nonzero throughout color space.

The two main data structures for representing distributions are histograms and

signatures. A histogram is a sequence of numbers x1; x2; : : : ; xn formed by partitioning

a feature space into n bins and summing the weights associated with all data points

that fall into each bin. Since each pixel value is treated the same no matter where in

a bin it falls, the values are e�ectively quantized to the same pre-de�ned value.

A signature is more general; it consists of a set of ordered pairs f(x1;v1); (x2;v2);

. . . , (xn;vn)g, where the vi's are points within the feature space to which the weights

xi are assigned. A signature is equivalent to a probability mass function when the xi's

sum to 1. Signatures are superior to histograms because they can adapt to the data;

they do not force an arbitrary partitioning of a feature space. On the other hand,

they require more computation to create. See [87] for a more complete discussion and

comparison.

The constancy assumption, discussed in Chapter 1, is easy to realize in a convo-

lution mask that has a mean value of zero; such masks have often been used for edge

and corner detection. It is also easy to show that convolution masks approximate two

neighborhoods with one value each. If we consider one application of the mask, where

each of the n pixels has a value vi associated with a mask weight wi in a Euclidean
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space, the operation can be decomposed as follows:

k
nX

i=1

wivik = k
X

wi>0

wivi +
X

wi<0

wivik;

= k
X

wi>0

wivi �
X

wi<0

(�wi)vik:

If we �x the sum of the positive weights to 1 and the sum of the negative weights to -

1, convolution can be reformulated as computing the distance between the weighted

means of each neighborhood1.

Distributions create a more accurate representation of the image data, and Fig-

ure 2.1 illustrates the gain in accuracy. In this small experiment, square windows of

di�erent sizes have been randomly chosen from 200 randomly chosen images out of

the Corel Image Database, a set of 20,000 natural images. The color and greyscale

versions of these images were quantized with 1, 5, and 10 clusters using the binary

split algorithm discussed in more detail in Chapter 3. The �gure displays the average

error in approximating each pixel by its nearest cluster representative.

We note the following trends: (1) quantizing a color image results in more er-

ror than quantizing its greyscale equivalent because there are more possible values,

(2) quantization error increases logarithmically with the length of the side of the win-

dow, and (3) the slope of the error lines decreases with the number of clusters2. Of

course, Figure 2.1 does not prove conclusively that distributions are superior repre-

sentations. Feature extraction is ultimately a decision process, and if the error when

using the mean is small enough to make the decision correctly, then no advantage is

gained. We are not likely to do worse using distributions, however.

There is a second, more philosophical reason for choosing distributions. Because

humans organize color in a three-dimensional space, our perception of color is funda-

mentally di�erent from our perception of grey levels, which exist in a one-dimensional

space. The weighted mean of a set of grey level values is \perceptually closed" in

1Taking the norm yields edge strength, but the signs of the di�erences are also important.
2Theoretically, the error for the 5- and 10-cluster cases should start at zero since the smallest

neighborhoods considered have only 4 pixels. However, our implementation refrains from creating

very small clusters; thus the error decreases with window size up to a point because we are able to

create more clusters.
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Figure 2.1: Distributions can represent image neighborhoods better than the mean
(1 cluster), especially as neighborhood size increases.

the sense that the mean is always perceived to be an intermediate value between the

original data points. The mean of a set of colors, however, is perceptually unde�ned;

although the numbers can be averaged in the same way, the resulting color may very

well have no perceptual similarity to any of the original colors, violating the infor-

mal notion of perceptual closure. Helmholtz [113] noticed that we cannot perceive

intermediate colors between red and green, and so creating one seems improper.

2.2 Flow

The reason why distributions have not been used in boundary detection is because

computations involving distributions need more time than those involving single val-

ues, such as the mean. The nearly continuous increases in processor speed are only

now making these computations feasible.

We compare distributions using the concept of ow. Flow has already been greatly

studied in the literature of graph algorithms [19]. These algorithms take as input a

graph whose edges have �nite capacities associated with them. They compute the
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Figure 2.2: Two types of ow networks. Maximum ow networks assume an in�nite
amount of material but only a �nite capacity to move the material from source to
sink. Transportation ow networks have a �nite amount of material, but each edge
has a cost instead of a capacity.

maximumamount of material that can be legally transported between two designated

vertices, the source and the sink (see Figure 2.2(a)).

Our notion of ow di�ers in a few important respects: the sources and sinks can be

many and have only a �nite capacity, while the edges in the graph, which is bipartite,

each have an associated cost rather than a capacity (see Figure 2.2(b)). The goal is

to transport the material from the sources to the sinks in a way that satis�es some

constraint.

In Section 3.3.2 we will discuss the earth mover's distance, which uses a minimum-

cost constraint to compute the distance between two color signatures. This constraint

turns our general ow problem into the transportation problem (see [67] for an intro-

duction). Later, in Section 5.3, we show how to construct a ow to approximate

distance in a three-dimensional manifold inside color space. We are not aware of

other attempts to use ow in this way.

2.3 Color

In this �nal section, we justify our use of color images as a means of exploring the

problems of early vision, and in particular how to quantify the di�erence between

colors in a meaningful way.
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2.3.1 Why Use Color?

Color plays a key role in our everyday perceptual experience. It allows us to make

sense of complex data, such as that presented by maps and graphs. We can often

classify objects very easily by noting their color. People make qualitative judgments

based on color: shoppers judge the ripeness of a piece of fruit using color cues, and

doctors note a patient's skin color as a measure of health. Finally, people associate

colors with emotional responses, as evidenced by the planet Mars being named after

the Roman god of war due to its red color.

However, these facts do not prove that detecting boundaries in color images is

a problem worth considering. For example, Figure 2.3 shows color and greyscale

versions of the image used in Figure 1.1. Both images convey the same semantic

information needed to understand the scene. Therefore, one could argue that color

is unnecessary, and we would make more progress by concentrating on the simpler

greyscale image.

Instead, we take the opposite point of view, namely that the equivalence in the

boundaries we perceive in the two images requires our models to work as well in color

images as in greyscale images. Using color images narrows the set of valid models;

many greyscale detection algorithms in the literature can be adapted to color only

with signi�cant departures from their original inspiration, if at all. We hold that such

models should be reconsidered or rejected as a result.

In addition, there are cases where boundaries exist between two colors whose

achromatic components are similar and whose chromatic components are di�erent,

resulting in a boundary becoming unresolvable in a greyscale image. This is not likely

to happen often in the world, however.

2.3.2 A Perceptual Ground Distance

Having decided that color is important, we must also decide on a method for com-

puting the ground distance between two colors, from which we will later compute dis-

tances between color signatures. We require this distance measure to be perceptual,

meaning that the distance between two colors should agree with human perception.
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Figure 2.3: All relevant semantic information present in the color image is also present
in the greyscale image, calling into the question the usefulness of color for early vision.

To do this we must �nd the proper combination of a color space, an assignment of

coordinates to colors, and a distance function on these coordinates.

There is general agreement that the organization of color in our perceptual system

is three-dimensional, but the actual assignment of coordinates to colors depends on

the task involved. As a result many color spaces exist (see [32] for details on many of

them). Few of these spaces were designed to mimic human perception, however. In

particular, the Red, Green and Blue (RGB) color space, which is useful for displaying

images on computer screens, has hardly ever been advocated as a good space for

measuring color distances.

One of the few color spaces that was designed from a perceptual standpoint is

the CIE-L*a*b* color space [119]. CIE-Lab (we drop the asterisks) was constructed
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from the results of color similarity experiments performed by psychophysicists. The

Euclidean distance between two nearby colors in this space is intended to be equivalent

to their perceptual distance. It is organized according to Helmholtz's opponent-

colors theory: L represents lightness, a represents the amount of red or green, and

b represents the amount of blue or yellow. CIE-Lab is not ideal; in particular, the

experiments that led to its creation used large uniform patches rather than pixel-sized

elements, which has a noticeable e�ect on our perception. However, we have found it

to be e�ective in helping to provide an accurate measure of perceptual color distance.

Unfortunately, the Euclidean distance in CIE-Lab is insu�cient for our purposes.

An important caveat is that the equivalence between Euclidean and perceptual dis-

tances holds for small distances only. For larger distances, the most we can say about

a pair of colors is that they are di�erent. For detecting edges and other features this

is exactly what is required; once two colors are far enough apart that we can perceive

contrast between them, the Euclidean distance between them becomes arbitrary.

This key observation turns out to be independent of our choice of color space.

We are not interested in the physical properties of the color stimuli; all that we are

concerned with is how dissimilar two stimuli are perceived to be. As stimuli become

farther apart, their distance should approach unity3. We also want our function to be

smooth and monotonic in addition to being saturating and a metric. We have chosen:

dij = 1 � expf�Eij=g:

In other words, the ground distance between color i and color j is an exponential

measure, whose steepness is governed by  (we use  = 14:0), of the Euclidean

distance Eij between them in CIE-Lab. This function also has the advantage of

being roughly linear for small distances, which is why CIE-Lab is still relevant.

Theoretical justi�cation for this measure can be found in the work of Shepard [97],

who proposes that an exponential law governs not only color similarity, but also

similarity in other perceptual phenomena such as size, shape, pitch, and phonemes.

Only  and the underlying norm (Euclidean, \city-block," etc.) for the physical space

3This is reversed from the conventions of psychophysicists, who are usually interested in measuring

similarity as opposed to dissimilarity.
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changes.

In the next three chapters we apply these principles to the problem of determining

boundaries in color images.



Chapter 3

Color Edge Detection

The detection of edges, contours separating di�erent parts of an image, has long been

a favorite topic in computer vision. In this chapter1 we analyze the approaches that

have been taken to �nd edges in color images. We then present the compass operator,

which uses color signatures as an underlying data structure for detecting step edges2.

3.1 A Brief History of Edge Detection

Figure 3.1 shows the basic steps carried out by all edge detectors. The �rst step

produces a continuous measure of the degree to which the data in each image neigh-

borhood matches the model of an edge. This step also includes computing model

parameters such as edge orientation. The second step is a discrete one where the

results of the previous stage at each point are compared with neighboring points,

and a decision is made to declare each point \edge" or \non-edge." There are many

possible edge models, and here we mention only the most well-known.

The simplest edge detectors are those based on �xed-size zero-mean convolution

masks. Roberts' cross [81] was the �rst, followed by Sobel [77] and Prewitt [79].

These masks varied in size from 4 to 16 pixels and were usually attuned to di�er-

ent orientations. If two orientations were used, the masks computed derivatives in

1Much of this work has been published in [89].
2Other edge types include delta edges or lines, which are valuable but less common, and roof or

crease edges, which are even less common.

20
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Image
Matching Decision Map

Model Edge Edge

Figure 3.1: Flowchart of edge detection algorithms

orthogonal directions and combined them into an estimate of the gradient. If more

than two orientations were used, the maximum response indicated the edge strength

and orientation. Edge points were found by suppressing non-maximal responses [86]

and thresholding.

Soon afterward Hueckel [38] developed a more complex approach. Coe�cients

for eight low-frequency continuous basis functions were computed and used to �t the

data to a model of a circle split into two neighborhoods of di�erent intensity. Some

equivalence between this detector and convolution masks was later shown [2, 85].

A radically di�erent edge detector was proposed in 1980 by Marr and Hildreth [55].

Rather than looking for maxima in �rst derivatives, they used an isotropic opera-

tor, the Laplacian-of-Gaussian, that was based on second derviatives. Zero-crossings

marked the location of edges, and these edges formed closed curves. It led to a debate

on the merits of isotropic and anisotropic operators that was eventually won by the

latter. The Marr-Hildreth operator is still used, though, especially when closed curves

are desirable.

The preceding operators were all popular, but their ad hoc nature left enough

dissatisfaction to spark a new class of optimal edge detectors, the most famous being

those of Canny [10] and Deriche [22]. Because these operators were designed by

mathematically deriving de�nitions of principles such as robustness, localization, and

minimal multiple responses, they were more powerful, adapted easily to di�erent

scales, and provided better results.

All the above operators invoked the constancy assumption, assuming that any

variations were due only to noise. Non-constancy in one dimension was examined

early on by Nalwa and Binford [66], who assumed that intensity was constant along

the edge and was modeled as a hyperbolic tangent surface across it. Leclerc and

Zucker [47] modeled one-dimensional neighborhoods as polynomials up to degree 3,
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Figure 3.2: Flowchart of color edge detection algorithms. Placing the image recom-
bination step at di�erent points results in output fusion methods, multidimensional
gradient methods, or vector methods.

again assuming that intensity was constant along the edge. The later edge detectors of

Wang and Binford [115] and Binford and Chiang [8] compensated for shading e�ects

by modeling image neighborhoods as planes with arbitrary surface normals.

3.2 A Review of Color Edge Detectors

The use of color images does not change the nature of edge detection, but it does

add one important step, image recombination, shown in Figure 3.2. Color images are

decomposed into three component images, and some set of operations is performed

on each component separately (including the null set). The intermediate results

are then combined into a single output. The point at which recombination occurs

is key to understanding the di�erent categories of color edge detection algorithms:

output fusion methods, multidimensional gradient methods, and vector methods. We

consider each category in turn.
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3.2.1 Output Fusion Methods

In output fusion methods, greyscale edge detection is carried out independently in

each color component; combining these results yields the �nal edge map. Computa-

tionally, these algorithms are distinguished by a lack of operations that can be written

out in vector form.

Nevatia [68, 69] developed the �rst output fusion method. He computed edges

by running Hueckel's edge detector on the luminance component and on two chro-

maticity components. Each was independent, but the orientation at each point was

constrained to be the same. The three separate orientations were weighted to give a

�nal orientation, after which all other parameters were recomputed.

A number of other approaches involve adding the results of a computation on each

component together. Shiozaki [99] weighted the results of his entropy operator by the

relative amounts of red, green, and blue at a pixel. Malowany and Malowany [54]

added absolute values of Laplacian outputs. Two articles by Carron and Lambert [11,

12] investigated the HSI (Hue, Saturation, and Intensity) color space. The �rst one

computed edge strength using a weighted sum over each component and the second

was an extension using fuzzy sets. Weeks and Myler [116] averaged together outputs

in the HSL (Hue, Saturation, and Lightness) color space.

A more sophisticated approach came from Alberto Salinas et al. [4]. They pro-

posed regularization as a way to fuse the outputs of three separate edge maps found

by using Canny's edge detector while at the same time introducing \well-posedness"

to the inherently ill-posed problem of edge detection. The �nal edges minimized

a functional that summed the perturbations between the �nal edge map and each

components's edge map, plus a curvature measure.

3.2.2 Multidimensional Gradient Methods

Multidimensional gradient methods are characterized by a single estimate of the ori-

entation and strength of an edge at a point. The �rst such method belongs to Robin-

son [82, 83], who also appears to have published the �rst paper on color edge detection.

He computed 24 directional derivatives (8 neighbors � 3 components) and chose the
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one with the highest magnitude as the gradient.

However, it was Di Zenzo [24] who wrote the classic paper on multidimensional

gradients. His method was derived algebraically, but it is perhaps better explained in

terms of matrices. A 2 � 2 matrix is formed from the outer product of the gradient

vector in each component. These matrices are summed together and the square

root of the principal eigenvalue (also known as the principal singular value) becomes

the magnitude of the gradient. The corresponding eigenvector yields the gradient

direction.

Di Zenzo showed how to compute this gradient using the Sobel operator, but he

did not detect edges directly. Two articles led by Cumani [20, 21] were the �rst

to apply true multidimensional gradients to detecting edges and describing images.

Drewniok [28] applied the concept to multispectral satellite images, and Saber et

al. [92] used it in a segmentation scheme. Chapron [14, 15] used the Cauchy-Deriche

gradient in each component.

Others have also developed multidimensional approaches besides Di Zenzo. Two

works whose authors include Moghaddemzadeh and Bourbakis [60, 61] used a normal-

ized hue contrast in the HSI color space to compensate for low saturations. Tsang

and Tsang [110, 111] used the Sobel gradient in the Hue, Saturation, and Value

(HSV) color space, choosing the H or V component depending on other quantities,

to suppress edges caused by specular reection. Macaire et al. [52] performed relax-

ation on the normalized Sobel gradient to classify pixels. Finally, Scharcanski and

Venetsanopoulos [93] averaged color vectors together before computing directional

derivatives and a gradient.

3.2.3 Vector Methods

In vector methods, the decomposition and recombination steps nullify each other;

the vector nature of color is preserved throughout the computation. The work of

Machuca and Phillips [53] is ostensibly the �rst vector method for color edge detection.

However, their model of color reduces to one dimension, as they felt that color was

useful only where greyscale edge detection fails.
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Huntsberger and Descalzi [39] assigned each color a set of fuzzy membership values

based on distances to color clusters. Edges occurred where these values straddled

the 50% threshold for a color. Pietikainen and Harwood [76] used histograms of

vector di�erences to �nd the most salient edges. Yang and Tsai [121] projected each

color vector in an 8 � 8 block onto another vector to convert an image to greyscale.

Vector projection was also used by Tao and Huang [105], but they projected vector

di�erences onto the n(n�1)=2 vectors connecting n color clusters in an image. Djuric

and Fwu [25] found edges using the MAP (maximum a posteriori) rule.

Perhaps the most compelling work in vector methods so far has been that of

Trahanias and Venetsanopoulos [107, 108]. Their method used the median of a set

of vectors, which is the vector in that set whose distance to all other vectors is

minimized. Once the vector median has been determined, vectors can be sorted by

increasing distance from the vector median, and various statistics can be measured

and used for edge detection.

3.3 The Compass Operator

We believe that algorithms that incorporate more vector operations are preferable

to those with fewer. Even though the mechanics of color perception involve three

separate processes, the sensation of color is unitary [113]. Therefore, our perception

(and detection) of edges should be equally unitary; an edge between a yellow region

and a green region would be detected mainly in the red component (assuming RGB),

yet we do not perceive it to be a \red edge." Also, removing the assumption of

constancy means that we cannot average color components together. The notion of

\average color" is unde�ned when two or more di�erent colors exist in a neighborhood.

Output fusion methods have the least amount of vector processing and are usually

the most ad hoc. It is not clear why adding three gradient magnitudes, for instance,

leads to an accurate characterization of the overall gradient magnitude. Multidimen-

sional gradient methods are the most principled, and they give good results because

they are often based on greyscale edge detectors that are optimal in some way. Vector

methods are the most appealing on an abstract level, but the methods generally try
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to reduce the dimensionality of the data to one so that established algorithms can be

applied.

We propose a method for edge detection that preserves the vector nature of color

throughout the computation while comparing favorably in both a conceptual and a

practical sense to multidimensional gradient methods. Imagine a circular \compass"

placed over a neighborhood of the image, and as the \needle" (a diameter of the circle)

spins, a scalar measure of distance between the color distributions in each semicircle

is computed. The needle will eventually point along the orientation that maximizes

this distance.

Using color distributions implies a more accurate representation, as each pixel's

value is perturbed less than when only averages are used. The ability to model

more types of variances than low-order polynomial surfaces corrupted by noise is a

signi�cant extension of the cases that can be handled reliably. What is left to show is

that edge strength and orientation can be reliably computed under this method. In the

following sections, we discuss how color signatures are constructed and how distances

are computed between them, and we will show results of applying the operator to

natural images.

3.3.1 Creating Color Signatures

We noted in Chapter 2 that a color signature is a data structure consisting of a set of

point masses in color space. In this section we discuss how to �nd and describe these

point masses.

In theory every distinct color vector in a neighborhood could become a point mass.

However, we prefer more compact signatures for two reasons: (1) comparing large

signatures is much more computationally expensive than comparing small signatures,

and (2) humans cannot consciously perceive dozens or hundreds of di�erent colors in

a neighborhood anyway.

Therefore, we use vector quantization methods (see [33] for an overview) to pro-

duce compact signatures. In particular, we use the binary split algorithm of Orchard

and Bouman [72] since it was developed for color images and allows control over the
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Figure 3.3: Using eight orientations for the compass needle divides this circle of radius
four pixels into wedges. The area of intersection of each pixel with the shaded wedge
is shown on the right. Updating the color signatures is more e�cient using wedges.

signature's size. It is a greedy algorithm that, at each step, splits the cluster whose

covariance matrix has the largest principal eigenvalue. A cluster is split by using the

plane containing the cluster mean that is normal to the direction of the principal

eigenvector. We terminate the algorithm if the maximum number of clusters (usually

10) has been reached, or if the largest eigenvalue falls below a threshold.

We perform vector quantization once for each circular neighborhood in the image.

As the orientation of the diameter varies, the amounts of each color in the semicircles

will change, but the colors themselves remain constant. The amount that each pixel

contributes to one or both signatures depends on how much of the pixel's area falls

inside each semicircle and its relative position in the circle.

The area is computed by modeling each pixel as a unit square and calculating

how much of each square falls within the circle. Furthermore, using a �xed number of

equally-spaced orientations divides the circle into wedges (see Figure 3.3). Computing

the area of each pixel in each wedge makes updating the signatures e�cient. Note

that the center of the circle does not coincide with a pixel center.

In addition to the area, we also factor in the relative importance of each pixel to

the computation. We model this importance as a Rayleigh distribution based on the

distance from the center of a pixel to the center of the circle. Rayleigh distributions
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(a) 2-D Rayleigh distribution (b) 1-D cross section

Figure 3.4: The weighting function for the compass operator is a Rayleigh distribu-
tion. By taking its cross section and reecting half of it, we see the similarities to the
edge detectors of Canny and of Deriche.

are expressed in polar coordinates as:

f(r) = r expf�r2=2�2g;

where � is the scale parameter. The radius of the circle is 3�.

The shape of this function is illustrated in Figure 3.4(a). It follows some of the

intuitive notions set forth by Canny and by Deriche, such as little weight near the

center where pixel colors are presumably changing rapidly as we move across the edge,

and little weight near the periphery where pixels are, on average, far away from any

hypothesized edge.

Figure 3.4(b) shows a cross-section of a Rayleigh distribution. The dashed line

is a reection of half the curve across the x-axis. The edge detectors of Canny and

Deriche have weighting functions that are similar in shape to the Gaussian derivative

we have just created.

One important di�erence, however, is that both Canny and Deriche used aniso-

tropic weighting functions in 2-D. In other words, all pixels near a hypothesized edge

have zero weight in their schemes. Since our function is isotropic, we are deviating

signi�cantly from these edge detectors. The reason for this deviation is computational

e�ciency; the weights at each pixel would otherwise change as the orientation of
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the diameter changes. Because we do not assume that the gradient is normal to

the edge orientation, we must use more than two orientations, and thus the added

computational cost. Also, some neighborhoods might have more than one edge going

through the circle's center and we would like to detect all of them.

3.3.2 The Earth Mover's Distance

The problem of measuring the distance between two signatures is an instance of the

general problem of measuring distance between probability density functions, which

was �rst considered over 30 years ago. Results from ergodic theory, probability theory,

and information theory have combined to produce many di�erent distance measures.

A primitive distance measure that �ts this category was developed by Levenshtein [50]

for two binary strings that need not have the same length.

The constraints of computational e�ciency and matching human perceptual sim-

ilarity have prevented many of these measures from being applied to vision. Within

vision, the reliance on histograms has tended to produce algorithms that do not fully

take into account the need to use the distances between bins as well as the amounts

of mass within each bin. For example, the histogram intersection method [104] is

less useful in cases where a bin partition splits a cluster of similar pixels. Cross-bin

measures have been developed (e.g., [70]) but also fail to measure similarity accu-

rately [87]. The Hausdor� distance has led to a family of distance measures based on

local correspondence between points [40], but we desire a global correspondence.

The Earth Mover's Distance (EMD) overcomes these limitations. The EMD for-

mulates the distance measurement as an instance of the transportation problem in

which one signature is considered to be piles of dirt and the other to be a set of holes;

the minimum amount of work needed to move the dirt into the holes is the EMD.

More formally, the EMD computes a set of ows fij between two signatures X =

f(x1;vx1); (x2;vx2); : : : ; (xn;vxn)g and Y = f(y1;vy1); (y2;vy2); : : : ; (ym;vym)g that

minimizes
nX

i=1

mX

j=1

dijfij ;

where dij is the ground distance between vxi and vyj in the feature space. The
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following constraints (adapted from [88]) ensure that as much dirt is moved into

holes as possible:

fij � 0 8i; j;
Pn
i=1 fij = yj 8j;
Pm
j=1 fij � xi 8i:

A few notes are in order. This formulation assumes that the total mass ofX is greater

than or equal to the total mass of Y . If this constraint is not true, simply switch

the two. If X and Y have equal mass, the last constraint becomes an equality, and

the EMD then belongs to a family of related measures that includes �d [29], �� [34],

and Wasserstein3 [26]. Finally, the EMD is a metric whenever the ground distance

function is also a metric, which is true for the perceptual distance function used here

(see [87] for a proof).

The �nal distance is normalized by the sum of the ows:

EMD(X;Y ) =

Pn
i=1

Pm
j=1 dijfijPn

i=1

Pm
j=1 fij

:

The EMD was �rst used by Rubner, Tomasi, and Guibas [88] to compute the

perceptual distance between images by comparing their color signatures. However, it

should be noted that in the vision community a one-dimensional form of the EMD

known as the line feature distance was used by Shen and Wong [96]. It was later re-

named the match distance and extended to multidimensional histograms by Werman,

Peleg, and Rosenfeld [117].

Compared to previous measures used in computer vision, the EMD is characterized

by its generality and its robustness. Because the EMD can handle signatures with

arbitrary numbers of clusters, it can adapt to arbitrary complexity. Robustness stems

from the fact that perturbations in cluster centers or even small changes in the number

of clusters do not have disproportionate e�ects on the result.

The key feature that separates the EMD from similar measures in ergodic and

probability theory is that it can �nd distances between signatures of unequal total

3This Russian transliteration is the accepted one in the literature, but the cited article uses

\Vashershtein."
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mass. Its forumulation as a combinatorial optimization problem allows it to �nd

the subset of the larger signature that corresponds best to the smaller signature. In

Chapter 4, this property will become important because, when detecting corners, the

signatures naturally have unequal total mass.

The �nal reason for choosing the EMD is that previous work applied to color and

to texture [87, 17] shows it to be an e�ective tool for matching human perception

under a wide range of conditions. For signatures that are already similar to each

other, measures such as �2 statistics or the Je�rey divergence (a symmetric form of

relative entropy) give slightly better results [87, Ch. 6]. We are more interested in

dissimilarity, however, so comparing such signatures accurately is not relevant.

To use the EMD to �nd edges, we must supply the cost of moving a unit mass

between every pair of colors. This is accomplished by using the perceptual distance

measure from Chapter 2.

3.3.3 Extracting Edge Information

We can now explain the basic algorithm for local edge estimation with the compass

operator: a circular neighborhood is clustered in CIE-Lab, and for each value of �,

the orientation of the diameter, we compute the EMD between the color signatures of

the resulting semicircles. The result at each neighborhood is a function h(�); 0 � � <

180, and this section explains how edge information is extracted from this function.

Afterwards, we extract edges by comparing this information at neighboring points.

3.3.3.1 Strength and Orientation

Figure 3.5 shows an application of the compass operator on parts of two images, the

�rst an ideal step edge and the second taken from an image containing a bush and a

tree. The plots show the EMD for each orientation of the diameter, which is spaced

15� apart (the default). The strength of the edge is the maximum value of h(�) and

the orientation of the edge is the argument that produced the strength.

We do not expect the true orientation of the edge always to be one in the sampled

range, however. The vertex of the parabola that contains the three highest EMD
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Figure 3.5: Applying the EMD to a circular neighborhood over a range of diameter
orientations produces a function from which edge information is extracted.

values gives the true strength and orientation. Note that curve-�tting is necessary

because we do not assume that the responses at 0� and 90� can be combined to form

a gradient.

In addition, there are isolated instances where two separate edges can be made

out, resulting in two separate maxima in h(�). The algorithm can recognize this case

and record two orientations, but the strength for both will be equal to the maximum

of the two. An example is shown in Figure 3.6.
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Figure 3.6: In rare instances, h(�) will have two peaks with the same strength, indi-
cating two separate edges. The algorithm can record both orientations, in this case
0� and 42:7�.
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Figure 3.7: Curvature in an edge causes many orientations to have roughly the same
EMD. The width of this interval is a measure of the uncertainty in the edge's orien-
tation.

3.3.3.2 Uncertainty

The edge in the bottom half of Figure 3.5 is somewhat curved instead of straight,

which is reected in the fact that the two highest EMD values are almost equal.

Figure 3.7 shows a more dramatic example where the curvature of the edge causes

many orientations to have almost the same EMD values. Since parabolic interpolation

would be unstable, we pursue a di�erent approach.
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The width of the continuous interval whose values are all close to the maximum

EMD (meaning greater than 95%) is the uncertainty of the orientation. The strength

is the maximum sampled EMD, and the orientation is the midpoint of the interval.

3.3.3.3 Abnormality

One of the main assumptions of gradient-based methods is that the derivative of the

image intensity function in the direction of the edge is zero, or equivalently that the

edge exists along an isocontour of intensity or color, which is not always true. For an

ideal step edge (such as that in Figure 3.5) this is the case; at the orientation normal

to the edge, the two color signatures are identical and the EMD is exactly zero.

In the real image examples we have shown so far, the minimum EMD over all

orientations is never exactly zero due to inhomogeneities in the spatial distribution

of colors. The closer the minimum is to zero, the more the image data matches the

model of an ideal step edge regardless of the strength. For this reason, the minimum

value of h(�) is called the abnormality.

Although abnormality can provide a quantitative measure of con�dence in our

edge computation, it serves a much more interesting purpose. When abnormality is

unusually high, it indicates a complete lack of symmetry in the image data that very

often corresponds to a junction where three or more regions meet. The notion is very

similar to the original idea of Moravec [63], who developed an \interest operator"

by looking for neighborhoods where the sum of squared di�erences of adjacent pixel

intensities is high in all directions. Abnormality naturally extends this idea to entire

neighborhoods.

Figure 3.8, where three regions meet in a junction, illustrates this concept. Points

near the edges have high strength, but only those near the junction have high ab-

normality as well. In addition, the abnormality of these points appears to be well

modeled by a triangular pyramid. The sides of the base of the pyramid are as normal

as possible to the directions of the edges that form the junction while still remaining

a triangle.

These properties are especially attractive because they allow reconstruction of

edges near junctions, which are among the most di�cult places for any edge detector
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Original Image Strength

Abnormality (normalized) Mesh of Abnormality Peak

Figure 3.8: Whereas the strength at each point represents the maximum EMD value
over all orientations, the abnormality represents the minimum, which is very high near
junctions. The mesh shows a shape that resembles a triangular pyramid. Strength
can often approach a value of 1, while abnormality is usually not higher than 0.67.

to function properly. The behavior of abnormality in natural images, however, is

more complicated, and we have not fully investigated its properties.

3.4 Results

The practical advantage of the compass operator is that it provides superior strength

and orientation estimates in the following situations:

� Large neighborhoods involving hundreds of pixels and many colors.
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� Near junctions, especially when the edges have unequal contrast.

� Between textures, especially those with edges that might cause interference.

This section provides a variety of examples to illustrate these points by comparing the

output of the compass operator to that of a multidimensional gradient method formed

by combining Di Zenzo's gradient ideas in CIE-Lab with Canny's approach into a

single operator. We have chosen this operator because the vision community treats

Canny's detector as a de facto standard of edge detection due to its simplicity and

ease of implementation. For both operators the actual edges are extracted by using

non-maximal suppression and hysteresis thresholding. When the compass operator

produces two or more responses at a point, only one needs to be a maximum.

Figure 3.9 is a closeup of the helmet and the occluded background from the statue

image. This sub-image contains four regions, two light and two dark. The edge

separating the two dark regions has relatively low contrast. One would expect that

the low-contrast edge can be extracted by using a low threshold, but this turns out

not to be the case.

At smaller scales (� = 1 or 4), the gradient magnitude cannot detect the low-

contrast edge at all. Neighborhoods centered on this edge include enough pixels

from the bright region that the orientation of the gradient becomes consistent with

the high-contrast edge, and these responses are suppressed because they are non-

maximal. The use of a saturating distance measure would prevent the bright region

from having such a marked e�ect on the computation.

If � is increased past 8, the boundary of the helmet is found, but only at the cost of

destroying the other edges. The four regions cannot be separated except by analyzing

output at di�erent scales, which is an open problem. The compass operator, on the

other hand, �nds all the relevant edges at one scale.

In addition, the abnormality located two junctions in the image, which would be

useful for closing the gaps and labeling the helmet's boundary as an occluding edge.

However, the peaks are not perfectly localized, likely due to the fact that these two

junctions are close to each other relative to �.
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||{ Multi-Dimensional Gradient Magnitude ||{ Compass
Image (Di Zenzo [24] and Canny [10]) Strength

� = 1 � = 4 � = 8 � = 16 � = 4

Compass ||||||{ Edges extracted from the above images ||||||{
Abnormality (Non-maximal suppression and thresholding)

Figure 3.9: A region containing high- and low-contrast edges. The gradient magnitude
is insu�cient to �nd all of the edges at any one scale and would require further
processing, while the compass operator does �nd all the edges at one scale. Two
junctions are located in the abnormality image, but their peaks (yellow crosses) are
not well localized.

The next example, Figure 3.10, shows two regions, one with strong edges and

pixels that are the same color as the other region. The edge between them should be

salient over a wide range of scales. However, the multidimensional version of Canny

connects the true boundary to an intra-texture edge at � = 8, while the compass

operator does not. Increasing � further eventually corrects the mistake, but note

that the edge at � = 16 is quite curved. These di�erences are due more to the use of

distributions to model di�erent colors accurately than to the distance measure used.

When the output on larger image regions is compared, the di�erences are often

quite striking. Figure 3.11 shows the statue along with edges extracted by both

operators at a medium scale (� = 4). Smaller scales pick up too many edges in the

ivy and bricks to be useful. The di�erences between the two are most noticeable in the

helmet, shield, right arm, and legs of the statue. Admittedly, the compass operator's

edges do not fully segment the statue from the background; however, it would almost

certainly be easier for a segmentation algorithm to �nd the statue correctly using
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Edges found using the Multidimensional Canny Edge Detector

Image � = 2 � = 4 � = 8 � = 16

Edges found using the Compass Operator

Figure 3.10: The main edge in this image is salient at a large range of scales even
though one region contains strong edges. Canny's edge detector makes an error before
� = 8, and the lone edge at � = 16 is badly localized. The compass operator creates
more stable edges as scale changes.

those edges as opposed to Canny's.

Segmentation, as we have said earlier, is too ambitious a goal in general. A more

practical goal is detecting and labeling occlusions, which is important for determining

the relative depth of objects in the camera's �eld of view. In Figure 3.12, labeling

occlusions properly is critical for future research that would be able to reconstruct

the snake.

As in the statue image, a small � results in too many details being detected to

be of use. Figure 3.13 shows the edges detected by both operators at � = 4. Finding

the snake by using either of these images as a guide is bound to be an arduous task;

nonetheless, the general impression is that the compass operator has done a better

job of keeping the occluding edges intact. In these edge maps, thresholding has been

omitted, and the darkness of each pixel is proportional to its strength. Canny's output

is lighter on average because the gradient magnitude occupies a much wider range

and a few points have a very large magnitude. Because the compass operator uses

a saturating distance measure, more of the edges have large strengths relative to the

range of values.
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Canny Statue Compass Compass
Edges Edges Abnormality

Figure 3.11: Comparison of edges on a 320 � 160 image. Note the di�erences in the
helmet, shield, right arm, and legs. The peaks in the abnormality, normalized for
display, indicate potential junctions. Both algorithms were run using � = 4.

Figure 3.12: Distinguishing edges of the snake from edges of the grass at points where
the two meet is crucial for future identi�cation of the snake.
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Canny edges, � = 4

Compass edges, � = 4

Figure 3.13: The compass operator better separates snake edges from grass edges.
Darker edges have higher strengths relative to the maximum of each operator's range.

Closer examination of some of the occlusions in this image (see Figure 3.14) pro-

vides better insight into the comparative behavior of the two operators. In the �rst

row, both operators �nd the three edges visible in the image, but the compass op-

erator's edges are better localized and come closer to the edge of the blade of grass.

In the second row, the edges found by Canny mix boundaries of the snake and grass

together, while the compass operator is better able to resolve edges of the snake on

both sides of the grass. The �nal row again shows Canny combining snake and grass

edges together so that neither will be easy to identify; the compass operator gives

us a much better chance of being able to distinguish occluding edges from occluded

edges.

The one area where the compass operator fails to match up well against a multidi-

mensional version of Canny's operator is in running time. Canny is separable (its 2-D
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Images Canny Edges Compass Edges

Figure 3.14: Detail of edge maps in Figure 3.13. Because the compass operator
accurately models neighborhoods with 3 or more colors, occlusions will be easier to
reconstruct.

convolution mask can be split into two 1-D masks), computes weighted averages, and

�nds the Euclidean distance between these averages at two orientations. By contrast,

the compass operator is non-separable, performs vector quantization, and �nds the

EMD between color signatures at a number of orientations. As a result, Canny's

operator can be run on the statue image (768 � 512) at practically any reasonable

scale in a fraction of a second on an SGI Octane, while the compass operator requires

almost 3-1/2 minutes at � = 1, 14 minutes at � = 4, and 33 minutes at � = 8.

Obviously, the compass operator is too slow to use except in situations where the

images are very colorful and textured or where obtaining better results than Canny

can o�er is crucial. The inherent computational limitations provide little incentive
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to optimize the current implementation. Schemes for reducing the overall running

time that have been considered but not implemented include orientation prediction,

using histograms instead of signatures, alternatives or approximations to the EMD,

and pre-quantizing pixel colors.

One key issue in improving the operator's future performance is stability, both of

pixels and of neighborhoods. Pixels in the interior of the image are part of approxi-

mately 9��2 di�erent circular neighborhoods. If a pixel is stable, each of its cluster

representatives is close to the pixel and has little variance as a group. Unfortunately,

pixels along edges usually have uncommon colors, and so they can be mapped to very

di�erent cluster representatives. The result is instability and edges that appear noisy

compared to Canny's.

Another type of stability occurs when comparing neighborhoods. If two neigh-

borhoods share 95% of their pixels, for example, we would expect the EMD between

them to be no higher than 0.05. Because the binary split algorithm is run on each

separately, however, this is not guaranteed. More or fewer clusters may be created, or

clusters may be perturbed. Ensuring stability between neighborhoods can potentially

reduce both artifacts and computation time.

3.5 Greyscale Edge Detection

The compass operator can be run on binary, greyscale, color, or hyperspectral images

with hardly any modi�cation. All that is necessary is that a meaningful distance

measure between any two points in the chosen image range be de�ned. However, the

fact that greyscale images have only one value per pixel allows for signi�cant speedup

of the algorithm. Since this is a fault with the compass operator in general, and since

most edge detectors are designed for greyscale images, it is useful to understand the

di�erences involved in greyscale images.

The two biggest di�erences are the representation of the pixel values and the way

in which signatures are created. Since we represent color in the CIE-Lab color space,

and since the intensity range is a subset of this space, it makes sense to continue to

transform pixels into this space and use only the L values.
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Image with Blurry Edges CIE-Lab Lightness Edges RGB Intensity Edges

Figure 3.15: The non-linear e�ects of transforming intensities into lightness values in
CIE-Lab often increases the noise and results in poor edge localization.

However, the transformation to CIE-Lab is non-linear; it therefore has non-uniform

e�ects on the noise (noticed previously in [103]) that can lead to poor edge localiza-

tion. The example in Figure 3.15 shows how dramatic this di�erence can be.

The other main di�erence is how the signatures are computed. We partition the

range of intensities into intervals and take weighted averages of the pixels whose

intensities fall into each interval. If the weights were merely summed, we would have

histograms instead. The number of clusters is now �xed at a larger number (many

clusters may have zero mass), but the one-dimensional EMD, the topic of the next

section, is still much faster to compute.

3.5.1 A Faster Earth Mover's Distance

The match distance used by Shen and Wong �nds the di�erence between two one-

dimensional cumulative distribution functions. This metric was described earlier by

Vallender [112], who showed it as a restricted case of the Wasserstein distance on Rn

using the L1 distance. Under these conditions the EMD reduces to this distance for

one-dimensional signatures.

We would still like to use the perceptual distance metric, however, so the match

distance will not su�ce. In addition, we cannot use the EMD in its original formu-

lation. Such results are likely to be counterintuitive because the perceptual distance
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Figure 3.16: The distances between grey levels in the two signatures of (a) need
not satisfy the triangle inequality. Therefore, either of the two matchings in (b) is
possible. The �rst is monotonic, the second is not because the arrows intersect.

metric is not additive. Consider the example in Figure 3.16(a), which shows two sig-

natures, each of which has two clusters that have 50% of the mass of each signature.

Since we cannot guarantee that the distances w; x, and y add to z, two possibilities

for the match can occur as shown in Figure 3.16(b).

We believe the �rst alternative should always be chosen, regardless of the values

of w; x; y; and z, because the matching is monotonic. To be more precise, if the EMD

decides that mass at a value of u in one signature is matched against mass at a value

of v in the other, then all mass at values less than or equal to u must be matched with

masses at values less than or equal to v, and similarly for masses at values greater

than or equal to u.

The algorithm for computing this variation of the EMD is shown in Table 3.1.

Intuitively, the algorithm enforces monotonic matching while using our perceptual

ground distance to compute the work. Like the match distance, it can be computed

with one pass over the data.

3.5.2 Results

The comparison of greyscale edge detectors is a topic that has received more interest

as the number of proposed edge detectors has increased [1, 27, 98]. The authors of [9]

agreed to test the compass operator using the framework outlined in their paper.

Comparisons are made with the Canny operator, as it was deemed to be one of the

two best algorithms (the other being the Heitger operator [37]).
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float GreyEMD(Signature f(ui; pi)g, Signature f(vj; qj)g)
/* Each point mass is located at ui (vj) with an amount pi (qj) */
i = -1

j = -1

leftoveru = 0.0

leftoverv = 0.0

work = 0.0

do (forever)
if (leftoveru == 0.0)

advance i to next non-empty interval
if (no more intervals)

return(work)

uamt = pi
else

uamt = leftoveru

fsimilar computation for f(vj; qj)g and jg

mass = min(uamt ; vamt)
work += mass * (1 � exp(�jui � vjj=))
leftoveru = uamt - mass

leftoverv = vamt - mass

end

Table 3.1: The algorithm for �nding the EMD between two greyscale signatures with
a perceptual ground distance.

Examples from their test set of 10 images are shown in the left column of Fig-

ure 3.17. Note that the images have considerably less complexity than the examples

shown for the color version: objects are untextured and most of the edges are in

focus. Each edge detector is run over a range of values for the di�erent parameters

(for both the Canny operator and the compass operator, the parameters were � and

the two values for hysteresis thresholding). Each set of parameters generates an edge

map that is compared to a ground truth speci�cation created by a human. The edge

map becomes a point on a plane whose coordinates measure the percentage of ground

truth points not identi�ed and the amount of false positives.
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Figure 3.17: Three images from the test set, and the Receiver Operating Character-
istic (ROC) curves for Canny (dotted line) and the greyscale compass operator (solid
line). (Data Credit: Christine Kranenburg and Kevin Bowyer)
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Figure 3.18: Aggregate ROC curves averaged over all 10 images. (Data Credit:
Christine Kranenburg and Kevin Bowyer)

From these points a Receiver Operating Characteristic (ROC) curve is generated.

The curve is generated by the subset of points that do not have other points to their

lower-left; in other words, no point on the curve can have more false positives and

more unmatched ground truth than another point in the set. The smaller the area

under this curve, the better the operator's performance. Refer to [9] for details.

ROC curves for Canny and the compass operator for some of the images are shown

in the right column of Figure 3.17. In all 10 images, two trends are apparent. The

�rst is that Canny's \elbow" is always at least a little closer to the origin than that of

the compass operator. The second is that the compass operator is always able to �nd

at least as much of the ground truth as Canny is, and sometimes much more. The

displayed images were chosen to show where the compass operator compares most

and least favorably, as well as an image from the middle in terms of performance.

The overall performance, shown by the aggregate ROC curve for all 10 images in

Figure 3.18, has been deemed to be of roughly the same performance as Canny [45].

It appears that there is a tradeo� between the power of distributions and the EMD

versus the non-optimal shape of the compass weighting function. For these images,

in which most edges can be found at small scales (the largest value of � used was

3.0) and in which most regions are untextured, the weighting function appears to be
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the key, while the signatures are modeling only characteristics of the noise. In more

challenging images, the bene�ts of distributions make the relative weighting of pixels

less important.

The running time for the greyscale compass operator is orders of magnitude faster

than the color version but still slower than Canny. For the Fountain image (580 �

502), the running time is 1-1/2 minutes for � = 1, 2-1/2 minutes for � = 4, and 4-1/2

minutes for � = 8.

3.6 Conclusions

The strength of the compass operator lies in its ability to �nd edges in di�cult

situations, which is mostly due to the fact that its representation of a neighborhood,

a distribution of colors, is more general than previous methods. The saturating color

distance function coupled with the EMD provides an e�ective method for measuring

the perceptual distance between two color signatures. As a result, edges separating

textured regions are more likely to be detected, and we have better guarantees that

occluding edges will be recovered properly for labeling.

The compass operator in its current implementation will not supplant other edge

detectors in the near future, however. The computational cost associated with forming

and comparing color signatures would seem to outweigh its bene�ts for most of today's

applications. Furthermore, it does not outperform Canny's operator on images where

Canny's assumptions largely hold. The promise of being able to detect more of what

a human perceives to be ground truth than Canny is able to does give incentive for

future research, though.

Such research should focus on the issues of stability and speed. Pixels near an edge

are likely to have unique colors that will not be given their own cluster. Perturbations

in the clusters that are formed may cause these pixels to be represented by very

di�erent colors at di�erent times. Computation time can be lowered by investigating

approximations to the EMD as well as faster, possibly global, clustering schemes.

In the next chapter we discuss a generalization of the compass operator that allows

us to �nd corners in addition to edges.



Chapter 4

Color Corner Detection

A corner is de�ned as a point where converging lines, edges, or sides meet1. Corners

are therefore heavily dependent on edges, a fact we will exploit to detect them. From

the standpoint of early vision, corners have two important properties that distinguish

them from edge points. The �rst is that they can summarize a set of edges. Just

as a 2-D region can be succinctly described by a set of edges, a small set of corner

points is su�cient to describe a set of 1-D straight edges [123]. The second property is

that corners provide reliable measurements about the shape and location of objects.

When tracking an edge over a sequence of images, for example, only the component

of translation normal to an edge can be recovered, a di�culty known as the aperture

problem [65].

However, corners have the disadvantage of being harder to detect than edges.

In the �rst place, an edge is a set of connected points, while a corner is only one

point. If one edge point is lost, it can often be recovered, whereas a missing corner

cannot. Also, the dictionary de�nition of a corner implicitly assumes that the sides of

a corner are straight. However, edges often curve, and deciding that a corner exists

is essentially done by thresholding the change in orientation along a boundary. Scale

also plays a role, as the transition from no curvature to high curvature must happen

over a small part of the image relative to the chosen scale. Corners also have an

1Other researchers use this de�nition for \L-corners" or \L-junctions." Other letters used include

T, Y, X, and K. We refer to these four as junctions.

49
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θ

β

σ

(x,y)

Figure 4.1: The parameters of the corner detector. (x; y) represents the center of the
circle, and � is the scale parameter (the radius is still 3�). The orientation of the
clockwise side of the corner is �, and � is the angle subtended by the corner.

additional semantic burden: we may �nd corners in a tree or in a rock formation, but

we tend not to think of natural objects as having corners.

In this chapter2 we present a corner detector that uses the principles of Chapter 2

instantiated in the same way as in the compass operator. The only di�erence in the

model is that we no longer have half the wedges of the circle (recall Figure 3.3) on

each side. An extra parameter � is introduced to measure the angle subtended by the

corner. The range of � must now be [0; 360) since the two radii that form the sides of

the corner no longer have odd symmetry. We refer to the two sides as \clockwise" and

\counterclockwise," and � refers to the orientation of the clockwise side. Figure 4.1

illustrates the parameters.

Otherwise, the algorithm is similar to that for edge detection. A circular neigh-

borhood is clustered and two color signatures are formed. The EMD measures the

dissimilarity between signatures. The decision process for corners is more complicated

because it must refer to edge information at nearby points. The resulting algorithm

�nds corners in situations as di�cult as those handled by the compass operator.

We believe it to be the �rst detector that can handle either color or most arbitrary

textures.

This chapter details the di�erences necessary to detect corners instead of edges.

2Much of the work in this chapter has been published in [90].
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After surveying the literature, we consider two speci�c problems: the EMD when

two signatures have unequal amounts of mass and how corners are detected from the

operator's output.

4.1 A Review of Corner Detectors

We start by reviewing many of the models that others have used for their corner

detectors. Thetwo main approaches are indirect methods, in which corners are found

from the output of an edge detector, and direct methods, where corners are found

from the image data itself. We exclude methods in which the input is already a single,

closed, parameterized curve.

The earliest indirect method comes from Perkins and Binford [75] and is also the

�rst published corner detection paper. It used straight line segments found by the

Hueckel operator and extended them to meet if model criteria were met. Another

early entry by Sebok et al. [94] looked for overlapping connected components of edge

points in adjacent rows of an image to �nd corners.

A unique approach to the problem was formed by Han et al. [35], who measured

the distance from edge points to a reference line segment and looked for extrema. If

the set of edge points considered contained more than two line segments, the process

was repeated recursively.

Other models in this category include Medioni and Yasumoto's use of cubic

splines [57], Bell and Pau's use of logic programming [7], Matas and Kittler's use

of probabilistic relaxation [56], a wavelet approach by Lee et al. [48], simulated an-

nealing by Xie et al. [120], and least squares �tting by Ji and Haralick [42].

One of the most recent proposals in the literature is notable because it tracks

corners through di�erent scales. Mokhtarian and Suomela [62] �nd initial corner

points at orientation discontinuities in a Canny edge map. They �nd corners by

measuring curvature at a large scale and tracking the corners through small scales to

localize them.

Although these methods have achieved some success, there are serious arguments
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Small Scale Large Scale Two Corners or Zero?

Figure 4.2: Indirect methods rely on edge detection, but edges are \rounded o�" near
corners. The third drawing implies that we need straight edges to perceive a corner.

against using them. Foremost is the fact that edge detectors are generally not de-

signed to �nd corners, and whatever biases the detector comes with will a�ect later

processing. A more detailed argument is given by Deriche and Giraudon [23], who

point out that �rst-derivative-based edge detectors (a group that includes the com-

pass operator) have a \rounding o�" e�ect at corners, and the severity of the e�ect

is dependent on scale (see Figure 4.2). The implication is that indirect methods can

work only when the scale of the edge detector is very small.

Their answer was to combine indirect methods with direct methods. The Marr-

Hildreth edge detector, which is based on second derivatives, does not su�er from

rounding o�. They also used Beaudet's measure [6], the determinant of the Hessian

(I2xy � IxxIyy), at two di�erent scales. Since the peaks in this measure fall on the

bisector line of the corner, the corner's location is easily revealed.

Beaudet's measure was one of the �rst purely direct methods, but many more

have been tried. Paler et al. [73] used median �ltering and sorted the intensities in

a neighborhood to �nd corners. Rangarajan et al. [80] developed an optimal corner

detector in the spirit of Canny that required 12 convolution masks. Wu and Rosen-

feld [118] used discontinuities in the marginal distributions of grey levels in an image

to �nd initial corner candidates. Checking for locally uniform intensity distributions

weeded out false positives.
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Mehrotra et al. [58] were one of a few to look for \half-edges," found by placing

the center of a �lter at a corner point and using only two of the four quadrants to look

for edges, resulting in corner responses that were as strong as edges. Rohr [84] used

parametric models to �t edges and intensity regions together to �nd corners. Cooper

et al. [18] noted that translating a window along an edge produces little change in

the image data, but the change is high in all directions at a corner.

Computation time has recently become important for real-time tracking applica-

tions. Seeger and Seeger [95], Wang and Brady [114], and Trajkovic and Hedley [109]

have all modi�ed other methods to get robust corner detection without much com-

putation.

Other direct methods have included using wavelets (Chen et al. [16]), Bayesian ap-

proaches and fuzzy logic (Lee and Bien [49]), energy minimization (Parida et al. [74]),

gradient vector �elds (Luo et al. [51]), morphological operators (Laganiere [46]), and

a measure of \unidirectionality" (Chabat et al. [13]).

The work of Alvarez and Morales [5] measured curvature and tracked it through

an a�ne morphological scale space. It is noteworthy because it models neighborhoods

as level sets, making it the only corner detector in this survey that does not invoke

the constancy assumption. The level set assumption restricts all intensities in one

neighborhood to be darker or brighter than adjacent ones. This model is not as

general as distributions, however, and it is not clear how level sets would apply to

color, which has no similar total ordering of values.

Out of the many corner detectors that have been proposed, a few have become

standards because they are conceptually interesting and easy to implement. The

second one (after Beaudet) was that of Kitchen and Rosenfeld [44]. They used second

derivatives of the image to calculate the rate of change of the gradient direction along

an edge. Second derivatives can be unstable, however, so Singh and Shneier [100]

combined it with another gradient-based method to achieve robustness.

More popular has been the Plessey operator, apparently published �rst by Harris

and Stephens [36]. A 2� 2 autocorrelation matrix is formed from the outer product

of the gradient, and corners are detected where both eigenvalues are high. Noble [71]

analyzed it thoroughly and found it worked well only at L-corners; he proposed a
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method that was able to �nd junctions as well. Tomasi and Kanade [106] re-derived

the original formulation from the optical ow equation and used those corners as

feature points for tracking. Zheng et al. [125] developed a faster version.

Two di�erent issues come into play in the analysis of corner detectors. The �rst

is whether the corner model is applied to the image data itself or to the gradient;

it is similar to the dichotomy between indirect and direct methods. Therefore, a

similar argument can be made that, since the gradient �nds the single direction in

which intensity is changing fastest, it is not as applicable to corners, which require

information in at least two directions. Gradient methods are usually much faster than

so-called \template methods," and this is why they remain popular.

The second issue is whether a detector �nds only L-corners or whether it �nds

junctions as well. Many of the corner detectors just mentioned are really junction

detectors, with L-corners forming a restricted case. A junction is a place where

multiple corners meet, and it is advantageous to recognize this fact, as we discussed

in the last chapter.

Given all the detectors that have been published, why should we propose another?

The answers are exactly those used for the compass operator: large scales, color, and

texture. None of the methods published considers color explicitly, though indirect

methods could use the edge map produced by a color edge detector as their input.

Even multidimensional gradient methods could be applied to Kitchen and Rosenfeld's

measure. Template methods would have a problem fusing possibly di�erent answers

about corners in di�erent color components together to form a �nal answer. In any

case, we believe that models for corner detection should be as applicable to color

images as they are to greyscale.

The second reason is that most models invoke the constancy assumption; there

have been no analogues to the Wang-Binford operator, for instance, to detect corners

in the presence of shading. We want to �nd corners in images where neighborhoods

contain correlated variations due to shading or texture rather than uncorrelated noise

variations.

Compared to other direct methods, our corner detector is an interesting combi-

nation of template and gradient methods. All hypothesized corners in an image are
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tested, but the di�erence between neighborhoods is computed by using the EMD to

�nd the orientation that maximizes the distance between neighborhoods, and we have

already seen that this creates a pair of numbers similar in function to a gradient.

The one drawback of our detector compared with many others is that it does

not detect junctions. The EMD does not directly lend itself to measuring distances

between three or more neighborhoods. Other recent junction detectors also use

wedges [74, 122], basing their computation on di�erences between wedges, but since

we do not assume that wedges are constant or that neighborhoods are homogeneous,

taking the EMD between adjacent wedges would produce too many false positives. In-

stead, we believe that the concept of abnormality is better suited for �nding junctions

than our corner detector.

4.2 Partial vs. Normalized EMD

Like the compass operator, the corner detector �nds the EMD between the color

signatures of two adjacent neighborhoods inside a circle. The biggest di�erence is

that SO, the signature for the neighborhood outside the corner, has more mass than

SI , the signature for the neighborhood inside the corner. We must choose between

allowing unequal-mass distributions in the EMD or deciding that two neighborhoods

will always have the same mass no matter how few pixels are in SI . The �rst leads to

the \partial" EMD, where correspondences are found between SI and the subset of SO

that results in the minimum amount of work3. The second leads to the \normalized"

EMD where we set the total mass of SI and of SO equal to each other. In either case,

we set the mass of SI to be 1 so that the EMD continues to lie in the range [0; 1].

Each type of EMD has advantages over the other in certain situations. In Fig-

ure 4.3 we have one color inside a 45� corner and a polka-dotted texture outside it.

Even though the polka dots take up only a fraction of SO, the total mass of color B

is equal to that in SI , resulting in no corner. The normalized EMD, however, detects

3This is accomplished by adding a dummy point mass to SI equal to the di�erence in mass

between SI and SO. The unit transportation cost from this point mass to all point masses in SO is

zero.
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SI 1 0
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SI 1 0
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Figure 4.3: The normalized EMD can �nd corners that the partial EMD cannot.
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Figure 4.4: The partial EMD can more accurately describe a corner. The partial
EMD has a stronger response at 60�, while the normalized EMD prefers a 30� corner.

this corner easily.

Figure 4.4 shows a situation where the partial EMD describes a corner more

accurately than the normalized EMD. A 60� corner consists entirely of color A except

for the two edges, which contain some pixels of color B. If 10% of the pixels inside the

corner have color B, then the values of the EMD are those shown in the accompanying

table. Both types of EMD detect a corner, but the normalized EMD estimates � to be

30�, while the partial EMD correctly estimates � to be 60�. Figure 4.5 illustrates this

di�erence on real image data. The corner found by the partial EMD runs along the

edges, while the other does not. The reason for this behavior is that each pixel in SI

has much more relative mass than it would if it were in SO. The e�ect of edge pixels

on the normalized EMD is minimized if they are excluded from the inside signature.

We have chosen the partial EMD for our experiments. We may su�er some false
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Partial EMD Normalized EMD

Figure 4.5: Both the partial EMD and the normalized EMD detect the corner, but
the vertex is in di�erent places and the normalized EMD underestimates the size.
The sides of the partial EMD corner run more along the edges in the image, and this
advantage is why we have chosen the partial EMD for the corner detector.

negative corners when � is very small, but this is not likely to happen often, and the

bene�t of describing corners more accurately outweighs this disadvantage. One other

important side e�ect of the partial EMD is that we cannot create a faster version

of the corner detector for greyscale images as we did for the compass operator. The

GreyEMD routine (recall Table 3.1) works only on signatures of equal mass.

4.3 The Edge Model

The result of applying the corner detector to an image is essentially a four-dimensional

(x; y; �; �) array of EMD values, and corners are relative maxima above a minimum

strength in this array. However, there are some complicating factors due to the fact

that the conditions for corners are more restrictive than for edges.

In the �rst place, a corner is a response to a phenomena that takes place over a

relatively large portion of the image, so checking only the nearest neighbors in the

array will produce too many corners. It is quite possible to get strong maxima all re-

sponding to the same corner phenomenon but with signi�cantly di�erent parameters.

In the second place, we cannot directly compare EMD responses from parameter
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Figure 4.6: Cumulative distributions for the response of the corner detector. Each
curve represents a di�erent value of �, with � = 15� closest to the upper left and
� = 180� closest to the lower right. (a) Distribution of maximumEMDs (strengths) at
each point. (b) Distribution of randomly chosen EMDs at each point. The signi�cant
di�erences in the curves precludes us from comparing corner responses that di�er
in �.

values that di�er in �. Changing the size of the corner also changes the statistics

of the EMDs that are generated. Figure 4.6 shows the result of an experiment that

evaluated the corner detector for di�erent values of � at 2,000 randomly selected

image points over a database of 20,000 images. Figure 4.6(a) shows the cumulative

distribution of the strengths at each point, and Figure 4.6(b) shows the cumulative

distribution of EMDs from randomly chosen orientations at each point.

As we vary � in 15� increments from 15� to 180�, the curves move from the upper

left corner towards the lower right. Note that the changes in the distribution of ran-

dom EMD's is fairly even as � varies, but the amount of change in the distribution of

strengths is inversely proportional to the value of �. As a result, comparing responses

with di�erent corner sizes is not advisable. Even �nding the initial corner candidates

requires varying the threshold linearly with � so that small corners can be found

without introducing too many false responses for larger corners.

Therefore, we must use a more complicated procedure to winnow the set of maxima

over x; y; and � for every value of � to the actual corners. We do this by comparing the

parameters of each corner with edge information provided by the compass operator.
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True Corner False Positive

Figure 4.7: True corners are aligned with edges at the endpoints. The edge is rounded
o� in the middle, where the response weakens. False positives occur due to inhomo-
geneities on either side of an edge.

If multiple responses to a corner remain, we select one according to a heuristic. These

steps are covered in the next two sections.

4.3.1 Testing Corner Candidates

Figure 4.7 shows how false positives are distinguished from true corners. A true

corner exists because two edges meet at a point, in which case we expect that the

orientations of the edges at the endpoints of the corner match those predicted by

the corner detector. Furthermore, the rounding o� noticed by Deriche and Giraudon

means that there should be a weak edge response between the two sides of the corner.

On the other hand, a false positive is sometimes generated when small inhomo-

geneities on either side of an edge cause a spurious response. In this case, there will

be no supporting edge information in the three places that we have predicted.

For each corner we compute �C and �CC, the di�erence between the orientation

of the clockwise and counterclockwise sides of the corner, respectively, and the edge

orientation at the endpoint of each side. The �t to the model is expressed as

P = cos �C + cos �CC ;
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Initial Corner After Applying Final
Candidates Edge Model Result

Figure 4.8: Detecting corners from an initial set of candidates involves applying an
edge model followed by pruning multiple responses (if they exist).

where P lies between 0 and 2. We threshold P at 1.97.

Also, where the edge crosses the corner's axis of symmetry, the projection of the

edge response vector onto the line normal to this axis must be weaker than the corner

response. We check responses on a small interval along this axis centered at a point

3�(sec �
2
� tan �

2
) pixels away from the corner4. This quantity is the distance from

the corner point to the circumference of an imaginary circle tangent to the sides of

the corner at its endpoints.

Figure 4.8 shows the initial corner candidates found by thresholding the relative

maxima. Most of these responses are false positives and applying the edge model

greatly reduces their number.

4Recall that the radius of the operator is 3�.



4.4. RESULTS 61

4.3.2 Pruning Multiple Responses

Ideally, only one response to each corner phenomenon will remain after this step, but

Figure 4.8 shows that this is not always the case. We o�er a heuristic to choose one

when this happens, though perhaps multiple responses could be combined in some

way.

First, we must decide when two corner candidates are responding to the same

actual corner. In Figure 4.8 this is trivial, but the general question admits no equally

general solution. We de�ne two corners as being \close enough" if the corner points

are within 9�=4 pixels of each other and one of two conditions is true: (1) either the

two clockwise or the two counterclockwise orientations di�er by no more than 10�, or

(2) the sum of these di�erences is no more than 40�. These conditions group \nested"

corners while preserving multiple corners near junctions.

An ambiguity arises when corner X is close to corners Y and Z, but Y and Z are

not close to each other. If our notion of \closeness" is global, then the order in which

we examine corners a�ects the �nal output. Since this is unacceptable, we compute

the transitive closure of \closeness," that is, X, Y , and Z will all become part of the

same set. It is theoretically possible that corners in distant parts of the image could

become part of the same set; in practice, however, the application of the edge model

removes enough candidates to prevent this.

Once we have computed the transitive closure, we select the member of each set

that maximizes the expression 2C + P +E, where C is the corner strength, P is the

degree of orientation match described earlier, and E is the sum of the edge strengths

at the endpoints of the two sides of the corner. C is doubled so that each term

contributes equally. The �nal corner of our example is shown in the third column of

Figure 4.8.

4.4 Results

In this section we present results on a variety of image patches in order to convey the

versatility of the operator. All these results were computed with the partial EMD
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Figure 4.9: Corner detector applied to two fabrics. Note the heterogeneity of each
texture as well as the existence of shadows.

and the same set of thresholds. The lengths of the sides of the corners drawn in the

images are equal to the radius of the operator. Also, we have restricted � to the

range [30; 150] because 15� and 165� corners are unreliable; the small corners do not

contain enough pixels to get an accurate representation, and the large corners are

nearly impossible to distinguish from edges. However, this does appear to be wider

than the range of most other detectors.

Figure 4.9 shows one fabric occluding another. Although each contains texture

that varies greatly in color and has regions in partial shadow, the corner is correctly

detected. Figure 4.10 is more complicated because three textures are involved: trees,

illuminated rock, and rock in deep shadow. Five corners separate the regions and

serendipitously form most of the boundary of the illuminated rock.

Turning our attention to junctions, we reiterate that the corner detector is not able

to model them explicitly. Figure 4.11 shows three regions, one signi�cantly textured,

coming together at a point. Corners at three di�erent scales are shown. At the two
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Figure 4.10: Corner detector applied to three regions of natural texture.

smaller scales it is clear that even 150� corners are di�cult to distinguish from edges.

The fact that these false positives disappear at the largest scale provides evidence

that scale selection is no less important for corner detection than for edge detection.

Even if we ignore these corners we do not quite capture the information at the

junction correctly. The edges which form this junction are curved, and though two

corners in the junction are found at all scales (the third is bigger than 150�), their

vertices do not coincide, and the other corner detected in that area is arguably a

curved edge. This junction could be detected using a procedure similar to the one

that determined if multiple corners are responding to the same part of the image.

4.5 More Results: Corners and Edges

Figure 4.12 illustrates a more conceptual di�culty with the corner detector. The

left image shows corners, including those as large as 165�, and the other shows edges

extracted using the compass operator. There is a high degree of overlap between the

features as they are drawn on this image since most of the corners have high values of

�. It begs the question of whether corners are relevant in images that do not consist
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Small Scale Medium Scale

Large Scale

Figure 4.11: Corner detector applied to a junction at three scales. The di�culties
encountered at curved edges is apparent. One corner of the junction is greater than
150� and is unrecoverable.
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Corners Edges

Figure 4.12: Corner detector and edge detector applied to an image of a canyon. Note
the high amount of overlap between the two sets of results. 165� corners have been
included.

mostly of man-made objects.

Even more disconcerting is the fact that we have developed two separate algo-

rithms for detecting features from what is arguably the same data. Edge information

is simply that obtained by setting � to 180�, while corners cannot be reliably detected

without edge information. The two features are complementary and both are needed

for accurate boundary representation.

Figure 4.13 illustrates this last point. The edges found by the compass operator

outline the boundary of this rock, but because the rock is convex in shape, the

edges are sometimes a few pixels inside the rock. The two corners, however, are

well localized, and combining this information with the edges would produce a more
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Figure 4.13: Corner and edge information is complementary. Is it possible to extract
a boundary that contains both at the same time?

accurate boundary.

One way this could be done is by an energy minimization method. The corners

can be thought of as basins of attraction that perturb the edges. A better method

would be to use the entire 4-D array of data to extract a more accurate boundary

directly. Following an edge would require decreasing � from 180� to the value at the

endpoint of the corner and then changing direction and increasing � back to 180�.

4.6 Conclusions

The models used to �nd corners have generally lagged behind models for edges. None

of the corner detectors surveyed dealt explicitly with shading, unless they are indirect

methods that can be modi�ed to use, for instance, the Wang-Binford edge detector.

The corner detector we described here brings the models for corner and edge detection

to the same point.

Extracting corners is more di�cult than extracting edges. The fewer pixels inside

a corner, the more susceptible the computation is to noise and sampling e�ects. The
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problems of stability mentioned in the previous chapter are even more important

here. Combining corners and edges in complex regions containing textures remains a

long-term goal. However, the framework here is an important step because it extends

the set of images on which reasonable results can be obtained.



Chapter 5

Alpha Estimation

The advances in edge and corner detection discussed in the previous two chapters do

not place all image boundaries within the realm of detection. We saw in Chapter 1

that some boundaries are not well represented by edges and corners. In particular,

natural objects such as trees, hair, smoke, and water often fail to follow even the

compass operator's general model of an edge between two objects.

This chapter1 examines a model in which a pixel is allowed to belong to two

regions whenever its color appears to have been formed by light reecting o� of two

separate objects and reaching the same patch on the camera's sensor. The colors and

the relative amounts of each can be determined by examining the color distributions

of nearby pixels that receive light from only one object. The percentage that a region

contributes to the color of a pixel is referred to as its alpha value.

Of course, we have little hope of �nding out in general whether a pixel is gathering

light from one object or two. Since traditional edge models break down, we require

additional input in the form of a segmentation of an image into regions that are

de�nitely an object versus regions that contain a boundary. These boundary regions

need not conform exactly to a boundary because extraneous pixels can be reclassi�ed

as belonging to an object.

The following sections explain the details surrounding this procedure: the history

1Much of this work was published in [91].

68
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and rationale of previous approaches, the constraints on specifying boundary and ob-

ject regions, and the estimation of alpha values and the \unmixed" colors that formed

the color of a boundary pixel. Results demonstrate the algorithm's e�ectiveness on

boundaries that cannot otherwise be adequately captured.

5.1 The History of Alpha

The concept of alpha was invented separately by three di�erent communities: com-

puter graphics, �lm and television, and remote sensing. The assumptions, methods,

and applications of the three groups are quite di�erent, however, so it is worthwhile

to examine them separately.

The original application of alpha in computer graphics was for soft �lling, or

changing the color of an antialiased region such as an edge2. Fishkin and Barsky [31]

published the most comprehensive technique for soft �lling when alpha values were

unknown but the original foreground and background colors were known exactly. The

color of an edge pixel was presumed to fall into the vector subspace in color space

spanned by the original colors. Alpha could be computed and used to recolor the

pixel with new colors. Due to round-o� error, a pixel's color may not lie inside the

subspace, but the error is expected to be negligible. This technique works for up to

four colors between the two objects [32].

At the same time, Porter and Du� [78] developed an algebra for compositing

images containing objects that had been rendered separately and were now to be

overlapped. Given the geometry of the boundaries involved and an alpha value for

each pixel, they could compute the colors of pixels where both objects were visible.

The passage of time has brought many in the graphics community to the realiza-

tion that building 3-D models of most natural objects is not feasible. Consequently,

image-based rendering, where models are sampled from images and rendered under

other conditions such as viewpoint or illumination changes, has become an important

research topic. Estimating alpha from nothing more than an array of pixel colors is

2Translucent objects are modeled using opacity, which is di�erent from alpha in that alpha

represents the percentage of a pixel covered by an object.
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a pressing need for accurate modeling of object boundaries.

For a long time now the �lm and television industries were already using blue

screen matting to perform image-based rendering. An actor could be �lmed against

a blue (or other color) screen, after which a matte could be extracted and the blue

screen replaced. Smith and Blinn [101] give an excellent overview of previous work

on this matting problem, crediting Petro Vlahos for his many patents. His inventions

allowed an operator to adjust parameters until the optimal matte was extracted while

also solving problems of interobject reection and shadows.

Smith and Blinn analyzed the matting problem in great detail, noting that a

unique solution exists only for the easiest cases. They showed that a unique solution

can be found in the general case if the foreground object is �lmed against two back-

grounds that di�er in every pixel. However, this approach is useful only in studios

where non-moving objects can be photographed twice. They provided bounds on

alpha for the general case.

Mitsunaga et al. [59] developed a system for estimating alpha that assumed that

the gradient of alpha across a boundary is proportional to the multidimensional gradi-

ent magnitude. Projecting image gradient vectors onto a reference vector connecting

the average color of the foreground and background increased the signal-to-noise ratio.

Alpha values for hair and water, however, do not follow this assumption.

Finally, the remote sensing community has long been interested in unmixing pixels

because each pixel from a satellite image covers many square meters and therefore

many di�erent substances. A simple yet e�ective implementation of this idea came

from Adams et al. [3], who deduced the composition of rocks and soil in an image of

the Martian surface and estimated the amount of each substance everywhere in the

image while also accounting for illumination e�ects.

Such techniques usually involve much information not present in the image, how-

ever, such as laboratory reference spectra of materials, heuristics for ranking candi-

dates, and other analyses of the data. The problem we consider uses only the image

data. Furthermore, the material classes typically have unimodal distributions, while

color distributions for an object are less constrained, and the two unmixed colors at

each pixel need not even be modal values.
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The closest related problem in computer vision is blur estimation, in which alpha

values are implicitly assumed to be constrained roughly to a 2-D sigmoid across the

edge. Elder and Zucker [30] use this model to perform local scale control in detecting

edges. Assuming that a boundary between two regions consists only of an edge

corrupted by blurring is applicable to a wide range of images and imposes constraints

on the alpha values depending on their position in the image. Often, though, the

overlap of natural objects does not follow such constraints.

5.2 Specifying Object and Boundary Regions

Since the algorithm we present here is more a tool than a system, the user must

specify more than the input image. We restrict our attention mainly to images in

which there are only two regions, foreground and background. Such an image must

be partitioned into not two but three regions, the third being the boundary region.

This section details two alternatives for specifying these regions by using the tree

example in Figure 5.1.

A chain of pixels separating two objects can be dilated to form a boundary region.

This chain can be constructed from the edges found by an edge detector, the boundary

found by a region segmentation algorithm, a hand-drawn boundary using a paint

program, or a boundary-�nding tool such as Intelligent Scissors [64]. In our example,

the boundary was speci�ed using the compass operator at a very coarse scale (� =

16) and dilated d�e times. The compass operator produced a few gaps and other

anomalies, but the dilation compensated for them.

Also, a paint program can be used to specify parts of the image as \pure," or

consisting only of pixels belonging to one of the two objects. In our example magenta

pixels mark the sky and yellow pixels delineate the tree (the two colors should not

exist in the image already, of course).

Most image boundaries are more e�ectively captured by one method than the

other. The object speci�cation method is superior in this example because many

pixels well inside the outer boundary of the tree contain blue. The boundary spec-

i�cation method is advantageous in images where the color distribution in one or
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Tree Boundary Speci�cation

Object Speci�cation Visualization of Manifold

Figure 5.1: Computing alpha values along a boundary requires a speci�cation of
the object regions or of the boundary region. Object speci�cation is more exible
and preferable for this example, but boundary speci�cation is useful when the color
distribution of an object changes spatially.

both object regions changes as we move along the boundary, however. If we have a

boundary, we can form local correspondences; a pixel in the boundary region can be

judged as a combination only of nearby colors in the image, which will improve the

alpha estimate. Otherwise, we can use only global distributions for entire objects,

and they may not be separable in color space.

If an image contained multiple objects, all of which we would like to segment, the

only complication would be labeling each pixel in the boundary region with the two

objects responsible for its color. Here, the boundary speci�cation method would make

this task simpler since the pixel chains can be segregated by the junctions. Because the
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object speci�cation method has no restrictions on its topology, neither color similarity

nor spatial proximity would provide adequate pixel labels in all situations. It is

perhaps easier to perform the algorithm multiple times, once for each object.

The purpose of specifying object and boundary regions is twofold: it labels each

pixel for proper use in the computation and it partitions color space. The �nal

illustration of Figure 5.1 is a conceptualization of the colors of the tree and sky

mapped into color space. Pixels from the boundary region lying in these two regions

of color space will be assigned alpha values of 0 or 1, while pixels whose colors values

are in between will be assigned fractional alpha values. Thus, the speci�cation of the

boundary region need not be precise so long as it actually contains the boundary, and

so long as it leaves enough of a color in an object region that it can be represented

by one or more clusters.

5.3 Estimating Alpha

Our algorithm for alpha estimation for the most basic cases is similar to the algorithms

of Fishkin and Barsky. The complexities come from the fact that we have noise and

other sources of variance in the data, potentially many more than four colors, and

unmixed colors that need not correspond to modes of the color distribution. This

section describes the mechanisms for dealing with this complexity.

5.3.1 Building a Manifold in Color Space

Alpha values are measured along a manifold connecting the \frontiers" of each object's

color distribution. Once again each distribution is represented as a color signature

found through vector quantization in CIE-Lab. We denote the two distributions as

X = f(xj;uj; �
2
uj
)g (j = 1; : : : ;M) and Y = f(yk;vk; �

2
vk
)g (k = 1; : : : ; N), where the

xj's and yk's are percentages of each color speci�ed by uj and vk respectively. We

also add the variance of each cluster to our representation.

One manifold is constructed for each pair of distributions. If the boundary region

was initially speci�ed, we must decide which pixels to use for each pair of distributions.
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Figure 5.2: When a chain of pixels is speci�ed and dilated to form the boundary
region, it is divided into intervals separated by anchor points. The square centered at
one of the anchor points shows which pixels from each object region will be clustered
to form two local color distributions. All boundary pixels in the shaded region will
have their alpha values computed using these two distributions.

We divide the chain of pixels into non-overlapping intervals and de�ne the endpoints

of the intervals as anchor points. The length of each interval is equal to three times

the amount of dilation performed. Since we allow di�erent parts of the chain to be

dilated by di�erent amounts to capture the nature of the boundary accurately, the

length of the intervals can also di�er. The anchor points serve two purposes: (1) each

becomes the center of a window de�ning the pixels in each object region that form the

local color distributions, and (2) they divide the boundary region into pieces, where

each piece consists of all pixels with a common nearest anchor point. Each piece of

the boundary region will use the color distributions speci�ed by the corresponding

anchor point for computing alpha. Figure 5.2 illustrates these two functions.

The set of line segments in color space connecting one point mass from each

signature can be represented as the Cartesian product f1; : : : ;Mg� f1; : : : ; Ng. The

manifold is constructed using a subset of this product to construct a ow between

the signatures. Rather than a minimum-cost ow constraint, which gives rise to the

EMD, we maximize the number of line segments on which a nonzero amount of mass is

transported. Doing so assures us that as many boundary region pixels as possible are

near a line segment, providing accuracy to the computed alpha values. It is important

that the segments do not conict, however, or ambiguity will enter the computation.
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Intersection Conict Angle Conict

Figure 5.3: Two segments that share no endpoints may have an intersection conict
in three dimensions if they are too close to each other. Two segments that do share an
endpoint may have an angle conict if they are almost collinear. In both cases the true
unmixed colors that produced the color of a boundary pixel may be unrecoverable;
we reject the longer segments in each case as being unlikely.

Figure 5.3 illustrates two types of conicts, \intersection" and \angle." A pixel

near the intersection of two line segments would be more likely to be a combination

of the pair of colors at the endpoints of the shorter segment; the longer one should be

rejected as less likely (though not impossible). In three dimensions, two line segments

never intersect, so this de�nition must be amended by declaring an intersection when-

ever the minimum distance between any pair of points from each segment is smaller

than a threshold (set at 5 CIE-Lab units). Intersection conicts can occur only when

the two segments do not share an endpoint.

Angle conicts, on the other hand, can occur only when the two segments do share

an endpoint. When the angle between the segments is small (less than 10�), the three

clusters are almost collinear. This is another source of ambiguity, noticed previously

by Smith and Blinn, because we cannot tell which pair of colors actually produced a

color in the middle. Again, we choose the smaller segment as being more likely.

The algorithm for computing the set of non-conicting line segments is shown in

Table 5.1, and Figure 5.4 shows an example of its output. It is a greedy algorithm

that adds segments to the set if they do not conict with segments that have already

been accepted. Note that it is possible that one or more clusters will not be an

endpoint of any accepted line segment; any such clusters are excluded from the rest

of the computation and the xj's or yk's are renormalized. The n line segments chosen

help de�ne the manifold. Each segment is represented as an ordered pair (j; k), and

we de�ne two functions, J(i) = j and K(i) = k, that return the index into X and Y ,
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Segment-Set BuildManifold(Point-Set fuig (1 � i �M), Point-Set fvjg (1 � j � N))

Accepted = fg
for i = 1 to M

for j = 1 to N

dij = distance(ui; vj)

fl1; : : : ; lMNg = line segments sorted by increasing dij

for i = 1 to MN

for (each segment sj in Accepted)
if (J(li)==J(sj)) /* J() returns index into X */

� = 6 K(li)� J(li)�K(sj)
if (� < T1) /* T1 = 10� */

REJECT; break

elseif (K(li)==K(sj)) /* K() returns index into Y */
� = 6 J(li)�K(li)� J(sj)
if (� < T1)

REJECT; break

else

D = minimum distance between li and sj
if (D < T2) /* T2 = 5 units */

REJECT; break

if (segment was not rejected)
Accepted = Accepted [ flig

return(Accepted)

end

Table 5.1: The algorithm for choosing a subset of the line segments that connect
clusters from two distributions to de�ne a manifold.

respectively, of the clusters marking the endpoints of the segment.
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Figure 5.4: An example of a manifold. The line segments are those accepted by the
algorithm, and the shaded region indicates where we expect colors of pixels receiving
light from two objects to lie in color space.

5.3.2 Computing Alpha and Unmixed Colors

The two signatures X and Y serve as discrete representations of the colors from each

object region. We must now form a relationship between these two distributions and

an arbitrary pixel Q in color space. This task can be accomplished more naturally

if we convert the color signatures to continuous probability distributions. We use a

mixture of isotropic Gaussians placed at the points uj in X and vk in Y , ensuring a

simple formulation and nonzero probabilities at all points in color space. The ratio

of these two distributions at Q would be one way to estimate �Q, the alpha value of

Q.

However, this simple solution fails for three reasons. The �rst is that such a ratio

yields a non-linear function as a pixel's color moves linearly between the distribu-

tions. Since alpha values imply linear combinations, we must have a linear estimation

method. The second reason is that such a method says nothing about the unmixed

colors; there is no way to use the alpha value to map a color back to speci�c colors

from the objects. The �nal reason is that numericalmeasurements at Q when Q is not

close to a mode of either distribution are so small as to be numerically meaningless.

We argue that Q is actually drawn from a probability distribution formed as the

colors of X are \morphing" into the colors of Y across the boundary. This morphing

can be modeled as a linear interpolation between the two probability distributions.
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We treat alpha estimation as a maximum likelihood estimation problem: �nd the

interpolated probability density that maximizes the value at Q.

We start by de�ning a function f(t) that produces a probability distribution for

every value of t:

f(t) = pt(c); 0 � t � 1 ;

where c is an arbitrary color vector. The values at f(0) and f(1) are the probability

densities corresponding to X and Y , respectively. We model these distributions as

mixtures of n isotropic Gaussians (denoted Gi(c;�i; �2
i )), each being interpolated

along one of the n line segments de�ning the manifold. The distributions for t = 0; 1

can be written as:

p0(c) =
nX

i=1

aiGi(c;uJ(i); �
2
uJ(i)

) ;

p1(c) =
nX

i=1

aiGi(c;vK(i); �
2
vK(i)

) ;

where ai is the amplitude of each Gaussian. The amplitude is proportional to the

sizes of the clusters at either endpoint:

ai / xJ(i) � yK(i) ;
nX

i=1

ai = 1 :

For any intermediate value of t, the distribution produced by f(t) interpolates the

mean and variance of the Gaussians:

pt(c) =
nX

i=1

aiGi(c;�i(t); �
2
i (t)) ; where

�i(t) = (1� t)uJ(i) + tvK(i) and

�2
i (t) = (1� t)�2

uJ(i)
+ t�2

vK(i)
:
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Figure 5.5: An example of interpolation. p0(c) and p1(c) are unimodal Gaussian
distributions. As t varies, the mean and variance of the interpolated Gaussian also
varies. The value of t producing the Gaussian that maximizes the value at Q is the
alpha value �Q.
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Figure 5.6: The two colors marked by Xs are equally likely to be drawn from p0(c),
but they will have di�erent alpha values if we do not give special treatment to the
values 0 and 1.

The expression for computing alpha values then becomes straightforward:

�Q = argmax
t

f(t)jQ :

In practice, we discretize t at a resolution of 0.01 and evaluate Q for each set of

Gaussians produced. Figure 5.5 shows a one-dimensional example of two unimodal

distributions and the interpolated Gaussians.

The sole exception to this rule is when Q appears to have been drawn from p0(c)

or p1(c); Figure 5.6 illustrates this case. Both pixels marked with Xs are equally likely

to have been drawn from p0(c), but the direction of the noise is di�erent, resulting in

two di�erent alpha values. If f(0)jQ or f(1)jQ is above a threshold, the alpha value

of Q is set to 0 or 1 respectively.

Of course, we must also �nd the unmixed color from each distribution. These

colors are not independent because Q must lie on the line segment connecting them.
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Our approach is to use the weights provided by each Gaussian component of the dis-

tribution to estimate the unmixed color of each side, followed by a small perturbation

so that Q divides this new line segment in the proper proportion.

Figure 5.7(a) shows a typical function consisting of the values at Q as t varies.

This function is a sum of many smooth functions, each corresponding to one Gaussian

as shown in Figure 5.7(b). The component functions are not Gaussians because the

variance is a function of t. At the maximum, each of the n Gaussians contributes a

weight wi to f(�Q)jQ. By mapping each weight back to the endpoints of the segment

it came from, we form a weighted average of the colors of each signature to estimate

the unmixed colors:

ûQ =

Pn
i=1wiuiPn
i=1wi

;

v̂Q =

Pn
i=1wiviPn
i=1wi

:

Normally, no more than a few nearby Gaussians signi�cantly inuence the unmixed

color of a pixel.

If we denote the point on the line formed by ûQ and v̂Q that divides it in the ratio

� : 1� � as Q0, we can compute the �nal colors uQ and vQ by perturbing ûQ and v̂Q

by the vector
�!

Q0Q:

uQ = ûQ+
�!

Q0Q ;

vQ = v̂Q+
�!

Q0Q :

In this way we are assured that combining the two colors at each pixel with the

estimated alpha value recreates the original image.
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Figure 5.7: (a) The alpha value �Q is found by maximizing f(t)jQ as t varies from
0 to 1. (b) This function is the sum of many smooth functions, each corresponding
to a Gaussian interpolated along a line segment and evaluated at Q. Once �Q is
found (0.06 in this case), the component weights at that value are used to compute a
weighted average to �nd the unmixed color from each object.

5.4 Results

This section shows a set of examples on a wide variety of natural objects. Using both

methods of specifying object and boundary regions, we create local or global color

distributions of object regions to estimate the alpha values of pixels in the boundary

region. The signatures we create have no more than 5 clusters each. An object is

moved to a destination image by combining unmixed colors with the corresponding

pixel colors from the new background according to the computed alpha values.

We follow up Figure 5.1 by placing the tree on a red background using both

object speci�cation and boundary speci�cation (see Figure 5.8). This example is

essentially blue screen matting. As predicted, the boundary speci�cation method

performs poorly because blue is present in both objects. The result using the object

speci�cation method is much improved.

Of course, the algorithm is designed to handle more interesting backgrounds than

sky. Figure 5.9 also shows a tree branch, but the background consists of trees. A
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Boundary Speci�cation Result Object Speci�cation Result

Figure 5.8: The results of the algorithm when the boundary region is speci�ed are
poor because blue appears in both object regions. Specifying the regions that are
purely tree or sky leads to a more satisfying result.

conservative speci�cation of the two object regions is enough to recover most of the

branch. The twigs connecting the leaves are dark, and so they are lost, and some of

the highlights from the background are brought into the foreground, but overall the

new rendering retains photorealism.

Figure 5.10 displays a plume of smoke extracted using the boundary speci�cation

method. Since another plume is in this image, specifying object regions would produce

poor results. The boundary is extracted using Intelligent Scissors and dilated by

di�erent amounts to capture, among other things, the hole in the plume near one

endpoint. The other plume does not have deleterious e�ects on the result.

Figure 5.11 shows how a waterfall image whose regions have irregular topology

can still be extracted. The interior region between the two halves of the waterfall is

successfully removed. The colors are numerous and well localized spatially, but the

algorithm creates global color distributions that are unable to take advantage of this

fact.

The �nal example, Figure 5.12, is of a woman whose hair is being blown about
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Figure 5.9: A tree branch is extracted from a tree background.
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Figure 5.10: A plume of smoke causes a racing car to fail its emissions test.

by the wind. The boundary region has been speci�ed using Intelligent Scissors and

dilated by di�erent amounts. The riverbank in the background has similar colors to

the hair, so the boundary must be narrow in those areas to minimize artifacts. Mao's

picture shows through her hair in the �nal image, but not every strand of hair is

recovered.
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Figure 5.11: A waterfall is transported to arid Death Valley.
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Figure 5.12: A woman takes an instantaneous vacation to Beijing.
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5.5 Conclusions

The problem of extracting an object from its background has no general solution.

The �lm and video industries use equipment that provides manual control over the

extraction process, but only when the background is a constant color. In contrast,

we have presented a tool for extracting image regions from almost arbitrary back-

grounds. It requires enough knowledge of a boundary's location to estimate the color

distributions of the two image regions accurately, and the computation does not allow

for human intervention. If a result is unsatisfactory, the user must change the input

speci�cation or alter the alpha values manually.

The results show that foreground objects can be moved to new images without

appearing counterfeit (with the exception of changes in illumination between the two

images). A close examination will show some defects because the colors are not well

separated, or because the color representation is not accurate enough. The second

can be solved by increasing the size of the color signatures, but the �rst is still

unapproachable. Translucent objects cannot be handled by this algorithm because

no \pure" object pixels exist.

When the boundary speci�cation method can be used, the algorithm produces

more accurate results and ensures that any errors are local. For many boundary re-

gions, however, the topology makes this impossible. Specifying object regions directly

solves this problem, but only when the color distributions are spatially uniform over

the image. Preventing distributions from sharing colors is more di�cult in this case,

and a method of providing local correspondence for arbitrary region topologies would

be helpful.

The fact that we are excluding colors in objects that are not close to the boundary

of the manifold in color space has the practical e�ect of producing biases in the alpha

values. Angle conicts in particular force us to overestimate values with respect to

the signature with two of the three collinear clusters. Using information about the

spatial distribution and relative amounts of colors might allow us to choose one color

or the other at random.

Finally, we reiterate that this algorithm is indeed a tool, not a system. Without
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reliable user input as to the location of the boundary, the algorithm cannot succeed

unless the boundary can be extracted through edge detection or segmentation algo-

rithms, an unlikely prospect for the types of boundaries that bene�t most from this

algorithm. Nevertheless, it expands the power of image extraction techniques.



Chapter 6

Conclusions

Distributions form more accurate representations of image neighborhoods than can be

achieved by using one value or by assuming that a neighborhood can be approximated

by a polynomial surface. The results of the preceding three chapters have shown that

this increase in accuracy does indeed have advantages when performing early vision

tasks. We now summarize the overall contributions and point out areas for future

research.

6.1 Contributions of the Thesis

The variety of natural and man-made objects in the world leads to more possibilities

for a neighborhood of pixel values than we can account for using established models.

Early edge detectors modeled neighborhoods as constant in intensity or color. Later,

neighborhoods were modeled as quasi-constant surfaces such as hyperbolic tangents

and then planes that were allowed to tilt. Such e�orts did extend the set of detectable

edges.

However, even polynomial surface models do not adequately represent waterfalls,

ivy, or bricks except at the smallest scales where the assumptions made by previous

models are valid. It has long been known that feature detection at large scales is

more likely to yield robust, salient features, but the problem of how to get meaningful

output at large scales has not been adequately addressed. Distributions are ideal for

89
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this case, as the color signatures we use to represent them can have arbitrary size.

The results have repeatedly shown a marked increase in quality, though we have made

computational tradeo�s that a�ect performance in images where simpler models are

valid. The most striking qualitative di�erence is that the compass operator is able

to preserve information about occlusions compared to other operators; junctions are

the least likely places where edge models are valid.

All the arguments for using distributions for edge detection are even more true

of corner detection. The detector we propose is a natural extension of our edge

detector, whereas most edge detectors do not share this property. The di�culty of

combining outputs for di�erent color components is more pronounced than it is for

edge detection because corners are point features as opposed to ridge features and

because corners need more parameters to describe them. To our knowledge, the corner

detector presented here is the only one that works on color images, and it is certainly

the only one that can successfully deal with large, textured neighborhoods.

Estimating alpha is unlike the other two problems we have considered because it

requires substantial user input and does not provide much information about objects

in the world. Its relevance stems from the fact that it applies distributions to a class

of boundaries that cannot be found using standard notions about edges and corners.

Blue screen matting techniques are too restrictive if the user has only a single image to

work with. If the local distributions near a potential boundary pixel can be estimated

and are well separated in color space, we can �nd values of alpha that are stable with

respect to perturbations of the pixel's color. The results show that these alpha values

are also perceptually meaningful.

Overall, the conceptual advantage of distributions is the framework they present

for color or multi-spectral imagery. The models developed for greyscale feature detec-

tion are often adapted for color images, but most of the time the algorithms require

separate computation on each component. The methods presented in this work treat

the image values as vectors, resulting in one answer per pixel instead of many.
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6.2 What Still Lies Ahead

Despite the successes described here, we cannot claim to have had the last word on

detecting and representing boundaries. In this �nal section we discuss areas of future

research. We �rst consider problems within the scope of this work, followed by other

areas to which the principles discussed here might be applied and hopefully extended.

6.2.1 Potential Improvements

The biggest issue in implementing color distributions as a data structure is stability

as an operator translates through the image. The EMD was chosen for distance

computations in part because of its robustness. However, feature detection requires

�nding maxima, and EMD values are compared to those in adjacent neighborhoods.

Even small changes induced by those few pixels not in the overlap between two

adjacent neighborhoods can have noticeable e�ects on the locations of edge and corner

points. Similar problems a�ect alpha estimation even though it does not use the EMD.

Unfortunately, these problems are most noticeable near boundaries. Because the

colors of pixels near boundaries have sparse density in the distribution, these colors

are usually not represented as accurately. The result is that translating the window

often varies a pixel's representative greatly; it may be grouped with pixels from both

sides of an edge at di�erent times. This e�ect degrades localization and even causes

artifacts in alpha values at places where the local color distribution changes.

Another source of instability arises from our choice of the CIE-Lab color space.

Although the combination of CIE-Lab with a saturating distance measure has proven

e�ective, the colors produced through vector quantization do not always match hu-

man expectations. CIE-Lab was designed to measure distances between large, uniform

color patches, not individual pixels. Other representations derived fromCIE-Lab [124]

may better take these e�ects into account. A separate di�culty is that the transfor-

mation fromRGB to CIE-Lab or other perceptual color spaces has non-uniform e�ects

on noise. Our experiments showed that the greyscale compass operator works much

better in RGB than in CIE-Lab. A recent alternative proposed in [103] clustered in

RGB but computed distances using CIE-Lab.
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Again, these problems are exacerbated when �nding corners. Because corners are

point features, errors in localization are more noticeable. Also, the neighborhood

inside the corner may have many fewer pixels, so noise problems are even more likely

to produce inaccurate color signatures.

A separate area in which this work could be strengthened is the connection be-

tween the di�erent parts. We have already alluded to the fact that we were unable

to �nd a way to incorporate edge and corner information together. The corner de-

tector computes all possible 276 EMDs (using default parameter values) between

two complementary neighborhoods at a point. The resulting data structure must

contain enough information to describe precisely the structure of the image in that

neighborhood, yet we have not found a way to extract this information.

In addition, the edges produced by the compass operator are, in most cases,

insu�cient to use as the input to the alpha estimation algorithm. The fact that

the boundary region often changes width implies that edges from di�erent scales

would have to be combined to produce usable input, and we have already placed this

problem outside the scope of this work. Even so, edge detectors do not always form

the boundary we are interested in, either because the local nature of the algorithm

is insu�cient to detect a boundary that is global in nature, or because they lack

semantic information that is of primary interest to the user.

6.2.2 Future Applications

We believe that using distributions and recasting the resulting comparison problems

in terms of ow is one that can be applied to more than just the three applications we

have shown here. We end by describing some future possibilities and by considering

the next step in representing image neighborhoods.

The Marr-Hildreth edge detector is isotropic and relies on detecting zero crossings

in order to �nd edges. The sign of the operator states whether the center of a window

is brighter or darker than its surround. Though the drawbacks of isotropic edge

detectors have been made clear by many others, the operator is still popular because

it is guaranteed to form closed contours.
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What would a color version of this operator look like? One could add up the

response over the di�erent components (used in [64]), but this is not optimal. RGB

values are correlated with intensity, so there is little di�erence between color and

greyscale under this scheme. CIE-Lab components are uncorrelated, meaning that

the signs of the values at each pixel are also uncorrelated, leading to poor results.

It would seem that color signatures and the EMD would provide a good answer to

this dilemma. Unfortunately, the EMD, being a distance measure, yields only positive

values; zero crossings do not exist, so detecting edges becomes much more di�cult.

Polarity is a sensible concept only in one dimension and it is unde�ned in the three

dimensions of color. Is there an alternate formulation that makes more sense, or is

this another reason why the Laplacian of the Gaussian should not be used?

The compass operator �nds only step edges, but lines, or delta edges, are also

important in speci�c applications such as �nding roads in satellite images. A delta

edge detector is de�nitely anisotropic, so its implementation is necessarily slower than

that of the compass operator. The conceptual di�culty is that it would also respond

to step edges, albeit not as strongly. Distinguishing a strong response to a step edge

from a weaker response to a delta edge is di�cult under this formulation.

There is room for these principles to be applied to texture in two di�erent ways:

�nding edges in textured regions and implementing texture �lters. A family of �lters

applied to the same point in an image results in a vector, often quite long. These

vectors could be used as input to a multidimensional version of the compass operator.

The main issue here is creating a perceptual distance function. Since the �lters have

di�erent sizes, their values change at di�erent rates as we move across an image, and

the distance function must take this into account. Distributions have already been

used in this way for simple texture mosaics [87].

Another way to use distributions for texture is in implementing a �lter. For

instance, Gabor �lters are zero-mean, so they can be implemented for color images in

the same way as the compass operator. Doing so would reduce the length of the vector

by two-thirds since there would no longer be a need to �lter each image neighborhood

once for each color component. It would also eliminate the need to denote some

numbers in a vector as being more strongly related because the only di�erence between
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the �lters was the component to which each was applied. However, it is not clear

that the resulting vectors would still contain the same amount of information for

performing tasks such as classi�cation. Also, the polarity of the result may be as

important for Gabor �lters as for the Marr-Hildreth operator.

The most intriguing part of this work that remains unexplored is abnormality.

Lack of symmetry appears to be an important cue for junctions, and we have shown

that edges found by the compass operator reconstruct junctions more accurately than

previous methods. Discovering the relationship between the two, especially as scale

changes, would hopefully make it feasible to begin constructing relative depth maps

from single images based on occlusions.

We end by asking the question, what next? Distributions are the most complete

representation of a neighborhood that uses only pixel values. It may turn out that

other data structures or vector quantization algorithms may be better than what we

have proposed, but such improvements would only concur with the principles estab-

lished here. The most obvious generalization would include spatial information with

each cluster. In Chapter 5 we added the variance of each cluster to our representa-

tion, but its usage is not generalizable beyond our algorithm. Another quantity that

could be added is the spatial center of mass of a cluster. If a set of pixels that map

to a particular color is scattered evenly throughout a neighborhood, for example, it

may be useful to exclude that color from the EMD. The SUSAN operator [102] im-

plemented spatial ideas for �nding corners and edges simultaneously, but its model is

too idealized for the images used as examples here.

A more uni�ed method would extend a color vector to include its x- and y-

coordinates. This mixture of di�erent modalities immediately leads to the problem

of how color and spatial information should be weighed against each other, or even

whether the weighting should be constant for all tasks, which it is probably not. Re-

gardless, we predict that the most fruitful source of progress will come from merging

information about distributions of pixel values with their coordinates into a single,

uni�ed model. Neither color nor texture alone will �nd all the features we would like

to detect, but the combination of the two has the potential to take early vision even

farther.



Bibliography

[1] I. Abdou and W. Pratt. Qualitative design and evaluation of enhance-

ment/thresholding edge detector. Proceedings of the IEEE, 67(5):753{763, May

1979.

[2] J. Abramatic. Why the simplest \Hueckel" edge detector is a Roberts operator.

Computer Graphics and Image Processing, 17:79{83, 1981.

[3] J. Adams, M. Smith, and P. Johnson. Spectral mixture modeling: A new

analysis of rock and soil types at the Viking 1 lander site. Journal of Geophysical

Research, 91(B8):8098{8112, July 10, 1986.

[4] R. Alberto Salinas, C. Richardson, M. Abidi, and R. Gonzalez. Data fusion:

Color edge detection and surface reconstruction through regularization. IEEE

Transactions on Industrial Electronics, 43(3):355{363, June 1996.

[5] L. Alvarez and F. Morales. A�ne morphological multiscale analysis of cor-

ners and junctions. International Journal of Computer Vision, 25(2):95{107,

November 1997.

[6] P. Beaudet. Rotationally invariant image operators. In Proceedings of the

International Joint Conference on Pattern Recognition, pages 579{583, 1978.

[7] B. Bell and L. Pau. Contour tracking and corner detection in a logic pro-

gramming environment. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12(9):913{917, September 1990.

95



96 BIBLIOGRAPHY

[8] T. Binford and P.-C. Chiang. Generic, model-based edge estimation in the image

surface. In Proceedings of the Image Understanding Workshop, volume II, pages

1237{1246, May 1997.

[9] K. Bowyer, C. Kranenburg, and S. Dougherty. Edge detector evaluation using

empirical ROC curves. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, volume 1, pages 354{359, 1999.

[10] J. Canny. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(6):679{698, November 1986.

[11] T. Carron and P. Lambert. Color edge detector using jointly hue, saturation,

and intensity. In IEEE International Conference on Image Processing, volume 3,

pages 977{981, November 1994.

[12] T. Carron and P. Lambert. Fuzzy color edge extraction by inference rules:

Quantitative study and evaluation of performances. In IEEE International

Conference on Image Processing, volume 2, pages 181{184, October 1995.

[13] F. Chabat, G. Yang, and D. Hansell. A corner orientation detector. Image and

Vision Computing, 17(10):761{769, August 1999.

[14] M. Chapron. A new chromatic edge detector used for color image segmentation.

In Proceedings|International Conference on Pattern Recognition, volume III,

pages 311{314, August 1992.

[15] M. Chapron. A chromatic contour detector based on abrupt change techniques.

In IEEE International Conference on Image Processing, volume III, pages 18{

21, October 1997.

[16] C. Chen, J. Lee, and Y. Sun. Wavelet transformation for gray-level corner

detection. Pattern Recognition, 28(6):853{861, June 1995.

[17] S. Cohen. Finding Color and Shape Patterns in Images. PhD thesis, Computer

Science Department., Stanford University, Stanford, CA, May 1999.



BIBLIOGRAPHY 97

[18] J. Cooper, S. Venkatesh, and L. Kitchen. Early jump-out corner detectors.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(8):823{

828, August 1993.

[19] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, chapter 27.

McGraw-Hill, 1990.

[20] A. Cumani. Edge detection in multispectral images. CVGIP: Graphical Models

and Image Processing, 53(1):40{51, January 1991.

[21] A. Cumani, P. Grattoni, and A. Guiducci. An edge-based description of color

images. CVGIP: Graphical Models and Image Processing, 53(4):313{323, July

1991.

[22] R. Deriche. Using Canny's criteria to derive a recursively implemented optimal

edge detector. International Journal of Computer Vision, 1(2):167{187, 1987.

[23] R. Deriche and G. Giraudon. A computational approach for corner and ver-

tex detection. International Journal of Computer Vision, 10(2):101{124, April

1993.

[24] S. Di Zenzo. A note on the gradient of a multi-image. Computer Vision,

Graphics, and Image Processing, 33(1):116{125, January 1986.

[25] P. Djuric and J. Fwu. On the detection of edges in vector images. IEEE

Transactions on Image Processing, 6(11):1595{1601, November 1997.

[26] R. Dobrushin. Prescribing a system of random variables by conditional distri-

butions. Theory of Probability and its Applications, 15(3):458{486, September

1970.

[27] S. Dougherty and K. Bowyer. Objective evaluation of edge detectors using a

formally de�ned framework. In K. Bowyer and P. Phillips, editors, Empirical

Evaluation Techniques in Computer Vision, pages 211{234. IEEE Computer

Society Press, 1998.



98 BIBLIOGRAPHY

[28] C. Drewniok. Multispectral edge-detection|some experiments on data from

Landsat-TM. International Journal of Remote Sensing, 15(18):3743{3766, De-

cember 1994.

[29] R. Dudley. Distances of probability measures and random variables. Annals of

Mathematical Statistics, 39(5):1563{1572, 1968.

[30] J. Elder and S. Zucker. Local scale control for edge detection and blur es-

timation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(7):699{716, July 1998.

[31] K. Fishkin and B. Barsky. A family of new algorithms for soft �lling. Computer

Graphics, 18(3):235{244, July 1984.

[32] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles

and Practice. Addison-Wesley, Reading, MA, 1990.

[33] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Kluwer

Academic Publishers, Norwell, MA, 1992.

[34] R. Gray, D. Neuho�, and P. Shields. A generalization of Ornstein's �d distance

with applications to information theory. Annals of Probability, 3(2):315{328,

April 1975.

[35] M. Han, D. Jang, and J. Foster. Identi�cation of corner points of two-

dimensional images using a line search method. Pattern Recognition, 22(1):13{

20, February 1989.

[36] C. Harris and M. Stephens. A combined corner and edge detector. In Fourth

Alvey Conference, pages 147{152, 1988.

[37] F. Heitger. Feature detection using suppression and enhancement. Technical

Report 163, Swiss Federal Institute of Technology ETH, Zurich, 1995.

[38] M. Hueckel. An operator which locates edges in digitized pictures. Journal of

the ACM, 18(1):113{125, January 1971.



BIBLIOGRAPHY 99

[39] T. Huntsberger and M. Descalzi. Color edge detection. Pattern Recognition

Letters, 3:205{209, 1985.

[40] D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing images using

the Hausdor� distance. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 15(9):850{863, September 1993.

[41] M. Isard and A. Blake. CONDENSATION|conditional density propagation

for visual tracking. International Journal of Computer Vision, 29(1):5{28, 1998.

[42] Q. Ji and R. Haralick. Breakpoint detection using covariance propagation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):845{

851, August 1998.

[43] M. Kelly. Edge detection by computer using planning. In B. Meltzer and

D. Michie, editors, Machine Intelligence, volume VI, pages 397{409. Edinburgh

University Press, 1971.

[44] L. Kitchen and A. Rosenfeld. Grey level corner detection. Pattern Recognition

Letters, 1(2):95{102, December 1982.

[45] C. Kranenburg. Personal communication, February 2000.

[46] R. Laganiere. A morphological operator for corner detection. Pattern Recogni-

tion, 31(11):1643{1652, November 1998.

[47] Y. Leclerc and S. Zucker. The local structure of image discontinuities in one

dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence,

9(3):341{355, May 1987.

[48] J. Lee, Y. Sun, C. Chen, and C. Tsai. Wavelet based corner detection. Pattern

Recognition, 26(6):853{865, June 1993.

[49] K. Lee and Z. Bien. A gray-level corner detector using fuzzy-logic. Pattern

Recognition Letters, 17(9):939{950, August 1996.



100 BIBLIOGRAPHY

[50] V. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Mathematics|Doklady, 10:707{710, 1966.

[51] B. Luo, A. Cross, and E. Hancock. Corner detection via topographic analysis

of vector potential. Pattern Recognition Letters, 20(6):635{650, June 1999.

[52] L. Macaire, V. Ultre, and J. Postaire. Determination of compatibility coe�-

cients for colour edge detection by relaxation. In IEEE International Conference

on Image Processing, volume III, pages 1045{1048, September 1996.

[53] R. Machuca and K. Phillips. Applications of vector �elds to image processing.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(3):316{

329, May 1983.

[54] M. Malowany and A. Malowany. Color-edge detectors for a VLSI convolver. In

Proceedings of the SPIE, volume 1199, pages 1116{1126, 1989.

[55] D. Marr and E. Hildreth. Theory of edge-detection. Proceedings of the Royal

Society of London, B-207(1167):187{217, 1980.

[56] J. Matas and J. Kittler. Junction detection using probabilistic relaxation. Image

and Vision Computing, 11(4):197{202, May 1993.

[57] G. Medioni and Y. Yasumoto. Corner detection and curve representation using

cubic B-splines. Computer Vision, Graphics, and Image Processing, 39(3):267{

278, September 1987.

[58] R. Mehrotra, S. Nichani, and N. Ranganathan. Corner detection. Pattern

Recognition, 23(11):1223{1233, November 1990.

[59] T. Mitsunaga, T. Yokoyama, and T. Totsuka. AutoKey: Human assisted key

extraction. In Computer Graphics Proceedings (SIGGRAPH), pages 265{272,

August 1995.

[60] A. Moghaddamzadeh and N. Bourbakis. A fuzzy approach for smoothing and

edge detection in color images. In Proceedings of the SPIE, volume 2421, pages

90{102, February 1995.



BIBLIOGRAPHY 101

[61] A. Moghaddamzadeh, D. Goldman, and N. Bourbakis. Fuzzy-like approach for

smoothing and edge detection in color images. International Journal of Pattern

Recognition and Arti�cial Intelligence, 12(6):801, September 1998.

[62] F. Mokhtarian and R. Suomela. Robust image corner detection through curva-

ture scale space. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 20(12):1376{1381, December 1998.

[63] H. Moravec. Towards automatic visual obstacle avoidance. In Proceedings of

the International Joint Conference on Arti�cial Intelligence, page 584, 1977.

[64] E. Mortensen and W. Barrett. Interactive segmentation with intelligent scissors.

CVGIP: Graphical Models and Image Processing, 60:349{384, September 1998.

[65] V. Nalwa. A Guided Tour of Computer Vision. Addison-Wesley, Reading, MA,

1993.

[66] V. Nalwa and T. Binford. On detecting edges. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(6):699{714, November 1986.

[67] A. Nering and A. Tucker. Linear Programs and Related Problems, chapter 9.

Academic Press, New York, 1993.

[68] R. Nevatia. A color edge detector. In Proceedings|International Conference

on Pattern Recognition, pages 829{832, November 1976.

[69] R. Nevatia. A color edge detector and its use in scene segmentation. IEEE

Transactions on Systems, Man and Cybernetics, 7(11):820{826, November 1977.

[70] W. Niblack, R. Barber, W. Equitz, M. D. Flickner, E. H. Glasman, D. Petkovic,

P. Yanker, C. Faloutsos, and G. Taubin. Querying images by content, using

color, texture, and shape. In Proceedings of the SPIE, volume 1908, pages

173{187, April 1993.

[71] J. Noble. Finding corners. Image and Vision Computing, 6(2):121{128, May

1988.



102 BIBLIOGRAPHY

[72] M. Orchard and C. Bouman. Color quantization of images. IEEE Transactions

on Signal Processing, 39(12):2677{2690, December 1991.

[73] K. Paler, J. Foglein, J. Illingworth, and J. Kittler. Local ordered gray levels

as an aid to corner detection. Pattern Recognition, 17(5):535{543, September

1984.

[74] L. Parida, D. Geiger, and R. Hummel. Junctions: Detection, classi�cation, and

reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 20(7):687{698, July 1998.

[75] W. Perkins and T. Binford. A corner �nder for visual feedback. Computer

Graphics and Image Processing, 2(3/4):355{376, December 1973.

[76] M. Pietikainen and D. Harwood. Edge information in color images based on

histograms of di�erences. In Proceedings|International Conference on Pattern

Recognition, pages 594{596, 1986.

[77] K. Pingle. Visual perception by a computer. In A. Grasselli, editor, Automatic

Interpretation and Classi�cation of Images, pages 277{284. Academic Press,

New York, 1969.

[78] T. Porter and T. Du�. Compositing digital images. Computer Graphics,

18(3):253{259, July 1984.

[79] J. Prewitt. Object enhancement and extraction. In B. Lipkin and A. Rosenfeld,

editors, Picture Processing and Psychopictorics, pages 75{149. Academic Press,

New York, 1970.

[80] K. Rangarajan, M. Shah, and D. Van Brackle. Optimal corner detector. Com-

puter Vision, Graphics, and Image Processing, 48(2):230{245, November 1989.

[81] L. Roberts. Machine perception of three-dimensional solids. In J. Tippet,

D. Berkowitz, L. Clapp, C. Koester, and A. Vanderburgh, Fr., editors, Optical

and Electro-Optical Information Processing, pages 159{197. MIT Press, Cam-

bridge, MA, 1965.



BIBLIOGRAPHY 103

[82] G. Robinson. Color edge detection. Proceedings of the SPIE, 87:126{133, August

1976.

[83] G. Robinson. Color edge detection. Optical Engineering, 16(5):479{484,

September 1977.

[84] K. Rohr. Recognizing corners by �tting parametric models. International Jour-

nal of Computer Vision, 9(3):213{230, 1992.

[85] A. Rosenfeld. The max Roberts operator is a Hueckel-type edge detector. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 3(1):101{103, Jan-

uary 1981.

[86] A. Rosenfeld and A. Kak. Digital Picture Processing. Academic Press, New

York, 1976.

[87] Y. Rubner. Perceptual Metrics for Image Database Navigation. PhD thesis,

Computer Science Department, Stanford University, Stanford, CA, May 1999.

[88] Y. Rubner, C. Tomasi, and L. Guibas. A metric for distributions with appli-

cations to image databases. In IEEE International Conference on Computer

Vision, pages 59{66, January 1998.

[89] M. Ruzon and C. Tomasi. Color edge detection with the compass operator. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, volume 2, pages 160{166, June 1999.

[90] M. Ruzon and C. Tomasi. Corner detection in textured color images. In IEEE

International Conference on Computer Vision, volume II, pages 1039{1045,

September 1999.

[91] M. Ruzon and C. Tomasi. Alpha estimation in natural images. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, June

2000. to appear.



104 BIBLIOGRAPHY

[92] E. Saber, A. Tekalp, and G. Bozdagi. Fusion of color and edge information

for improved segmentation and edge linking. Image and Vision Computing,

15(10):769{780, October 1997.

[93] J. Scharcanski and A. Venetsanopoulos. Edge detection of color images using

directional operators. IEEE Transactions on Circuits and Systems for Video

Technology, 7(2):396{401, April 1997.

[94] T. Sebok, L. Roemer, and G. Malindzak, Jr. An algorithm for line intersection

identi�cation. Pattern Recognition, 13(2):159{166, April 1981.

[95] U. Seeger and R. Seeger. Fast corner detection in grey-level images. Pattern

Recognition Letters, 15(7):669{675, July 1994.

[96] H. Shen and A.Wong. Generalized texture representation and metric.Computer

Vision, Graphics, and Image Processing, 23(2):187{206, August 1983.

[97] R. Shepard. Toward a universal law of generalization for psychological science.

Science, 237(4820):1317{23, 11 September 1987.

[98] M. Shin, D. Goldgof, and K. Bowyer. An objective comparison methodology of

edge detection algorithms using a structure from motion task. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

190{195, 1998.

[99] A. Shiozaki. Edge extraction using entropy operator. Computer Vision, Graph-

ics, and Image Processing, 36(1):1{9, October 1986.

[100] A. Singh and M. Shneier. Grey level corner detection: A generalization and

a robust real time implementation. Computer Vision, Graphics, and Image

Processing, 51(1):54{69, July 1990.

[101] A. Smith and J. Blinn. Blue screen matting. In Computer Graphics Proceedings

(SIGGRAPH), pages 259{268, August 1996.



BIBLIOGRAPHY 105

[102] S. Smith and J. Brady. SUSAN|a new approach to low-level image-processing.

International Journal of Computer Vision, 23(1):45{78, May 1997.

[103] K. Song, J. Kittler, and M. Petrou. Defect detection in random color textures.

Image and Vision Computing, 14(9):667{683, October 1996.

[104] M. Swain and D. Ballard. Color indexing. International Journal of Computer

Vision, 7(1):11{32, November 1991.

[105] H. Tao and T. Huang. Color image edge detection using cluster analysis. In

IEEE International Conference on Image Processing, volume I, pages 834{837,

1997.

[106] C. Tomasi and T. Kanade. Shape and motion from image streams under or-

thography: A factorization method. International Journal of Computer Vision,

9(2):137{154, November 1992.

[107] P. Trahanias and A. Venetsanopoulos. Color edge detection using vector order

statistics. IEEE Transactions on Image Processing, 2(2):259{264, April 1993.

[108] P. Trahanias and A. Venetsanopoulos. Vector order-statistics operators as

color edge detectors. IEEE Transactions on Systems, Man and Cybernetics,

B-26(1):135{143, February 1996.

[109] M. Trajkovic and M. Hedley. Fast corner detection. Image and Vision Com-

puting, 16(2):75{87, February 1998.

[110] P. Tsang and W. Tsang. Edge detection on object color. In IEEE International

Conference on Image Processing, volume 3, pages 1049{1052, 1996.

[111] W. Tsang and P. Tsang. Suppression of false edge-detection due to specular

reection in color images. Pattern Recognition Letters, 18(2):165{171, February

1997.

[112] S. Vallender. Calculation of the Wasserstein distance between probability distri-

butions on the line. Theory of Probability and its Applications, 18(4):784{786,

December 1973.



106 BIBLIOGRAPHY

[113] H. von Helmholtz. Handbuch der Physiologischen Optik, volume 1. The Optical

Society of America, 1909. Translated by J.P.C. Southall, 1924.

[114] H. Wang and M. Brady. Real-time corner detection algorithm for motion esti-

mation. Image and Vision Computing, 13(9):695{703, November 1995.

[115] S.-J. Wang and T. Binford. Generic, model-based estimation and detection of

discontinuities in image surfaces. In Proceedings of the Image Understanding

Workshop, volume II, pages 113{116, November 1994.

[116] A. Weeks and H. Myler. Edge detection of color images using the HSL color

space. In Proceedings of the SPIE, volume 2424, pages 291{301, February 1995.

[117] M. Werman, S. Peleg, and A. Rosenfeld. A distance metric for multidimensional

histograms. Computer Vision, Graphics, and Image Processing, 32(3):328{336,

December 1985.

[118] Z. Wu and A. Rosenfeld. Filtered projections as an aid in corner detection.

Pattern Recognition, 16(1):31{38, January 1983.

[119] G. Wyszecki and W. Stiles. Color Science: Concepts and Methods, Quantitative

Data and Formulae. John Wiley and Sons, New York, NY, 1982.

[120] X. Xie, R. Sudhakar, and H. Zhuang. Corner detection by a cost minimization

approach. Pattern Recognition, 26(8):1235{1243, August 1993.

[121] C. Yang and W. Tsai. Reduction of color space dimensionality by moment-

preserving thresholding and its application for edge-detection in color images.

Pattern Recognition Letters, 17(5):481{490, May 1996.

[122] W. Yu, K. Daniilidis, and G. Sommer. Rotated wedge averaging method for

junction classi�cation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 390{395, 1998.

[123] C. Zetsche and G. Krieger. Natural-Image Statistics and the Exploitation of

Local Intrinsic Dimensionality. Akademischer Verlag, Munich, 1997.



BIBLIOGRAPHY 107

[124] X. Zhang and B. Wandell. A spatial extension of CIELAB for digital color

image reproduction. In Proceedings of the Society for Information Display,

pages 731{734, San Diego, CA, May 1996.

[125] Z. Zheng, H.Wang, and E. Teoh. Analysis of gray level corner detection. Pattern

Recognition Letters, 20(2):149{162, February 1999.


