
FINITE-STATE ANALYSIS OF SECURITY PROTOCOLS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Vitaly Shmatikov

May 2000

Copyright by Vitaly Shmatikov 2000

All Rights Reserved

ii

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

John C. Mitchell
(Principal Adviser)

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

David L. Dill

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for the

degree of Doctor of Philosophy.

Dan Boneh

Approved for the University Committee on Graduate Studies:

iii

Abstract

Security protocols are notoriously di�cult to design and debug. Even if the cryptographic primitives

underlying a protocol are secure, unexpected interactions between parts of the protocol or several

instances of the same protocol can lead to catastrophic security breaches. Since protocol attacks

tend to be very subtle and hard to catch during the design and analysis process, some computer

assistance is desirable.

The main contribution of this thesis is to demonstrate how fully automatic �nite-state techniques

can be used to analyze a wide variety of security protocols. While the general methodology of

�nite-state analysis, also referred to as model-checking, is well established in protocol veri�cation,

its application to security protocols is a recent area of research. Therefore, we present several

case studies in which security protocols are simpli�ed and formally modeled as �nite-state systems.

Automatic exhaustive state search is then performed. The search either discovers a state in which

protocol correctness conditions are violated - the sequence of steps leading to such a state from the

start state represents a successful attack on the protocol, - or proves the protocol correct subject to

the limitations of the model.

In our �rst study, we analyze SSL 3.0, a real-world Internet security protocol that is widely

deployed and used by millions of computer users. In the second study, we focus on fair exchange.

Unlike the secrecy and authentication protocols that have traditionally been the subject of formal

security analysis, fair exchange protocols are designed to guarantee properties such as fairness and

accountability. Modeling these properties, and using automatic tools to discover attacks are im-

portant steps towards establishing �nite-state analysis as a valid component of the protocol design

process.

The formal adversary model used in the case studies is relatively simple, treating the under-

lying cryptography as a perfect \black box." Nevertheless, the model is surprisingly e�ective for

discovering previously unknown weaknesses and attacks on published security protocols.

All analyses described in this thesis were performed using a general-purpose �nite-state tool

called Mur'. To alleviate the state-space explosion problem, we developed several state reduction

techniques that exploit fundamental properties of security protocols to reduce the size of the state

graph that has to be explored by several orders of magnitude. These optimizations make analysis

iv

of large protocols feasible, and establish Mur' as a viable protocol analysis tool.

v

Acknowledgements

This thesis would not have been possible without support and guidance of my advisor, John Mitchell.

I owe him a debt of gratitude for helping me choose security protocol analysis as my thesis topic,

providing advice and encouragement along the way, sponsoring my trips to conferences, paying for

whatever computer equipment struck my fancy, and, last but not the least, putting up with long

periods of idleness, procrastination, and inactivity when my energy was dissipated on other pursuits.

The Hertz Foundation generously paid for 5 of my 6 years at Stanford, supporting what I con-

sider - from a graduate student perspective - a positively luxurious lifestyle and asking for virtually

nothing in return.

I am deeply grateful to Uli Stern who was my principal collaborator for the �rst two years of

my research on security protocol analysis. He introduced me to the �eld of protocol veri�cation,

sparked many ideas, and made an important contribution to some of the results presented in this

thesis.

I owe special thanks to the members of my reading committee, David Dill and Dan Boneh, for

graciously agreeing to review this thesis, and their helpful comments.

Amit Patel and Steve Freund performed the unimaginable feat of tolerating me as an o�cemate

for many years in spite of my taking over the better half of the o�ce and subjecting them to hours

of phone conversations in a language they could not understand.

I am grateful that I had the honor to work with Viviana Bono and Amit on topics in programming

language theory of which they knew much more than I did. I learned a lot from them. Many friends

and colleagues at Stanford made it a place that I will sorely miss. Of these, Leonid Litvak and

Dominic Hughes deserve a special mention.

Finally, none of this would have happened were it not for my parents who kept as close a track

of my progress at Stanford as was humanly possible from 6,000 miles away. They were a sure source

of support when my con�dence
agged. My PhD is their achievement to a much larger degree than

they realize.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Background and motivation . 1

1.2 Related work . 3

1.2.1 Finite-state analysis . 3

1.2.2 Hybrid approaches . 4

1.2.3 Theorem proving . 4

2 Overview of the Mur' Veri�er 6

2.1 The Mur' veri�cation system . 6

2.2 The methodology . 7

2.3 Intruder model . 8

2.4 E�ciency . 9

3 Case Study: SSL 3.0 10

3.1 Overview . 10

3.2 The SSL 3.0 handshake protocol . 11

3.3 Modeling SSL 3.0 . 13

3.3.1 Notation . 13

3.3.2 Assumptions about cryptography . 14

3.3.3 Protocol A . 15

3.3.4 Protocol B . 16

3.3.5 Protocol C . 17

3.3.6 Protocol D . 19

3.3.7 Protocol E . 21

3.3.8 Protocol F . 23

vii

3.3.9 Protocol Z (�nal) . 24

3.3.10 Protocol Z vs. SSL 3.0 . 26

3.4 Conclusions . 28

4 Mur' Optimizations 29

4.1 Overview . 29

4.2 Properties of security protocols . 30

4.2.1 Protocol invariants are monotonic . 30

4.2.2 Intruder controls the network . 31

4.2.3 Honest protocol participants are independent 31

4.3 Protocols as state graphs . 31

4.3.1 States . 32

4.3.2 Rules for honest participants . 32

4.3.3 Rules for the intruder . 33

4.3.4 State graph . 34

4.3.5 Soundness of state reduction . 34

4.4 State reduction techniques . 35

4.4.1 Intruder always intercepts . 35

4.4.2 Intruder does not send if honest participant can send 37

4.5 Implementation issues . 39

4.5.1 Rule priorities . 39

4.5.2 Parameterized rule conditions . 40

4.5.3 Preliminary results . 42

4.6 Conclusions . 43

5 Case Study: Contract Signing 44

5.1 Introduction . 44

5.2 Fair exchange . 47

5.3 Asokan-Shoup-Waidner protocol . 48

5.3.1 Objectives . 48

5.3.2 Assumptions . 48

5.3.3 Protocol . 49

5.3.4 Correctness conditions . 52

5.4 Analysis of the ASW protocol . 53

5.4.1 Modeling corrupt participants . 53

5.4.2 Fairness . 54

5.4.3 Timeliness . 58

5.4.4 Non-repudiability . 58

viii

5.4.5 Trusted third party accountability . 59

5.4.6 Repairing the protocol . 60

5.5 Garay-Jakobsson-MacKenzie protocol . 60

5.5.1 Objectives and assumptions . 60

5.5.2 Private Contract Signatures . 61

5.5.3 Protocol . 61

5.5.4 Correctness conditions . 63

5.6 Analysis of the GJM protocol . 64

5.6.1 Modeling abuse-freeness . 65

5.6.2 Completeness . 65

5.6.3 Fairness . 66

5.6.4 Trusted third party accountability . 68

5.6.5 Abuse-freeness . 69

5.6.6 Repairing the protocol . 69

5.7 Comparison of the two protocols . 70

5.8 Conclusions . 72

6 Conclusions 73

A SSL 2.0 75

A.1 New session . 75

A.2 Resumed session . 76

A.3 Resumed session with client authentication . 76

B SSL 3.0: master secret computation 77

Bibliography 78

ix

List of Tables

4.1 Numbers of reachable states and execution times dependent on the model parameters

in the Kerberos protocol . 42

x

List of Figures

3.1 The SSL 3.0 handshake protocol . 27

4.1 Reduction: \Intruder always intercepts" . 36

4.2 Reduction: \Intruder does not send if honest participant can send" 37

A.1 SSL 2.0 basic protocol . 75

A.2 SSL 2.0 resumption protocol . 76

A.3 SSL 2.0 resumption protocol with authentication . 76

xi

Chapter 1

Introduction

1.1 Background and motivation

A communication protocol is a set of rules. It de�nes the format of data transmitted between two

or more agents - typically, computers or other electronic devices. As public computer networks such

as the Internet become an increasingly important medium of information exchange, protocols have

to operate in an environment where not every agent is trusted, and some of the agents may have

a malicious intent. The main purpose of a security protocol is to de�ne a set of rules for trans-

mitting information in a way that prevents a malicious agent(s) - who may be actively involved in

communication or passively observing network tra�c - from in
icting damage upon honest protocol

participants. Typically, a security protocol relies on one or more cryptographic functions such as

encryption, digital signature scheme, etc. to achieve its purpose.

Protection of information is a broad concept. Depending on the situation, it may involve secrecy -

roughly, ensuring that a particular piece of data cannot be accessed by an unauthorized agent. In a

network where the identity of the protocol counterparty cannot be established directly, authentication

is an important task. If the goal of the protocol is to enable two parties who do not necessarily trust

each other to exchange items of value, mutual fairness must be guaranteed. A security protocol

may be required to provide accountability. In this case, the protocol must furnish every participant

with su�cient evidence so that a misbehaving party can be identi�ed and proved guilty. A number

of other properties have been proposed by protocol designers and users.

Determining whether a protocol indeed guarantees a particular security property is a di�cult

task. Humans are fallible. There are known cases of protocols where errors were discovered 20

years after the protocol had been unveiled to public review [36]. Not all of the protocol errors are

due to
awed cryptography. Even if the cryptographic primitives underlying a protocol are secure,

unexpected interactions between parts of the protocol or several instances of the same protocol

can lead to catastrophic security breaches. Therefore, some form of computer assistance in �nding

1

CHAPTER 1. INTRODUCTION 2

attacks on protocols and proving protocols correct is desirable.

An extensive body of formal methods has been developed for veri�cation of hardware and soft-

ware systems. Applied to a security protocol, they can be used to establish whether the protocol

guarantees the security properties intended by its designers. Formal methods are not a replacement

for human analysis. The class of attacks they are capable of �nding is necessarily limited. Therefore,

\proofs" of correctness produced by means of formal analysis should always be viewed with caution.

Nevertheless, application of formal methods to security protocol analysis is useful insofar as it helps

discover errors in protocol design at an early stage and prevents deployment of
awed protocols.

This thesis focuses on a particular
avor of formal analysis: �nite-state analysis, also referred

to as model-checking. After the protocol is represented as an abstract �nite-state system and the

protocol's security guarantees are expressed as state invariants, the �nite-state tool automatically

explores the entire state graph reachable from the initial state. If there exists a reachable state in

which an invariant is violated, the path from the initial state to the violating state represents an

attack on the protocol.

For large protocols, manual veri�cation of all possible interactions between protocol participants

is impossible. Finite-state tools provide a useful service to the protocol analyst by automatically

enumerating all protocol interactions and verifying that the desired properties hold in every case.

This approach ideally complements more advanced techniques that rely on detailed human analysis.

To represent a protocol as an abstract �nite-state model, it is necessary to clearly specify all mes-

sage sequences and security properties. This translation from an informal speci�cation published

as an RFC or academic paper into a simple, precise model can be very valuable. Many protocol

errors result from a misunderstanding of the cryptographic and other assumptions underlying the

protocol. Creation of a �nite-state model for the protocol requires careful speci�cation of all as-

sumptions and thus helps discover such errors. Examples can be found in the case studies below.

The resulting abstract model also has an independent value since it can be used by other protocol

analysis techniques.

Finite-state analysis is conceptually simple and fully automatic, and can be employed even by

protocol designers who are not formal methods experts. The class of attacks that can be found is,

however, limited. The protocol model analyzed by the �nite-state tool must treat cryptography at

an abstract level, typically ignoring the number-theoretic properties of the underlying cryptographic

functions. Because the state graph must be �nite, the model must impose a �nite bound on the

number of protocol instances, principals, and applications of cryptographic functions, potentially

missing some attacks.

The purpose of this thesis is to demonstrate that �nite-state techniques can be successfully used

to analyze a wide variety of security protocols, uncovering nontrivial insights and, in some cases,

attacks that have been overlooked by human analysts. Therefore, case studies form the core of the

thesis. We start by giving an overview of Mur', the �nite-state analysis tool used in the rest of the

CHAPTER 1. INTRODUCTION 3

thesis, in Chapter 2. A case study of the SSL 3.0 protocol, the de facto standard for secure Internet

communications, is presented in Chapter 3. In Chapter 4, we describe state reduction techniques and

Mur' optimizations that make analysis of large protocols feasible. Chapter 5 describes application

of �nite-state analysis to fair exchange protocols, using two online contract signing protocols as case

studies. Finally, conclusions appear in Chapter 6.

The key contributions presented in this thesis have previously appeared in a series of conference

and workshop publications [46, 54, 52, 53]. The basic methodology of using Mur' for �nite-state

analysis of security analysis was �rst developed by Mitchell, Mitchell, and Stern [45].

1.2 Related work

Formal methods have been extensively used to analyze key exchange and authentication protocols.

In this section, we give a brief overview of the �eld, focusing on the methods that are most similar

to the one used in this thesis. Comparative studies of di�erent approaches can be found in [32] and

[42].

1.2.1 Finite-state analysis

FDR

The Failure Divergences Re�nement Checker (FDR) [39, 49], is a general-purpose model checker

for Communicating Sequential Processes (CSP) [27]. To analyze a protocol with FDR, it is neces-

sary to model protocol participants as CSP processes, add the adversary model, and use FDR to

test whether the implementation of the protocol re�nes the speci�cation by exhaustively searching

through all states reachable by the processes. The general methodology of security protocol anal-

ysis with FDR was developed by Lowe, Roscoe, et al. [50, 37, 51] and led to some early successes

in discovering attacks on published protocols, such as Lowe's attack on the Needham-Schroeder

Public-Key authentication protocol [36, 37]. Lowe also developed a tool called Casper [38] for auto-

matic construction of the adversary model from the high-level protocol speci�cation. FDR is fully

automatic, but su�ers from the usual drawbacks of �nite-state analysis such as the need to impose

�nite limits on system parameters and exponential state space explosion.

Brutus

Brutus is a special-purpose model checker developed by Clarke, Jha, and Marrero [41, 11]. It was

designed especially for security protocol analysis. Unlike general-purpose model checkers such as

FDR, Brutus explicitly maintains the knowledge corresponding to the principals and the adversary.

By representing this knowledge as a set of atomic facts and rewrite rules, Brutus can implicitly

represent an in�nite set of facts.

Interrogator

CHAPTER 1. INTRODUCTION 4

Interrogator [44] is a special-purpose model checker for security protocols developed by Jonathan

Millen. Starting from an insecure state, it uses backward search to look for a path from the initial

state. If a path is found, it corresponds to a successful attack on the protool. If the search fails,

however, nothing can be concluded about the security of the protocol.

1.2.2 Hybrid approaches

Athena

Athena [55], developed by Dawn Song, represents protocols using the Strand Space Model [21] of

Thayer Fabrega et al. Protocol properties are speci�ed as logic formulas, and an automatic proof

search is performed using both model checking and theorem proving techniques. If a counterexample

is found, an attack on the protocol can be constructed. Because it represents protocols using the

Strand Space Model, Athena can verify an arbitrary number of concurrent protocol instances, and

the state space to be searched is typically smaller than for pure �nite-state analysis tools. However,

there is no guarantee that proof search will terminate.

NRL Protocol Analyzer

The NRL Protocol Analyzer [43] by Meadows is a special-purpose veri�cation tool for security

protocols. It uses a combination of model checking and theorem proving. NRL Protocol Analyzer

starts from an insecure goal state and searches the state space backwards to prove that the goal

state in unreachable. Theorem-proving techniques are used to reduce the size of the state space to

be searched. Protocol Analyzer can prove protocol properties for an arbitrary number of protocol

instances, but analysis is not fully automatic, and there is no guarantee of termination.

Bolignano

Bolignano [6, 7] proposed a veri�cation technique that combines model-checking with abstraction

to enable fully automatic analysis of security protocols. First, an abstract model of the protocol

is constructed and protocol properties are translated into properties of the abstract model. Then,

exhaustive search is performed on the �nite state space of the abstract model to prove that properies

hold in every reachable state. The advantage of this approach is that in�nite state spaces can be

collapsed into the �nite-state space of the abstract model, and security properties of the protocols

can thus be proved in the general case, without limitations on the number of instances, etc. The

drawback is that a safe abstraction may be di�cult to construct for a given protocol property.

1.2.3 Theorem proving

Isabelle

Paulson [48] applied Isabelle, a general-purpose theorem prover for higher-order logics, to verify

properties of security protocols by induction on protocol traces. While analysis can be performed

CHAPTER 1. INTRODUCTION 5

for an arbitrary number of instances, there is no guarantee of termination, and it may be di�cult

to reconstruct the attack on the protocol from a failed proof.

Logics of authentication

Belief logics such as BAN [9] and GNY [25] have been proposed for reasoning about properties of

security protocols. Proofs are typically constructed by hand, and are error-prone. Kindred and

Wing developed a technique for automatic theory generation for belief logics [33].

Chapter 2

Overview of the Mur' Veri�er

The general methodology for modeling security protocols with the Mur' �nite-state analysis tool

was developed by Mitchell, Mitchell, and Stern [45]. In this chapter, we outline the basic approach

to protocol analysis with Mur'.

2.1 The Mur' veri�cation system

Mur' [16] is a protocol or, more generally, �nite-state machine veri�cation tool. It has been suc-

cessfully applied to several industrial protocols, especially in the domains of multiprocessor cache

coherence protocols and multiprocessor memory models [17, 57, 62]. The purpose of �nite-state anal-

ysis, commonly called \model checking," is to exhaustively search all execution sequences. While

this process often reveals errors, failure to �nd errors does not imply that the protocol is com-

pletely correct, because the Mur' model may simplify certain details and is inherently limited to

con�gurations involving a small number of, say, clients and servers.

To use Mur' for veri�cation, one has to model the protocol in the Mur' language and augment

this model with a speci�cation of the desired properties. The Mur' system automatically checks,

by explicit state enumeration, if all reachable states of the model satisfy the given speci�cation. For

the state enumeration, either breadth-�rst or depth-�rst search can be selected. Reached states are

stored in a hash table to avoid redundant work when a state is revisited. The memory available for

this hash table typically determines the largest tractable problem.

The Mur' language is a simple high-level language for describing nondeterministic �nite-state

machines. Many features of the language are familiar from conventional programming languages.

The main features not found in a \typical" high-level language are described in the following para-

graphs.

The state of the model consists of the values of all global variables. In a startstate statement,

initial values are assigned to global variables. The transition from one state to another is performed

6

CHAPTER 2. OVERVIEW OF THE MUR' VERIFIER 7

by rules. Each rule has a Boolean condition and an action, which is a program segment that is

executed atomically. The action may be executed if the condition is true (i.e., the rule is enabled)

and typically changes global variables, yielding a new state. Most Mur' models are nondeterministic

since states typically allow execution of more than one rule.

Mur' has no explicit notion of processes. Nevertheless a process can be implicitly modeled by a

set of related rules. The parallel composition of two processes in Mur' is simply done by using the

union of the rules of the two processes. Each process can take any number of steps (actions) between

the steps of the other. The resulting computational model is that of asynchronous, interleaving

concurrency. Parallel processes communicate via shared variables; there are no special language

constructs for communication.

The Mur' language supports scalable models. In a scalable model, one is able to change the size

of the model by simply changing constant declarations. When developing protocols, one typically

starts with a small protocol con�guration. Once this con�guration is correct, one gradually increases

the protocol size to the largest value that still allows veri�cation to complete. In many cases, an error

in the general (possibly in�nite state) protocol will also show up in a downscaled (�nite-state) version

of the protocol. Mur' can only guarantee correctness of the downscaled version of the protocol, but

not correctness of the general protocol. The Mur' veri�er supports automatic symmetry reduction

of models by special language constructs [29].

The desired properties of a protocol can be speci�ed in Mur' by invariants, which are Boolean

conditions that have to be true in every reachable state. If a state is reached in which some invariant is

violated, Mur' prints an error trace { a sequence of states from the start state to the state exhibiting

the problem.

2.2 The methodology

In outline, we have analyzed protocols using the following sequence of steps:

1. Formulate the protocol. This generally involves simplifying the protocol by identifying the key

steps and primitives. The Mur' formulation of a protocol, however, is more detailed than

the high-level descriptions often seen in the literature, since one has to decide exactly which

messages will be accepted by each participant in the protocol. Since Mur' communication is

based on shared variables, it is also necessary to de�ne an explicit message format as a Mur'

type.

2. Add an adversary to the system. We generally assume that the adversary (or intruder) can

masquerade as an honest participant in the system, capable of initiating communication with

a truly honest participant, for example. We also assume that the network is under control of

the adversary and allow the adversary the following actions:

CHAPTER 2. OVERVIEW OF THE MUR' VERIFIER 8

� overhear every message, remember all parts of each message, and decrypt ciphertext when

it has the key,

� intercept (delete) messages,

� generate messages using any combination of initial knowledge about the system and parts

of overheard messages.

Although it is simplest to formulate an adversary that nondeterministically chooses between

all possible actions at every step of the protocol, it is more e�cient to reduce the choices to

those that actually have a chance of a�ecting other participants.

3. State the desired correctness condition. A typical correctness criterion includes, e.g., that no

secret information can be learned by the intruder. Examples of correctness conditions can be

found in the case studies below.

4. Run the protocol for some speci�c choice of system size parameters. If Mur' �nds a reachable

state in which an invariant is violated, it outputs the sequence of rules leading to it from the

start state. This sequence e�ectively describes the attack.

2.3 Intruder model

The intruder model described above is limited in its capabilities and does not have all the power

that a real-life intruder may have. In the following, we discuss examples of these limitations.

No cryptanalysis. Our intruder ignores both computational and number-theoretic properties of

cryptographic functions. As a result, it cannot perform any cryptanalysis whatsoever. If it has the

proper key, it can read an encrypted message (or forge a signature). Otherwise, the only action it

can perform is to store the message for a later replay. We do not model any cryptographic attacks

such as brute-force key search (with a related notion of computational time required to attack the

encryption) or attacks relying on the mathematical properties of cryptographic functions.

No probabilities. Mur' has no notion of probability. Therefore, we do not model \propagation"

of attack probabilities through our �nite-state system (e.g., how the probabilities of breaking the

encryption, forging the signature, etc. accumulate as the protocol progresses). We also ignore, e.g.,

that the intruder may learn some probabilistic information about the participants' keys by observing

multiple runs of the protocol.

No partial information. Keys, nonces, etc. are treated as atomic entities in our model. Our

intruder cannot break such data into separate bits. It also cannot perform an attack that results in

the partial recovery of a secret (e.g., half of the secret bits).

CHAPTER 2. OVERVIEW OF THE MUR' VERIFIER 9

We will refer to this intruder model as the Dolev-Yao intruder, following [18]. A detailed study

of the model can be found in [19].

In spite of the above limitations, we believe that Mur' is a useful tool for analyzing security

protocols. It considers the protocol at a high level and helps discover a certain class of errors that

do not involve attacks on cryptographic functions employed in the protocol. For example, Mur' is

useful for discovering \authentication" bugs, where the assumptions about key ownership, source of

messages, etc. are implicit in the protocol but never veri�ed as part of the message exchange. Also,

Mur' models can successfully discover attacks on plaintext information (such as version rollback

attacks in SSL) and implicit assumptions about message sequence in the protocol (such as unac-

knowledged receipt of Finished messages in SSL { see Chapter 3). Mur' discovered a previously

unknown attack on the Garay-Jakobsson-MacKenzie abuse-free contract signing protocol, and a

weakness in the Asokan-Shoup-Waidner optimistic contract signing protocol (see Chapter 5).

2.4 E�ciency

Mur' implements a rich set of methods for increasing the size of the protocols that can be veri�ed

{ consisting of both several techniques to reduce the number of reachable states [28] and several

techniques to perform the state space search more e�ciently, reducing runtime and memory re-

quirements [56], including symmetry reduction [29], hash compaction [58], reversible rules [30], and

repetition constructors [31]. In addition, there is a parallel version of the Mur' veri�er [59].

Our experience with using Mur' for security protocol analysis has led us to design and imple-

ment several optimization techniques that are speci�c to security protocols and improve the tool's

performance signi�cantly when analyzing a typical security protocol. A detailed description of these

techniques and the corresponding soundness proofs can be found in section 4 below.

Chapter 3

Case Study: SSL 3.0

In an e�ort to understand the di�culties involved in applying the approach described in Chapter 2

to larger and more complex protocols, we use Mur' to analyze the SSL 3.0 handshake protocol.

3.1 Overview

The SSL 3.0 protocol is the de facto standard for secure Internet communication. Analyzing the

protocol is a challenge, since it has more steps and greater complexity than the other security

protocols analyzed using automatic �nite-state enumeration. In addition to demonstrating that

�nite-state analysis is feasible for protocols of this complexity, our study also points to several

anomalies in SSL 3.0. However, we have not demonstrated the possibility of compromising sensitive

data in any implementation of the protocol.

In the process of analyzing SSL 3.0, we have developed a \rational reconstruction" of the protocol.

More speci�cally, after initially attempting to familiarize ourselves with the handshake protocol, we

found that we could not easily identify the purpose of each part of certain messages. Therefore, we

set out to use our analysis tool to identify, for each message �eld, an attack that could arise if that

�eld were omitted from the protocol. Arranging the simpli�ed protocols in the order of increasing

complexity, we obtain an incremental presentation of SSL. Beginning with a simple, intuitive, and

insecure exchange of the required data, we progressively introduce signatures, hashed data, and

additional messages, culminating in a close approximation of the actual SSL 3.0 handshake protocol.

In addition to allowing us to understand the protocol more fully in a relatively short period

of time, this incremental reconstruction also provides some evidence for the \completeness" of our

analysis. Speci�cally, Mur' exhaustively tests all possible interleavings of protocol and intruder

actions, making sure that a set of correctness conditions is satis�ed in all cases. It is easy for

such analysis to be \incomplete" by not checking all of the correctness conditions intended by the

protocol designers or users. In developing our incremental reconstruction of SSL 3.0, we were forced

10

CHAPTER 3. CASE STUDY: SSL 3.0 11

to con�rm the importance of each part of each message. In addition, since no formal or high-level

description of SSL 3.0 was available, we believe that the description of SSL 3.0 that we extracted

from the Internet Draft [23] may be of interest.

Our analysis covers both the standard handshake protocol used to initiate a secure session and

the shorter protocol used to resume a session [23, Section 5.5]. Mur' analysis uncovered a weak

form of version rollback attack (see Section 3.3.9) that can cause a version 3.0 client and a version

3.0 server to commit to SSL 2.0 when the protocol is resumed. Another attack on the resumption

protocol (described in Sections 3.3.8 and 3.3.9) is possible in SSL implementations that strictly

follow the Internet Draft [23] and allow the participants to send application data without waiting

for an acknowledgment of their Finished messages. Finally, an attack on cryptographic preferences

(see Section 3.3.6) succeeds if the participants support weak encryption algorithms which can be

broken in real time. Apart from these three anomalies, we were not able to uncover any errors in

our �nal protocol. Since SSL 3.0 was designed to be backward-compatible, we also implemented and

checked a full model for SSL 2.0 as part of the SSL 3.0 project. In the process, Mur' uncovered the

major problems with SSL 2.0 that motivated the design of SSL 3.0.

Our Mur' analysis of SSL is based on the assumption that cryptographic functions cannot be

broken. For this and other reasons (discussed below), we cannot claim that we found all attacks on

SSL. But our analysis has been e�cient in helping discover an important class of attacks.

The two prior analyses of SSL 3.0 that we are aware of are an informal assessment carried out

by Wagner and Schneier [61] and a formal analysis by Dietrich using a form of belief logic [15]. (We

read the Wagner and Schneier study before carrying out our analysis, but did not become aware

of the Dietrich study until after we had completed the bulk of our work.) Wagner and Schneier

comment on the possibility of anomalies associated with resumption, which led us to concentrate

our later e�orts on this area. It is not clear to us at the time of this writing whether we found

any resumption anomalies that were not known to these investigators. However, in email comments

resulting from circulation of an earlier document [60], we learned that while our second anomaly

was not noticed by Wagner and Schneier, it was later reported to them by Michael Wiener. Neither

anomaly seems to have turned up in the logic-based study of Dietrich [15].

3.2 The SSL 3.0 handshake protocol

The primary goal of the SSL 3.0 handshake protocol is to establish secret keys that \provide privacy

and reliability between two communicating applications" [23]. Henceforth, we call the communicat-

ing applications the client (C) and the server (S). The basic approach taken by SSL is to have C

generate a fresh random number (the secret or shared secret) and deliver it to S in a secure manner.

The secret is then used to compute a so-called master secret (or negotiated cipher), from which,

in turn, the keys that protect and authenticate subsequent communication between C and S are

CHAPTER 3. CASE STUDY: SSL 3.0 12

computed. While the SSL handshake protocol governs the secret key computation, the SSL record

layer protocol governs the subsequent secure communication between C and S.

As part of the handshake protocol, C and S exchange their respective cryptographic preferences,

which are used to select a mutually acceptable set of algorithms for encrypting and signing handshake

messages. In our analysis, we assume for simplicity that RSA is used for both encryption and

signatures, and cryptographic preferences only indicate the desired lengths of keys. In addition, SSL

3.0 is designed to be backward-compatible so that a 3.0 server can communicate with a 2.0 client

and vice versa. Therefore, the parties also exchange their respective version numbers.

The basic handshake protocol consists of three messages. With the ClientHello message, the

client starts the protocol and transmits its version number and cryptographic preferences to the

server. The server replies with the ServerHello message, also transmitting its version number and

cryptographic preferences. Upon receipt of this message, the client generates the shared secret and

sends it securely to the server in the secret exchange message.

Since we were not aware of any formal de�nition of SSL 3.0, we based our model of the handshake

protocol on the Internet Draft [23]. The Draft does not include a precise list of requirements that

must be satis�ed by the communication channel created after the handshake protocol completes.

Based on our interpretation of the informal discussion in Sections 1 and 5.5 of the Internet Draft, we

believe that the resulting channel can be considered \secure" if and only if the following properties

hold:

� Let SecretC be the number that C considers the shared secret, and SecretS the number that

S considers the shared secret. Then SecretC and SecretS must be identical.

� The secret shared between C and S is not in intruder's database of known message components.

� The parties agree on each other's identity and protocol completion status. Suppose that the

last message of the handshake protocol is from S to C. Then C should reach the state (DoneC)

in which it is ready to start communicating with S using the negotiated cipher only if S is

already in the state (DoneS) in which it is ready to start communicating with C using the

negotiated cipher. Conversely, S should reach the state DoneS only if C is in the state in

which it is waiting for the last message of the handshake protocol.

� The cryptographic algorithms selected by the parties for encryption and authentication of

handshake messages are the strongest ones that are supported by both C and S. We model

this by requiring that the cryptosuite stored by S as C's cryptographic preferences is identical

to the one actually sent by C, and vice versa.

� The parties have a consistent opinion about each other's version, i.e., it is never the case that

an SSL 3.0 client and a 3.0 server are communicating using the SSL 2.0 protocol.

CHAPTER 3. CASE STUDY: SSL 3.0 13

We propose that any violation of the foregoing invariants that goes undetected by the legitimate

participants constitutes a successful attack on the protocol.

SSL 3.0 supports protocol resumption. In the initial run of the protocol, C and S establish a

shared secret by going through the full protocol and computing secret keys that protect subsequent

communication. SSL 3.0 allows the parties to resume their connection at a later time without

repeating the full protocol. If the ClientHello message sent by C to S includes the identi�er of an

SSL session that is still active according to S's internal state, S assumes that C wants to resume a

previous session. No new secret is exchanged in this case, but the master secret and the keys derived

from it are recomputed using new nonces. (See Section 3.3.8 for an explanation of how nonces are

used in the protocol to prevent replay attacks, and Appendix B to see how the master secret is

computed from the nonces and shared secret.) Our Mur' model supports protocol resumption.

Finally, it should be noted that whenever one of the parties detects an inconsistency in the

messages it receives, or any of the protocol steps fails in transmission, the protocol is aborted and

the parties revert to their initial state. This implies that SSL is susceptible by design to some forms

of \denial of service" attacks: an intruder can simply send an arbitrary message to a client or server

engaged in the handshake protocol, forcing protocol failure.

3.3 Modeling SSL 3.0

We start our incremental analysis with the simplest and most intuitive version of the protocol and

give an attack found by Mur'. We then add a little piece of SSL 3.0 that foils the attack, and let

Mur' discover an attack on the augmented protocol. We continue this iterative process until no

more attacks can be found. The �nal protocol closely resembles SSL 3.0, with some simpli�cations

that result from our assumption of perfect cryptography (see below).

3.3.1 Notation

The following notation will be used throughout this chapter.

CHAPTER 3. CASE STUDY: SSL 3.0 14

Ver i SSL version number of party i

Suitei Cryptographic preferences of party i

Ni Random nonce generated by party i

Secret i Random secret generated by party i

K+
i Public encryption key of party i

Vi Public veri�cation key of party i

Sigif: : :g Signed by party i

f: : :gK+

i

Encrypted by public key K+
i

Messages All messages up to this point

hIi Message is intercepted by the intruder

3.3.2 Assumptions about cryptography

In general, our model assumes perfect cryptography. The following list explains what this assumption

implies for all cryptographic functions used in SSL.

Opaque encryption. Encryption is assumed to be opaque. If a message has the form fxgK+

i

, only

party i can learn x. (This is only true i� the private key K�

i is not available to any party

except i. This is a safe assumption, given that no participants in the SSL handshake protocol

are ever required to send their private key over the network.) The intruder may, however,

store the entire encrypted message and replay it later without learning x. The structure of the

encrypted message is inaccessible to the intruder, i.e., it cannot split the encrypted message

into parts and insert them into other encrypted messages.

Unforgeable signatures. Signatures are assumed to be unforgeable. Messages of the form Sigifxg

can only be generated by the party i. Anyone who possesses i's veri�cation key Vi is able to

verify that the message was indeed signed by i. We assume that signatures do not encrypt.

Therefore, x can be learned by anyone.

Hashes. Hashes are assumed to be preimage resistant and 2nd-preimage resistant: given a message

of the form Hash fxg, it is not computationally feasible to discover x, nor �nd any x0 such

that Hash fx 0g = Hash fxg. It is therefore assumed that a participant can determine whether

x = x0 by comparing Hash fxg to Hash fx 0g.

Trusted certi�cate authority. There exists a trusted certi�cate authority (CA). All parties are

assumed to possess CA's veri�cation key VCA, and are thus able to verify messages signed

by CA. Every party i is assumed to possess CA-signed certi�cates for its own public keys:

SigCAfi ;K
+
i g (certifying that public encryption key K

+
i indeed belongs to i) and SigCAfi ; Vig

(certifying that public veri�cation key Vi indeed belongs to i).

CHAPTER 3. CASE STUDY: SSL 3.0 15

3.3.3 Protocol A

Basic protocol (A)

The �rst step of the basic protocol consists of C sending information about its identity, SSL version

number, and cryptographic preferences (aka cryptosuite) to S. Upon receipt of C's Hello message, S

sends back its version, cryptosuite (S selects one set of algorithms from the preference list submitted

by C), and its public encryption key. C then generates a random secret and sends it to S, encrypted

by S's public key.

Notice that the �rst Hello message (that from C to S) contains the identity of C. There is no

way for S to know who initiated the protocol unless this information is contained in the message

itself (perhaps implicitly in the network packet header).

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; K
+
S

C ! S fSecretCgK+

S

hChange to negotiated cipheri

Attack on A

Protocol A does not explicitly (and securely) associate the server's name with its public encryption

key. This allows the intruder to insert its own key into the server's Hello message. The client then

encrypts the generated secret with the intruder's key, enabling the intruder to read the message and

learn the secret.

CHAPTER 3. CASE STUDY: SSL 3.0 16

C ! S C; VerC ; SuiteC

S ! ChIi VerS ; SuiteS ; K
+
S

I ! C VerS ; SuiteS ; K
+
I

C ! ShIi fSecretCgK+

I

I ! S fSecretCgK+

S

hChange to negotiated cipheri

3.3.4 Protocol B

A + server authentication

To �x the bug in Protocol A, we add veri�cation of the public key. The server now sends its public

key K+
S in a certi�cate signed by the certi�cate authority. As described before, the certi�cate has

the following form: SigCAfS ;K
+
S g.

We assume that signatures are unforgeable. Therefore, the intruder will not be able to generate

SigCAfS ;K
+
I g. The intruder may send the certi�cate for its own public key SigCAfI ;K

+
I g, but the

client will reject it since it expects S's name in the certi�cate. Finally, the intruder may generate

SigI fS ;K
+
I g, but the client expects a message signed by CA, and will try to verify it using CA's

veri�cation key. Veri�cation will fail since the message is not signed by CA, and the client will abort

the protocol. Notice that SSL's usage of certi�cates to verify the server's public key depends on the

trusted certi�cate authority assumption (see Section 3.3.2 above).

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; SigCAfS ;K
+
S g

C ! S fSecretCgK+

S

hChange to negotiated cipheri

CHAPTER 3. CASE STUDY: SSL 3.0 17

Attack on B

Protocol B includes no veri�cation of the client's identity. This allows the intruder to impersonate

the client by generating protocol messages and pretending they originate from C. In particular, the

intruder is able to send its own secret to the server, which the latter will use to compute the master

secret and the derived keys.

I ! S C; VerC ; SuiteC

S ! ChIi VerS ; SuiteS ; SigCAfS ;K
+
S g

I ! S fSecretIgK+

S

hChange to negotiated cipheri

3.3.5 Protocol C

B + client authentication

To �x the bug in Protocol B, the server has to verify that the secret it received was indeed generated

by the party whose identity was speci�ed in the �rst Hello message. For this purpose, SSL employs

client signatures.

The client sends to the server its veri�cation key in the CA-signed certi�cate SigCAfC ; VCg.

In addition, immediately after sending its secret encrypted with the server's public key, the client

signs the hash of the secret SigCfHash (SecretC)g and sends it to the server. Hashing the secret is

necessary so that the intruder will not be able to learn the secret even if it intercepts the message.

Since the server can learn the secret by decrypting the client key exchange message, it is able to

compute the hash of the secret and compare it with the one sent by the client.

Notice that the server can be assured that VC is indeed C's veri�cation key since the intruder

cannot insert its own key in the CA-signed certi�cate SigCAfC ; VCg assuming that signatures are

unforgeable. Therefore, the server will always use VC to verify messages ostensibly signed by the

client, and all messages of the form SigI f: : :g will be rejected. Even if the intruder were able to

generate the message SigCfHash (SecretI)g, the attack will be detected when the server computes

Hash (SecretC) and discovers that it is di�erent from Hash (SecretI).

Instead of signing the hashed secret, the client can sign the secret directly and send it to the

server encrypted by the server's public key. The SSL de�nition, however, does not include encryption

in this step [23, Section 5.6.8]. We used hashing instead of encryption as well since we intend

our incremental reconstruction of SSL to follow the de�nition as closely as possible. One of the

anonymous reviewers of the conference version of this paper suggested that hashing is used instead

CHAPTER 3. CASE STUDY: SSL 3.0 18

of encryption so that the encrypted part of the message (i.e., a secret as opposed to a signed secret)

�ts within the modulus size of the server's encryption function.

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; SigCAfS ;K
+
S g

C ! S SigCAfC ; VCg; fSecretCgK+

S

;

SigCfHash (SecretC)g

hChange to negotiated cipheri

Attack on C

Even though the intruder can modify neither keys, nor shared secret in Protocol C, it is able to

attack the plaintext information transmitted in the Hello messages. This includes the parties'

version numbers and cryptographic preferences.

By modifying version numbers, the intruder can convince an SSL 3.0 client that it is communi-

cating with a 2.0 server, and a 3.0 server that it is communicating with a 2.0 client. This will cause

the parties to communicate using SSL 2.0, giving the intruder an opportunity to exploit any of the

known weaknesses of SSL 2.0.

By modifying the parties' cryptographic preferences, the intruder can force them into selecting

a weaker encryption and/or signing algorithm than they normally would. This may make it easier

for the intruder to decrypt the client's secret exchange message, or to forge the client's signature.

C ! ShIi C; VerC ; SuiteC

I ! S C; VerI ; SuiteI

S ! ChIi Ver I ; SuiteS ; SigCAfS ;K
+
S g

I ! C Ver I ; SuiteI ; SigCAfS ;K
+
S g

C ! S SigCAfC ; VCg; fSecretCgK+

S

;

SigCfHash (SecretC)g

hChange to negotiated cipheri

CHAPTER 3. CASE STUDY: SSL 3.0 19

3.3.6 Protocol D

C + post-handshake veri�cation of plaintext

The parties can prevent attacks on plaintext by repeating the exchange of versions and cryptographic

preferences once the handshake protocol is complete; the additional messages will be called veri�-

cation messages. Since the intruder cannot learn the shared secret, it cannot compute the master

secret and the derived keys and thus cannot interfere with the parties' communication after they

switch to the negotiated cipher.

Suppose the intruder altered the cryptographic preferences in the client's Hello message. When

the client sends its version and cryptosuite to the server under the just negotiated encryption, the

intruder cannot change them. The server will detect the discrepancy and abort the protocol. This

is also true for the server's version and cryptosuite.

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; SigCAfS ;K
+
S g

C ! S SigCAfC ; VCg; fSecretCgK+

S

;

SigCfHash (SecretC)g

hChange to negotiated cipheri

S ! C fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC)

C ! S fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC)

The above protocol is secure against attacks on version numbers and cryptographic preferences

except in the following circumstances:

1. If an attack on version number in the �rst Hello message causes the parties to switch to a

di�erent protocol such as SSL 2.0, they will not exchange veri�cation messages and the attack

will not be detected. See Section 3.3.9 for further discussion of anomalies related to the version

rollback attack.

2. By changing cryptosuites in the Hello messages, the intruder may force the parties to use a very

weak public-key encryption algorithm that can be broken in real time (i.e., while the current

CHAPTER 3. CASE STUDY: SSL 3.0 20

run of the handshake protocol is in progress). If the intruder can break the encrypted message

containing the client's secret, it can compute the master secret and the derived keys and will

thus be able to forge post-handshake veri�cation messages. The only defense against this kind

of attack is to prohibit SSL implementations from using weak cryptographic algorithms in the

handshake protocol even if hello messages from the protocol counterparty indicate preference

for such algorithms.

Attack on D

In Protocol D, the parties verify only plaintext information after the handshake negotiation is com-

plete. Since the intruder cannot forge signatures, invert hash functions, or break encryption without

the correct private key, it can neither learn the client's secret, nor substitute its own. It may ap-

pear that D provides complete security for the communication channel between C and S. However,

Mur' discovered an attack on client's identity that succeeds even if all cryptographic algorithms are

perfect.

Intruder I intercepts C's hello message to server S, and initiates the handshake protocol with S

under its own name. All messages sent by S are re-transmitted to C, while most of C's messages,

including the post-handshake veri�cation messages, are re-transmitted to S. (See the protocol run

below for details. Re-transmission of C's veri�cation message is required to change the sender

identi�er, which is not shown explicitly below.) As a result, both C and S will complete the

handshake protocol successfully, but C will be convinced that it is talking to S, while S will be

convinced that it is talking to I .

Notice that I does not have access to the secret shared between C and S. Therefore, it will not

be able to generate or decrypt encrypted messages after the protocol is complete, and will only be

able to re-transmit C's messages. However, the server will believe that the messages are coming

from I , whereas in fact they were sent by C.

This kind of attack, while somewhat unusual in that it explicitly reveals the intruder's identity,

may prove harmful for a number of reasons. For example, it deprives C of the possibility to claim

later that it communicated with S, since S will not be able to support C's claims (S may not even

know about C's existence). If S is a pay server providing some kind of online service in exchange

for anonymous \electronic coins" such as eCash [20], I may be able to receive service from S using

C's cash. Recall, however, that I can only receive the service if it is not encrypted, which might be

the case for large volumes of data.

CHAPTER 3. CASE STUDY: SSL 3.0 21

C ! ShIi C; VerC ; SuiteC

I ! S I; VerC ; SuiteC

S ! I VerS ; SuiteS ; SigCAfS ;K
+
S g

I ! C VerS ; SuiteS ; SigCAfS ;K
+
S g

C ! ShIi SigCAfC ; VCg; fSecretCgK+

S

;

SigCfHash (SecretC)g

I ! S SigCAfI ; VIg; fSecretCgK+

S

;

SigI fHash (SecretC)g

hChange to negotiated cipheri

S ! I fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC)

I ! C fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC)

C ! ShIi fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC)

I ! S fHash (VerC ;SuiteC ;VerS ;

SuiteS)gMaster(SecretC)

3.3.7 Protocol E

D + post-handshake veri�cation of all messages

To �x the bug in Protocol D, the parties verify all of their communication after the handshake is

complete. Now the intruder may not re-transmit C's messages to S, because C's Hello message

contained C, while the Hello message received by the server contained I . The discrepancy will be

detected in post-handshake veri�cation.

CHAPTER 3. CASE STUDY: SSL 3.0 22

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; SigCAfS ;K
+
S g

C ! S SigCAfC ; VCg; fSecretCgK+

S

;

SigCfHash (SecretC)g

hChange to negotiated cipheri

S ! C fHash (Messages)gMaster(SecretC)

C ! S fHash (Messages)gMaster(SecretC)

Attack on E

I observes a run of the protocol and records all of C's messages. Some time later, I initiates a

new run of the protocol, ostensibly from C to S, and replays recorded C's messages in response to

messages from S. Even though I is unable to read the recorded messages, it manages to convince S

that the latter is talking to C, even though C did not initiate the protocol.

C ! S C; VerC ; SuiteC

S ! C VerS ; SuiteS ; SigCAfS ;K
+
S g

C ! S SigCAfC ; VCg; fSecretCgK+

S

;

SigCfHash (SecretC)g

hChange to negotiated cipheri

S ! C fHash (Messages)gMaster(SecretC)

C ! S fHash (Messages)gMaster(SecretC)

Next run of the protocol ...

CHAPTER 3. CASE STUDY: SSL 3.0 23

I ! S C; VerC ; SuiteC

S ! ChIi VerS ; SuiteS ; SigCAfS ;K
+
S g

I ! S SigCAfC ; VCg; fSecretCgK+

S

;

SigC fHash (SecretC)g

hChange to negotiated cipheri

S ! ChIi fHash (Messages)gMaster(SecretC)

I ! S fHash (Messages)gMaster(SecretC)

3.3.8 Protocol F

E + nonces

By adding random nonces to each run of the protocol, SSL 3.0 ensures that there are always some dif-

ferences between independent runs of the protocol. The intruder is thus unable to replay veri�cation

messages from one run in another run.

C ! S C; VerC ; SuiteC ; NC

S ! C VerS ; SuiteS ; NS; SigCAfS ;K
+
S g

C ! S SigCAfC ; VCg; fSecretCgK+

S

;

SigCfHash (SecretC)g

hChange to negotiated cipheri

S ! C fHash (Messages)gMaster(SecretC)

C ! S fHash (Messages)gMaster(SecretC)

CHAPTER 3. CASE STUDY: SSL 3.0 24

Attack on F

The exact semantics of the veri�cation messages exchanged after switching to the negotiated cipher

(i.e., Finished messages in the SSL terminology) is somewhat unclear. Section 5.6.9 of [23] states:

\No acknowledgment of the �nished message is required; parties may begin sending encrypted data

immediately after sending the �nished message. Recipients of �nished messages must verify that the

contents are correct." The straightforward implementation of this de�nition led Mur' to discover

the following attack on Protocol F :

1. I modi�es the Hello messages, changing the legitimate parties' cryptosuites so as to force them

into choosing a weak public-key encryption algorithm for the secret exchange.

2. I records the weakly encrypted SecretC as it is being transmitted from C to S.

3. After C and S switch to the negotiated cipher, I delays their veri�cation messages inde�nitely,

preventing them from discovering the attack on cryptosuites and gaining extra time to crack

the public-key encryption algorithm and learn SecretC .

4. Once the secret is learned, I is able to compute the keys and forge veri�cation messages.

Since we did not model weak encryption that can be broken by the intruder, we also did not

model the last step of the attack explicitly. Instead, if the model reached the state after the third

step, the attack was considered successful.

Note that in the actual SSL 3.0 protocol SecretC is not used directly as the symmetric key

between C and S. It serves as one of the inputs to a hash function that computes the actual

symmetric key. Therefore, even if the intruder is able to �gure out the symmetric key, this will not

necessarily compromise the shared secret SecretC .

To obtain SecretC , the intruder has to force the parties into choosing weak public-key encryption

for the secret exchange message, and then break the chosen encryption algorithm in real-time. This

attack can only succeed if both parties support cryptosuites with very weak public-key encryption

(e.g., with a very short RSA key). We are not aware of any existing SSL implementations for which

this is the case.

3.3.9 Protocol Z (�nal)

To prevent the attack on Protocol F, it is su�cient to require that the parties consider the protocol

incomplete until they each receive the correct veri�cation message. Mur' did not discover any bugs

in the model implemented according to this semantics.

Alternatively, yet another piece of SSL can be added to Protocol F. If the client sends the server

a hash of all messages before switching to the negotiated cipher, the server will be able to detect an

attack on its cryptosuite earlier.

CHAPTER 3. CASE STUDY: SSL 3.0 25

C ! S C; VerC ; SuiteC ; NC

S ! C VerS ; SuiteS ; NS; SigCAfS ;K
+
S g

C ! S SigCAfC ; VCg; fSecretCgK+

S

;

SigCfHash (Messages)g

hChange to negotiated cipheri

S ! C fHash (Messages)gMaster(SecretC)

C ! S fHash (Messages)gMaster(SecretC)

Mur' was used to model Protocol Z with 2 clients, 1 intruder, 1 server, no more than 2 simul-

taneous open sessions per server, and no more than 1 resumption per session. No new bugs were

discovered. However, Mur' found two anomalies in the protocol employed to resume a session.

Protocol Z with resumption: cryptosuite attack

Adding the extra veri�cation message su�ces for the full handshake protocol but not for the resump-

tion protocol. When a session is resumed, the parties switch to the negotiated cipher immediately

after exchanging Hello messages. Therefore, the intruder can alter cryptographic preferences in the

Hello messages and then delay the parties' Finished messages inde�nitely, preventing them from

detecting the attack. It appears that this attack does not jeopardize the security of SSL 3.0 in

practice, since no secret is exchanged in the resumption protocol. In fact, it is not clear to us if the

cryptosuites in the Hello messages are used at all in the resumption protocol.

Protocol Z with resumption: version rollback attack

In our model of Protocol Z, the participants switch to SSL 2.0 if a version number in the Hello

messages is di�erent from 3.0. (Since the Internet Draft for SSL 2.0 has expired and is not publicly

available at the moment, we included a speci�cation of SSL 2.0 in Appendix A.)

The Finished messages in SSL 2.0 do not include version numbers or cryptosuites, therefore

Protocol Z is susceptible to the attack on cryptographic preferences described in Section 3.3.5. In

the following example, it is assumed for simplicity that client authentication is not used. Also, SSL

2.0 Hello messages have a slightly di�erent format than SSL 3.0 Hello messages and do not contain

explicit version information. To simplify presentation, we assume that the intruder converts a 3.0

Hello message into a 2.0 Hello message simply by changing the version number.

CHAPTER 3. CASE STUDY: SSL 3.0 26

C ! ShIi C; 3:0; SuiteC ; NC

I ! S C; 2:0; SuiteI ; NC

S ! ChIi 2:0; SuiteS ; NS; SigCAfS ;K
+
S g

I ! C 2:0; SuiteI ; NS; SigCAfS ;K
+
S g

C ! S fSecretCgK+

S

hChange to negotiated cipheri

C ! S fNSgMaster(SecretC)

S ! C fNCgMaster(SecretC)

To prevent the version rollback attack, SSL 3.0 clients add their version number to the secret

they send to the server. When the server receives a secret with 3.0 embedded in it from a 2.0 client,

it can determine that there has been an attack on the client's Hello message in which the client's

true version number (3.0) was rolled back to 2.0.

However, this defense does not work in the case of session resumption. Mur' discovered a version

rollback attack on the resumption protocol. The attack succeeds since in the resumption protocol,

the client does not send a secret to the server, and the intruder's alteration of version numbers in

the Hello messages goes undetected.

Strictly speaking, this attack is not a violation of the speci�cation [23], since the latter implicitly

allows an SSL session that was established using the 3.0 protocol to be resumed using the 2.0

protocol. However, this attack makes implementations of SSL 3.0 potentially vulnerable to SSL 2.0

weaknesses. Wagner and Schneier [61] reach a similar conclusion in their informal analysis of SSL

3.0.

3.3.10 Protocol Z vs. SSL 3.0

Figure 3.1 shows the de�nition of the SSL 3.0 handshake protocol according to [23]. When several

messages from the same party follow each other in the original de�nition, they have been collapsed

into a single protocol step (e.g., Certi�cate, ClientKeyExchange, and Certi�cateVerify were joined

into ClientVerify). The underlined pieces of SSL 3.0 are not in Protocol Z.

CHAPTER 3. CASE STUDY: SSL 3.0 27

ClientHello C ! S C; VerC ; SuiteC ; NC

ServerHello S ! C VerS ; SuiteS ; NS; SigCAfS ;K
+
S g

ClientVerify C ! S SigCAfC ; VCg;
fVerC ;SecretCgK+

S

;

SigCfHash (Master(NC ; NS ; SecretC)+

Pad 2+
Hash (Messages+C +

Master(NC ; NS ; SecretC) +

Pad 1)) g

hChange to negotiated cipheri

ServerFinished S ! C fHash (Master(NC ; NS ; SecretC) + Pad 2+

Hash (Messages + S +

Master(NC ; NS ; SecretC) +

Pad 1)) gMaster(NC; NS; SecretC)

ClientFinished C ! S fHash (Master(NC ; NS ; SecretC) + Pad 2+

Hash (Messages + C +

Master(NC ; NS ; SecretC) +

Pad 1)) gMaster(NC; NS; SecretC)

Figure 3.1: The SSL 3.0 handshake protocol

CHAPTER 3. CASE STUDY: SSL 3.0 28

Assuming that the cryptographic functions are perfect, the underlined pieces can be removed from

the SSL 3.0 handshake protocol without jeopardizing its security. However, they do serve a useful

purpose by strengthening cryptography and making brute-force attacks on the protocol less feasible.

For example, recall that the shared secret is not used directly as the symmetric key between C

and S. Instead, it is used as input to a (pseudorandom) function that computes the actual shared

secret. Therefore, breaking the symmetric cipher will not necessarily compromise the shared secret

as it would require inverting two hash functions. To obtain the shared secret, the intruder would

have to break public-key encryption in the ClientKeyExchange message.

The construction of the keyed hash in ClientVerify, ServerFinished, and ClientFinished messages

as Hash (K ;Pad 2;Hash (K ;Pad 1; text)) follows the HMAC method proposed by Krawczyk et al. [35],

who proved that adding a secret key to the function makes it signi�cantly more secure even if the

actual hash function is relatively weak.

In general, we would like to emphasize that SSL 3.0 contains many security measures that

are designed to protect the protocol against cryptographic attacks. Since we modeled an idealized

protocol in Mur' under the perfect cryptography assumption, we found SSL 3.0 secure even without

these features.

3.4 Conclusions

Our �rst case study shows that the �nite-state enumeration tool Mur' can be successfully applied

to complex security protocols like SSL. The analysis uncovered some anomalies in SSL 3.0. (None

of these anomalies, however, poses a direct threat to the security of SSL 3.0.) Of these anomalies

at least one had slipped through expert human analysis, con�rming the usefulness of computer

assistance in protocol design.

Chapter 4

Mur' Optimizations

In this chapter, we describe two state reduction techniques and a method for faster evaluation of

parameterized rule conditions. These techniques increase e�ciency of �nite-state analysis, and make

analysis of large security protocols feasible.

4.1 Overview

Finite-state analysis tools such as Mur' exhaustively enumerate all reachable states of the model,

checking for each state whether it satis�es the desired correctness criteria. The main problem in

this approach is the very large number of reachable states for most protocols. In this chapter, we

describe two techniques that reduce the number of reachable states and hence allow the analysis of

larger protocols. We prove the techniques sound, i.e., we show that each protocol error that would

have been discovered in the original state graph will still be discovered in the reduced state graph.

The techniques are based on certain protocol properties that we have identi�ed as characteristic

of security protocols. We have implemented both techniques in the Mur' veri�cation system and

evaluated them on the SSL [23] and Kerberos [34] protocols.

The �rst technique is to let the intruder always intercept messages sent by honest participants

(instead of making such interception optional). This technique has resulted in a very large reduc-

tion in both the number of reachable states and execution time. While this technique has been

used by several researchers [37, 6], it has neither been proved sound, nor has its importance been

demonstrated.

The second technique prevents the intruder from sending messages to honest participants in

states where at least one of the honest participants is able to send a message. Intuitively, the

technique makes the intruder more powerful since the intruder maximally increases its knowledge

before forging and sending messages to honest participants; hence the analysis of the reduced state

graph should not miss any attacks on the protocol. This technique typically saved a factor of two

29

CHAPTER 4. MUR' OPTIMIZATIONS 30

or more in the number of reachable states as well as execution time. It is interesting to note that

that this technique is more powerful than partial-order techniques exploiting the independence of

the honest participants.

In addition to the two state reduction techniques, we also describe a technique that reduces the

execution time of Mur', but not the number of reachable states. The technique is based on the

following observations:

The intruder model employed in Mur' is highly nondeterministic and thus gives rise to a large

number of state transition rules. In every reachable state, the enabling conditions of all rules are

evaluated. Evaluation can be sped up by partitioning the rules into sets with identical enabling

conditions and evaluating the condition only once for each set. This technique typically increased

the overall speed of Mur' by a factor of four.

4.2 Properties of security protocols

In this section, we identify several characteristic properties of security protocols that we will use

to develop state reduction techniques. These properties characterize every security protocol we

have encountered so far, including, e.g., Kerberos [34], SSL [23], and Needham-Schroeder [47]. The

properties are quite simple, yet recognizing them is useful both for better understanding of the

protocols and for making �nite-state analysis as e�cient as possible within the basic framework of

the Dolev-Yao intruder model.

4.2.1 Protocol invariants are monotonic

The invariants used to specify correctness of security protocols are typically of the forms \Intruder

does not know X" or \If honest participant A reaches state S1, then honest participant B must be

in state S2." Assume that an invariant of this form is invalid for a given state. Then increasing

the intruder's knowledge set (which is part of the state) will not make the violated invariant valid.

Hence we will call the protocol invariant monotonic with respect to the intruder's knowledge set. All

protocol invariants we have encountered to date have been monotonic.

The implication of this property for state reduction is that we can safely rearrange the reachable

state graph, possibly eliminating some states, as long as we can guarantee that for every state in the

old graph, there exists a state in the new graph in which the state of all honest protocol participants

is the same while the intruder's knowledge set is the same or larger. Because protocol invariants are

monotonic, such state reductions are sound in the sense that any invariant that would have been

violated in the old state graph will still be violated in the new graph.

We also assume that protocol invariants are de�ned in terms of the intruder's knowledge set and

the states of the honest protocol participants. The invariants should not depend on the state of the

CHAPTER 4. MUR' OPTIMIZATIONS 31

network. (Since the network is assumed to be controlled by the intruder, invariants that depend on

the state of the network can be rewritten to depend on the intruder's knowledge set.)

4.2.2 Intruder controls the network

It is traditionally assumed in security protocol analysis that the intruder exercises full control over

the network, including the option to intercept any message. Instead of giving the intruder the option

to intercept messages, we will assume that the intruder always intercepts. We model interception in

Mur' by having the intruder remove the message from the \network" and store it in its database. The

intruder can then replay the message to the intended recipient, or forge a similar-looking message.

Intuitively, the assumption that every message gets intercepted will not weaken the intruder and

should hence be sound. In Section 4.4.1 below, this assumption is used to cut the transitions leading

to redundant states, di�ering only in the contents of the intruder's database. The only state left

is the one in which the database contains all information observable from the exchange of protocol

messages up to that moment.

4.2.3 Honest protocol participants are independent

Honest protocol participants are fully independent from each other. The only means of communica-

tion between the participants is by sending messages on the network, which is assumed to be fully

controlled by the intruder. Sending a message to another participant is thus equivalent to simply

handing it to the intruder, hoping that the latter will not be able to extract any useful information

from it and will replay it intact to the intended recipient.

As a consequence, an honest protocol participant has no way of knowing for sure what the

current state of other participants is, since all information about the rest of the world arrives to him

through a network fully controlled by the intruder. Actions of each honest participant (i.e., sending

and receiving of messages) thus depend only on its own local state and not on the global state

that comprises the states of all participants plus that of the intruder. In our formal representation

of security protocols as state graphs, we will rely on this property to make all transition rules for

honest participants local (see Section 4.3.2 below). We do not consider protocols with out-of-band

communication as they are beyond the scope of our research with Mur'.

4.3 Protocols as state graphs

In this section, we de�ne a formalism for describing �nite-state machines associated with security

protocols.

CHAPTER 4. MUR' OPTIMIZATIONS 32

4.3.1 States

The global state of the system is represented by a vector:

s = [s1; : : : ; sN ; e]

whereN is the number of honest protocol participants, si is the local state of the protocol participant

i, and e is the state of the intruder.

Instead of modeling the global network, we model a separate 1-cell local network for each honest

protocol participant. All messages intended for that participant are deposited in its local network

as described in Section 4.3.2 below. The local state of an honest participant i is a pair

si = hvi;mii

where vi is the vector of current values of i's local state variables, and mi is the message currently

in i's local network. It is possible that mi = ", representing the empty network.

The state of the intruder is simply the set of messages that the intruder has intercepted so far

(assume that its initial knowledge is represented as an intercepted message also):

e = fme1 ; : : : ;meM g

The intruder's knowledge is obviously not limited to the intercepted messages. The intruder

can split them into components, decrypt and encrypt �elds, assemble new messages, etc. However,

the full knowledge set can always be synthesized from the intercepted messages, since they are the

only source of information available to the intruder. Therefore, our chosen representation for the

intruder's state is su�cient to represent the intruder's knowledge. When necessary, we will refer

to the set of messages that can be synthesized from the set of intercepted messages as synth(e).

(Since operations like encryption and pairing can be applied in�nitely many times in the synthesis,

the intruder's full knowledge is generally in�nite. In practice, one can extract �nite limits on the

numbers of times encryption and pairing have to be applied from the protocol de�nition, making

the intruder's knowledge �nite.)

4.3.2 Rules for honest participants

All transition rules between states have the following form in our formalism:

r
(ije)
k = if ck (si je) then s ! s 0

where ck(sije) is the condition of the rule (it depends on the local state si in case of an honest

CHAPTER 4. MUR' OPTIMIZATIONS 33

protocol participant, and the knowledge set e in case of the intruder), s is the original global state,

s0 is the global state obtained as the result of rule application.

We can assume without loss of generality that every transition rule for an honest protocol partici-

pant consists of reading a non-empty message o� the local network, changing the local variables, and

sending a non-empty message to another participant. If necessary, the protocol can be rewritten so

as to avoid \hidden" transitions that change the state of a participant without visible activity on the

network. The initial transition for each participant can be triggered by a special message deposited

into its local network in the start state of the system, and the last transition can be rewritten so that

it deposits another special message on the network. This ensures that every transition reads and

writes into the network. Also, the 1-cell capacity restriction on the local network is not essential,

since we will eventually assume that every message is intercepted by the intruder immediately after

it has been sent.

The transition rules for an honest protocol participant i are represented as follows:

r
(i)
k = if ck (vi ;mi) then [: : : hvi ;mii : : : hvj ; "i : : :] ! [: : : hv 0i ; "i : : : hvj ;mj i : : :]

Informally, if condition ck evaluates to true given i's local state si = hvi;mii, then i reads message

mi o� its local network, executes some code changing its local state variables from vi to v0i, and

sends messagemj to participant j by depositing it in j's local network. Note that the rule is local |

its condition depends only on i's local state. We assume that honest participants are deterministic.

In any state, there is no more than one rule enabled for each participant. However, it is possible

that rules for several participants are enabled in the same state, resulting in nondeterminism.

4.3.3 Rules for the intruder

The transition rules for the intruder are global. The �rst set of rules describes the intruder inter-

cepting a message intended for an honest participant:

r
(e)
�i

= if origin(m) 6= e then [: : : hvi ;mi : : : e] ! [: : : hvi ; "i : : : e [fmg]

The intruder �rst checks the origin of the message on i's local network, since we do not want the

intruder to remove its own messages. If the message was generated by an honest participant, it is

removed from the network and added to the intruder's database. Note that the local variables of

the honest participant are not a�ected by this action.

The second set of intruder rules describes the intruder generating a message and sending it to

an honest participant whose local network is empty:

r
(e)
+i

= if true then [: : : hvi ; "i : : : e] ! [: : : hvi ;mi : : : e] m 2 synth(e)

CHAPTER 4. MUR' OPTIMIZATIONS 34

The intruder creates a new message (either by replaying an intercepted message m 2 e, or by

synthesizing m from the messages stored in e) and sends it to participant i by depositing it in i's

local network. Clearly, the intruder rules are nondeterministic, as there may be several intruder

rules enabled in the same state.

There are no other transition rules in the system.

4.3.4 State graph

The �nite-state machine associated with the protocol is a directed graph fS; T; s0; Qg. The vertices

S are all possible states of the protocol. The directed edges T are pairs of states labeled by rules such

that r
(ije)

k : hs; s0i 2 T i� the transition rule r
(ije)

k is enabled in state s (i.e., its condition evaluates

to true) and transforms s into state s0. The �nite-state machine is nondeterministic. If several rules

are enabled in state s, there will be several edges leaving the corresponding graph vertex. We will

refer to the subgraph reachable from vertex s as R(s).

s0 2 S is the start state of the protocol.

Q is the set of protocol invariants. An invariant is a function from states to boolean values

q : S ! truejfalse such that q(s) = false if the invariant q is violated in s, otherwise q(s) = true.

Since protocol invariants do not depend on the state of the network, the value of q in any state does

not depend on the mi values representing the current contents of the participants' local networks.

We say that state s = [s1 : : : sN ; e] is subsumed by another state s0 = [s01 : : : s
0

N ; e
0] i� 8i si = s0i

and e � e0. Informally, s0 subsumes s if the states of all honest participants are the same in s0 as in

s while the intruder's knowledge set is the same or larger. In the rest of this chapter, subsumption

will be denoted as s � s0.

Note that if s � s0, then all rules enabled in s are enabled in s0, too. The reverse is not true

since the intruder's knowledge set is larger in s0 and some rules may be enabled in s0 but not in s.

Therefore, R(s) (set of states reachable from s) is isomorphic to a subgraph of R(s0). Thus, for any

t reachable from s, there exists a t0 reachable from s0 such that t � t0. We will refer to this fact as

inheritance of subsumption.

Protocol invariants are monotonic with respect to the intruder's knowledge set (increasing in-

truder's knowledge does not repair any violated invariants). Therefore, if s � s0, then q(s) = false

implies that q(s0) = false. We will refer to this fact as monotonicity of invariance.

4.3.5 Soundness of state reduction

A �nite-state analyzer such as Mur' veri�es the protocol by traversing the state graph starting from

state s0. For every state s it reaches, Mur' veri�es that all invariants are valid, i.e., 8q q(s) = true.

Violation of any invariant signals an error in the protocol.

A state reduction technique transforms the original state graph fS; T; s0; Qg into a new graph

fS0; T 0; s0; Qg. We claim that the technique is sound if all errors that would have been discovered in

CHAPTER 4. MUR' OPTIMIZATIONS 35

the original graph will still be discovered in the new graph. More formally, if the old graph contains

a reachable state in which one of the invariants was violated, then the new graph should contain a

reachable state in which the same invariant is violated.

9s 2 R(s0) 9q 2 Q s:t: q(s) = false implies 9s0 2 R0(s0) s:t: q(s0) = false

In the soundness proofs for the state reduction techniques below, we will demonstrate that the

state graph contains two vertices s and s0 such that s � s0. By monotonicity of invariance, all

invariants that are violated in s are also violated in s0. Moreover, by inheritance of subsumption,

for any t reachable from s, there exists a t0 reachable from s0 such that all invariants violated in t

are also violated in t0.

Suppose that we �nd a vertex s� in the state graph such that there are edges leading from s� to

both s and s0. We cut the edge from s� to s. The subgraph rooted in s may become unreachable,

reducing the number of states to be explored. However, we do not \lose" any protocol errors by

eliminating these states. Every eliminated state in which an invariant is violated has a counterpart

reachable from s0 in which the same invariant is violated.

4.4 State reduction techniques

In this section, we describe the state reduction techniques and prove them sound.

4.4.1 Intruder always intercepts

Consider a state in which one of the rules for honest participants is enabled:

s1 = [: : : hvi;mii : : : hvj ; "i : : : e]

Suppose that state s1 is such that condition ck(vi;mi) evaluates to true. Then rule r
(i)
k (partic-

ipant i sends message mj to participant j) is enabled in s1. Suppose that message mi is not known

to the intruder, i.e., mi =2 e. We intend to reduce the number of states to be explored by having the

intruder always intercept message mi.

Fig. 4.1 shows the subgraph rooted in s1, where

s2 = [: : : hv0i; "i : : : hvj ;mji : : : e]

s3 = [: : : hvi; "i : : : hvj ; "i : : : e [fmig]

s4 = [: : : hvi;mii : : : hvj ; "i : : : e [fmig]

s5 = [: : : hv0i; "i : : : hvj ;mji : : : e [fmig]

Each transition in Fig. 4.1 is labeled with the corresponding rule: rule r
(i)
k is enabled both in s1

CHAPTER 4. MUR' OPTIMIZATIONS 36

S 2

(i)

rk
(i)

r(e)

 i
+

S

...

...
 1

...

S 4

...

S 5

rk

...

S 3

r(e)_
 i

Figure 4.1: Reduction: \Intruder always intercepts"

and s4; rule r
(e)
�i

(intruder removes a message from i's local network and stores it in the database)

is enabled in s1; rule r
(e)
+i

(intruder deposits a message from its database into i's local network) is

enabled in s3. There may be additional rules enabled in states s1; : : : ; s5, but we will limit our

attention to the subgraph shown in the �gure.

We now observe that s2 � s5 (the states of all honest participants are the same but the intruder's

knowledge set is larger in s5). Therefore, we can remove the graph edge leading from s1 to s2. Any

invariant violation that can be discovered by analyzing R(s2) will be discovered by analyzing R(s5).

This state reduction technique e�ectively eliminates direct communication between participants.

Every message sent on the network is intercepted by the intruder and added to the intruder's

database. There is no need to consider states in which the database is \incomplete" (s2 in the

example above) since they are subsumed by the states in which the database is as complete as

possible (s5 in the example above), containing all messages exchanged on the network so far.

We can simplify the state transition rules slightly by assuming that rule r
(i)
k deposits the generated

message mj directly into the intruder's database (recall that the original rule deposited the message

into j's local network).

r̂
(i)
k = if ck (vi ;mi) then [: : : hvi ;mi i : : : hvj ; "i : : : e] ! [: : : hv 0i ; "i : : : hvj ; "i : : : e[fmjg]

This simpli�cation also eliminates the need for r
(e)
�i

rules. Another consequence is that r
(e)
+i

are

the only rules that can deposit a message into an honest participant's local network.

CHAPTER 4. MUR' OPTIMIZATIONS 37

S 1

r(e)

 i
...

S

...
S

S... ...

 6

 5

 3

S 4

rk
(i)
k

^

... ...

S 2

S 7

+

r(e)

 j
r (e)

 j

+

+

Figure 4.2: Reduction: \Intruder does not send if honest participant can send"

4.4.2 Intruder does not send if honest participant can send

Fig. 4.2 shows a fragment of the state graph in which

s1 = [: : : hvi; "i : : : h: : : ; : : :i : : : e]

s2 = [: : : hvi;mii : : : h: : : ; : : :i : : : e]

s3 = [: : : hvi;mii : : : hvj ; "i : : : e]

s4 = [: : : hvi;mii : : : hvj ;mji : : : e]

s5 = [: : : hv0i; "i : : : hvj ; "i : : : e [fm
0
jg]

s6 = [: : : hv0i; "i : : : hvj ;mji : : : e [fm
0
jg]

s7 = [: : : hvi; "i : : : hvj ;mji : : : e]

where mi;mj 2 synth(e); m0
j =2 e

In state s3, at least two rules are enabled: r
(e)
+j

corresponds to the intruder depositing mj into j's

network, and r̂
(i)
k corresponds to the intruder waiting for participant i to send its message �rst. We

intend to demonstrate that the number of states to be explored can be reduced by considering only

CHAPTER 4. MUR' OPTIMIZATIONS 38

the latter case. Formally, the edge from s3 to s4 can be cut from the state graph since any violation

of protocol invariants that can be discovered in R(s4) will be discovered either in R(s6), or in R(s7),

Suppose that there exists a state tE 2 R(s4) such that q(tE) = false for some invariant q 2 Q.

Consider the sequence of state transitions that leads from s4 to tE . Each transition is labeled by

the corresponding rule:

s4
ro! t0

r1! t1 ! : : :
rE! tE

We will consider two cases.

Case 1. Suppose 9L 2 0::E rL = r̂
(i)
k , and none of the rules rl for l 2 0::L� 1 involve participant

i. In other words, rule r̂
(i)
k is executed at some point between s4 and tE .

Consider that state s6 is identical to s4 except for the state of participant i, which does not

matter for rules rl, and the intruder's knowledge set, which is strictly larger in s6. Therefore, the

rule sequence rl is enabled in s6, leading to a state ~tL�1. To complete the proof for this case, observe

that tL is equivalent to ~tL�1.

Case 2. Suppose that 8l 2 0::E rl 6= r̂
(i)
k , i.e., none of rules leading to the erroneous state involve

participant i reading message mi o� the network and sending message m0
j to participant j. The

only rule enabled for i is r̂
(i)
k , and it cannot become disabled as long as the local state of i does not

change. Therefore, none of the rules rl involve participant i at all, and si is the same in tE as in s4.

To prove soundness for this case, we will �rst demonstrate that if the state graph includes state s3,

it must also include state s7, and then we will show that if an invariant violation can be discovered

in R(s4), it can also be discovered in R(s7).

To prove that if the state graph contains s3, it must also contain s7, consider the sequence of

rules that leads from the start state s0 to s3. Since participant i's local network contains mi in

it, the last rule in the sequence that involves i must be r
(e)
+i
, since only the intruder can deposit a

message into an honest participant's local network. In Fig. 4.2, s1 represents the state to which rule

r
(e)
+i

was applied, and s2 represents the resulting state. Note that none of the rules leading from s2 to

s3 involve i, since r
(e)
+i

was the last such rule in the sequence. Therefore, the same rules are enabled

in state s1 that di�ers from s2 only in the contents of i's local network. Applying the rules, we

obtain the state ~s that di�ers from s3 only in the contents of i's local network, namely, i's network

is empty in ~s but contains mi in s3. Therefore, ~s = s7.

To complete the soundness proof, observe that state s7 is identical to s4 except for the state of

participant i. Since none of the rules rl leading to tE involve participant i, the same sequence of

rules is enabled in s7, leading to a state ~tE such that the only di�erence between ~tE and tE is the

state of participant i. More precisely, i's local network is empty in ~tE but contains mi in tE . This

implies that q(~tE) = false, since invariants do not depend on the state of the network. The proof

CHAPTER 4. MUR' OPTIMIZATIONS 39

is complete.

The described state reduction technique makes sure that the intruder never sends a message if

there is an honest participant who is ready to send a message, too (i.e., one of the rules for honest

participants is enabled). The intuitive reason for this is that the intruder's knowledge set should

be as complete as possible before the intruder synthesizes a message. By waiting until the honest

participant sends its message and intercepting it, the intruder potentially increases its knowledge

set.

To ensure that the intruder sends messages only when no one else can, we can modify the

condition for rule r
(e)
+i

so that it is enabled only in the states of the following form:

s = [hv1; "i; : : : ; hvN ; "i; e]

An alternative implementation of this state reduction technique is to assign a lower priority to

the intruder rules than to the rules for honest participants (see Section 4.5.1 below).

Remark. A related state reduction technique exploits the independence of honest protocol par-

ticipants to �x a partial order and eliminate multiple interleavings of message sends. Since all

participants send their messages to the intruder, the order in which the messages are deposited into

the intruder's database does not matter.

However, there is no need to impose a partial order on the honest participants if the technique

described in this section is implemented. To see why this is the case, suppose we start with an

empty network. After the intruder sends a message to the �rst participant, the rules for the intruder

become disabled until the �rst participant replies by depositing its message into the intruder's

database. Only then can the intruder send a message to another participant. Hence there are no

states in which more than one participant is ready to send a message.

4.5 Implementation issues

In this section, we discuss how state reduction techniques can be implemented by assigning priorities

to transition rules. We also describe another Mur' optimization that does not rely on state reduction.

4.5.1 Rule priorities

To support the state reduction techniques described above, we extended Mur' language with rule

priorities. In the extended language, a model implementor can assign an integer priority to every

rule in the system. If several rules are enabled in a particular state, Mur' will only explore the

subgraphs corresponding to rules with the highest priority. User-speci�ed rule priorities help Mur'

recognize which of the rules are associated with honest participants and which are intruder rules.

CHAPTER 4. MUR' OPTIMIZATIONS 40

The technique from Section 4.4.1 (intruder always intercepts) can be implemented by assigning

the highest priority to the \Intruder intercepts" rule. Then, whenever a new message appears on

the network, it is immediately intercepted by the intruder and stored in its database.

The technique from Section 4.4.2 (intruder does not send if an honest participant can) can be

implemented by assigning the lowest priority to the rules for intruder sending a message. The only

other rules in the system are those associated with honest participants, and each of those rules

sends a message to the network. Therefore, as long as there exists an honest participant who is

ready to send a message, the intruder will not send messages but will intercept those from honest

participants, increasing its knowledge set.

4.5.2 Parameterized rule conditions

After an honest participant has sent its message, the system reaches a state in which the only

enabled rules are those representing the intruder sending messages to honest participants. Typically,

the structure of the messages to be sent is known from the protocol speci�cation. However, the

mechanical intruder employed in Mur' cannot determine on its own what values have to be assigned

to message �elds so that the resulting message is accepted by the recipient and potentially leads to

a successful attack. Therefore, the intruder will try all possible combinations of �eld values. For

example, the following rule represents the intruder forging a Finished message in SSL 3.0 (Finished

messages contain a record of all information previously sent in the protocol):

-- Intruder generates a ServerFinished message with

-- a forged handshake log

ruleset d: ClientId do

choose n1: int.nonces do

choose n2: int.nonces do

choose secretKey: int.secretKeys do

ruleset sender: ServerId do

rule "Intruder generates ServerFinished (forged log)"

cli[d].state = M_SERVER_FINISHED

==>

-- Forge a message with the above parameters

...

end

CHAPTER 4. MUR' OPTIMIZATIONS 41

In the above rule, the intruder nondeterministically chooses (using the ruleset and choose

constructs) a recipient d from among the known SSL clients, two nonces n1 and n2 from its database

of nonces, a secretKey from its database of keys, and the ostensible sender of the message from

among the SSL servers, and �nally forges and sends the message if the recipient is in a state in

which it is ready to receive the message. (The intruder is assumed to know the states of all honest

protocol participants since the states can be inferred from the protocol de�nition and the observed

message exchange.)

The above Mur' code de�nes a rule for each possible assignment to the parameters d, n1, n2,

secretKey, and sender. The number of de�ned rules is thus equal to the product of the cardinalities

of the sets from which the parameter values are drawn. Clearly, if the intruder databases are

su�ciently large and there are many choices for each of the parameters, the number of de�ned rules

is large.

In each state reached during the state space search, Mur' checks for each rule whether it is

enabled or not. Many rules, however, share the same condition. In the example above, all rules

generated for the same value of d have the same condition, regardless of the values of the other

parameters. Thus, it is su�cient to evaluate the condition just once for each possible assignment to

d.

To exploit this idea, we modi�ed the Mur' compiler so that it separates the parameters for each

rule statement into two sets. The Dep set contains all parameters that are mentioned in the rule

condition (d in the example above). The Indep set contains the parameters not mentioned in the

rule condition (n1, n2, secretKey, and sender in the example above).

As before, a separate rule is de�ned for every possible assignment to the parameters from Dep [

Indep. The set of de�ned rules is partitioned into subsets so that each subset corresponds one-to-one

to a particular assignment to the parameters from Dep. Therefore, each subset contains the rules

corresponding to all possible assignments to the parameters from Indep given a particular assignment

to the parameters from Dep.

Instead of evaluating every rule condition in each state, the Mur' veri�er was altered to only

evaluate the condition for one (arbitrarily chosen) rule from each rule subset. The result of evaluation

is the same for all rules in the subset since they di�er only in the values of the parameters from Indep,

and the conditions do not depend on those parameters. Therefore, if the condition evaluates to true,

all rules in the subset are executed. If the condition evaluates to false, the veri�er immediately

moves on to the next subset corresponding to the next assignment to the parameters from Dep.

In our experience with security protocols, Dep is usually much smaller than Indep. The rules

with the largest number of parameters are those representing the intruder's sending a message to

an honest participant. The parameters of such rules contain values (chosen from the intruder's

database) for the message �elds of the forged message, while the rule conditions depend only on

CHAPTER 4. MUR' OPTIMIZATIONS 42

the current state of the recipient and not on the contents of the intruder's database. In fact, the

intruder's knowledge should not have any in
uence on whether an honest participant is ready to

receive a particular message or not. Therefore, not evaluating rule conditions for every possible

assignment to the rule parameters has proved very pro�table in our Mur' analyses.

4.5.3 Preliminary results

We used the state reduction techniques described in this chapter to reduce the size of the �nite-state

model for SSL 3.0, which is the largest security protocol analyzed with Mur' to date. The �rst

state reduction technique (intruder always intercepts) reduced the number of states by a factor of

20. Although spectacular, a reduction of this magnitude was to be expected. In the original model,

every message could be intercepted by the intruder or delivered directly from sender to recipient.

Intuitively, a sequence of N messages resulted in 2N states, since each of the N messages could be

intercepted by the intruder or not.

We pro�led the resulting model and determined that most of the execution time was spent

evaluating rule conditions due to the very large number of generated rules. Optimizing rule condition

evaluation as described in Section 4.5.2 reduced execution time by a factor of 3.7 with the same

number of states.

Finally, we implemented the second state reduction technique (intruder does not send if an

honest participant can), which resulted in further 43% reduction in the number of states and a 40%

reduction in the execution time.

We also evaluated our techniques on the Kerberos protocol, starting with the e�cient condition

evaluation, and then adding the two state reduction techniques. Table 4.1 shows the numbers of

reachable states and execution times dependent on the numbers of clients and servers in the protocol.

As in the case of SSL, the biggest savings result from the �rst state reduction technique. Note that

the savings resulting from the second state reduction technique increase with increasing numbers of

clients and servers, as one would expect.

Table 4.1: Numbers of reachable states and execution times dependent on the model parameters in
the Kerberos protocol

intruder
previous e�cient always send low

clients servers scheme conditions intercept priority

1 2 states 14 317 14 317 232 175
time 191.8s 68.9s 2.0s 1.6s

2 2 states 541 193
time 4.4s 2.2s

3 3 states 856 195
time 12.3s 3.6s

CHAPTER 4. MUR' OPTIMIZATIONS 43

4.6 Conclusions

We described two state reduction techniques that exploit characteristic properties of security proto-

cols. These techniques reduce both the number of reachable states and execution time of �nite-state

analysis. In addition, we described a method for minimizing the time required to evaluate parame-

terized rule conditions, further reducing total execution time.

The techniques described in this chapter have proved very useful for analyzing large security

protocols in Mur'. While the �rst state reduction technique (intruder always intercepts) has been

employed in other �nite-state analysis tools, the second state reduction technique (intruder does

not send if an honest participant can) is novel and is expected to prove useful beyond the Mur'

community.

Future research includes extending the Mur' veri�er so that it can automatically recognize

subsumption relations between states and remove subsumed states from the state queue. This

technique is independent from the second state reduction technique described in this chapter. We

expect that combining the two techniques will result in larger state reductions than those achieved by

either of the two techniques on its own. In addition, we plan to exploit the fact that, when the second

state reduction technique is implemented, every message send from the intruder is immediately

followed by a corresponding reply from the honest participant. This allows, for example, to combine

send-reply pairs into a single intruder rule, which should result in a signi�cant reduction in the

number of reachable states.

Chapter 5

Case Study: Contract Signing

With continuing growth of electronic commerce on the Internet, the issues of trust and fairness

are becoming increasingly important. In this chapter, we demonstrate how the �nite-state analysis

methods developed for secrecy and authentication protocols such as SSL 3.0 can be successfully

employed to discover weaknesses in fair exchange protocols. We use two protocols for online contract

signing as representative case studies.

5.1 Introduction

Contracts are an important part of business. If two parties wish to sign a contract, but do not share

other motives, then each may refuse to sign until the other has demonstrated their commitment to

the contract. While simultaneous commitment can be achieved by sitting at a table and signing

identical paper copies together, distributed contract signing over a network is inherently asymmetric:

someone has to send the �rst message. In one contemporary style of contract-signing protocol, two

rounds of communication are used. In the �rst round, each party declares their willingness to be

bound by the contract. In the second, they each send some remaining data needed to complete

the contract. If a trusted third party is able to enforce the contract based on partial completion of

the protocol, then it is possible to conduct distributed contract signing so that various symmetric

correctness conditions are satis�ed. In optimistic contract signing, the third party is only needed in

case of a dispute. Otherwise, the protocol can be completed without involving the third party.

The most basic correctness condition for contract signing is called fairness. A contract signing

protocol is fair if, after completion of the protocol, either both parties have a signed contract or

neither does. Another property is called accountability : if any party cheats by not following the steps

required by the protocol, the resulting network messages will unambiguously show which party has

cheated. Accountability is particularly important for the trusted third party, since it has the ability

to resolve or abort a contract.

44

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 45

A more complex condition, introduced in [24], has been called abuse-freeness. This condition is

intended to guarantee that neither party has a speci�c kind of advantage over the other during the

execution of the protocol. To illustrate by example, suppose Alice o�ers to sell her house to Bob

and Bob signs a contract for a certain price. If Alice holds the contract without signing, she may

be able to use the contract to convince another buyer to pay more than Bob. Meanwhile, Bob has

committed his �nancial resources to the incomplete transaction and cannot enter into competing

deals. In this scenario, Alice obtains evidence she can use to convince another buyer that she alone

can decide whether to complete the contract or reject it. This kind of asymmetry can be prevented

in physical simultaneous transactions, but it is di�cult to prevent abuse in distributed protocols.

While formal methods have been extensively used to analyze the security properties of key

exchange and authentication protocols, less attention has been paid to other kinds of protocols,

such as fair exchange. In [26], Heintze et al. used the FDR model checker to verify NetBill [13] and

Digicash [10] protocols. The correctness conditions they establish are di�erent in character from the

ones we consider here.

In this chapter, we describe an automated analysis of two optimistic contract signing protocols.

The �rst protocol was proposed by Asokan, Shoup, and Waidner [1] (we shall refer to it as the

ASW protocol). The ASW protocol uses standard cryptography and special forms of contract to

guarantee fairness and accountability of trusted third party. The second protocol was proposed by

Garay, Jakobsson, and MacKenzie [24] (we shall refer to it as the GJM protocol). It relies on a

cryptographic construct called private contract signature to guarantee abuse-freeness in addition to

fairness and third party accountability.

Using Mur', we verify fairness properties claimed for the protocols and uncover several weak-

nesses. In case of the ASW protocol, a malicious protocol participant is able to obtain a valid

contract while the honest participant, even if resorts to the help of the trusted third party, can

only obtain a replacement contract which is inconsistent with the one possessed by the malicious

participant. The same weakness also allows the intruder to stage a replay attack.

Our �nite-state analysis of the GJM protocol reveals an attack that leads to the loss of abuse-

freeness and third party accountability. Speci�cally, the contract initiator, O, using a weak form of

passive assistance (or information leak) from the third party, is able to choose whether to reveal a

completed contract or accept an abort token provided by the third party. Furthermore, if O chooses

to reveal its completed contract, and the discrepancy with R's abort token is observed, it is not

possible to determine whether the third party participated in the inconsistency or not.

Although the sequences of actions demonstrating these weaknesses are relatively short and easy

to follow, the analysis is subtle in several respects. First, both sequences involve interaction between

the optimistic two-party transaction normally used to sign a contract, the abort protocol used by

one party to time out and stop the protocol, and the resolve protocol used to request enforcement by

the third party. As a result of the complexity of interactions between these three subprotocols, we

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 46

did not suspect any problems until our analysis tool uncovered violations of one of our correctness

conditions. Only then, after examining the traces provided, were we able to isolate speci�c aspects

of the protocols that allow the attacks.

In both cases, we suggest simple changes to the protocols that prevent the attacks. For the GJM

protocol, the same repair was also proposed by the authors of the protocol after we described the

attack [40]. The repaired protocols appear to be correct; Mur' analysis does not suggest any errors.

We also show that some assumptions about the communication channels can be relaxed without

violating fairness or other intended properties of the protocols.

There is some subtlety in the way that the basic protocol requirements, fairness, abuse-freeness,

and accountability, are speci�ed. In examining fairness, for example, we realized that an abort

message from the third party does not mean that no participant will receive a contract. This is

inherent in optimistic two-party protocols: after the protocol has �nished without involving the

trusted third party, one of the parties can ask the third party to abort the protocol. Another

subtlety surrounds abuse-freeness, which is an assertion about choices at intermediate states in the

execution of the protocol. Abuse-freeness is not a property that can be determined by examining

individual traces of protocol execution independently. Since Mur' is a trace-based tool, we had to

devise some extension of the protocol environment, involving an outside party who issues sign and

abort challenges, in order to automatically verify the states in which one participant has the power

to determine the eventual outcome of the protocol.

Given the results of the present study, it is interesting to compare the ASW protocol with

the GJM protocol, taking into account that the former was not designed to be abuse-free. The

ASW protocol may be preferable to the original GJM protocol, since the latter can only be used

if the trusted third party and associated communication channels are completely trustworthy due

to problems with third party accountability. The repaired GJM protocol appears to guarantee

accountability, and may be chosen over the ASW protocol assuming that private contract signatures

are available. By contrast, the ASW protocol relies only on standard cryptographic constructs.

Analysis of the comparative advantages of cryptographic signature schemes is beyond the scope of

this study.

The remainder of this chapter is structured as follows. Section 5.2 provides background on

fair exchange protocols, section 5.3 describes the ASW protocol, section 5.4 presents our modeling

assumptions, results of our analysis, and suggested repairs. Section 5.5 describes the GJM protocol,

which is then analyzed in section 5.6. Section 5.7 compares the two protocols, and brief concluding

remarks appear in section 5.8.

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 47

5.2 Fair exchange

Intuitively, a protocol is fair if no protocol participant can gain an advantage over other participants

by misbehaving. For example, a protocol in which two parties exchange one item for another is fair

if it ensures that at the end of the exchange, either each party receives the item it expects, or

neither receives any information about the other's item [1]. Fair exchange protocols are used for

online payment systems, in which a payment is exchanged for an item of value [13], contract signing,

in which parties exchange commitments to a contractual text [5, 1, 24], certi�ed electronic mail

[3, 63, 14], and other purposes. There are several varieties of fair exchange protocols.

Gradual exchange protocols [5, 8] work by having the parties release their items in small install-

ments, thus ensuring that at any given moment the amount of information received by each side

is approximately the same. The drawback of this approach is that a large number of communica-

tion steps between the parties is required. Gradual exchange is also problematic if the items to be

exchanged have \threshold" value (either the item is valuable, or it is not).

Another category of fair exchange protocols is based on the notion of a trusted third party

[13, 63, 14]. The trusted third party supervises communication between the protocol participants and

ensures that no participant receives the item it wants before releasing its own item. Variations of this

approach include fair exchange protocols with a semi-trusted third party [22]. The main drawback

of the third party solution is that the third party may become the communication bottleneck if it

has to be involved in all instances of the protocol in order to guarantee fairness. The protocol may

also need to impose demands on the communication channels, e.g., by requiring that all messages

are eventually delivered to their intended recipients.

Recently, several protocols have been proposed for optimistic fair exchange [1, 4, 24]. While the

third party T may need to be trusted by all parties to the exchange, T needs to act only if one

of the parties misbehaves or there is a communication failure. This may ease the communication

bottleneck associated with T , making fair exchange more practical for realistic applications.

The contract signing protocol of Garay, Jakobsson, and MacKenzie [24] extends the concept of

fairness by introducing the notion of abuse-freeness. Informally, a protocol is abuse-free if neither

participant can prove to an outside party that it has the power to abort the protocol or successfully

complete contract negotiation. In �nancial applications, the ability to prove that one can resolve

or abort a particular contract negotiation may be as important as the actual signing of a contract,

making abuse-freeness critical for fair exchange protocols to be deployed in the �nancial arena.

Fair exchange protocols present a considerable challenge to formal analysis techniques. Fairness

invariants are di�cult to express precisely based on an informal protocol speci�cation. Since fair

exchange protocols are designed to protect honest participants from being cheated by a misbehaving

counterpart, it is necessary to model malicious or corrupt protocol participants in addition to the

standard intruder. A detailed discussion of how corrupt participants are formally modeled in Mur'

can be found in section 5.4.1 below. Fair exchange protocols with the trusted third party typically

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 48

provide a guarantee of third party veri�ability or accountability, promising that any loss of fairness

resulting from the third party's corruption can be traced and proved to an outside arbiter. These

guarantees are di�cult to understand and formalize for automatic veri�cation.

5.3 Asokan-Shoup-Waidner protocol

In this section, we describe the optimistic contract signing protocol by Asokan, Shoup, and Waidner

[1] (the ASW protocol). We start by giving a high-level description of the objectives of the protocol

and the assumptions under which it operates. We then explain the protocol steps in detail and

formalize the correctness conditions posed by the protocol designers. The notation has been changed

from the original paper to facilitate explanation.

A common point of confusion about this protocol is the notion of \contract." In general, one

might expect a contract to be a pair of digital signatures of an agreed upon text, one signature

from each party negotiating the contract. In the ASW protocol, normal termination without use

of the third party will produce a contract that contains two digital signatures and additional data

generated in the run of the protocol. However, the contracts produced by the third party are not

necessarily of this form. In order to understand the ASW protocol, it is important to keep in mind

not only the steps of each subprotocol (discussed below), but also the forms of contract that the

protocol designers have established for the protocol.

5.3.1 Objectives

The ASW protocol is designed to enable two parties, called O (originator) and R (responder), to

obtain each other's commitment on a previously agreed contractual text. The protocol is asyn-

chronous. As the exchange subprotocol progresses, either participant may contact the trusted third

party T . The third party may decide, on the basis of communication it has received, whether to

issue a replacement contract or an abort token. Abort tokens are not a proof that the exchange has

been canceled, as explained below.

5.3.2 Assumptions

The protocol uses conventional, universally-veri�able digital signatures and a hash function. We

write S-Sigi(: : :) for a message signed by party i and assume that all protocol participants have the

ability verify signatures produced by any party. We also assume that there exists a collision-resistant

one-way hash function, Hash().

Prior to executing the protocol, the parties are assumed to agree on each other's identity, the

identity of the trusted third party T , and the contractual text. It is also assumed that every protocol

participant knows everybody else's signature veri�cation key, which is typically the public key. This

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 49

implies that the protocol must be preceded by the \handshake" phase in which a key exchange

and/or authentication protocol is executed to establish the shared initial knowledge. Since it is not

necessary for the handshake protocol to guarantee fairness, we do not consider it as part of this

study.

The original paper [1] is self-contradictory in its description of the assumptions about the com-

munication channels between protocol participants. It �rst states that the communication channels

between any two protocol participants are assumed to be con�dential, i.e., eavesdroppers will not be

able to determine the contents of messages traveling through these channels. This can be achieved

by encrypting all messages with the intended recipient's public key. Later, however, the paper states

that no assumptions are made about the communication channel between O and R. In [1], it is also

assumed that the channels between each participant and the trusted third party T are resilient, i.e.,

any message deposited into the channel will eventually be delivered to its intended recipient. How-

ever, there are no time guarantees: the intruder can succeed in delaying messages by an arbitrary,

but �nite amount of time. In section 5.4 below, we analyze the protocol under various assumptions

about the quality of communication channels.

Implicit in the protocol speci�cation is the assumption that the trusted third party T must

maintain a permanent database with the status of every protocol run that it has ever been asked

to abort or resolve. (Each run can be identi�ed by the �rst message me1 | see below.) Abort

and resolve requests are processed by T on the �rst-come, �rst-served basis. Therefore, in order to

ensure fairness, T must always be able to determine whether a particular instance of the protocol

has been aborted or resolved already.

5.3.3 Protocol

The ASW protocol consists of three interdependent subprotocols: exchange, abort, and resolve. The

parties (O and R) generally start the exchange by following the exchange subprotocol. If both O

and R are honest and there is no interference from the network, each obtains a valid contract upon

the completion of the exchange subprotocol. The originator O also has the option of requesting the

trusted third party T to abort an exchange that O has initiated. To do so, O executes the abort

subprotocol with T . Finally, both O and R may each request that T resolve an exchange that has

not been completed. After receiving the initial message of the exchange protocol, they may do so

by executing the resolve subprotocol with T .

At the end of the protocol, each party is guaranteed to end up with a valid contract or an abort

token. As described brie
y above, the protocol de�nition in [1] provides two forms of contract:

fme1; NO;me2; NRg (standard contract)

S-SigT fme1;me2g (replacement contract)

where me1;me2; NO; NR are de�ned below. Note that the protocol de�nition does not consider a

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 50

signed contractual text by itself a valid contract.

Abort tokens have the following form:

S-SigT faborted ;ma1g

where ma1 is de�ned below.

An abort token should not be interpreted as a proof that the exchange has been canceled. The

protocol does not prevent a dishonest O from obtaining an abort token after signing the contract

with R. (In this case, O may have both the abort token and the contract, while R only has the

contract). The protocol is designed, however, to prevent one party from receiving only the abort

token in any situation where the other can receive a valid contract.

Exchange subprotocol. As mentioned earlier, it is assumed that prior to initiating the exchange, the

two parties agree on the contractual text (text) and the identity of the trusted third party T . They

are also assumed to know each other's public veri�cation key. Speci�cally, O knows the key VR that

can be used to verify messages signed by R, and R knows VO .

When there is no delay or blockage of network messages and neither party tries to cheat the

other, O and R may create a contract by the following steps:

O ! R me1 = S-SigOfVO; VR; T; text;Hash(NO)g

R! O me2 = S-SigRfme1;Hash(NR)g

O ! R me3 = NO

R! O me4 = NR

In the �rst step of the subprotocol, O commits to the contractual text by hashing a random

number NO, and signing a message that contains both Hash(NO) and text. NO is called the contract

authenticator. While O does not actually reveal the value of the contract authenticator to the

recipient of message me1, O is committed to it. As in a standard commitment protocol, we assume

that the hash function is 2nd-preimage resistant: it is not computationally feasible for O to �nd a

di�erent number N 0

O such that Hash(N 0

O) = Hash(NO).

In the second step, R replies with its own commitment. Finally, O and R exchange the actual

contract authenticators. At the end of the exchange, both O and R obtain a standard contract of

the form fme1; NO;me2; NRg.

Abort subprotocol. The initiator O may attempt to abort the exchange. An honest O may do this

if a reply from R is not received within a reasonable amount of time. To abort, O sends an abort

request to the trusted third party T by signing the �rst message me1 of the exchange together with

aborted. The exact format of aborted is not speci�ed in [1]; we assume that it is some prede�ned bit

string.

Here are the steps of the abort subprotocol, with further description of T 's action below:

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 51

O ! T ma1 = S-SigOfaborted ;me1g

T ! O ma2 = Has me1 been resolved already?

Yes : S-SigT fme1;me2g

No : S-SigT faborted ;ma1g

aborted := true

When T receives an abort request, T checks its permanent database of past actions to decide

how to proceed. If T has not previously been requested to resolve this instance of the protocol, T

marks me1 as aborted in its permanent database and sends an abort token to O. If me1 is already

marked as resolved, this means that T has previously resolved this exchange in response to an earlier

request (as described below). T must have obtained both me1 and me2. Therefore, in response to

O's abort request, T creates a replacement contract S-SigT fme1;me2g and sends it to O.

Since T stores the result of aborting (indicated by aborted := true) in its permanent database, an

abort token is e�ectively a promise by T that it will not resolve this instance of the protocol in the

future. As mentioned above, an abort token is not a proof that the exchange has been aborted, as the

parties can complete contract signing without involving T if they follow the exchange subprotocol.

It is useful to bear in mind that while an honest O may send an abort request to T if it does

not receive me2 within a reasonable time, there is no guarantee that O will be able to abort. If the

exchange has been already resolved by someone who knows both me1 and me2, T will not grant the

abort request and will send O a replacement contract instead | even if O has not received me2.

Note also that even though R is not allowed to send abort requests to T , this does not put R at a

disadvantage since it has the option of simply ignoring all messages from O.

Resolve subprotocol. Either party may request that T resolve the exchange. In order to do so,

the party must possess both me1 and me2. Therefore, R can send a resolve request at any time

after receiving me1, and O can do so at any time after receiving me2. When T receives a resolve

request, it checks whether me1 is already marked as aborted. If it is, T replies with the abort token,

otherwise it marks me1 as resolved and generates a replacement contract by counter-signing the

resolve request.

Below, we show the resolve protocol between R and T . The protocol between O and T is

symmetric.

R! T mr1 = fme1;me2g

T ! R mr2 = Has me1 been aborted already?

Yes : S-SigT faborted ;ma1g

No : S-SigT fme1;me2g

resolved := true

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 52

Although the generated contract has a di�erent form than the contract produced by the exchange

subprotocol, the protocol design assumes that in any transaction requiring a contract, either form

would be accepted as binding. In other words, the protocol designers consider the de�nition of

contract to be part of the protocol speci�cation and choose to use two forms of valid contract in

their protocol.

The �rst request received by T determines the permanent status of the protocol. After T resolves

or aborts the protocol for the �rst time, it should send identical replies in response to all future

requests. If the �rst request to reach T is an abort request from O, T 's response to all requests will

be the abort token. If the �rst request to reach T is a resolve request from O or R, T 's response to

all requests will be the replacement contract. This leads to an implicit race condition which is not,

however, a violation of fairness requirements as de�ned in section 5.3.4.

5.3.4 Correctness conditions

The designers claim that the ASW protocol has the following properties:

Claim 1.

If the communication channel between O and R is resilient, the protocol satis�es the following

requirement:

E�ectiveness. If both parties behave correctly and do not want to abandon the exchange, then

when the protocol has completed, each has the other's commitment and authenticator, i.e., O has

Hash(NR) and NR, while R has Hash(NO) and NO.

Claim 2.

If the communication channels between O and T , and R and T are resilient, the optimistic contract

signing protocol satis�es the following requirements:

Strong fairness. When the protocol has completed, either both O and R have valid contracts, or

neither one does.

Timeliness. At the beginning of the exchange, every participant can be sure that the protocol will

be completed within �nite time. At completion, the state of the exchange will either be �nal, or,

in the words of the protocol designers, any changes to it will not \degrade the level of fairness"

achieved by the participant so far. For example, if a party has not been cheated at the end of the

protocol, it cannot be cheated later on.

Non-repudiability. After an e�ective exchange (see above), each participant P will be able to prove

the origin of the valid contract it has received, and prove that P 's protocol counterparty has received

P 's authenticator or a valid replacement contract from T .

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 53

Third party accountability. If the trusted third party T can be forced to eventually send a valid reply

to every request, then any participant who is cheated as a result of T 's misbehavior will be able to

prove that T misbehaved in an external dispute.

5.4 Analysis of the ASW protocol

In order to search for protocol errors, we implemented the exchange, abort, and resolve subprotocols

in the Mur' language. The protocol was combined with the standard intruder model described

in section 2.2. Most of the correctness conditions of section 5.3.4 were stated as Mur' invariants.

During state exploration, Mur' checks that each invariant holds in every reachable state. Conditions

such as timeliness and non-repudiability cannot be trivially represented as state invariants, and are

discussed informally below.

Our �rst attempt to analyze the protocol failed because according to the protocol speci�cation,

the trusted third party T is always ready to accept abort and resolve requests. Therefore, if one of

the parties is strongly corrupt (i.e., the intruder has access to its signing key | see section 5.4.1

below), then in every state of the protocol the intruder can generate a new resolve or, if O is the

corrupt party, abort request and send it to T . The trusted third party will then add the request to

its database, resulting in a new, larger state. This makes the state space of the protocol in�nite.

The only solution is to arbitrarily limit the number of times the intruder can generate a request

to T in the course of one instance of the protocol. This restriction is not necessary if there are no

corrupt parties, since there is only a �nite number of frivolous requests that can be computed by the

intruder. However, Mur' analysis is slowed down considerably if in every state there is an enabled

rule allowing the intruder to send a request to T . This section describes the results of our analysis

with the intruder limited to no more than 2 requests to T per protocol instance.

We discuss the modeling of corrupt protocol participants in section 5.4.1. The subsequent subsec-

tions discuss the analysis of each protocol correctness condition in turn. Finally, we suggest repairs

to the protocol in section 5.4.6.

5.4.1 Modeling corrupt participants

Fair exchange protocols must protect an honest participant from being cheated by a malicious

counterpart. Therefore, analysis of a fair exchange protocol must consider the possibility of one or

more participants becoming corrupt and cooperating with the intruder.

There are several ways to model a corrupt protocol participant in Mur'. In the simplest case,

the corrupt participant is assumed to share its private key with the intruder, enabling the latter to

sign and decrypt messages on its behalf. This is equivalent to the intruder using the corrupt party

as an oracle for signing and decrypting messages. We will call such collaboration with the intruder

strong corruption.

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 54

A weaker form of corruption occurs when a protocol participant does not share its key with the

intruder, and does not sign any messages it is not supposed to sign in the normal course of the

protocol. However, it may be willing to engage the intruder's help in obtaining an unfair advantage

in the exchange or contract signing process. This may involve accepting messages from the intruder

and lying to an outside party about their source, e.g., by claiming that they arrived from the protocol

counterpart or T through the standard communication channels. We will call this weak corruption.

A weakly corrupt protocol participant is akin to a fence who is willing to accept hot goods

without asking too many questions but will not do anything overtly illegal himself. A contract

signing protocol that does not protect an honest participant from being cheated by a weakly corrupt

counterpart defeats its own purpose and is largely useless. In the real world, it is impossible to be

sure that an untrusted agent is not weakly corrupt, i.e., that it is not acting in collusion with the

intruder who has control over the public network on which the contract is negotiated.

The weakest form of corruption is the case when a participant, perhaps unintentionally, gives the

intruder an ability to monitor (but not to modify or re-schedule) all incoming network tra�c. This

kind of corruption does not require that the corrupt party has a malicious intent. All the intruder

needs is an oversight in network protection. For example, careless disposal of incoming messages

may enable the intruder to root through the garbage and read all discarded messages. We will call

this form of corruption accidental corruption.

5.4.2 Fairness

We started the analysis by verifying the strong fairness property of the protocol (see section 5.3.4).

As a reminder, strong fairness guarantees that when the protocol has completed, either both protocol

participants have valid contracts, or neither one does.

Con�dential channels, one instance of the protocol. First, we analyzed one run, or instance of the

protocol under the assumption that all communication channels are con�dential. This prevents the

intruder from learning anything from the messages as they pass through the network. The only

operation the intruder can perform in this setting is to store a message and replay it later.

In fact, the protocol speci�cation [1] says that the protocol provides fairness if the communication

channel between O and R, or those between O;R and T , is resilient, i.e., any message deposited

in the channel will eventually be delivered to the recipient. Resilience is not a safety property and

requires special e�ort to model with Mur'. Adding liveness properties to Mur' (e.g., by means of

rules that are enabled only in \�nal" states where no other rules apply) is a topic of current research.

For the purposes of this study, we made all protocol invariants conditional on the protocol's

successful completion. Therefore, in order for an attack on the protocol to succeed, the intruder

must deliver messages to their intended recipients so that the latter are convinced that they have

successfully completed the protocol. As long as one of the parties is in a state where it's waiting for

a message, the protocol is not complete, and there are no fairness guarantees. This approximation of

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 55

resilience actually strengthens the intruder by not requiring it to eventually forward all intercepted

messages to their intended recipients. Therefore, if Mur' did not �nd any attack on the protocol in

our model, it would not have found any attacks in the model where the channels are both con�dential

and resilient.

Mur' did not discover any violations of strong fairness by analyzing a single instance of the

protocol under the channel con�dentiality assumption. It did discover that the intruder can achieve

the following:

� Prevent O from aborting the protocol by delaying its abort request to T until R computes

me2, and then submitting me1 and me2 (ostensibly from R) to T , thus resolving the protocol.

Then O will receive a replacement contract in response to its abort request.

� Force O to submit an abort request to T by intercepting me2.

� Force R (respectively, O) to submit a resolve request to T by intercepting me3 (me4).

� Resolve the protocol directly by submitting a resolve request to T once both me1 and me2

have been sent into the network as part of the exchange subprotocol.

None of the above, however, is a violation of strong fairness as de�ned in section 5.3.4.

Con�dential channels, two instances of the protocol. After increasing the bound on the number of

protocol instances, Mur' discovered the following replay attack:

I observes an instance of the protocol

O ! R me1 = S-SigOfVO; VR; T; text;Hash(NO)g

R ! O me2 = S-SigRfme1;Hash(NR)g

O ! R me3 = NO

R ! O me4 = NR

Later . . .

I ! R me1 = S-SigOfVO; VR; T; text;Hash(NO)g

R ! O me02 = S-SigRfme1;Hash(N
0

R)g hI interceptsi

I ! R me3 = NO

R ! O me04 = N 0

R hI interceptsi

To stage this attack, the intruder must observe an instance of the protocol, recording all messages

sent by O. After the protocol completes, the intruder can initiate another instance of the protocol

by replaying the recorded me1. R will respond with a new me02, to which the intruder responds with

the old me3. The result of this attack is that the intruder can get R to commit to the text of an old

contract with O without O's or T 's knowledge.

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 56

The protocol as described in [1] contains no protection against this kind of attack. Perhaps this

was a conscious decision on the part of the protocol designers who did not intend the protocol to

be secure against replay attacks. If the contractual text contains a timestamp, expiration date, or

some other information that might help in determining its freshness, R may be able to detect the

attack. It can be argued that any well-written contract must contain such information. However,

this should be stated explicitly as part of the protocol speci�cation and not left for the protocol user

to infer.

The replay attack discovered by Mur' discovered is di�erent from the simpler one in which a

malicious R keeps the old contract to which O had previously committed and tries to reuse it. In

case of our replay attack, the new contract is di�erent from the old one. Recall that a standard

contract is the combination of me1, me2, and contract authenticators: fme1;me2; NO; NRg. Since

me2 is di�erent in the second instance of the protocol, the contract is di�erent. This implies that O

cannot even obtain a valid replacement contract by requesting it from the trusted third party since

in order to do so, it needs me02 which it never receives. In fact, O is not even aware that an exchange

between R and the intruder has taken place.

The replay attack succeeds even if both O and R are honest. Suppose that O is a retailer who

periodically purchases supplies from R online using the contract signing protocol. All purchase

contracts are exactly the same, as is often the case in real life, and it is agreed (o�ine) that all

contracts expire immediately upon ful�llment (i.e., R receives the order, �lls it, and forgets about

it). Then the intruder can use the replay attack to impersonate O and submit a false purchase

contract on its behalf, convincing R that O has committed to a new purchase and providing R with

a false proof of O's commitment.

Note that there is no need for the intruder to involve the trusted third party in the protocol in

order to stage the replay attack. This means that there will be no evidence of the attack such as

could have been provided by a resolve request kept by T .

The main weakness of the protocol is the fact that O's message me3 that contains the contract

authenticator is sent in response to R's commitment message me2 but is not related to it in any

way, making it possible for the intruder to replay an old me3. A small change to the protocol that

prevents the attack is described in section 5.4.6.

Standard channels. After repairing the protocol to prevent the replay attack, we performed Mur'

analysis without the con�dentiality assumption on the channels but still within the constraints of the

standard Dolev-Yao intruder model (see section 2.2). Mur' did not discover any new attacks. This

can be attributed to the fact that messages me1;2, ma1;2, and mr2 are all signed, and mr1 contains

signed messages as its components. Assuming that every protocol participant knows everybody

else's correct public key (this is a necessary requirement for the protocol to succeed even in the

absence of the intruder), signatures prevents the intruder from modifying messages in transit. Since

no signing keys are transmitted as part of the protocol, the intruder cannot gain the ability to sign

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 57

messages unless one of the parties leaks its key. Therefore, the intruder is just as powerful as in the

case of con�dential channels.

This result suggests that the channel con�dentiality assumption can be relaxed. The protocol

ensures fairness even if the channels are controlled by a Dolev-Yao intruder.

Corrupt protocol participant. Finally, we analyzed the protocol under the assumption that one of the

participants is corrupt. We modeled this by giving the intruder access to the corrupt party's private

information such as its private key and contract authenticator even before the latter is divulged as

part of the exchange subprotocol. This corresponds to strong corruption as described in section

5.4.1. The intruder is e�ectively indistinguishable from the corrupt participant in this case, thus we

can model the protocol under the assumption that the corrupt participant has full control over the

network.

Mur' discovered that a corrupt O can obtain both an abort token signed by T and a valid

contract with R. In fact, O does not require assistance from the intruder to do this. It can simply

execute the exchange subprotocol with R and then the abort subprotocol with T . As a result, R

obtains a valid contract with O, while O obtains a contract with R and T 's abort token. Since both

parties have the contract, this is not a violation of fairness as de�ned in section 5.3.4, but it also

implies that abort tokens may not be accepted as a proof that contract negotiation failed.

Mur' also discovered the following attack, in which a malicious R obtains a contract which is

inconsistent with that obtained by O.

O ! R me1 = S-SigOfVO; VR; T; text;Hash(NO)g

R ! O me2 = S-SigRfme1;Hash(NR)g

R computes new random N 0

R and

me02 = S-SigRfme1;Hash(N
0

R)g,

but keeps them secret

O ! R me3 = NO

R sends nothing

O ! T mr1 = fme1;me2g

T ! O mr2 = S-SigT fme1;me2g

In this attack, R computes two di�erent responses me2 and me02 to O's initial message me1

using di�erent random numbers NR and N 0

R. It sends out me2 and keeps the other secret. After it

receives O's contract authenticator NO, R does not respond at all. It has already obtained a valid

standard contract fme1; NO;me02; N
0

Rg. Since O does not receive me4 from R, it requests trusted

third party T to resolve the protocol. T issues a replacement contract by counter-signing me1 and

me2. However, O's contract is di�erent from that possessed by R because it contains the hash of a

di�erent random number: NR rather than N 0

R.

Clearly, this is a problem, since each party possesses a valid contract, but the two contracts

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 58

are inconsistent. Recall that the protocol employs a non-standard de�nition of contracts (section

5.3.3), according to which a valid contract is more than a signed contractual text. Even though

the contractual texts in the two contracts are the same, the random numbers and commitments are

di�erent, and it is unclear how the contracts should be enforced or interpreted, given that both are

valid according to the protocol speci�cation. The original paper [1] does not say anything about

how this situation should be handled.

This problem is caused by the same weakness of the protocol that makes the replay attack

possible. O's contract authenticator NO is sent in response to me2 but is not explicitly linked to it.

This enables R to use NO with a di�erent message me02 to form a valid contract without revealing

its own commitment to O. More generally, Mur' analysis points to the fact that O's half of the

contract contains no information that links it to R's half of the contract. The modi�cation of the

protocol described in section 5.4.6 prevents this attack, too.

5.4.3 Timeliness

Eventual completion of the protocol is guaranteed by channel resilience. Since we did not fully model

resilience, it is possible for the intruder in our model to prevent the protocol from completing, but

this attack is trivial.

The concept of \fairness degradation" is not de�ned in the paper [1] and thus di�cult to formalize

so that it can be checked by a �nite-state analysis tool. Based on our informal understanding of

the protocol, if fairness is achieved at the end of the protocol, then it cannot be lost since the

protocol provides no means of invalidating a contract. If a party has the valid contract once the

protocol completes, then it cannot be cheated regardless of whether the other party has the contract

or not. If a party does not have a valid contract, then the other party must not have a contract

either (otherwise, there is no fairness). The only remaining question is whether it is possible to

reuse information from an instance of the protocol that did not result in a valid contract in another

instance that does produce a valid contract (then even if the �rst instance of the protocol was fair,

fairness will be lost in the second instance). Mur' did not �nd any attacks of this nature.

5.4.4 Non-repudiability

Non-repudiability condition (see section 5.3.4) requires that after an honest party completes the

protocol, it must be able to prove the origin of the valid contract it receives. Since the ability to

prove something is di�cult to formalize, we did not attempt to verify non-repudiability with Mur'.

One can use informal reasoning to conclude that since commitment messages are signed and it is

assumed that the signature scheme is secure, O's signature on me1, R's signature on me2, and T 's

signature on mr2 prove the origin of any valid contract, whether it is a standard contract computed

by O and R, or a replacement contract issued by T . Non-repudiability of receipt is conditional on

fairness: if O has a valid contract at the completion of the protocol, then Rmust have a valid contract,

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 59

too (otherwise, there is no fairness). Therefore, R must have received O's contract authenticator or

a replacement contract from T . R's non-repudiability of receipt is symmetric. Unfortunately, this

sort of reasoning is di�cult to verify with a �nite-state tool.

5.4.5 Trusted third party accountability

The ASW protocol is not intended to guarantee fairness if the trusted third party T is corrupt.

However, third party accountability implies that if one of the participants loses fairness as a result

of T 's misbehavior, it should be able to prove this misbehavior to an independent arbiter.

Accountability only holds if the trusted third party is guaranteed to send a valid response to all

requests. Our Mur' model approximates this guarantee by making all protocol invariants, including

third party accountability, conditional on the protocol's successful completion. Therefore, in order to

succeed, any attack staged by the intruder, possibly acting in collusion with corrupt T , must involve

generating a valid response to every request sent by an honest participant. Otherwise, the honest

participant will not complete the protocol, and the attack will fail. Also, accountability is only

feasible if O is noti�ed when R tries to enforce a contract and vice versa. If a protocol participant

does not know that it is being cheated, it cannot go after T to prove its misbehavior.

Before formulating a formal protocol invariant that could be veri�ed with the help with Mur',

we had to determine what it means to be able to prove T 's misbehavior. Based on our interpretation

of the protocol description in [1], we believe that the cheated protocol participant can prove that

T misbehaved if and only if it can produce two documents, both signed by T , that contradict each

other. More speci�cally, the cheated participant must be able to demonstrate an abort token signed

by T and a replacement contract for the same instance of the protocol, also signed by T . Since T is

supposed to process all abort and resolve requests on the �rst-come, �rst-served basis and the initial

request determines the status of the protocol in perpetuity, it should never be the case that T issues

both an abort token and a replacement contract for the same instance of the protocol.

Based on the above interpretation, we believe that third party accountability is violated if and

only if the following conditions hold (the conditions are formulated assuming that O is the cheated

party; the conditions for R are symmetric):

� T is corrupt (modeled by giving the intruder access to T 's signing key).

� R has O's contract authenticator.

� O has neither R's contract authenticator, nor a replacement contract signed by T .

If R has a replacement contract signed by T instead of a standard contract with O's contract

authenticator, then T is always accountable! Suppose that R tries to enforce its replacement contract.

When O goes to T and requests to either abort, or resolve the protocol, T must send O a valid

response. If T sends a replacement contract, then there is no fairness violation and O is not cheated

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 60

since both parties possess the same contract. If T sends an abort token, then O is indeed cheated

(since R has a contract and O does not), but O can then prove T 's misbehavior by demonstrating

its abort token and R's replacement contract, both signed by T .

However, if R has a standard contract with O's contract authenticator, then R's contract is

not signed by T , and O cannot prove T 's misbehavior since it cannot produce two inconsistent

documents signed by T . This case satis�es the conditions listed above.

Mur' did not discover any states reachable by the protocol that satisfy the conditions. We

conclude that the third party is indeed accountable.

5.4.6 Repairing the protocol

The ASW protocol can be repaired so as to prevent the attacks described in section 5.4.2 by explicitly

linking message me3 with message me2. This is a standard technique to ensure that an old me3

cannot be replayed by the intruder in response to a fresh me2 and that R can obtain a standard

contract only with the same contract authenticator that it has sent to O as part of me2. A similar

change must be made to me4 to prevent a symmetric replay attack.

O ! R me1 = S-SigOfVO; VR; T; text;Hash(NO)g

R! O me2 = S-SigRfme1;Hash(NR)g

O ! R me3 = S-SigOfNO;Hash(NR)g

R! O me4 = S-SigRfNR;Hash(NO)g

5.5 Garay-Jakobsson-MacKenzie protocol

In this section, we describe the abuse-free optimistic contract signing protocol of Garay, Jakobsson,

and MacKenzie [24]. The protocol is closely related to the ASW protocol described above. Both

involve a 4-step exchange subprotocol, and similar abort and resolve subprotocols. Even though the

two protocols have similar structure, the actual contents of the messages di�er. Unlike the ASW

protocol, the GJM protocol is designed to guarantee abuse-freeness in addition to fairness and third

party accountability.

This section follows the pattern of section 5.3. We start by brie
y describing the objectives of the

GJM protocol, and then explain the properties of private contract signatures (PCS), an innovation

of Garay, Jakobsson, and MacKenzie used to make contract signing abuse-free. Finally, we describe

the protocol steps in detail and formalize the correctness conditions.

5.5.1 Objectives and assumptions

The GJM protocol is designed to enable two parties, O andR, to exchange signatures on a contractual

text. It is assumed that prior to executing the protocol, the parties agree on each other's identity,

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 61

the contractual text, and the identity of the trusted third party T . Every protocol participant is

assumed to know the correct signature veri�cation key of the other party and T . As above, we write

S-Sigi(m) for the result of signing text m with the key of party i. It is also assumed that every

participant has a private communication channel with T .

The protocol is asynchronous. As the exchange protocol progresses, either participant may

contact the trusted third party T . The third party may decide, on the basis of the communication it

received, to either resolve the protocol by issuing the other party's signature, or \abort" the protocol

by issuing an abort token. As in the ASW protocol, abort tokens are not a proof that the exchange

has been canceled. The intruder may schedule messages and insert its own messages in the network,

but cannot delay messages sent between participants and T inde�nitely.

5.5.2 Private Contract Signatures

The GJM protocol relies on the cryptographic primitive called private contract signature (PCS).

We write PCSO(m;R; T) for party O's private contract signature of text m for party R (known as

the designated veri�er) with respect to third party T . The main properties of PCS are summarized

below:

� PCSO(m;R; T) can be veri�ed like a conventional signature, i.e., there exists a probabilistic

polynomial-time algorithm PCS-Ver such that

PCS-Ver(m;O;R; T; s) is true i� s = PCSO(m;R; T).

� PCSO(m;R; T) can be feasibly computed by either O, or R, but nobody else. This is the

key property of PCS that distinguishes it from a conventional, universally-veri�able signature,

as the latter can only be computed by O. When the designated veri�er R receives s =

PCSO(m;R; T), he will be convinced that s was computed by O, but, unlike O's conventional

signature, s cannot be used by R to prove this to an outside party.

� PCSO(m;R; T) can be converted into a conventional signature by either O, or T , but nobody

else, including R. For the purposes of this study, we focus on the third-party accountable

version of PCS, in which the converted signatures produced by O and T can be distinguished.

We will call them S-SigO(m) and TP-SigO(m), respectively. Unlike PCS, converted signatures

are universally veri�able by anybody in possession of the correct signature veri�cation key.

An e�cient discrete log-based PCS scheme is presented in [24].

5.5.3 Protocol

The GJM protocol consists of three interdependent subprotocols: exchange, abort, and resolve.

Message sequences are identical to those of the ASW protocol (see section 5.3.3). The parties (O

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 62

and R) start the exchange by following the exchange subprotocol. If both O and R are honest and

there is no interference from the network, they obtain each other's signatures as the �nal steps of

the exchange subprotocol. The originator O also has the option of requesting the trusted third party

T to abort an exchange that O has initiated. To do so, O executes the abort subprotocol with T .

Finally, both O and R may each request that T resolve an exchange that has not been completed.

After receiving the initial message of the exchange protocol, they may do so by executing the resolve

subprotocol with T .

At the end of the protocol, each party is guaranteed to end up with the other party's universally-

veri�able signature of the contractual text, or an abort token signed by T and O, of the form

S-SigT (S-SigO(m;O;R; abort)).

Exchange subprotocol. When there is no interference from the network and neither party tries to

cheat the other, O and R may exchange signatures by the following steps:

O ! R me1 = PCSO(m;R; T)

R! O me2 = PCSR(m;O; T)

O ! R me3 = S-SigO(m)

R! O me4 = S-SigR(m)

In the �rst step of this subprotocol, O commits to the contractual text m by producing a private

contract signature of m with R as the designated veri�er. The purpose of PCS is to convince R that

O signed m, while depriving R of the possibility to prove this to an outside party. In the second

step, R replies with its own PCS of m with O as the designated veri�er. Finally, O and R exchange

their actual, universally-veri�able signatures of m. At end of the exchange, both O and R obtain a

signed contract of the form fS-SigO(m); S-SigR(m)g.

Abort subprotocol. As in the ASW protocol, O may attempt to abort the exchange if it times out

waiting for a reply from R. Here are the steps of the subprotocol:

O ! T ma1 = S-SigO(m;O;R; abort)

T ! O ma2 = Has O or R resolved already?

Yes : S-SigR(m) if R has resolved, or

TP-SigR(m) if O has resolved

No : S-SigT (ma1)

aborted := true

When T receives an abort request, T checks its permanent database of past actions to decide

how to proceed. If T has not previously been requested to resolve this instance of the protocol,

T marks m as aborted in its permanent database and sends an abort token to O. If m is already

marked as resolved, this means that T has previously resolved this exchange in response to an earlier

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 63

request. As a result of the resolution procedure (described below), honest T must have obtained

both O's and R's universally-veri�able signatures of m. Therefore, in response to O's abort request,

T forwards O either S-SigR(m) or TP-SigR(m), either of which can serve as a proof that R indeed

signed m.

An abort token is a promise by T that it will not resolve this instance of the protocol in the

future. It is not a proof that the exchange has been aborted, as the parties can complete contract

signing without involving T if they follow the exchange subprotocol.

Resolve subprotocol. Either party may request that T resolve the exchange. In order to do so, the

party must possess the other party's PCS of the contract (with T as the designated third party),

and submit it to T along with its own universally-veri�able signature of the contract. Therefore,

R can send a resolve request at any time after receiving me1, and O can do so at any time after

receiving me2. When T receives a resolve request, it checks whether the contract is already marked

as aborted. If it is, T replies with the abort token. If the contract has been resolved by the other

party, T replies with that party's signature. Finally, if the contract has been neither aborted, nor

resolved by the other party, T converts PCS into a universally-veri�able signature, sends it to the

requestor, and stores the requestor's own signature in its private database.

Below, we show the resolve protocol between R and T . The protocol between O and T is

symmetric.

R! T mr1 = PCSO(m;R; T); S-SigR(m)

T ! R mr2 = Has O aborted already?

Yes : Send S-SigT (S-SigO(m;O;R; abort))

No : Has O resolved already?

Yes : Send S-SigO(m)

No : Store S-SigR(m)

Convert PCSO(m;R; T) into

TP-SigO(m)

Send TP-SigO(m)

resolved := true

As in the ASW protocol, the �rst request received by T determines the permanent status of the

protocol.

5.5.4 Correctness conditions

The designers claim that the GJM protocol has the following properties:

Completeness. A restricted adversary cannot prevent a set of correct participants from obtaining a

valid signature of a contract. The restricted adversary has signing oracles that can be queried on

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 64

any message except the contractual text m and can arbitrarily schedule messages from participants

to T , but cannot delay messages between the correct participants enough to cause any timeouts.

Fairness. The GJM protocol satis�es the following fairness conditions:

� It is impossible for a corrupt participant to obtain a valid contract without allowing the

remaining participant to also obtain a valid contract.

� Once an honest participant obtains a cancellation message (i.e., an abort token) from the

trusted third party T , it is impossible for any other participant to obtain a valid contract.

� Every honest participant is guaranteed to complete the protocol.

Abuse-freeness. It is impossible for a protocol participant, at any point in the protocol, to be able

to prove to an outside party that he has the power to choose between aborting and successfully

completing the contract. One of the main contributions of [24] is to introduce the notion of abuse-

freeness to electronic contract signing.

Trusted third party accountability. If one of the parties is cheated because of T 's misbehavior, the

cheated party should be able to prove to an outside arbiter that T misbehaved. It is not speci�ed

precisely in [24] what can serve as a proof of misbehavior, but typically such proof consists of two

contradictory messages signed by T [2], e.g., an abort token and a converted PCS signature of the

same text m. Since the steps of the protocol do not allow T to both abort and resolve the protocol,

any PCS conversion performed by T after it aborted the protocol (and vice versa) serves as a proof

of T 's misbehavior.

There are actually two versions of the GJM protocol, one providing third party accountability

and the other not. The di�erence between the two protocols lies in two versions of PCS. In our

analysis, we focus on the case when the PCS scheme provides third-party accountability, i.e., the

distributions of S-Sigi(m) and TP-Sigi(m) are disjoint, and thus it is possible for the veri�er to

distinguish whether the signature is a \real" signature of i, or a PCS of i converted by T .

5.6 Analysis of the GJM protocol

We used Mur' to perform �nite-state analysis of the GJM protocol. Corrupt protocol participants

were modeled as described in section 5.4.1. Since abuse-freeness cannot be trivially represented as

a state invariant, we employed a partial veri�cation method described in section 5.6.1 below. The

rest of the section describes the analysis of each protocol correctness condition in turn. In section

5.6.6, we suggest repairs to the protocol.

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 65

5.6.1 Modeling abuse-freeness

Our approach to verifying whether the protocol is abuse-free consists of two parts. First, we use

Mur' to determine whether any protocol participant possesses the power to determine the outcome

of the protocol regardless of the actions of the other party, assuming the other party is honest

and genuinely interested in signing the contract. This is done by augmenting the system with an

additional outside party we call the Challenger.

In order to verify whether a participant P has the power at some point in the protocol, we

have it send a message to the Challenger asserting its control over the outcome. The Challenger

then nondeterministically chooses a desired outcome: abort or successful contract completion. (It

is a consequence of fairness that there are only two possible outcomes: either T aborts and no one

receives a signed contract or both parties receive a signed contract.)

After receiving the Challenger's request, P has to interact with the honest participant in such

a way so as to drive the protocol to the requested outcome. If there exists a trace in which the

outcome of the protocol is not consistent with that requested by the Challenger, we conclude that

P does not possess the power to determine the outcome. The key idea here is that determining

whether P satis�es the Challenger's request is a state invariant and can be veri�ed by Mur'.

The second part of abuse is that a participant P with the power to determine the outcome must

be able to prove this to an outside arbiter. However, we have not formulated a straightforward way

of verifying properties such as \P can prove something" in Mur'. Therefore, we have only analyzed

this part of the protocol by informal means.

Our analysis of abuse-freeness of the original and repaired GJM protocols can be found in sections

5.6.5 and 5.6.6, respectively.

5.6.2 Completeness

To verify the completeness guarantee (section 5.5.4), we used Mur' to analyze the protocol under

the assumption that neither protocol participants, nor the trusted third party T are corrupt. We also

restricted the intruder by requiring it to forward all messages originating from protocol participants

to their intended recipients, and assumed that the channels between the participants and T are

completely private, i.e., the intruder cannot eavesdrop on the tra�c or introduce new messages into

the channels.

Under these restrictions, Mur' failed to �nd an attack that would prevent the participants from

obtaining valid signatures of the contract. Therefore, our analysis con�rms that the GJM protocol

is indeed complete modulo limitations of the Mur' model (see section 2.3).

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 66

5.6.3 Fairness

First, we analyzed the protocol under the assumption that both participants are honest, i.e., neither

tries to cheat the other. This also implies that neither participant knowingly cooperates with the

intruder. Mur' discovered that the intruder can achieve the following:

� Force O to submit an abort request to T by intercepting me2.

� Prevent O from aborting the protocol by delaying O's abort request to T until R times out

waiting for me3 and submits a resolve request to T . Then O will receive R's signature in

response to its abort request.

� Force R (respectively, O) to submit a resolve request to T by intercepting me3 (me4).

Mur' also discovered that O can use the protocol to obtain both an abort token signed by T and

a valid contract signed by R. To do so, O executes the exchange subprotocol with R and then the

abort subprotocol with T . As a result, R obtains O's signature, while O obtains R's signature and

T 's abort token.

There is an important di�erence between the GJM protocol and the ASW protocol. In the latter,

the intruder can directly resolve the protocol by submitting a resolve request to T once both me1

and me2 have been sent into the network as part of the exchange subprotocol. This is impossible

in the GJM protocol since resolve requests must include the originating party's signature on the

contract which the intruder cannot compute without cooperating with that party.

None of the above is a violation of fairness as de�ned in section 5.5.4.

In the remainder of this subsection, we focus on the cases when at least one of the protocol

participants is malicious or corrupt. For brevity, we omit the discussion of all combinations and

concentrate on the most interesting insights about the protocol revealed by our analysis.

Weakly corrupt O, intruder monitors R! T channel. We analyzed the protocol under the assumption

that party O is malicious, i.e., its intention is to cheat R by obtaining R's signature of the contractual

text m without releasing its own signature. O is weakly corrupt: it is willing to engage the intruder's

help in obtaining R's signature, but will not sign or decrypt messages for the intruder.

The intruder I is assumed to have the ability to eavesdrop on and delay messages sent from R

to T , but not to modify or remove them. Below we analyze the protocol under the assumption that

the communication channel between R and T is inaccessible to the intruder.

Under these assumptions, Mur' uncovered the following attack:

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 67

O ! R me1 = PCSO(m;R; T)

R! O me2 = PCSR(m;O; T)

I intercepts me2, or O receives and discards it

O ! T ma1 = S-SigO(m;O;R; abort)

R! T mr1 = PCSO(m;R; T); S-SigR(m)

I eavesdrops on mr1, learns S-SigR(m), delays mr1 until T receives ma1

T ! O ma2 = S-SigT (S-SigO(m;O;R; abort))

I intercepts ma2, or O receives and hides it

T ! R mr2 = S-SigT (S-SigO(m;O;R; abort))

I ! O S-SigR(m;O; T)

As a result, O obtains R's signature of the contract S-SigR(m;O; T), while R obtains the abort

token from T .

Recall the second fairness condition from section 5.5.4: once a correct participant (R) obtains an

abort token from the trusted third party T , it should be impossible for any other participant to obtain

a valid contract. Even though Mur' cannot currently be used to verify non-safety properties such as

\it is impossible for a participant to obtain a valid contract," this condition can be approximated by

the following safety invariant: \it is never the case that the correct participant possesses the abort

token, while some other participant possesses a valid contract, if the abort token was received �rst."

Clearly, the above attack violates this invariant.

The �rst fairness condition is violated as well: the corrupt participant (O) obtained a valid

contract without allowing the remaining participant (R) to also obtain a valid contract. The reason

for this is that the only information from O that R has in its possession is PCSO(m;R; T) sent in

message me1. This PCS can be converted into a universally-veri�able signature either by O (who

won't do this because it's corrupt), or by T (who won't do this because it has already aborted the

protocol, and must send abort tokens in response to all requests). Therefore, R has no means to

obtain O's universally-veri�able signature of the contractual text m. This condition, however, is not

trivially reduced to a safety invariant and is thus di�cult to verify with Mur'.

It is unclear whether this attack is a bona �de violation of fairness. The original paper [24,

p. 462] states that if one party shows the abort token, and the other a valid set of signatures

S-SigO(m); S-SigR(m), then the contract must be valid. Indeed, it can be argued that R implicitly

agreed to sign the contract by sending its signature to T in message mr1, even though it received

an abort token in response. We do believe that this attack violates abuse-freeness (see section 5.6.5

below).

Weakly corrupt O, accidentally corrupt T . In order to stage the attack described in the previous

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 68

section, the intruder must be able to access the communication channel between R and T . The

original paper [24] speci�es that communication between any participant and T is conducted over

a private channel. In this case, the intruder will not be able to eavesdrop on message mr1 sent by

R to T in order to resolve the protocol, and will not be able to learn S-SigR(m). In fact, even if

R and T communicate over a public network, encrypting mr1 with T 's public key will prevent the

intruder from splitting it into parts and reusing one of the parts to help O gain an unfair advantage.

It is worth noting, however, that the protocol speci�cation in [24] does not require that mr1 be

encrypted.

Now consider the case when the R ! T channel is secure, but T is accidentally corrupt, and

I has passive access to all of its incoming communication (see section 5.4.1 for our de�nition of

accidental corruptness). This does not require active cooperation with the intruder on the part of

T , just negligence in handling messages it receives from protocol participants. I does not need the

ability to split messages into parts, remove them from the network, or even insert its own messages

into the network. Having passive access to T 's communication with R is su�cient for I to learn

S-SigR(m) and divulge it to O. Therefore, the attack succeeds in this case.

5.6.4 Trusted third party accountability

Suppose that T is accidentally corrupt and I successfully stages the attack described in section

5.6.3, causing R to lose fairness as a result. Since we are analyzing a TTP-accountable version of

the GJM protocol (see section 5.5.4), we would like to verify whether the trusted third party T can

be held accountable. The original paper [24] de�nes a TP-accountable PCS scheme, but does not

give a precise de�nition of TTP accountability. Since the GJM protocol is closely related to ASW

protocol, for the purposes of our formal analysis we used the ASW de�nition of TTP accountability

(called \veri�ability of trusted third party" in [2, 1]):

\Assuming the third party T can be forced to eventually send a valid reply to every request,

the veri�ability of trusted third party property requires that if T misbehaves, resulting in the loss

of fairness for P , then P can prove the misbehavior of T to an arbiter (or veri�er) in an external

dispute."

Following the designers of the ASW protocol, we assume that the proof must consist of two

inconsistent messages signed by T , e.g., an abort token and a converted PCS. (Recall that in the

TTP-accountable version of PCS, TP-SigR(m) obtained as a result of T 's conversion of PCSR(m)

is distinct from S-SigR(m)). According to the protocol speci�cation, T must process all requests on

the �rst-come, �rst-served basis. Therefore, the �rst request received by T determines the status

of the contract in perpetuity, and it should never be the case that T issues an abort token and a

converted PCS signature for the same contract.

However, if R loses fairness as a result of T 's accidental corruption, it has no means of proving to

an outside party that T is corrupt. O is in possession of genuine S-SigR(m), not a converted PCS.

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 69

If O is willing to lie about the source of this signature, then R cannot pin the blame on T . The only

message signed by T is the abort token, and in the absence of two inconsistent messages signed by

T , it is unclear what R can use as a proof to hold T accountable.

Since abort requests are signed, R can prove that the abort token it received from T was originally

generated by O. But protocol speci�cation allows for the case when O obtains a valid signature of R

after sending o� its abort request. This may happen if, for example, T received R's resolve request

before O's abort request, resolved the protocol, and forwarded R's signature in response to O's abort

request. O can also claim that it received R's signature directly from R.

At best, R can argue that either O, or T is lying : either O is lying that it received R's signature

from T in response to its abort request, or T is lying that it received O's abort request before

R's resolve request (in the latter case, T would not have sent the abort token in response to R's

request). This is a very weak form of accountability - in e�ect, the cheated party in a 3-party

protocol is arguing that one of the other two is lying.

We believe that the di�erence between the possibilities (O is corrupt, or T is corrupt) is too

signi�cant to allow any confusion between the two. The protocol is designed to withstand corrupt

participants, so the fact that O is corrupt is fairly trivial. T , on the other hand, plays a crucial role

due to its ability to resolve or abort contract signings, and any negligence or dishonesty on the part

of T should be immediately detected and, if proved, should lead to revocation of T's authority to

function as the trusted third party.

5.6.5 Abuse-freeness

As we mentioned above, it is unclear whether the attack described in section 5.6.3 violates fair-

ness, since R actually signs the contractual text m, implicitly agreeing to the contract. Abuse-

freeness, on the other hand, is clearly violated. After receiving S-SigR(m) from the intruder and

S-SigT (S-SigO(m;O;R; abort)) from T , O is free to decide whether to enforce the contract using the

former, or consider it aborted using the latter. O can present both messages to an outside party,

thus proving that it has the power to abort or successfully complete the protocol. Therefore, the

GJM protocol is not abuse-free in this case.

The argument about TTP accountability given in section 5.6.4 applies to abuse-freeness as well

as to fairness. If R is abused by O as a consequence of T 's accidental corruption, R cannot prove to

an outside arbiter that T misbehaved.

5.6.6 Repairing the protocol

The basic error in the GJM protocol can be attributed to the fact that data sent in the resolve

subprotocol are exactly the same as data sent in the exchange subprotocol. The GJM protocol can

therefore be repaired by replacing the standard signature in each resolve request with PCS. This

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 70

was independently suggested by the authors of the protocol after we brought the attack described

in section 5.6.3 to their attention [40].

In the repaired protocol, resolve requests from R to T will have the following form (requests from

O to T are symmetric):

mr1 = PCSO(m;R; T); PCSR(m;O;T)

Our analysis of the repaired protocol did not uncover any attacks. Mur' con�rmed that R still

has the power to determine the outcome of the protocol after receiving the �rst message from O

(see section 5.6.1). However, the only information in R's possession at this point is PCSO(m;R; T),

and R cannot use it to prove anything to an outside arbiter due to the designated veri�er property

of PCS (see section 5.5.2). We conclude that the repaired protocol is abuse-free. By contrast, the

ASW protocol is not abuse-free. In the ASW protocol, R, too, has the power to determine the

outcome after the �rst message received from O, but since universally-veri�able signatures are used,

this power can be proved to an outside arbiter.

Unlike the original protocol, the repaired protocol is TTP-accountable. In the repaired protocol,

T never receives universally-veri�able signatures of the contract from either O, orR. Any universally-

veri�able signature leaked by corrupt T must be the result of PCS conversion, and its origin can be

traced to T if the TTP-accountable version of PCS is used.

Mur' analysis indicates that the private channel assumption for communication between protocol

participants and T can be relaxed. Even if the intruder can eavesdrop on messages exchanged with

T , the protocol is still fair and abuse-free as long as the channels are resilient, i.e., every message

is guaranteed to eventually reach its intended recipient. This is signi�cant because this implies that

the repaired protocol does not need to operate on top of a secrecy protocol, or use any form of

encryption in order to guarantee fairness. The protocol can still be subject to cryptographic attacks

on PCS and signature schemes and/or other attacks that could not have been discovered in the

Mur' model.

Additional analysis of the repaired protocol has been performed by Satyaki Das using the new-

generation Mur' tool that relies on predicate abstractions to analyze in�nite state spaces. It did not

discover any attacks on an arbitrary number of protocol instances executed by di�erent principals.

5.7 Comparison of the two protocols

The ASW and GJM optimistic contract signing protocols are closely related. Both are designed to

guarantee fairness and trusted third party accountability. The GJM protocol is also designed to

guarantee abuse-freeness at the cost of relying on a non-standard cryptographic primitive. We used

Mur' to analyze both protocols, and believe that our analysis can provide some guidance when

choosing between the two protocols and/or deciding which one to deploy.

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 71

The notion of a contract in the GJM protocol is very simple and intuitive: a participant's

universally-veri�able signature of the contractual text serves as his commitment to the contract. By

contrast, contracts in the ASW protocol have a rather complicated form, making understanding and

analysis of the protocol di�cult. Surprisingly, our Mur' analysis helped us discover an unexpected

advantage of ASW contracts.

In the ASW protocol, the trusted third party must sign all contracts it resolves. This is not so in

the original GJM protocol: if one party resolved the protocol by appealing to T , then T will simply

forward its signature in response to all requests by the other party. The consequence is the failure

of TTP accountability, as described in section 5.6.5. A corrupt O can claim with impunity that it

received R's signature from R itself or from T even if it actually received it from the intruder. The

absence of T 's signature on resolved contracts makes it impossible to determine how the contract

was obtained.

One of the main advantages of the GJM protocol is its guarantee of abuse-freeness. We believe

our Mur' analysis demonstrates that abuse-freeness cannot be guaranteed by the original protocol

if the trusted third party T is even accidentally corrupt, let alone if it actively cooperates with the

intruder. As we explain in sections 5.6.3 and 5.6.5, T 's corruption may lead to O's gaining the ability

to prove to an outside party that it is in O's power to abort or successfully complete the contract,

but R will be unable to hold T accountable.

It is also worth noting that the ASW protocol can be used with an arbitrary digital signature

scheme, while the GJM protocol requires a special type of signatures. Analyzing the computational

and cryptographic advantages of di�erent signature schemes is beyond the scope of Mur'. There

are also other, relatively minor di�erences between the protocols. In the ASW protocol, the intruder

can force the protocol to be resolved after eavesdropping on the �rst two messages exchanged in the

protocol and forwarding them to T . This is impossible in the original GJM protocol.

Our analysis leads us to conclude that the choice between the two contract signing protocols must

depend on the environment in which the protocol is to be deployed. If there exists an absolutely

trusted third party which is connected by private, secure communication channels to all potential

contract signers, then the original GJM protocol will guarantee fairness and abuse-freeness (of course,

there may exist cryptographic and other attacks that lie beyond the scope of the �nite-state Mur'

model, and would not have been uncovered by our analysis).

If there is a possibility that the trusted third party may be corrupt or negligent, or that the

channel between one of the participants and the third party could be monitored by the intruder,

then the original GJM protocol may be subject to an attack that will lead to the loss of abuse-freeness.

The absence of TTP accountability in this case presents a potentially serious problem. Our Mur'

analysis did not discover any attacks on the ASW protocol that compromise TTP accountability, so

the ASW protocol may be a better �t. Again, it is important to keep in mind that Mur' is only

capable of �nding a limited class of attacks.

CHAPTER 5. CASE STUDY: CONTRACT SIGNING 72

Repairs suggested in section 5.6.6 appear to restore the GJM protocol's guarantee of account-

ability. Therefore, the repaired GJM protocol may be deployed in any environment where private

contract signatures are available.

5.8 Conclusions

This study shows how a �nite-state analysis tool can be used to study contract signing protocols

and discover potential attacks and weaknesses. Our main results are the discovery of a weakness in

the Asokan-Shoup-Waidner protocol and an error in the Garay-Jakobsson-MacKenzie protocol. In

both cases, a relatively simple change to one or two messages produces a correct contract signing

protocol. In addition, our Mur'-based analysis indicates that private channel assumptions can be

relaxed.

In order to carry out our automated analysis of abuse-freeness, we needed to augment the system

with an outside observer called the Challenger. The role of the Challenger is to nondeterministically

challenge one party to demonstrate that this party has control over the outcome of the protocol.

This method may be useful for verifying control-related properties of other protocols.

Fair exchange protocols are a new area of application for formal methods, and speci�cation of

protocol guarantees in the form suitable for automatic veri�cation is still a challenge, especially in the

case of such non-trivial properties as trusted third party accountability and abuse-freeness. We do

believe that as online fair exchange and contract signing protocols gain increasing acceptance and a

correspondingly high level of assurance is expected from them, formal techniques such as �nite-state

analysis will prove a useful tool for uncovering interesting insights and non-obvious attacks.

Chapter 6

Conclusions

This thesis demonstrates that �nite-state analysis is a useful, practical tool for security protocol

designer. After presenting the general methodology for modeling security protocols as �nite-state

systems and protocol security guarantees as state invariants, we used the general-purpose Mur'

veri�er to perform analysis of several security protocols, ranging from SSL 3.0 - a fairly conventional,

albeit complex, secrecy and authentication protocol - to optimistic contract signing protocols that

aim to provide subtle guarantees of mutual fairness, accountability, and abuse-freeness.

Mur' is fully automatic and has a procedural-style input language that can be used without

formal methods expertise. Eventual termination of the veri�cation procedure is guaranteed, and,

if Mur' discovers a violation of a protocol correctness condition, it automatically reconstructs the

steps needed to stage a successful attack. Optimizations described in this thesis enable analysis of

large real-world protocols and alleviate the state space explosion problem. Thus, Mur' enjoys the

advantage of being user-friendly and not as forbidding to the casual protocol analyst as some of the

more advanced formal tools.

The main disadvantage of the Mur' approach to protocol analysis is that the failure to �nd an

attack does not constitute a proof of correctness. Since Mur' can only handle �nite-state systems, a

bound must be imposed on the number of protocol instances, applications of cryptographic functions,

etc. Also, capabilities of the adversary are limited to formal message manipulation that treats the

underlying cryptographic primitives as perfect \black boxes." Therefore, Mur' should be viewed

primarily as a tool for �nding a certain class of attacks and not as a veri�er that will prove the

protocol \correct".

The proof of the pudding is in the eating. A formal analysis tool is only useful insofar as it can

discover previously unknown attacks on protocols, or reveal non-trivial protocol properties that have

been overlooked by the designers. As the case studies presented in this thesis demonstrate, Mur'

succeeded at its task for every protocol to which it was applied.

For the SSL 3.0 handshake protocol, we created a formal model of the protocol from an Internet

73

CHAPTER 6. CONCLUSIONS 74

draft, and performed a \rational reconstruction" to establish the security role played by each message

component. This resulted in a better understanding of the protocol. In addition to discovering all

known attacks on the previous version of SSL, Mur' also found a version rollback anomaly in the

resumption subprotocol that had not been previously published.

For contract signing protocols, we formalized protocol speci�cations and expressed fairness and

accountability properties as state invariants amenable to formal veri�cation. In the case of the

Asokan-Shoup-Waidner protocol, Mur' discovered a weakness that enables the intruder to stage a

replay attack or produce inconsistent versions of a contract. For the Garay-Jakobsson-MacKenzie

protocol, Mur' discovered an attack in which a weak form of cooperation between the trusted

third party and a malicious participant leads to the loss of abuse-freeness without third party

accountability. None of the attacks had been known prior to our analysis. In both cases, we

propose repairs to the protocol, and analyze the repaired version.

To improve the e�ciency of state space exploration by Mur', we invented several state reduction

techniques and proved them sound. These techniques as well as the underlying notion of state

subsumption are applicable to any model checker of security protocols, and therefore have signi�cance

beyond the scope of this work.

Dozens of security protocols are being deployed on communication networks every year. By

establishing �nite-state analysis as a practical design and veri�cation tool, we hope that this thesis

will help improve the quality of protocols released for public use, and make the Internet a safer

place.

Appendix A

SSL 2.0

This appendix outlines the SSL 2.0 protocol. In the protocol description below, SessionId is a

number that identi�es a particular session. When the server starts a new session with the client,

it assigns it a fresh SessionId . When the client wants to resume a previous session, it includes

its SessionId in the Hello message, and the server returns SessionIdHit which is the same session

number with the \session found" bit set.

A.1 New session

ClientHello C ! S C; SuiteC ; NC ;

ServerHello S ! C SuiteS ; NS; signCAfS ;K
+
S g

ClientMasterKey C ! S fSecretCgK+

S

hChange to negotiated cipheri

ClientFinish C ! S fNSgMaster(SecretC)

ServerVerify S ! C fNCgMaster(SecretC)

ServerFinish S ! C fSessionIdgMaster(SecretC)

Figure A.1: SSL 2.0 basic protocol

Figure A.1 shows the basic SSL 2.0 protocol. Notice that this protocol does not protect plaintext

transmitted in the Hello messages, making the protocol vulnerable to version rollback and crypto-

graphic preferences attacks described in Section 3.3.5 above.

A description of other weaknesses in SSL 2.0 can be found in SSL-Talk FAQ [12].

75

APPENDIX A. SSL 2.0 76

A.2 Resumed session

Figure A.2 shows the SSL 2.0 resumption protocol.

ClientHello C ! S C; SuiteC ; NC ; SessionId

ServerHello S ! C NS; SessionIdHit

hChange to negotiated cipheri

ClientFinish C ! S fNSgMaster(SecretC)

ServerVerify S ! C fNCgMaster(SecretC)

ServerFinish S ! C fSessionIdgMaster(SecretC)

Figure A.2: SSL 2.0 resumption protocol

A.3 Resumed session with client authentication

Figure A.3 shows the SSL 2.0 resumption protocol with authentication. AuthType is the means

of authentication desired by the server, N 0

S is the server's challenge, Certi�cate type is the type of

the certi�cate provided by the client, Client certi�cate is the actual certi�cate (e.g., a CA-signed

certi�cate signCAfC ; VCg for the client's veri�cation key), and Response data is the data that au-

thenticates the client (e.g., signed challenge signCfN
0

Sg).

ClientHello C ! S C; SuiteC ; NC ; SessionId

ServerHello S ! C NS ; SessionIdHit

hChange to negotiated cipheri

ClientFinish C ! S fNSgMaster(SecretC)

ServerVerify S ! C fNCgMaster(SecretC)

RequestCertificate S ! C fAuthType; N 0

SgMaster(SecretC)

ClientCertificate C ! S fCerti�cate type; Client certi�cate;

Response datagMaster(SecretC)

ServerFinish S ! C fSessionIdgMaster(SecretC)

Figure A.3: SSL 2.0 resumption protocol with authentication

Appendix B

SSL 3.0: master secret

computation

The SSL 3.0 master secret is computed using

Master(NC ; NS;SecretC) =

MD5 (SecretC + SHA ('A' +K)) +

MD5 (SecretC + SHA ('BB ' +K)) +

MD5 (SecretC + SHA ('CCC ' +K)) ;

where K = SecretC +NC +NS .

77

Bibliography

[1] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange.

In Proc. IEEE Symposium on Research in Security and Privacy, pages 86{99, 1998.

[2] N. Asokan, V. Shoup, and M. Waidner. Fair exchange of digital signatures. Technical Report

RZ2973, IBM Research Report. Extended abstract in Eurocrypt '98, 1998.

[3] A. Bahreman and J. D. Tygar. Certi�ed electronic mail. In Proc. Internet Society Symposium

on Network and Distributed Systems Security, pages 3{19, 1994.

[4] Feng Bao, R. H. Deng, and Wenbo Mao. E�cient and practical fair exchange protocols with

o�-line TTP. In Proc. IEEE Symposium on Research in Security and Privacy, pages 77{85,

1998.

[5] M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest. A fair protocol for signing contracts.

IEEE Transactions on Information Theory, 36(1):40{46, 1990.

[6] D. Bolignano. Towards a mechanization of cryptographic protocol veri�cation. In Proc. 9th

International Conference on Computer Aided Veri�cation, pages 131{142, 1997.

[7] D. Bolignano. Integrating proof-based and model-checking techniques for the formal veri�ca-

tion of cryptographic protocols. In Proc. 10th International Conference on Computer Aided

Veri�cation, pages 77{87, 1998.

[8] E. F. Brickell, D. Chaum, I. B. Damgard, and J. van de Graaf. Gradual and veri�able release

of a secret. In Proc. Advances in Cryptology { Crypto '87, pages 156{166, 1987.

[9] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical Report 39, DEC

Systems Research Center, 1989.

[10] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Proc. Advances in Cryptology {

Crypto '88, pages 319{327, 1988.

78

BIBLIOGRAPHY 79

[11] E. M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a natural deduction

style message derivation engine to verify security protocols. In Proc. IFIP Working Conference

on Programming Concepts and Methods (PROCOMET), 1998.

[12] Consensus Development Corporation. Secure Sockets Layer discussion list FAQ,

http://www.consensus.com/security/ssl-talkfaq.html, September 3, 1997.

[13] B. Cox, J. D. Tygar, and M. Sirbu. NetBill security and transaction protocol. In Proc. 1st

USENIX Workshop on Electronic Commerce, pages 77{88, 1995.

[14] R. H. Deng, Li Gong, A. A. Lazar, and Weiguo Wang. Practical protocols for certi�ed electronic

mail. J. Network and Systems Management, 4(3):279{297, 1996.

[15] S. Dietrich. A Formal Analysis of the Secure Sockets Layer Protocol. PhD thesis, Adelphi

University, 1997.

[16] D. Dill. The Mur' veri�cation system. In Proc. 8th International Conference on Computer

Aided Veri�cation, pages 390{393, 1996.

[17] D. L. Dill, S. Park, and A. G. Nowatzyk. Formal speci�cation of abstract memory models. In

Symposium on Research on Integrated Systems, pages 38{52, 1993.

[18] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information

Theory, 29(2):198{208, 1983.

[19] N. A. Durgin and J. C. Mitchell. Analysis of security protocols. In M. Broy and R. Steinbruggen,

editors, Calculational System Design, pages 369{395. IOS Press, 1999.

[20] http://www.ecash.net.

[21] F. J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security

protocol correct? In Proc. IEEE Symposium on Research in Security and Privacy, 1998.

[22] M. Franklin and M. Reiter. Fair exchange with a semi-trusted third party. In Proc. 4th ACM

Conference on Computer and Communications Security, pages 1{6, 1997.

[23] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL protocol version 3.0.

draft-ietf-tls-ssl-version3-00.txt, November 18, 1996.

[24] J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing. In Proc.

Advances in Cryptology { Crypto '99, pages 449{466, 1999.

[25] Li Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols. In

Proc. IEEE Symposium on Research in Security and Privacy, pages 234{248, 1990.

BIBLIOGRAPHY 80

[26] N. Heintze, J. D. Tygar, J. M. Wing, and H.-C. Wong. Model checking electronic commerce

protocols. In Proc. 2nd USENIX Workshop on Electronic Commerce, pages 147{164, 1996.

[27] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[28] C. N. Ip. State Reduction Methods for Automatic Formal Veri�cation. PhD thesis, Stanford

University, 1996.

[29] C. N. Ip and D. L. Dill. Better veri�cation through symmetry. In Proc. 11th International

Conference on Computer Hardware Description Languages and their Applications, pages 97{

111, 1993.

[30] C. N. Ip and D. L. Dill. State reduction using reversible rules. In Proc. 33rd Design Automation

Conference, pages 564{567, 1996.

[31] C. N. Ip and D. L. Dill. Verifying systems with replicated components in Mur'. In Proc. 8th

International Conference on Computer Aided Veri�cation, pages 147{158, 1996.

[32] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis.

J. Cryptology, 7(2):79{130, 1994.

[33] D. Kindred and J. M. Wing. Fast, automatic checking of security protocols. In Proc. 2nd

USENIX Workshop on Electronic Commerce, pages 147{164, 1996.

[34] J. T. Kohl and B. C. Neuman. The Kerberos network authentication service (version 5). Internet

Request For Comments RFC-1510, September 1993.

[35] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentication.

Internet Request For Comments RFC-2104, February 1997.

[36] G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol. Information

Processing Letters, 56(3):131{133, 1995.

[37] G. Lowe. Breaking and �xing the Needham-Schroeder public-key protocol using CSP and

FDR. In Proc. 2nd International Workshop on Tools and Algorithms for the Construction and

Analysis of Systems, pages 147{166. Springer-Verlag, 1996.

[38] G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. IEEE Symposium

on Research in Security and Privacy, pages 18{30, 1997.

[39] Formal Systems (Europe) Ltd. Failures Divergences Re�nement - user manual and tutorial.

Version 1.3, 1993.

[40] P. MacKenzie. Email communication, September 23, 1999.

BIBLIOGRAPHY 81

[41] W. Marrero, E. M. Clarke, and S. Jha. Model checking for security protocols. Technical Report

CMU-SCS-97-139, Carnegie Mellon University, May 1997.

[42] C. Meadows. Analyzing the Needham-Schroeder public-key protocol: A comparison of two

approaches. In Proc. European Symposium On Research In Computer Security, pages 365{384.

Springer-Verlag, 1996.

[43] C. Meadows. The NRL Protocol Analyzer: An overview. J. Logic Programming, 26(2):113{131,

1996.

[44] J. Millen. The Interrogator model. In Proc. IEEE Symposium on Research in Security and

Privacy, pages 251{260, 1995.

[45] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using

Mur'. In Proc. IEEE Symposium on Research in Security and Privacy, pages 141{151, 1997.

[46] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL 3.0. In Proc. 7th

USENIX Security Symposium, pages 201{215, 1998.

[47] R. Needham and M. Schroeder. Using encryption for authentication in large networks of com-

puters. Communications of the ACM, 21(12):993{9, 1978.

[48] L. Paulson. The inductive approach to verifying cryptographic protocols. J. Computer Security,

6:85{128, 1998.

[49] A. W. Roscoe. Model-checking CSP. In A Classical Mind, Essays in Honour of C. A. R. Hoare.

Prentice-Hall, 1994.

[50] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In Proc.

8th IEEE Computer Security Foundations Workshop, pages 98{107, 1995.

[51] S. Schneider. Security properties and CSP. In Proc. IEEE Symposium on Research in Security

and Privacy, 1996.

[52] V. Shmatikov and J. C. Mitchell. Analysis of a fair exchange protocol. In Proc. Internet Society

Symposium on Network and Distributed Systems Security, pages 119{128, 2000.

[53] V. Shmatikov and J. C. Mitchell. Analysis of abuse-free contract signing. In Proc. 4th Annual

Conference on Financial Cryptography (to appear), 2000.

[54] V. Shmatikov and U. Stern. E�cient �nite-state analysis for large security protocols. In Proc.

11th IEEE Computer Security Foundations Workshop, pages 106{115, 1998.

[55] Dawn Song. Athena: An automatic checker for security protocol analysis. In Proc. 12th IEEE

Computer Security Foundations Workshop, 1999.

BIBLIOGRAPHY 82

[56] U. Stern. Algorithmic Techniques in Veri�cation by Explicit State Enumeration. PhD thesis,

Technical University of Munich, 1997.

[57] U. Stern and D. L. Dill. Automatic veri�cation of the SCI cache coherence protocol. In Proc.

Advanced Research Working Conference on Correct Hardware Design and Veri�cation Methods,

pages 21{34, 1995.

[58] U. Stern and D. L. Dill. A new scheme for memory-e�cient probabilistic veri�cation. In Proc.

Joint International Conference on Formal Description Techniques for Distributed Systems and

Communication Protocols, and Protocol Speci�cation, Testing, and Veri�cation, pages 333{348,

1996.

[59] U. Stern and D. L. Dill. Parallelizing the Mur' veri�er. In Proc. 9th International Conference

on Computer Aided Veri�cation, pages 256{267, 1997.

[60] D. Wagner. Email communication, August 23, 1997.

[61] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIX Work-

shop on Electronic Commerce, 1996. Revised version of November 19, 1996 available from

http://www.cs.berkeley.edu/~daw/ssl3.0.ps.

[62] L. Yang, D. Gao, J. Mostou�, R. Joshi, and P. Loewenstein. System design methodology of

UltraSPARCTM-I. In Proc. 32nd Design Automation Conference, pages 7{12, 1995.

[63] J. Zhou and D. Gollmann. A fair non-repudiation protocol. In Proc. IEEE Symposium on

Research in Security and Privacy, pages 55{61, 1996.

