
The Roma Personal Metadata Service

Edward Swierk, Emre K�c�man, Vince Laviano and Mary Baker

Stanford University

feswierk, emrek, vince, mgbakerg@cs.stanford.edu

Technical Report: CS-TR-00-1633

July 2000

Computer Science Department

Stanford University

Stanford, California 94305 USA

Abstract

People now have available to them a diversity of digital
storage devices for their personal �les. These devices in-
clude palmtops, cell phone address books, laptops, desk-
top computers and web-based services. Unfortunately,
as the number of personal data repositories increases,
so does the management problem of ensuring that the
most up-to-date version of any document is available to
the user on the storage device he is currently using. We
introduce the Roma personal metadata service to make
it easier to locate current �le versions and ensure their
availability across di�erent repositories. Roma does this
through the use of a centralized, available and usually
portable metadata store used by mobility-aware clients.
Separating out the metadata store from the resposito-
ries eases deployment of the system, since it allows us to
use existing repositories without change. In this paper
we describe the design requirements, architecture and
current prototype implementation of Roma.

1 Introduction

As people come to rely more heavily on digital devices
to work and communicate, they keep more of their per-
sonal �les|including email messages, notes, presenta-
tions, address lists, �nancial records, news clippings, mu-
sic and photographs|in a variety of data repositories.
Since people are free to switch among multiple hetero-
geneous devices, they can squirrel away information on

any device they happen to be using at the moment as
well as on an ever-broadening array of web-based stor-
age services. For example, a student wishing to record
his professor's phone number could store it on his cell
phone, scribble it into his palmtop computer, type it
into his desktop address book, or record it in various
web-based address book services.

One might expect this plethora of storage options to
be a catalyst for personal mobility[8], enabling people to
access and use their personal �les wherever and when-
ever they want, while using whatever device is most con-
venient to them. Instead, it has made it harder for mo-
bile people to ensure that up-to-date versions of �les
they need are available on the current storage option of
choice. This is because contemporary �le management
tools are poor at handling multiple data repositories in
the face of intermittent connectivity. There is no easy
way for a user to determine whether a �le on the device
he is currently using will be accessible later on another
device, or whether the various copies of that �le across
all devices are up-to-date. As a result, the user may end
up with many out-of-date or di�erently-updated copies
of the same �le scattered on di�erent devices.

Previous work has attempted to handle multiple data
repositories at the application level and at the �le system
level. At the application level, some e�orts have focused
on using only existing system services. Unfortunately,
�le synchronization tools that use generic metadata pro-
vided by the system[14], such as the �lename or date
of last modi�cation, are unreliable; they can only infer
relationships between �le copies from information not

1



intended for such use. For example, if the user changes
the �lename of one copy, its relationship to other copies
may be broken. Other �le synchronization tools[13] that
employ application-speci�c metadata to synchronize �les
are useful only for the set of applications they explicitly
support.

Distributed �le systems such as Coda[7] provide ac-
cess to multiple data repositories by emulating existing
�le system semantics, redirecting local �le system calls
to a remote repository or local cache. Because these sys-
tems require installation of software on both the user's
device and the data repository, they exclude web-based
storage services and other data stores that are unlikely
to support a new �le system without the demand of a
critical mass of users.
Our approach is to provide an application-level service

that mobility-aware applications can use to give the user
ubiquitous access to his or her personal �les, along with
additional services to integrate legacy applications. No
changes need to be made to data repositories. Thus the
system is easy to deploy, and a user can bene�t from the
system without the cooperation of anyone else.

Our system, Roma, provides an available, centralized
repository of metadata, or information about a single
user's �les. The metadata format includes suÆcient in-
formation to support tracking �les across multiple �le
stores. A user's metadata repository resides on a station-
ary server or on a device that the user carries along with
him (metadata records are typically compact enough
that they can be stored on a highly portable device),
thus ensuring that metadata is available even when net-
work connectivity is intermittent. To maintain compati-
bility with existing applications, synchronization agents
periodically scan data stores for changes made by legacy
applications and propagate them to the metadata repos-
itory.

Related to the problem of managing versions of �les
across data repositories is the problem of locating �les
across di�erent repositories. Most �le management tools
o�er hierarchical naming as the only facility for organiz-
ing large collections of �les. Users must invent unique,
memorable names for their �les, so that they can �nd
them in the future; and must arrange those �les into
hierarchies, so that related �les are grouped together.
Having to come up with a descriptive name on the spot
is an onerous task, given that the name is often the only
means by which the �le can later be found[10]. Arrang-
ing �les into hierarchical folders is cumbersome enough
that many users do not even bother, and instead end
up with a single \Documents" folder listing hundreds
of cryptically named, uncategorized �les. This problem

is compounded when �les need to be organized across
multiple repositories.

Fortunately, several projects have explored the use of
attribute-based naming to locate �les in either single or
multiple repositories[2, 4]. While Roma metadata in-
cludes fully-extensible attributes that can be used as a
platform for supporting these methods of organizing and
locating �les, our current prototype does not yet take
advantage of this data.

The rest of this paper describes Roma in detail. We
begin by outlining the requirements motivating our de-
sign; in subsequent sections we detail the design and
current prototype implementation of Roma, as well as
some key issues that became apparent while designing
the system; these are followed by a survey of related
work and a discussion of some possible future directions
for this work.

2 Motivation and

Design Requirements

To motivate this work, consider the problems faced by
Jane Mobile, techno-savvy manager at ABC Widget
Company who uses several computing devices on a regu-
lar basis. She uses a PC at work and another at home for
editing documents and managing her �nances, a palmtop
organizer for storing her calendar, a laptop for working
on the road, and a cell phone for keeping in touch. In
addition, she keeps a copy of her calendar on the Yahoo!
web site so it is always available both to her and her co-
workers, and she frequently downloads the latest stock
prices into her personal �nance software.

Before dashing out the door for a business trip to New
York, Jane wants to make sure she has everything she
will need to be productive on the road. Odds are she will
forget something, because there is a lot to remember:

� I promised my client I'd bring along the speci�-

cations document for blue fuzzy widgets|I think

it's called BFWidgetSpec.doc, or is it SpecBlu-

FuzWid.doc? If Jane could do a keyword search
over all documents (regardless of which applications
she used to create them) and over all her devices at
once, she would not have to remember what the �le
is called, which directory contains it, or on which
device it is stored.

� I also need to bring the latest blue fuzzy widget price

list, which is probably somewhere on my division's

web site or on the group �le server. Even though the

2



�le server and the web site are completely outside
her control, Jane would like to use the same search
tools that she uses to locate documents on her own
storage devices.

� I have to make some changes to that presentation

I was working on yesterday. Did I leave the latest

copy on my PC at work or on the one at home? If
Jane copies an outdated version to her laptop, she
may cause a write con
ict that will be diÆcult to
resolve when she gets back. She just wants to grab
the presentation without having to check both PCs
to �gure out which version is the more recent one.

� I want to work on my taxes on the plane, so I'll

need to bring along my �nancial �les and tax-related

documents. Like most people, Jane does not have
the time or patience to arrange all her documents
into neatly labeled directories, so it's hard for her
to �nd groups of related �les when she really needs
them. More likely, she has to pore over a directory
containing dozens or hundreds of �les, and guess
which ones might have something to do with her
taxes.

To summarize, the issues illustrated by this example are
the dependence on �lenames for locating �les, the lack
of integration between search tools for web documents
and search tools on local devices, the lack of support
for managing multiple copies of a �le across di�erent
devices, and the dependence on directories for grouping
�les together.

These issues lead us to a set of architectural require-
ments for Roma. Our solution should be able to

1. Make information about the user's personal �les al-

ways available to applications and to the user.

2. Associate with each �le (or �le copy) a set of stan-

dard attributes, including version numbers or times-
tamps to help synchronize �le replicas and prevent
write con
icts.

3. Allow the attribute set to be extended by appli-

cations and users, to include such attributes as
keywords to enable searching, categories to allow
browsing related �les, digests or thumbnails to en-
able previewing �le content, and parent directories
to support traditional hierarchical naming (where
desired). This information can be used to develop
more intuitive methods for organizing and locating
�les.

4. Track �les stored on data repositories outside the

user's control. A user may consider a certain �le
as part of his personal �le space even if he did not
directly create or maintain the data. For example,
even though the user's bank account balances are
available on a web site controlled and maintained
by the bank, he should be able to organize, search
and track changes to this data just like any other
�le in his personal space.

5. Track �les stored on disconnected repositories and

o�ine storage media. Metadata can be valuable
even if the data it describes is unavailable. For ex-
ample, the user may be working on a disconnected
laptop on which resides a copy of the document that
he wants to edit. Version information lets him �g-
ure out whether this copy is the latest, and if not,
where to �nd the most recent copy upon reconnec-
tion. Alternatively, if the laptop is connected on a
slow network, he can use metadata (which is often
smaller than its associated �le) to �nd which large
piece of data needs to be pulled over the network.

3 Architecture

At the core of the Roma architecture (illustrated in Fig-
ure 1) is the metadata server, a centralized, potentially
portable service that stores information about a user's
personal �les. The �les themselves are stored on au-
tonomous data repositories, such as traditional �le sys-
tems, web servers and any other device with storage ca-
pability. Roma-aware applications query the metadata
server for �le information, and send updates to the server
when the information changes. Applications obtain �le
data directly from data repositories. Agents monitor
data stores for changes made by Roma-unaware applica-
tions, and update �le information in the metadata server
when appropriate.

Roma supports a decentralized replication model
where all repositories store \�rst-class" �le replicas|
that is, all copies of a �le can be manipulated by the
user and by applications. To increase availability and
performance, a user can copy a �le to local storage from
another device (or an application can do so on the user's
behalf). Roma helps applications maintain the connec-
tion between these logically related copies, or instances,
of the �le by assigning a unique �le identi�er that is
common to all of its instances. The �le identi�er can be
read and modi�ed by applications but is not normally
exposed to the user.

3



Metadata
Server

Agent

Web
Browser

Web
Server

Data Store

Roma
Application

Figure 1: The Roma Architecture. Applications are con-
nected to the metadata server, and possibly connected to
a number of data stores. Agents track changes to third-
party data stores, such as the web server in this diagram,
and make appropriate updates to the metadata server.

Once the �le is copied, the contents and attributes of
each instance can diverge. Thus Roma keeps one meta-
data record for each �le instance. A metadata record is a
tuple composed of the �le identi�er, one or more data ad-
dresses, a version number and optional, domain-speci�c
attributes.

The data address speci�es the location of a �le in-
stance as a Universal Resource Identi�er (URI). Files
residing on the most common types of data reposito-
ries can be identi�ed using existing URI schemes, such
as http: and ftp: for network-accessible servers and
file: for local �le systems. When naming removable
storage media, such as a CD-ROM or a Zip disk, it is im-
portant to present a human-understandable name to the
user (possibly separate from the media's native unique
identi�er, such as a 
oppy serial number).

The version number is a simple counter. Whenever a
change is made to a �le instance, its version number is
set to be one greater than the previous greatest version
number of all the �le's instances. We are investigating
the use of version vectors to store more complete and

exible versioning information[9].

Roma-aware applications can supplement metadata
records with a set of optional attributes, including
generic attributes such as the size of a �le or its type,
and domain-speci�c attributes like keywords, categories,
thumbnails, outlines or song titles.

These optional attributes enable application user in-

terfaces to support new modes of interaction with the
user's �le space, such as query-based interfaces and
browsers. Autonomous agents can automatically scan
�les in the user's space and add attributes to the meta-
data server based on the �les' contents. Section 6 brie
y
describes Presto, a system developed by the Placeless
Documents group at Xerox PARC that allows users to
organize their documents in terms of user-de�ned at-
tributes. The user interaction mechanisms developed for
Presto would mesh well with the centralized, personal
metadata repository provided by Roma.

3.1 Metadata server

The metadata server is a logically centralized entity that
keeps metadata information about all copies of a user's
data. Keeping this metadata information centralized
and separate from the data stores has many advantages:

� Centralization helps avoid write con
icts, since a
single entity has knowledge of all versions of the
data in existence. Potential con
icts can be pre-
vented before they happen (before the user starts
editing an out-of date instance of a �le) rather than
being caught later, when the �les themselves are
being synchronized.

� Centralization allows easier searching over all of a
user's metadata because clients only have to search
at a single entity. The completeness of a search
is not dependent on the reachability of the data
stores. In contrast, if metadata were distributed
across many data stores, a search would have to
performed at each data store. While this is accept-
able for highly available data repositories connected
via high-bandwidth network, it is cumbersome for
data stores on devices that need to be powered on,
plugged in, or dug out of a shoebox to be made
available.

� Separation from the data store allows easier inte-
gration of autonomous data stores, including legacy
and third-party data stores over which the user has
limited control. Storing metadata on a server un-
der the user's control, rather than on the data stores
with the data, eliminates the need for data stores
to be \Roma-compliant." This greatly eases the de-
ployability of Roma.

� Separation also provides the ability to impose a
personalized namespace over third-party or shared

4



data. A user can organize his or her data indepen-
dent of the organization of the data on the third-
party data store.

� Separation enables clients to have some knowledge
about data they cannot access, either because the
data store is o�-line, or because it speaks a foreign
protocol. In essence, clients can now \know what
they don't know."

The main challenge in designing a centralized metadata
server is ensuring that it is always available despite in-
termittent network connectivity. Section 5.2 describes
one solution to this problem, which is to host the meta-
data server on a portable device. Since metadata tends
to be signi�cantly smaller than the data it describes, it
is feasible for users to take their metadata server along
with them when they disconnect from the network.

3.2 Data stores

A data store is any information repository whose con-
tents can somehow be identi�ed and retrieved by an
application. Roma-compatible data stores include not
only traditional �le and web servers, but also lap-
tops, personal digital assistants (PDAs), cell phones,
and wristwatches|devices that have storage but can-
not be left running and network-accessible at all times
due to power constraints, network costs, and security
concerns|as well as \o�ine" storage media like compact
discs and magnetic tapes. Information in a data store
can be dynamically generated (e.g., current weather con-
ditions or the time of day). Our architecture supports

� data stores that are not under the user's control.

� heterogeneous protocols (local �le systems, HTTP,
FTP, etc.). There are no a priori restrictions on the
protocols supported by a data store.

� data stores with naming and hierarchy schemes in-
dependent of both the user's personal namespace
and other data stores.

In keeping with our goal to support legacy and third-
party data stores, data stores do not have to be Roma-
aware. There is no need for direct communication be-
tween data stores and the metadata server. This feature
is key to ensuring the easy deployability of Roma.

3.3 Applications

In Roma, clients are applications used by people to view,
search and modify their personal data. These include
traditional progams, such as text editors, as well as
handheld-based personal information managers (PIMs)
and special-purpose Internet appliances. Clients can be
co-located with data sources; for example, applications
running on a desktop computer are co-located with the
computer's local �le system.

Clients have two primary responsibilities in our sys-
tem. The �rst is to take advantage of metadata informa-
tion. This includes an appropriate presentation of useful
metadata to the user, but also includes the client's own
use of metadata information. For example, a client can
automatically choose to access the \nearest" or latest
copy of a �le.

The clients' second responsibility is to inform the
metadata server when changes made to the data af-
fect the metadata. Mundanely, this means informing
the metadata server when a change has been made (for
versioning purposes), but can also include updating of
domain-speci�c metadata. We are investigating how of-
ten updates need to be sent to the metadata server to
balance correctness and performance concerns.

It is assumed that while clients are in use, they are
connected to the metadata server. However, clients are
not necessarily well-connected to all data stores. They
may be connected weakly or not at all. For example,
a client might not speak the protocol of a data store,
and thus might be e�ectively disconnected from the data
store. Also, a data store itself may be disconnected from
the network.

3.4 Synchronization agents

Roma synchronization agents are software programs that
run on behalf of the user, without requiring the user's
attention. Agents can do many tasks, including:

� providing background synchronization on behalf of
user

� hoarding of �les on various devices in preparation
for disconnected operation

� making timely backups of information across data
stores

� tracking third-party updates (on autonomous data
stores, or data shared between users)

5



Agents can be run anywhere on a user's personal com-
puters or on cooperating infrastructure. The only limita-
tion on agent's execution location is that the agent must
be able to access relevant data stores and the metadata
server. Note that the use of a portable metadata server
precludes agents from running while the metadata server
is disconnected from the rest of the network.

3.5 Examples

To illustrate how Roma supports a user working with
�les replicated across several storage devices, let us re-
visit Jane Mobile, and consider what a Roma-aware ap-
plication does in response to Jane's actions.
The action of copying a �le actually has two di�erent

results, depending on her intent; the application should
provide a way for her to distinguish between the two:

� She makes a �le instance available on a di�erent

repository (in preparation for disconnected opera-
tion, for example). The application contacts the
metadata server, creates a new metadata record
with the same �le identi�er, copies all attributes,
and sets the data address to point to the new copy
of the �le.

� She copies a �le to create a new, logically distinct

�le based on the original. The application contacts
the metadata server, creates a new metadata record
with a new �le identi�er, copies all attributes, and
sets the data address to point to the new copy of
the �le.

Other actions Jane may take:

� The user opens a �le for updating. The application
contacts the metadata server, and checks the ver-
sion number of this instance. If another instance
has a higher version number, the application warns
the user that he is about to modify an old version,
and asks user if he wants to access latest version or
synchronize the old one (if possible).

� The user saves the modi�ed �le. The application
contacts the server, sets version number of this in-
stance to one plus the current highest, and updates
any attributes, such as the �le's size.

� The user brings a �le instance up to date by syn-

chronizing it with the newest instance. The applica-
tion contacts the server, �nds the metadata record
with the highest version number for this �le, and
copies all attributes (except the data address) to
the current instance.

4 Implementation

In this section we describe the current status of our pro-
totype Roma implementation. The prototype is still in
its early stages and does not yet support synchronization
agents.

4.1 Metadata server

We have implemented a prototype metadata server that
supports updates and simple queries, including queries
on optional attributes. It is written in Java as a service
running on Ninja[5], a toolkit for developing highly avail-
able network services. Metadata is stored in an XML for-
mat, and we use XSet, a high performance, lightweight
XML database, for query processing and persistence[16].

We have also implemented a proof-of-concept portable
metadata server. Though the metadata server itself re-
quires a full Java environment to operate, we have im-
plemented a simple mechanism to migrate a metadata
repository between otherwise disconnected computers
using a PDA as a transfer medium. As a user �nishes
working on one computer, the metadata repository is
transferred onto his PDA. The next time he begins using
a computer, the metadata repository is retrieved from
the PDA. In this way, though the metadata server it-
self is not traveling, the user's metadata is always acces-
sible, regardless of the connectivity between the user's
computer and the rest of the world.

4.2 Data stores

Currently, the data stores we support are limited to
those addressable through URIs. Our clients can cur-
rently access data stores using HTTP and FTP, as well
as �les accessible via a standard �le system interface such
as local �le systems, NFS and AFS.

4.3 Clients

We have implemented three Roma-aware clients. These
clients allow users to view and manipulate their meta-
data and data from a variety of devices.

Our �rst client is a web-based metadata browser. It
provides hierarchical browsing of one's personal data.
The browser displays the names of data �les, their ver-
sion information, and the deduced MIME type of the
�le. In addition, if the �le is accessible, the browser will
present a link to the �le itself. We have also written a
proxy to enable \web clipping" of arbitrary web content

6



Figure 2: A screenshot of the web-clipper proxy. As the user browses the web, the proxy adds links on the 
y,
allowing the user to browse the metadata server and to add pages to his personal �le space.

into the user's personal �le space, as displayed in Figure
2.

Our second client is a set of command-line tools. We
have written Roma-aware ls and locate commands to
query a metadata server, a get command to retrieve
the latest version of a �le from remote data stores, and
import, a utility to create metadata entries for �les on
a local data store.

We have also implemented a proof-of-concept PDA
client. Built using a Waba VM and RMILite[15, 1], our
PDA client can query and view the contents of a meta-
data server. Currently, the PDA client does not access
the actual contents of any �le.

Our clients have added a metadata attribute to de-
scribe the data format of �les. If available, our
command-line tools use the Unix magic command to
determine the data format. Our web-clipper determines
the data format based on the mime-type of the �le.

5 Design issues and future work

In this section we describe some of the issues and design
decisions encountered so far in our work with Roma,
along with some of the work that remains for us to do.

5.1 Why \personal"?

One important design issue in Roma is the scope of the
types of data it supports. There are several reasons be-
hind the choice to support only personal �les, rather
than to tackle collaboration among di�erent users as
well, or to attempt to simplify system administration by

handling distribution of application binaries and pack-
ages.

First, restricting ourselves to personal �les gives us the
option of migrating the metadata server to a personal,
portable device that the user carries everywhere, to in-
crease its availability. This option is described in more
detail in the next section.

Second, it avoids one potential source of write
con
icts|those due to concurrent modi�cations by dif-
ferent users on instances of the same �le. Such con
icts
are often diÆcult to resolve without discussion between
the two users to agree on the modi�ed version. Con
icts
can still occur from modi�cations by third parties work-
ing on behalf of the user, such as an email transfer agent
appending a new message to the user's inbox while the
user deletes an old one. However, these con
icts can of-
ten be resolved automatically using knowledge about the
application, such as the fact that an email �le consists
of a sequence of independent messages.

Third, it lets us exploit the fact that users are much
better at predicting their future needs for their personal
�les than for other kinds of �les[3].

Fourth, it lets us support categories, annotations and
other metadata that are most meaningful to a single per-
son rather than a group.

Finally, we believe there is a trend toward specialized
applications tailored for managing other types of �les:

� Tools like the RedHat Package Manager (RPM)
and Windows Update are well-suited for distribut-
ing system-oriented data such as application pack-
ages, operating system components, and code li-
braries. These tools simplify system administration
by grouping related �les into packages, enforcing de-

7



pendencies, and automatically notifying the user of
bug �xes and new versions of software.

� Groupware systems like the Concurrent Versioning
System (CVS), ClearCase, Lotus Notes and Mi-
crosoft Outlook impose necessary structure and or-
der on access to shared data with multiple writers.
Email is often suÆcient for informal collaboration
within a small group.

� The web has become the best choice for distributing
shared data with many readers.

Since these applications handle system data, collabora-
tive projects and shared read-mostly data, we believe
that the remaining important category of data is per-
sonal data. We thus focus on handling this category of
data in Roma.

5.2 Ensuring availability of metadata

Since our overarching goal is to ensure that information
about the user's �les is always available to the user, we
need to make the system robust in the face of intermit-
tent or weak network connectivity|the very situations
that underscore the need for a metadata repository in
the �rst place.

Our approach is to allow the user to keep the meta-
data server in close physical proximity, preferably on a
highly portable device that he can always carry like a
keychain or necklace. Wireless network technologies like
Bluetooth will soon make \personal-area networks" a re-
ality. It is not hard to imagine a server embedded in a
cell phone or a PDA, with higher availability and better
performance than a remote server in many situations.

One diÆculty with a portable server is the issue of
third-party agents acting on behalf of the user and mod-
ifying data in the user's personal �le space. If the net-
work is partitioned and the only copy of the metadata
is with the user, how does such an agent read or mod-
ify the metadata? In other words, we need to ensure
availability to third parties as well.

Our solution is to cache metadata in multiple loca-
tions. If the main copy currently resides on the user's
PDA, another copy on a stationary, network-connected
server can provide access to third parties. This naturally
raises the issues of synchronizing the copies and handling
update con
icts between the metadata replicas.

However, our hypothesis is that updates made to the
metadata by third parties rarely con
icts with user up-
dates. For example, a bank's web server updates a �le

containing the user's account balances, but the user him-
self rarely updates this �le.

Testing this hypothesis is part of our future work in
evaluating Roma.

5.3 Supporting legacy clients

Though we explicitly support legacy, Roma-unaware
data stores, our architecture does not explicitly support
legacy applications. We believe that for the user to take
advantage of metadata, application user interfaces need
to be designed to present a view of the metadata. How-
ever, if we are willing to accept restricting a user's direct
access to metadata, we do have options for supporting
legacy clients in Roma.

Our �rst option is to use application-speci�c extension
mechanisms to add Roma-awareness to legacy clients.
For example, we implemented a Roma-aware proxy to
integrate existing web browsers into our architecture.

Our second option is to layer Roma-aware software be-
neath the legacy client. Possibilities include modifying
the C-library used by clients to access �les, or writing
a Roma-aware �le system. This option does nothing to
present metadata to the user, but can potentially provide
some functionality enhancements such as the intelligent
retrieval of new versions of data. We are basically trad-
ing support for legacy data stores for support for legacy
clients.

A third option is to use agents to monitor data edited
by legacy clients in the same way we monitor data repos-
itories not under the user's control. This option neither
presents metadata to the user, nor enhances the func-
tionality of the client. It does, however, ensure that the
metadata at the server is kept up-to-date with changes
made by legacy clients.

5.4 Addressing personal data

Our current Roma implementation uses a URI to iden-
tify the �le instance corresponding to a particular meta-
data record. Unfortunately this is an imperfect solution
since the relationship between URIs and �le instances is
often not one-to-one. In fact, it is rarely so.

On many systems, a �le instance can be identi�ed
by more than one URI, due to aliases and links in
the underlying �le system or multiple network servers
providing access to the same �les. For example, the
�le identi�ed by ftp://gunpowder/pub/paper.ps can
also be identi�ed as ftp://gunpowder/pub/./paper.ps
(because . is an alias for the current directory) and
http://gunpowder/pub/ftp/pub/paper.ps (since the

8



public FTP directory is also exported by an HTTP
server).

The problem stems from the fact that URIs are de-
�ned simply as a string that refers to a resource and not
as a unique resource identi�er. Currently we rely on ap-
plications and agents to detect and handle cases where
multiple URIs refer to the same �le, but if an applica-
tion fails to do this, it could cause the user to mistakenly
delete the only copy of a �le because he was led to believe
that a backup copy still existed. In the future we would
like Roma to address this problem more systematically.

5.5 Improving application support

One key feature missing from our current implementa-
tion is a set of APIs that lets client applications com-
municate with the Roma metadata repository, via an
interface more tightly coupled to the client's operat-
ing system than the generic RMI interface we provide.
Developing these APIs would o�er two major bene�ts.
First, application developers would not have to worry
about supporting di�erent transport protocols for ac-
cessing the metadata repository, whether it resides on a
remote server or on a local device.

Second, legacy applications could be ported quickly
using a library that conforms to the platform's �le sys-
tem API, while new applications could take full advan-
tage of the metadata repository using a richer interface.
This is particularly important to meet our goal of easy
deployment, because we expect that existing applica-
tions will be ported and new applications written only
when a critical mass of Roma users exists.

6 Related work

Helping users access data on distributed storage reposi-
tories is an active area of research. The primary charac-
teristic distinguishing our work from distributed �le sys-
tems, such as NFS[11], AFS[6], and Coda[7], is our em-
phasis on unifying a wide variety of existing data repos-
itories to help users manage their personal �les.

The Coda distributed �le system, like Roma, seeks to
allow users to remain productive during periods of weak
or no network connectivity. While Roma makes meta-
data available during these times, Coda caches �le data
in a \hoard" according to user preferences in anticipa-
tion of periods of disconnection or weak connectivity.
However, unlike Roma, users must store their �les on
centralized Coda �le servers to bene�t fully from Coda,
which is impractical for people who prefer to maintain

several active \computing bases." Even when users do
not prefer to maintain more than one data repository,
they may be obliged to if, for instance, their company
does not permit them to mount company �le systems
on their home computers, or if they use several di�erent
computing devices some of which they do not synchro-
nize to a central data store.

The Bayou system[9] supports a decentralized model
where users can store and modify their �les in many
repositories which communicate peer-to-peer to propa-
gate changes. However, users cannot easily integrate
data from Bayou-unaware data stores like third-party
web services into their personal �le space.

The Presto system[2] focuses on enabling users to or-
ganize their �les more e�ectively. They have built a
solution similar to Roma that associates with each of a
user's �les documents a set of properties that can be used
to organize, search and retrieve �les. This work does not
speci�cally address tracking and synchronizing multiple
copies of documents across storage repositories, nor en-
suring that properties are available even when their as-
sociated documents are inaccessible. However, the ap-
plications they have developed could be adapted to use
the Roma metadata server as property storage.

Both Presto and the Semantic File System[4] en-
able legacy applications to access attribute-based storage
repositories by mapping database queries onto a hierar-
chical namespace. Presto achieves this using a virtual
NFS server, while the Semantic File System integrates
this functionality into the �le system layer. Either mech-
anism could be used with Roma to provide access to the
metadata server from Roma-unaware applications.

The Elephant �le system[12] employs a sophisticated
technique for tracking �les across both changes in name
and changes in inode number.

7 Conclusions

We have described a system that helps ful�ll the promise
of personal mobility, allowing people to switch among
multiple heterogeneous devices and access their personal
�les without dealing with nitty-gritty �le management
details such as tracking �le versions across devices. This
goal is achieved through the use of a centralized meta-
data repository that contains information about all the
user's �les, whether they are stored on devices that the
user himself manages, on remote servers administered
by a third party, or on passive storage media like com-
pact discs. The metadata can include version informa-
tion, keywords, categories, digests and thumbnails, and

9



is completely extensible. We have implemented a proto-
type metadata repository, designing it as a service that
can be integrated easily with applications. The service
can be run on a highly available server or migrated to
a handheld device so that the user's metadata is always
accessible.

8 Acknowledgements

The authors thank Doug Terry for his helpful advice
during the early stages of the project, and Andy Huang,
Kevin Lai, Petros Maniatis and Mema Roussopoulos for
their detailed review and comments on the paper. This
work has been supported by a generous gift from NTT
Mobile Communications Network, Inc. (NTT DoCoMo).

References

[1] Mike Chen, Mohan Lakhamraju, Eric Brewer, and
David Culler, \Jini/RMI/TSpace for Small De-
vices." http://post-pc.cs.berkeley.edu/rmilite/

[2] Paul Dourish, W. Keith Edwards, Anthony
LaMarca and Michael Salisbury, \Uniform Doc-
ument Interactions Using Document Properties."
Proc. ACM Symposium on User Interface Software

and Technology (UIST '99).

[3] Maria Ebling, \Translucent Cache Management for
Mobile Computing," Thesis, School of Computer
Science, Carnegie Mellon University, March 1998.

[4] David K. Gi�ord, Pierre Jouvelot, Mark A. Shel-
don, and James W. O'Toole, Jr., \Semantic File
Systems." Proceedings of the Thirteenth ACM Sym-

posium on Operating Systems Principles, October
13{16, 1991, Paci�c Grove, California.

[5] Steve Gribble, Matt Welsh, Eric A. Brewer, and
David Culler, \The MultiSpace: an Evolution-
ary Platform for Infrastructural Services." Proceed-
ings of the Second USENIX Symposium on Inter-

net Technologies and Systems (USITS '99), August
1999.

[6] M. L. Kazar, \Synchronization and Caching Issues
in the Andrew File System." Proceedings of the

Winter 1988 USENIX Technical Conference, Febru-
ary 1988.

[7] James J. Kistler and M. Satyanarayanan, \Discon-
nected Operation in the Coda File System." Pro-

ceedings of the Thirteenth ACM Symposium on Op-

erating Systems Principles, October 13{16, 1991,
Paci�c Grove, California. Pages 213{225.

[8] Petros Maniatis, Mema Roussopoulos, Ed Swierk,
Kevin Lai, Guido Appenzeller, Xinhua Zhao, and
Mary Baker, \The Mobile People Architecture."
ACM Mobile Computing and Communications Re-

view (MC2
R), July 1999.

[9] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
Marvin M. Theimer and Alan J. Demers, \Flexible
Update Propagation for Weakly Consistent Repli-
cation." Proceedings of the Sixteenth ACM Sympo-

sium on Operating Systems Principles, October 5{
8, 1997, Saint-Malo, France. Pages 288{301.

[10] Jef Raskin, The Humane Interface. Addison-
Wesley, 2000.

[11] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon, \Design and Implementation of the
Sun Network File System." Proceedings of the Sum-
mer 1985 USENIX Technical Conference, June
1985.

[12] Douglas S. Santry, Michael J. Feeley, Norman C.
Hutchinson, Alistair C. Veitch, Ross W. Carton and
Jacob O�r, \Deciding When to Forget in the Ele-
phant File System." Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles,
December 12{15, 1999, Charleston, South Carolina.
Pages 110{123.

[13] Stu Slack, \Extending Your Desk-
top with Pilot." PDA Developer

Magazine, September/October 1996.
http://www.wwg.com/newsview/palmdesktop.shtml

[14] Andrew Tridgell and Paul Mackerras, \The rsync
Algorithm." Technical Report TR-CS-96-05, Aus-
tralian National University.

[15] Wabasoft, Inc., \Wabasoft: Product Overview."
http://www.wabasoft.com/products.html

[16] Ben Y. Zhao and Anthony D. Joseph, \XSet:
A Lightweight Database for Internet Applica-
tions." Submitted for publication, May 2000.
http://www.cs.berkeley.edu/~ravenben/publica-
tions/saint.pdf

10


