THE SOLUTION OF LARGESYSTEMS OF ALGEBRAIC EQUATIONS

BY

JOHN M. PAVKOVICH

TECHNICAL REPORT NO. 33 (2) DECEMBER 6, 1963

PREPARED UNDER CONTRACT Nonr-225(37) (NR-044-211) FOR OFFICE OF NAVAL RESEARCH

COMPUTER SCIENCE DIVISION School of Humanities and Sciences STANFORD UN **IVERS** ITY

THE SOLUTION OF LARGE SYSTEMS OF ALGEBRAIC EQUATIONS

by

John M. Pavkovich

ŧ

TECHNICAL REPORT NO.33 December 6, 1963

PREPARED UNDER CONTRACT Nonr-225(37) (NR-044-m) OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

> COMPUTER SCIENCE DIVISION SCHOOL OF HUMANITIES AND SCIENCES STANFORD UNIVERSITY

THE SOLUTION OF LARGE SYSTEMS OF ALGEBRAIC EQUATIONS

by

John M. Pavkovich

The solution of a system of linear algebraic equations using a computer is not a difficult problem as long as the equations are not ill-conditioned and all of the coefficients can be stored in the computer. However, when the number of coefficients is so large that supplemental means of storage, such as magnetic tape, are required, the problem of solving the system in an efficient manner increases considerably. This paper describes a method of solution whereby such systems of equations can be solved in an efficient manner. The problems associated with ill-conditioned systems of equations are not discussed.

The method described on the following pages was implemented on the IBM 7090 at Stanford for equations with complex coefficients. Although all figures quoted related to tape movement and arithmetic speed are for this computer, the ideas behind the method are applicable to any computer which has the ability to read tape, write tape, and compute simultaneously.

Consider the system of equations

 $a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1N}x_{N} = y_{1}$ $a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2N}x_{N} = y_{2} \qquad (1)$ \vdots $a_{N1}x_{1} + a_{N2}x_{2} + \cdots + a_{NN}x_{N} = y_{n}$

The first step in the solution is to normalize the system, i.e., to multiply each equation by a factor which makes the magnitude of the largest coefficient in that equation approximately equal to 1. In the case of a binary machine, this factor should be a power of two so that no significant figures are lost during this process. The reason for normalizing the system of equations is to increase the effectiveness of pivoting (interchanging equations during the solution process) and thus minimize the difficulties associated with roundoff error.

The method used to solve the system of equations is basically Gauss's method with partial pivoting. Briefly, this method is performed as follows. The first column of the system of equations is scanned to find the largest coefficient of x_1 in absolute value. The equation containing this coefficient is then interchanged with the first equation (or row). A suitable multiple of this new first equation is then subtracted from each of the other equations in order to eliminate x_1 from each of them. This process is then repeated using the coefficients of x_2 and Eqs. 2 through N. Coefficients a_{22} through a_{N2} are examined to determine the largest in absolute value. The equation containing this coefficient is interchanged with the second equation and a suitable multiple is subtracted from each of the remaining equations. This same process of eliminating one variable at a time from all succeeding equations is repeated again and again until a system of equations is obtained in which the i-th equation contains only the unknowns x_1 through x_N . Such a system of equations is

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1N}x_{N} = y_{1}$$

$$a_{22}x_{2} + a_{23}x_{3} + \dots + a_{2N}x_{N} = y_{2}$$

$$a_{N-1,N-1}x_{N-1} + a_{N-1,N}x_{N} = y_{N-1}$$

$$a_{NN}x_{N} = y_{N}$$
(2)

This so-called reduced system can now be solved by starting at the bottom and solving first for x_N , then x_{N-1} using Eq. (N-1) and the now known value of x_N . This process, known as backsolving, is continued until the entire solution is obtained.

Gauss's method as described above is inefficient when applied to a system of equations too large to fit in core storage. The reason is that

as each variable is eliminated from all subsequent equations, all the coefficients of these equations must be read from tape and the new coefficients written on tape. Moreover, while each coefficient is in core storage, it is used in only one arithmetic operation. What is needed is a method whereby numbers which must be read from tape and written on tape many times, are used in many arithmetic operations while they are in core storage. This can be accomplished by applying Gauss's method in a more subtle fashion in which successive columns of the reduced system are obtained rather than successive rows. This is achieved as follows.

Consider again the system of equations (1). Assume that it has been normalized. As with the ordinary form of Gauss's method, the first column of coefficients is examined to locate the first pivotal element, i.e., the numerically largest coefficient of x_1 . The location of this element is recorded and this coefficient is interchanged with a_{ll}. It is necessary to remember this interchange since this same interchange must be performed in all subsequent columns to accomplish the interchange of the first equation with the equation containing the largest coefficient of x_1 . After the interchange has been performed, and is the first column of the reduced system of equations, and will not be involved in any more numerical operations until the backsolving is performed. The remaining elements in column 1, i.e., a_{21} through a_{N1} , are now divided by a_{11} . The result of this operation will be denoted by b, and these numbers will be referred to as multipliers since in terms of Gauss's method, b₁ represents the factor by which the first equation is multiplied when it is used to eliminate x_1 from the i-th equation.

Thus, we have

$$b_{il} := \frac{a_{il}}{a_{ll}}$$
 (i := 2, 3, ..., N) . (3)

The b, 's will be used in processing all of the remaining columns.

The reduction of the second column begins by performing the interchange associated with column 1. The coefficients a_{22} through a_{N2} are then processed using the relation

$$a_{12}^{\text{NEW}} := a_{12}^{\text{OLD}} - b_{11}a_{12}$$
 (i := 2,..., N) . (4)

In terms of Gauss's method, these are the calculations which occur in the second column when x_1 is eliminated from Eqs. 2 through N. The elements a_{22} through a_{N2} are now examined to find the second pivotal element. Its location is recorded and it is interchanged with a_{22} . Elements a_{12} and a_{22} are now the second column of the reduced system of equations. Elements a_{32} through a_{N2} are divided by a_{22} to obtain the second column of multipliers. The second set of multipliers will be used to process all remaining columns.

The pattern for obtaining the successive columns of the reduced systems of equations is now established. Each column is taken in order and reduced using the interchanges and multiplier columns associated with all of the previous columns. The operation reducing the k-th column with the j-th column of multipliers is

$$a_{ik}^{NEW} := a_{ik}^{OLD} - b_{ij}a_{jk}$$
 (j < k; i := j + l, j + 2, ... N) (5)

Note that (4) is just a special case of (5) with j := 1 and k := 2. After the k-th column has been processed using multiplier columns 1 through k - 1, elements a_{kk} through a_{Nk} are examined to find the k-th pivotal element. Its location is recorded and it is interchanged with a_{kk} . Elements $a_{k+1,k}$ through a_{Nk} are then divided by a_{kk} to obtain the k-th column of multipliers.

To obtain the complete reduced system of equations, the operations indicated above are carried **out** until all the columns have been reduced. The right-hand side is reduced in exactly the same way that the N-th column is reduced. The result of these operations will be a reduced system of equations of structure (2). Note that columns of multipliers will form a lower triangular matrix:

Associated with each column of multipliers is an interchange which must be performed before that column of multipliers is applied.

It should be clear from the preceding discussion that the numbers which are used again and again in performing the reduction are the multipliers. Thus these numbers must be repeatedly read from tape if there is insufficient room for all of them in core storage. However, a little thought will show that it is permissible to process more than one column at a time with the same column of multipliers. This means that while a column of multipliers is in core storage, we should process enough columns with it to allow the next column of multipliers to be read from tape. With a judicious choice of the number of columns one chooses to reduce simultaneously, it is possible to overlap almost all tape movement with computing and still keep the amount of core storage required to a minimum.

For the IBM 7090, the number of columns, K, to be processed simultaneously can be arrived at as follows: The time required to perform arithmetic operations and to read or write tape are as follows:

Floating Multiplication	24µs (microseconds)
Floating Addition or Subtraction	l4µs
Read and Write Tape (729-IV Tape Drive 556 Characters/Inch)	100µs/word
Pass a Record Gap	7300µs

From (5) it can be seen that it is necessary to perform one multiplication and one subtraction per multiplier element per column being processed. Here we are assuming the coefficients to be real. If each column of multipliers is written as one record, then the following relation is the criterion we wish to satisfy:

Compute Time
$$\geq$$
 Tape Read Time (7a)

$$K(M + 1) (24\mu s + 14\mu s) \ge M \cdot 100\mu s + 7300\mu s$$
, (7b)

where K = numbers of columns being reduced simultaneously, and M = length of multiplier column being read. By solving for K, we find

.

$$K > 2.63 (M/M+1) + 192/(M+1)$$
 (8)

From the above relation, we see that K should certainly be 3 or larger.

A choice of 6 or 8 would probably be the most reasonable since the record gaps would introduce some lost time only when the length of multipliers became less than 30 or 40. In the case of complex coefficients the calculation is quite similar. For the program written at Stanford, 4 columns were used.

If the ideas put forth thus far are implemented in a program, it would proceed as follows. Three tapes are required which will be denoted as below:

- IT = Input Tape. This tape contains the matrix describing the system of equations to be solved. It is assumed that the system of equations has been normalized and that the matrix is stored by columns on this tape.
- MT = Multiplier Tape. This tape will contain all of the multipliers at the conclusion of the reduction process.
- RST = Reduced System Tape. This tape will contain the columns of the reduced system at the conclusion of the reduction process.

It will be seen that the program as described below possesses one major difficulty, namely, that there may be some delay while the MT tape rewinds. A method of overcoming this difficulty will be described subsequently. The program proceeds as follows:

- 1: Read the first K columns of the system of equations from IT into core storage.
- 2: Reduce these K columns until the first K columns of the reduced system and the first K columns of multipliers are obtained.
- 3: Write the K columns of multipliers on MT and rewind it.
- 4: Write the K columns of the reduced system on RST.
- 5: Read the next K columns of the system of equations from IT into core storage.
- 6: Reduce these K columns using the multipliers stored on MT. During this process, all of the multipliers which have been previously written on MT will be read.
- 7: Further reduce these K columns to obtain K more columns of the reduced system and K more columns of multipliers.

8: Write the K new columns of multipliers on MT and rewind it.
9: Write the K new columns of the reduced system on RST.
10: If more columns remain on IT, go to step 5.

To solve the system of equations for some particular right-hand side, one reduces this right-hand side by processing it with all of the multipliers on MT. The reduced system is then backsolved with this reduced RHS to obtain the solution. During the backsolution process it is necessary to backspace RST before reading each column since they are required in the reverse order from that on the tape. If one has to backsolve the system many times for many different right-hand sides, it is wise to write a tape of the reduced system matrix with the columns in the order in which they are required during backsolving. This can be done the first time the system is backsolved.

As stated previously, the program described above wastes considerable time waiting for the MT to rewind. However, this difficulty can be overcome by using extra multiplier tapes in such a fashion that a tape is always available with the correct column of multipliers ready to be read into core storage. One possible way of doing this using a total of three multiplier tapes will be described here. These three tapes are denoted MT, MT1, MT2. To be effective, this scheme requires two channels.

Tapes MT and MT1 are on Channel A and MT2 is on Channel B. Table I describes how the tapes are used. Here K, the number of columns reduced at one time, is 4. By studying Table I, it will be seen that MT contains approximately one-half of the multiplier columns. The remaining columns of multipliers are on either MTL or MT2. Consider line 10 in Table I. At this point columns 1-12 have been reduced. Multiplier columns 1-8 are on MT and multiplier columns 9-12 are on MT1. Columns 13-16 are now read from the input tape and processed using multiplier columns 1-8. When this is complete, the rewinding of MT is initiated. Columns 13-16 are then further processed using multiplier columns 9-12. While each of these multiplier columns is in core storage, it is copied onto MT2. Since MT1 and MT2 are on different channels it is possible to read multipliers from MTL, write multipliers on MT2, and compute. all simultaneously. After multiplier columns 9-12 have been used, columns 13-16 are further processed to obtain columns 13-16 of the reduced system and

multiplier columns 13-16. The columns of the reduced system are written on RST and multiplier columns 13-16 are written on MT2. The MT1 and MT2 are now rewound. At this point, the configuration of the tapes is that shown on line 13 of Table I.

e. .

The program is now ready to begin processing columns 17-20. These 4 columns are read from IT and processed using multiplier columns 1-8 from MT. Multipliers from MT2 are now used to process the 4 columns in core. While each multiplier column 9, 10, 11, and 12 is in core, it is copied onto MT. Since MT and MT2 are on different channels, there is no delay in the program. As soon as multiplier 12 has been written on MT, it is rewound. While multiplier columns 13-16 are in core, they are written on MT1. Columns 17-20 are then further processed to obtain 4 more columns of the reduced system and 4 more columns of multipliers. The 4 columns of the reduced system are written on RST and the 4 columns of multipliers are written on MT1. Tapes MT1 and MT2 are then rewound and the tapes are in the configurations indicated on line 16 of Table I. The reader should now be able to make his way through Table I.

When all the columns on IT have been processed, it is necessary to copy the multipliers from MTL or MT2 onto MT if one wants one tape with all of the multiplier columns on it. This will delay the program slightly, but the delay is of little significance when compared to the time required for the entire reduction process.

The program written at Stanford performs the reduction as described above. It also has the capability to compute residues using double precision and iterate the solution to obtain more accurate results. Timing experiments were performed using this program and some representative results are indicated in Table II. A millisecond core clock on the IBM 7090 was used to measure the elapsed time so the measurements are quite accurate. It must be confessed, however, that the results are not exactly reproducible. The reasons for this are related to tape. The start and stop times of various tapes are probably not reproducible from one experiment to another. Also, any tape error further introduces differences since the program is delayed while the tape error is corrected.

TABLE I

	Columns Being Processed	Channel A MT	Channel A MT1		Chanr M	Т2
			Reading	Writing	Reading	Writing
1	1-4		~	.		
3		1-4				
4		1-4				
5 6	5-8	1-4				5-8
7		1-4			5-8	
8 9	9-12	1-8		9-12	5-8	
10		1-8	9-12			
11 12	13-16	1-8	9-12			9-16
13		1-8			9-16	
14 15	17-20	1-12		13-20	9-16	
16		1-12	13-16			
17 18	21-24	1-12	13-16			13-24
			ETC.			

Arrangement of Tape Storage During the Reduction Process

TABLE	11
-------	----

N	Reduction and Solution for 1 RHS (no Iterations)	Solution for 2nd RHS (no Iteration)	Iteration
40	11.9 sec	0.44 sec	0.70 sec
80	52.8 sec	2.47 sec	5.32 sec
120	149.6 sec	4.59 sec	10.93 sec
160	327.8 sec	7.33 sec	18.60 sec
320	2398.2 sec	24.57 sec	

From the results of the timing experiments, it was possible to construct polynomials which give reasonably good estimates of the running time for solving a system of N equations. These polynomials are as follows:

(1) Reduction and solution for 1 RHS with no iterations:

$$T = (0.000068)N^3 + (0.0012)N^2 + (0.125)N + (0.425)$$
(9a)

(2) Solution for a second RHS with no iterations:

$$T = (0.000195)N^{2} + (0.0144)N + (0.078)$$
(9b)

(3) Each iteration:

$$T = (0.000629)N^2 + (0.015)N + (0.095)$$
(90)

Using polynomial (9a), one estimates that the time required to solve 1000 simultaneous equations with complex coefficients would be about 19 hours. A program to solve equations with real coefficients would require about 30% of this time. Although the numerical operations would require only one-fourth as much time, there is no decrease in the amount of bookkeeping required.

In principle, the program written at Stanford is capable of solving 1000 or more simultaneous equations. However, the use of the present program to solve a system larger than about two or three hundred is rather risky, since the tape routines are not very sophisticated. In their present form, the tape routines make 10 attempts to correct writing errors and 10 attempts to correct reading errors. If the routines are unsuccessful in correcting the tape error, the program halts and the whole computation must be restarted from the beginning. It would be better if the program were able to salvage as much of the computation as possible after encountering bad tape. This could be accomplished by using an extra tape on which a copy of all multipliers and reduced columns was written, so that if any tape failures occurred, the program could continue after new tapes were mounted. This would increase the running time slightly, but it would be well justified by the increased reliability.

SUBROUTINE GAUSS and its associated subroutines are now described briefly and listed in either FORTRAN or FAP.

SUBROUTINE GAUSS (NSYS, ISOLVD, KITER, EPS, ANS1, ANS2, RHS1, RHS2, KCOEF, KCOPY, KMULT, KT1, KT2, KT3, ISING)

Subroutine Gauss solves a system of up to 500 simultaneous algebraic equations with complex coefficients. The limit of 500 is determined only by the array size in the subroutine and one could increase the maximum allowable size by simply changing the DIMENSION statement and the IF statement which checks to see that the array size is not exceeded.

The arguments of subroutine Gauss are as follows:

NSYS = size of the system to be solved. If NSYS exceeds the array size, a message is printed on-line to save the tape containing the system of equations. The subroutine then rewinds the tape containing the system of equations and then pauses before calling EXIT.

ISOLVD = an integer variable used to indicate whether the system has been previously solved and that only a new right side is to be considered. If ISOLVD is equal to 1, the reduction process is not performed and the program assumes that the reduced system of equations and the multiplier matrix are available on tapes KT1 and KMULT respectively. If any iterations are required, the program also assumes that a copy of the matrix is available on tape KCOPY. If ISOLVD is not equal to 1, the entire reduction process is performed.

KITER = the maximum number of times the program is permitted to iterate and correct the solution. During the iteration process, the error is measured by the maximum change in any unknown divided by the maximum of the unknowns, i.e.,

$$\operatorname{error} = \frac{\max \operatorname{imum} |\Delta X_{i}|}{\max \operatorname{imum} |X_{j}|}$$

The iteration process stops as soon as either (1) the error is less than EPS, the accuracy criteria, (2) the error for the last iteration is greater than for the previous iteration, or (3) KITER iterations have been performed.

EPS = accuracy criteria for the iteration process. See KITER.

ANS1, ANS2 = one-dimensional arrays which represent the real and imaginary parts of the answer respectively.

RHS1, RHS2 = one-dimensional arrays which represent the real and imaginary part of the right-hand side respectively.

The following 6 arguments of SUBROUTINE GAUSS are logical tape numbers and the purpose of each is described below. In order to perform the reduction efficiently, the program requires that tape KT1 be on a channel different from the channel to which KMULT, KT2, and KT3 are attached. The program also requires that KCOEF and KCOPY be on different channels. If these restrictions are not met, the program prints out a message (off-line) and returns with ISING equal to 4.

KCOEF = the logical tape which contains the matrix describing the system of equations to be solved. The program assumes that the matrix has been previously normalized and that the matrix is stored on this tape by columns. Each column is written as one logical record by a statement of the form

WRITE TAPE NCOEF, (Al(K), A2(K), K=1, NSYS, 1)

where Al and A2 are the real and imaginary parts respectively of one column of matrix elements.

KCOPY = a logical tape on which SUBROUTINE GAUSS writes a copy of the matrix contained on tape KCOEF. During the iteration process, the entire matrix must be used in computing the residues. In order to overlap the tape reading with computing, it is necessary to have a copy of the matrix written by the I/O routines used by SUBROUTINE GAUSS. **KMULT =** a logical tape used during the reduction process. At the conclusion of the reduction process, this tape will contain the multiplier matrix. This **lower** triangular matrix will have been written by the I/O routines used by GAUSS and thus this tape cannot be read by **FORTRAN** tape statements.

KT1 = a logical tape used during the reduction process. At the conclusion of the reduction process and the initial backsolving, this tape will contain the reduced system matrix. Again, this tape has been written by the I/O routines associated with SUBROUTINE GAUSS.

KT2, KT3 = logical tapes used by SUBROUTINE GAUSS. These tapes are used as scratch tapes during the reduction process.

ISING = an integer variable used to indicate the result achieved by SUBROUTINE GAUSS. **ISING** will normally be equal to 0. **However, if** during the reduction process a pivotal element is encountered which is less than 1.0 x 10^{-15} or greater than 1.0 x 10^{+15} , **ISING is** set equal to 1 or 2 respectively and control is returned to the calling program. Also, as indicated previously, **ISING** is set equal to 4 if the channel requirements for the tapes are not met.

Several subroutines are used by SUBROUTINE GAUSS in solving the system of equations. The function, name, and argument list of each is as follows:

SUBROUTINE SAVEIT

This subroutine has no arguments and is called by GAUSS whenever an uncorrectable tape error occurs. The subroutine should be written by the user and could call EXIT or take any other action deemed appropriate.

SUBROUTINE RSTART (NRUN)

Since SUBROUTINE GAUSS may **run** for a considerable length of time, it should possess the **capability** to be interrupted and restarted. This can be achieved by writing a routine called RSTART. If sense switch 6 is down, RSTART is called periodically by GAUSS. On returning to GAUSS, all tapes are repositioned if **NRUN** is equal to zero. If NRUN is positive, tapes are not repositioned before resuming the reduction process.

SUBROUTINE MDIVID (N, NA, IMAX, A1, A2)

This subroutine performs the division necessary to compute a new column of multipliers. Al and A2 are one-dimensional arrays, N elements in length, representing the real and imaginary parts respectively of one column of the matrix. MDIVID first interchanges element NA with element **IMAX.** Elements NA + 1 through N are then divided by element NA.

SUBROUTINE REDUCE (N, NA, IMAX, A1, A2, AM1, AM2)

This subroutine is used to perform the reduction of one column of the matrix with the NAth column of multipliers. In the argument list above, N represents the order of the system, NA indicates which column of multipliers is being used, and IMAX indicates. which element is to be interchanged with element NA before processing. Al and A2 are onedimensional arrays representing the real and imaginary parts of the matrix column respectively, and AM1 and AM2 are one-dimensional arrays representing the real and imaginary parts respectively of the column of multipliers.

SUBROUTINE DETER (D1, D2, DET1, DET2, NB2)

As the system of equations sreduced, the determinant is computed by multiplying together the diagonal elements of the reduced system. This subroutine is used in performing this operation. **DET1 and DET2** are the real and imaginary parts of the accumulated product and **D1** and D2 are the real and imaginary parts of the next factor to be used. Because such an' extended product may exceed the range of floating point numbers the computer can handle, this subroutine carries the power of 2 separately as ND2 in order to prevent any overflow or underflow.

SUBROUTINE BSOLVE (K, RHS1, RHS2, COL1, COL2, ANS1, ANS2)

This subroutine is used during the backsolving operation. As with the reduction procedure, the backsolving is carried out by columns. K is an integer which indicates the particular element of the answer that is being obtained. RHS1 and RHS2 are one-dimensional arrays representing the real and imaginary parts respectively of the right-hand side. COL1 and COL2 are one-dimensional arrays representing the real and imaginary parts of column K of the reduced system. ANS1 and ANS2 are one-dimensional arrays representing the real and imaginary parts of the answer.

SUBROUTINE DPSET (NSYS, REMS, IMMS, RELS, IMLS) SUBROUTINE DPRES (RECOL, IMCOL, ANS1, ANS2)

These two subroutines are the two entry points to the FAP coded subroutine used in the double precision calculation of the residues. As with the reduction and the backsolving, the residue calculation is performed by columns. The first entry point **DPSET** is used to indicate the size of the system, NSYS, and the location for the arrays for the most significant and least significant parts of the real and imaginary parts of the residue. The second entry DPRES **is** used during the calculation of the residues. **RECOL** and IMCOL are one-dimensional arrays containing the real and imaginary parts of one column of the matrix. **ANS1** and **ANS2** are the real and imaginary parts of the component of the answer associated with the column being processed.

CHAN (NT1, NT2, NOK)

This FAP coded subroutine is used to check that the channel requirements for the tapes are satisfied. **NTL** and NW are two logical tape numbers. If these tapes are on different channels, NOK is set equal to 1. If they are on the same channel, NOK is set equal to zero.

BSET (NTAPE)

BSPACE

These two subroutines are two entry points to the FAP coded subroutine used to backspace logical tape NTAPE one physical record. **BSET** is used to set up the backspace instruction for logical tape NTAPE, Thereafter, each time BSPACE is called, tape NTAPE is backspaced one physical record.

RSETA (NTAPE, N, NRET, IQUIT) READA (NREAD, A1, A2) RCHKA

These three subroutines are the three entry points to one of the tape reading routines used by GAUSS. A call to RSETA initializes the routine to read records from tape NTAPE. N is the size of the system being solved. **INET** is obtained from an ASSIGN statement and is used to construct a transfer **instruction** which is later executed if an uncorrectable tape ermr is encountered. **IQUIT** is an integer parameter which is used to indicate the nature of the trouble encountered if a return is made using NRET. A call to **READA** then initiates the tape reading. One physical record is read which should contain the last **NREAD** elements of each of the one-dimensional arrays Al and A2, i.e., elements **N-READ +** 1 through N. A later call to **RCHKA** checks to see that the reading was completed satisfactorily. If an error has occurred, the tape is backspaced and the record is read again. Up to 5 attempts are made to read the tape correctly. If the routine is unsuccessful, **IQUIT** is set equal to 2 to indicate an uncorrectable reading error and a return is made using the **INEET** transfer instruction.

WSETA (NTAPE, N, NRET, IQUIT) WRITEA (NWRITE, A1, A2) WCHKA

These three subroutines are the three entry points to one of the tape writing routines used by GAUSS. The arguments above are analogous to those for RSETA, READA, and RCHKA and the execution of the routine is similar except for the following: Before writing a record, the end of tape indicator is interrogated. If it is on, IQUIT is set equal to 3 and a return is made using the NRET transfer instruction. If a tape redundancy check occurs, the tape is backspaced and blank tape is written before attempting to write the record again. Up to 10 attempts are made to write the record correctly. If the routine is unsuccessful, IQUIT is set equal to 1 and a return is made using the NRET transfer instruction.

RSETB (NTAPE, N, NRET, IQUIT)

READB (NREAD, A1, A2) RCHKB WSETB (NTAPE, N, NRET, IQUIT) WRITEB (NWRITE, A1, A2) - WCHKB

These subroutines are identical to the above routines ending in A-except for the name.

RSETC (NTAPE, NRET, IQUIT) READC (NREAD, A1, A2) RCHKC

WSETC (NTAPE, NRET, IQUIT) WRITEC (NWRITE, A1, A2) WCHKC

These subroutines are almost identical to the routines ending in A, the difference being that these mu-tines read or write the first NREAD or NWRITE elements respectively of the arrays Al and A2.

SUE 1 C C	BROUTINE GAUSS (NSYS + ISOLVD + KITER + EPS + ANS1 + ANS2 + RHS1 + RHS2 + KCOEF + KCOPY + KMULT + KT1 + KT2 + KT3 + ISING)* THIS SUBROUTINE SOLVES A SYSTEM OF UP TO 500 SIMULTANEOUS ALGEBRAIC EQUATIONS WITH COMPLEX COEFICIENTS USING GAUSS REDUCTION. THE MATRIX FLEMENTS ARE STORED ON TAPE KCOEF
c 1 2	BY COLUMNS . DIMENSION A1(500), A2(500), BÌ(500), B2(500), C1(500), C2(500), D1(500), D2(500), AM1(500), AM2(500), BM1(500), BM2(500), C1(500), C2(500), C2(500), C2(500), AM1(500), C2(500), C2(500), C2(500), C1(500), C2(500), C2(500), C2(500), C2(500), C2(500), C1(500), C2(500), C2(5
3	RHS1(500),RHS2(500),ANS1(500),ANS2(500),IORDER(500) N = NSYS NCOEF = KCOEF NCOPY = KCOPY NMULT = KMULT
	N T 1 = KT1 N T 2 = K T 2 N T 3 = K T 3 IF (500 - N) 4,8,8
4 60 1 2	W R I T E OUTPUT T A P E 6, 6, N FORMAT(1H0,10X,29HARRAY SIZE EXCEEDED IN GAUSS./ 1H0,10X,24HARRAY SIZE = 500 N = I.4/ 1H0,10X,21HEXECUTION TERMINATED.)
7 0 1	PRINT 7, NCOEF FORMAT (1H0,25HPLEASE SAVE LOGICAL TAPE 12, 42H• THIS PROGRAM WILL PAUSE WHEN COMPLETED.) REWIND NCOES PAUSE
8	CALL EXIT NITER = KITER NTERR = 0 Rf-WIND NCOPY
10	REWIND YMULT REWIND NT1 I F(ISOLVD - 1) 50,10,50 ITER = 0 DO 20 K = 1,N,1
2 0	C1(K) = RHS1(K) C2(K) = RHS2(K) ANS1(K) = 0 . 0 ANS2(K) = 0 . 0
50	EHOLD1 = 1 . 0 GO TO 3400 ISING = 0 EPSA = I.OE-15
С	EPSB = 1.0E+15 NSAVE = NT1 CHECK COMPATABILITY OF TAPE ASSIGNMENTS. IQUIT = 0 C A L LCHAN(NT1,NMULT,NOK).
8 0	I F (NOK) 80,80,90 WRITE OUTPUT TAPE 6,160, NT1,NMULT IQUIT = 1
90	CALL CHAN(NT1,NT2,NOK) F(NOK) 100,100,116
100	WRITE OUTPUT TAPE 6,165, NT1,NT2 IQUIT = 1
110	CALL CHAN(NT1+NT3+NOK) IF (NOK) 120+120+130 WRITE OUTPUT TAPE 6+170, NT1+NT3
120 130	WRITE OUTPUT TAPE 6,170, NTI,NT3 IQUIT = 1 CALL CHAN (NCOEF,NCOPY,NOK)
140	I F (NOK) 140,140,150 WRITE OUTPUT TAPE 6, 175, NCOEF,NCOPY

IQUIT = 1 150 IF (IQUIT) 100)0,200,155 155 ISING = 4 WRITE OUTPUT TAPE 6, 180 RETURN 1600FORMAT (1H0,25X,14HLOGICAL TAPESI2,5HANDI2,57HHAVE 1ED T OKTIAND KMULT RESPECTFULLY. THESE/1H,35X,434LO 2NITS ARE ON THE SAME CHANNEL.) 1650FORMAT (1H0,25X,14HLOGICAL TAPESI2,5HANDI2,55HHAV 1ED TOKTIAND KT2 RESPECTFULLY. THESE/1H,35X,43HLOG 2TS ADE ON THE SAME CHANNEL.)	GICAL TAPFU E BEEN ASSIGN
 155 ISING = 4 WRITE OUTPUT TAPE 6, 180 RETURN 1600FORMAT (1H0,25X,14HLOGICAL TAPE SI2,5HANDI2,57H HAVE 1FD T OKTIAND KMULT RFSPECTFULLY. THESE/1H,35X,424LO 2NITS ARE ON THE SAME CHANNEL.) 1650FORMAT (1H0,25X,14HLOGICAL TAPES I2,5HANDI2,55H HAV 1ED TOKTIAND KT2 RESPECTFULLY. THESE/1H,35X,43HLOG 	GICAL TAPFU E BEEN ASSIGN
WRITE OUTPUT TAPE 6, 180 RETURN 1600FORMAT (1H0,25X,14HLOGICAL TAPESI2,5HANDI2,57H HAVE 1FD T OKTIAND KMULT RFSPECTFULLY. THESE/1H,35X,434LO 2NITS ARE ON THE SAME CHANNEL.) 1650FORMAT (1H0,25X,14HLOGICAL TAPESI2,5HANDI2,55HHAV 1ED TOKTIAND KT2 RESPECTFULLY. THESE/1H ,35X,43HLOG	GICAL TAPFU E BEEN ASSIGN
 1600FORMAT (1H0,25X,14HLOGICALTAPESI2,5HANDI2,57HHAVE 1EDT OKTIAND KMULT RESPECTFULLY. THESE/1H,35X,434LO 2NITS ARE ON THE SAME CHANNEL.) 1650FORMAT (1H0,25X,14HLOGICAL TAPESI2,5HANDI2,55HHAV 1EDTOKTIAND KT2 RESPECTFULLY. THESE/1H,35X,43HLOG 	GICAL TAPFU E BEEN ASSIGN
1ED T O KTI AND KMULT RESPECTFULLY. THESE/1H,35X,434LO 2NITS ARE ON THE SAME CHANNEL.) 1650FORMAT (1H0,25X,14HLOGICAL TAPES 12,5H AND 12,55H HAV 1ED TO KTI AND KT2 RESPECTFULLY THESE/1H ,35X,43HLOG	GICAL TAPFU E BEEN ASSIGN
2NITS ARE ON THE SAME CHANNEL.) 1650FORMAT (1H0,25X,14HLOGICAL TAPES 12,5H AND 12,55H HAV 1ED TO KT1 AND KT2 RESPECTFULLY THESE/1H ,35X,43HLOG	E BEEN ASSIGN
1650FORMAT (1H0,25X,14HLOGICAL TÁPES I2,5HANDI2,55HHAV 1ED TOKTI AND KT2 RESPECTFULLY THESE/1H ,35X,43HLOG	
	ICALTAPEUNI
2TS ARE ON THE SAME CHANNEL.) 1700FORMAT(1H0,25X,14HLOGICAL TAPESI2,5HANDI2,55HHAVE	BEEN ASSICN
1ED TO KT1 AND KT3 RESPECTFULLY. THESE/1H+35X+43HLOGI	
2TS ARE ON THE SAME CHANNEL.)	
1750FORMAT (1H0,25X,14HLOGICAL TAPES I2,5H AND I2,59H HAVE	
<pre>1ED T O KCOEF AND KCOPY RESPECTFULLY. THESE/1H +?5X+431 2 UNITS ARE ON THE SAME CHANNEL.)</pre>	HLOGICALIAPE
1800FORMAT(1H0,25X,79HTHISPROGRAM REQUIRES THAT TAPEK	T13E ON A CHA
1NNEL DIFFERENTFROMTHATUSEDBY/1H,35X,68HKMULT,Y	
2LSO TAPES KCOEF AND KCOPY MUST BEON DIFFERENT/1H,35	X,9HCHANNELS.
3) 200 REWIND NCOEF	
REWIND NT2	
REWIND NT3	
C THE FOLLOWING STATEMENTS ARE NECE : SARY TO MAKE TH C COMPILER HAPPY.	E
IQUIT = 4	
220 ASSIGN 6000 TO NRET	
GO TO NRET, (6000,6200,6400,6600,6800,7000,7	
1 7600,7800,8000,8200,8400,8600,8800 725 ASSIGN 6200 TO N R E T)
GO TO NRET, (6000,5200,6400,6600,6800,7000,7	200,7400,
1 7609,7800,8000,8200,8400,8600,8800)
330 ASSIGN 6400 TO NRET GO TO NRET, (6000,6200,6400,6600,6800,7000,7	200 . 7400 .
1 7600,7800,8000,8200,8400,8600,8800	
ASSIGN 6600 TO NRET	_
GO TO NRET, (600),6200,6400,6600,6800,7000,7 1 7600,7800,8000,8200,8400,8600,8800	
240 ASSIGN 6800 TO NRET	,
GOT ONRET, (60)0,62.(,6400,6600,6800,7000,7	
1 7600,7800,8000,8200,8400,8600,8800 245 ASSIGN 7 0 0 0 TONRET)
245 ASSIGN 7 0 0 0 TONRET GO TONRET, (6000,6200,6400,6600,6800,7000,7	200•7400•
. 1 7600,7800,8000,8200,8400,8600,880 0	
250 ASSIGN 7200 TO NRET	
GO TO NRET, (6000,6200,6400,6600,6800,7000,77 1 7600,7800,8000,8200,8400,8600,8800	
255 ASSIGN 7400 TO NRET	,
GO TO NRET, (6000,6200,6400,6600,6800,7000,7	
1 7600,7800,8000,8200,8400,8600,8800 260 ASSIGN 7600 TO NRET)
GO TO NRET, (6000,6200,6400,6600,6800,7000,7	200.7400.
1 7600,7800,8000,8200,8400,8600,8800	
265 ASSIGN 7800 TO NRET	200.7/00
GO TO NRET, (6000,6200,6400,6600,6800,7000,77 1 7600,7800,8000,8200,8400,8600,8800	
270 ASSIGN 3300 TO NRET	
GO TO NRET, (6000,6200,6400,6600,6800,7000,7.	
1 7600,7800,8000,8200,3400,8600,8800 275 ASSIGN 820 0 TO NRET	J
GOTO NRET, (6000,6200,6400,6600,6800,7000,7	200,7400,
1 7600,7800,8000,8200,8400,8600,8800)

.

9

,

	280	ASSIGN 8400 TO NRET
	1	GOTONRET, (6000,6200,6400,6600,6800,7000,7200,7400, 7600,7800,8000,8200,8400,8600,8800)
	785	ASSIGN 8600 TO NRET Go to NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
	290 ¹	7600,7800,8000,8200,8400,8600,8800) ASSIGN 8800 TO NRET GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
	1	7600,7800,8000,8200,8400,8600,8800)
С	295	CONTINUE THE COMPUTATION AND RZDUCTION CAN NOW BEGIN .
		NA = 1 NB = 2
		NC = 3 ND = 4
		$\begin{array}{rcl} DFT1 &=& 1 & . \\ D \ E \ T \ 2 &=& 2 \bullet 0 \end{array}$
		NB2 = 0 $DMAX = 0 . 0$
		DMIN=I.C WRITE TAPENT3, (RHS1(K),RHS2(K),K = 1,N,1)
c c c		READINANDCOPYONTAPENCOPYFOUFCOLUM NS. IF FEWER THAN FOUR COLUMNS REMAIN, READ IN AND COPY THE REMAINING COLUMNS.
Ċ	400	ASSIGN 6000 TO NRET CALLWSETA(NCOPY,N,NRET,IQUIT)
		NWRITE = N
	420	IF (NA - N) 420,420,10000 READ TAPE NCOEF, (A1(K),A2(K),K=1,N,1)
		NT EST = 1 CALL WRITEA(NWRITE,A1,A2)
	440	IF (NB – N) 440,440,500 READ TAPE NCOEF, (B1(K),B2(K),K≖1,N,1)
		CALL WCHKA NTEST = 2
		CALLWRITEA(NWRITE,B1,B2) IF (NC -N) 460,460,500
	460	READ TAPE NCOFF, (C1(K),C2(K),K=1,N,1)
		CALL WCHKA NTEST = 3
		CALLWRITEA(NWRITE,C1,C2) IF (ND -N) 480,480,500
	480	R E A D tape N C O E F , (D1(K),D2(K),K ← 1,N,1) Call WCHKA
		NTEST = 4 CALL WRITEA(NWRITE,D1,D2)
	500	CALL WCHKA IF (NA - 1) 10000,2000,600
C C		BEGIN REDUCTION OF COLUMNS USING MULTIPLIERS STORED ON TAPE.
U	600	ASSIGN 6200 TO NRET
		CALL RSETA(NMULT+N+NKET+IQUIT) CALLWSETA(NMULT+N+NRET+IQUIT)
		ASSIGN 6400 TO NRET CALL RSTB(NT1,N,NRET,IQUIT)
		CALLWSETB(NT2,N,NRET,IQUIT) NREAD = N - 1
		MI = 4*((NA - 4)/8) + 4 $M2 = 4*(NA/8) + 5$
		MLAST = NA - 1
		CALL READA(NREAD,AM1,AM2) CALL RCHKA 12
		13

		NREAD = NREAD - 1
		CALL READA (NREAD , BM1 , BM2)
c		IMULT = 1 REPUCTIONUS ING MULTIPLIERS IN AM1 AND AM2 •
	700	IMAX = IORDER(IMULT)
		CALL REDUCE(N, IMULT, IMAX, A1, A2, AM1, AM2) IF (NB - N) 720, 720, 800
	720	CALL REDUCE(N.IMULT.IMAX.B1.B2.AM1.AM2)
	740	IF (NC - N) 740,740,800 CALL REDUCE(N,IMULT,IMAX,C1,C2,AM1,AM2)
	740	IF (ND - N) 760,760,800
_	760	CALLREDUCE(N, IMULT, IMAX, D1, D2, AM1, AM2)
C C		INITIATE TAPE READING AND WRITING OF MULTIPLIER AND REDUCTION TAPES
•	800	IMULT = IYULT + 1
		NWRITE = NREAD NREAD = NREAD - 1
		IF (IMULT - M1) 820,840,880
	820	CALL RCHKA
		CALL READA(NREAD,AM1,AM2) GO TO 1200
	840	IF (IMULT - MLASTI 845,860,10000
	845	CALL RCHKA CALL READB(NREAD, AM1, AM2)
		GO TO 1200
	860	CALLRCHKA IF (ND - N) 870,1200,1200
	870	REWIND NYULT
		GO TO 1200 IF (IMULT - MLAST) 885,980,1040
	880 885	CALL RCHKB
		IF (IMULT - M2) 900;940;970
	900 905	IF (IMULT - MI - 1) 10000,905,920 CALLWRITEA(NWRITE,BM1,BM2)
	,	CALL READB (NREFU, AM1, AM2)
	920	GO TO 1200 Call Wchka
	720	CALL WRITEA(NWRITE,BM1,BM2)
		CALL READB (NREAD + AM1 + AM2)
	940	GO TO 1200 IF (M1 + 1 - M2) 945,950,10000
	945	CALL WCHKA
	950 955	IF (ND - N) 955,960,960 REW INDNMULT
	960	CALL WRITEB(NWRITE, BM1, BM2)
		CALL RFADB(NREAD,AM1,AM2) GO TO 1200
	970	CALL WCHKB
		CALL WRITEB(NWRITE,BM1,BM2) CALL READB(NREAD,AM1,AM2)
		GO TO 1200
	980	CALL RCHKB
		REWIND NT1 F(MLAST - 8) 10000,1000,1020
1	1000	CALL WCHKA
		CALLWRITEA(NWRITE,BM1,BM2) GO TO 1200
1	1020	CALL WCHKB
		CALL WRITEB(NWRITE, BM1, BM2)
-	1040	GO TO 1200 IF (MLAST-4) 10000,2000,1050
1	1050	IF (MLAST-8) 10000,1060,1100
1	1060	CALL WCHKA

•

	х.	45

	IF (ND - N) 1080,2000,2000
1080	REWIND NMULT
	GO TO 2000
1100	CALL WCHKB G O T O 2 0 0 0
С	REDUCTION USING MULTIPLIERS- IN BM1 AND BM2.
1200	IMAX = IORDER(IMULT)
1200	CALL REDUCE(N, IMULT, IMAX, A1, A2, BM1, BM2)
	IF (NB - N) $1220, 1220, 1400$
1720	CALL REDUCE(N, IMULT, IMAX, B1, B2, BM1, BM2)
	IF (NC - N) 1240,1240,1400
1240	CALL REDUCE(N, IMULT, IMAX, C1, C2, BM1, BM2)
	IF (ND - N) 1260,1260,1400
1260	CALLREDUCE(N, IMULT, IMAX, D1, D2, BM1, BM2)
С	INITIATE TAPE READING AND WRITING OF MULTIPLIER ANC
С	REDUCTION TAPES.
1400	IMULT = IMULT + 1
	NWRITE = NREAD
	NREAD = NREAD = 1
	IF (IMULT - M1) 1420,1440,1480
1420	CALL RCHKA
	CALLREADA(NREAD, BM1, BM2)
1444	GO TO 700 ↓ F (IMULT - MLAST) 1445,1460,10000
1445	CALL RCHKA
1445	CALL READB (NREAD, BM1, BM2)
	GO TO 700
1460	CA! L RCHKA
	IF (ND - NJ) 1470,700,700
1470	REWIND NMULT
	GO TO 700
1480	IF (IMULT - MLAST) 1485,1580,1640
1485	CALL RCHKB IF (IMULT - M2) 1500,1540,1570
1500	IF (IMULT - MI - 1) 10000,1505,1520
1505	CALLWRITEA(NWRITE,AM1,AM2)
1000	CALL READB (NREAD, BM1, BM2)
	GO TO 700
1520	CALL WCHKA
	CALL WRITEA(NWRITE,AM1,AM2)
	CALL READB(NREAD, BM1, BM2)
	GO TO 700
1540	IF (M1 + 1 - M2) 1545,1550,10000
1545	CALL WCHKA
1550	IF (ND - N) 1555,1560,1560 REWIND NMULT
1555 1560	CALL WRITEB(NWF ITE AM1 AM2)
1500	CALL READB(NREAD, BM1, BM2)
	GO TC 700
1570	CALL WCHKB
	CALL WRITEB (NWRITE, AM1, AM2)
	CALL READB (NREAD, BM1, BM2)
	GO TO 700
1580	CALL RCHKB
	RE VIND NT1
	I F (MLAST - 8) 10000,1607,1620
1600	CALL WCHKA
	CALLWRITEA(NWRITE,AM1,AM2)
1400	GO TO 700 CALL WCHKB
1620	CALL WCHKB CALLWRITEB(NWRITE,AM1,AM2)
	GO TO 700
1640	IF (MLAST - 4) 100(0,2000,1650
1040	11 (MERS1 47 1000071070

1650 I F (MLAST - 8 1 10000,1660,1700 1660 CALL WCHKA (ND - N) 1680,2000,2000 IF 1680 REWIND NMULT GO TO 2000 1700 CALL WCHKB REDUCTIONOFCOLUMINS AFTER PROCESSING WITH MULTIPLIERS. С IF (ND - N) 2013,2005,2005 2000 **REWIND NT2** 2005 2010 ASSIGN 7000 TO NRET CALL WSETC(NT3, MRET, ICUIT) PMAX = 0.0IMAX = NA $D O 2 0 4 0 K = NA \cdot N \cdot 1$ COMP = ABSF(A1(K)) + ABSF(A2(K))I F (PMAX - COMP) 2020,2040,2040 2020 PMAX = COMPIMAX = K2040 CONTINUE IORDER(NA) = IMAXNTEST = NA| F(EPSA - PMAX) 2060,2060,4000 2060 I F (PMAX - EPSB) 20709207094000 2070 CALL DETER(A1(IMAX),A2(IMAX),DET1,DET2,NB2) DMAX = MAX1F(DMAX, PMAX) DMIN = MIN1F(DMIN, PMAX) NWRITE = NA (NA - N)2080,2400,10000 IF 2080 CALL MDIVID(N, NA, IMAX, A1, A2) CALLWRITEC(NWRITE, A1, A2) CALL REDUCE (N, NA, IMAX, RHS1, RHS2, A1, A2) CALL REDUCE(N,NA,IMAX,B1,B2,A1,A2) CALL WCHKC PMAX = 0.0IMAX = NB $DO 2140 K = NB_{9}N_{9}1$ COMP = ABSF(B1(K)) + ABSF(B2(K))F (PMAX - COMP) 2120,2140,2140 1 2120 PMAX = COMPIMAX = K2140 CONTINUE IORDER(NB) = IMAXNTEST = NB F (PMAX - EPSB) 2170-2170 I F (EPSA - PMAX) 2160 1 CALL DETER(B1(IMAX),B2(IMAX),DET1,DET2,NB2) 2170 DMAX = MAX1F(DMAX, PMAX) DMIN = MIN1F(DMIN, PMAX) NWRITE = NB (NB - N)2130,2420,10000 IF 2180 CALL MDIVID(N,NB,IMAX,B1,B2) CALL WRITEC(NWRITE, B1, B2) CALL REDUCE(N,NB, IMAX, RHS1, RHS2, B1, B2) CALL REDUCE (N, NA, IORDER (NA), C1, C2, A1, A2) CALL REDUCE(N,NB,IORDER(NB),C1,C2,B1,B2) CALL WCHKC PMAX = 0.0IMAX = NC $P O 2240 K = NC \cdot N \cdot 1$ COMP = ABSF(C1(K)) + ABSF(C2(K))I F (PMAX - COMF) 2220,2240,2240 2220 PMAX = COMPIMAX = K

2240	
	IORDER(NC) = IMAX
	NTEST = NC
2260	IF (FPSA - PMAX) 2260,2260,4000 I F (PMAX - FPSB) 2270,2270,4000
2270	CALL DETER(C1(IMAX),C2(IMAX),DET1,DET2,NB2)
2270	DMAX = MAX1F(DMAX,PMAX)
	DMAX = MIN1F(DMAX)PMAX)
	NWRITE = NC
	IF (NC - N) = 2280,2440,10000
2280	$CALLMDIVID(N \circ NC \circ IMAX \circ C1 \circ C2)$
2200	CALL WRITEC(NWRITE,C),C2)
	CALL REDUCE (N NC I MAX RHS1 RHS2 C1 C2)
	CALL REDUCE (NoNA) IORDER (NA) D1, D2, A1, A2)
	CALL REDUCE (N, NB, IORDER (NB), D1, D2, B1, B2)
	C A L L REDUCE (N, NC, IORDER (NC), D1, D2, C1, C2)
	CALL WCHKC
	PMAX = 0.0
	IMAX = ND
	D O 2 3 4 0 K = ND . 1
	COMP = ABSF(D1(K)) + /BSF(D2(K))
	I F (PMAX - COMP) 2320,2340,2340
2320	PMAX ≠ COMP
	IMAX = K
2340	CONTINUE
	IORDER(ND) = IMAX
	NTEST ≈ ND
	I F (FPSA - PMAX) 2360,2360,4000
2360	I F (PMAX - EPSB) 2370,2370,4000
2370	CALL DETER(D1(IMAX),D2(IMAX),DET1,DET2,NB2)
	DMAX = MAX1F(DMAX, PMAX)
	DMIN = MINIF(DMIN, PMAX)
	NWRITE = ND
	IF (ND - N) 2380,2460,10000
2380	CALL MDIVID(N,ND,IMAX,D1,D2)
	CALL WRITEC(NWRITE, D1, D2)
	CALLREDUCE(N,ND,IMAX,RHS1,RHS2,D1,D2)
	CALL WCHKC
2400	CALL WFITEC(NWRITE,A1,A2) CALL WCHKC
2420	GO TO 2700 CALLWRITEC(NWRITE+B1+B2)
2420	CALL WCHKC
	GO TO 2700
2440	CALL WRITEC(NWRITE,C1,C2)
2440	CALL WCHKC
	GO TO 2700
2460	CALL WRITEC(NWRITE, D1, D2)
2100	CALL WCHKC
	C O TO 2700
C	WRITENEW MULTIPLIERSON TAPE.
2500	IF (NA - 1) 10000,2505,2520
2505	ASSIGN 6600 TO NRET
	CALL WSETA (NMULT, N, NRET, IQUIT)
	GO TO 2540
2520	ASSIGN 6800 TO NRET
	CALL WSETA(NT2,N,NRET,IQUIT)
2540	NWRITE = N - N A
	CALLWRITEA(NWRITE,A1,A2)
	CALL WCHKA
	NVRITE = N - M B
	CALLWRITEA(NWRITE,B1,B2)

•

CALL WCHKA NWRITE = N - NC CALL WRITEA(NWRITE, C1, C2) CALL WCHKA NWRITE = N - N DCALLWRITEA(NWRITE, D1, D2) CALL WCHKA CALLRSTART IF RESTART IS DESIRED. IF (SENSE SWITCH 6) 2610,2670 CALL RSTART (NRUN) I F (NRUN) 10000,2620,2670 REWIND NCOEF **RE JIND NCOPY** REWIND NMULT ASSIGN' 8600 TO NRET CALL RSETA (NCOPY, N, NRET, IQUIT) NREAD = NDO 2640 J = 1,ND,1 CALL READA (NREAD, A], A2) READ TAPENCOEF, (B1(K), B2(K), K=1, N, 1)CALL RCHKA READ TAPE NT3, (A1(K),A2(K),K = 1,N,1)ASSIGN 8800 TO NRET CALL RSFTC(NT3+NRET+IQUIT) NREAD = 0D O 2 6 6 0 J = 1, ND, 1 NREAD = NREAD + 1CALL READC(NREAD, A1, A2) CALL RCHYC **REWIND NT1 REWIND NT2** REWIND NMULT NTEMP = NT1NT1 = NT2NT2 = NTEMPANT

	NIZ = NIEMP
	N.C. = NA + 4
	NB = NA + 1
	NC = NB + 1
	ND = NC + 1
	GO TO 400
С	THE REDUCTION IS COMPLETE. PRINT THE VALUE OF THE DETERMINA
С	AND THE MAXIMUM AND MINIYUM PIVOTAL ELEMENTS.
2700	$T \in M P = 1 \bullet 0$
	DO 2720 $K = 1 \cdot N \cdot 1$
	I = F(IORDER(K) - K) = 2715, 2720, 2715
2715	$T \in MP = -T \in MP$
2720	CONTINUE
	FNB2 = FLOATF(NB2)
	KE1 = FNB2/3.3219281
	KE2 = KE1
	EXPON = MODF(FNB2,3.3219281)
	$AMPL = TEMP*(2 \cdot 0**EXPON)$
	DET1 = AMPL*DET1
	DET2 = AMPL*DET2
	I F (DET1) 2745,2740,2745
2740	KE1 = 0
	GO TO 2755
2745	I F (ABSF (DET1) - 1.01 27469275592750
2746	$DET1 = 10 \bullet 0 * DET1$
	KE1 = KE1 - 1
	GO TO 2745
2750	F(10.0, - ABSF(DET1)) 2751,2751,2755

С

2600

2610

2620

2640

2660

2670

..

DET1 = DET1/10.02751 KE1 = KE1 + 1G O TO 2750 I F (DET2) 2760,2756,2760 2755 2756 KE2 = 0 G 0 TO 2770 $I = F(ABSF(DET2) - 1 \cdot 0)$ 2761,2770,2765 2760 DET2 = 10. J*DET2 2761 KE2 = KE2 - 1 GO TO 2760 2765 $I = F(10 \cdot 7 - ABSF(DET2))$ 2766,2770,2770 DET2 = DET2/10.02766 KE2 = KE2 + 1CO TO 2765 WRITE OUTPUT TAPE 6, 2775, 2770 DET1,KE1,DET2,KE2,DMAX,DMIN 27750FORMAT (1H0,25X,70HTHE GAUSSIAN REDUCTION IS COMPLETED. THE DETER 1MINANT OF THE MATRIX IS/1H,45X,18HREALPART = F9.5,1HE,I4/ 21H,45X,18HIMAGINARY PART = F9.5,1HE,14/1H0,25X,62HTHE MAGNITUDE 30F THE LARGEST PIVOTAL ELEMENT IS APPROXIMATELY 1PE9.2,1H./1H0, 425X,63HTHE MAGNITUDE OF THE SMALLEST PIVOTAL ELEMENT IS APPROXIMAT 5ELY 1PE9 • 2 • 1H•) C COPY ALL MULTIPLIERS ON TO THE MULTIPLIER TAPE. 2800 ASSIGN 7200 TO NRET CALL WSETA (NMULT, N, NRET, IQUIT) IF (N-121 2860,2860,2820 ASSIGN 7400 TO NRET 2820 CALL RSETB(NT2,N,NRET, IQUIT) IMULT = M2NWDS = N - IMULT 2840 CALLREADB(NWDS, AM1, AM2) CALL RCHKB CALL WRITEA (NWDS, AM1, AM2) CALL WCHKA IMULT = IMULT + 1I F (IMULT - NA) 2840,2860,2860 NWRITE = N ~ NA I F (NWRITE) 10000,2940,2880 2860 CALL WRITEA(NWRITE, A1, A2) 2880 CALL WCHKA NWRITE = N - NBIF (NWRITE) 10000,2940,2900 2900 CALLWRITEA(NWRITE, B1, B2) CALL WCHKA NWRITE = N - NCI F (NWRITE) 10000,2940,2970 CALLWRITEA(NWRITE,C],C2) 2920 CALL WCHKA 2940 **REWIND NT1** REWIND NT2 REWIND NMULT **REWIND NCOEF REWIND NCOPY** NT1 = NSAVE C BACKSOLVE THE REDUCED SYSTEM OF EQUATIONS. ALSO WRITE THE C REDUCED COLUMNS ON TAPE NT1 IN THE REQUIRED ORDER. 3000 CALL BSET(NT3) ASSIGN 7600 TO NRET CALL RSETC(NT3, NRET, IQUIT) ASSIGN 7800 TO NRET CALL WSETC(NT1, NRET, IQUIT) NREAD = NCALL BSPACE CALLREADC(NREAD+AM1+AM2)

	CALL RCHKC
3040	CALL BSPACE NWDS = NREAD
	N R E A D ≠ N R E A D ← 1 C A L L WRITEC (NWDS • AM1 • AM2)
	I F (NREAD) 10000,3080,3(60
3060	CALL BSPACE CALL READC(NREAD,BM1,BM2)
3080	CALL READCORREAD, BM1, BM2, ANS1, ANS2, CALL BSOLVE (NWDS, RHS1, RHS2, AM1, AM2, ANS1, ANS2)
	CALL WCHKC F (NREAD) 10000,3180,3100
3100	CALL RCHKC
	CALL BSPACE NWDS = NREAD
	N R E A D = N R E A D - 1
	CALLWRITEC(NWDS,BM1,BM2) IF (NREAD) 10000,3140,3120
3120	CALL BSPACE
3140	CALL READC(NREAD,AM1,AM2) CALL BSOLVE(NWD3,RHS1,RHS2,BM1,BM2,ANS1,ANS2)
3140	CALL BOOLVEINWDSJRHSIJKHSZJUMIJBMZJANSIJANSZJ
2140	IF (NREAD) 10000~3180~3160
3160	CALL RCHKC Call BSPACE
2100	GO TO 3040
3180	REWIND NT1 REWIND NT3
	EHOLD1 = 1 . 0 R E A D T A P E NT3 (C1(K) (C2(K) (K = 1) N (1)
	REWIND NT3
3190	I F (NITER) 3190,3190,3200 RETURN
C 2200	COMPUTE RFSIDUES USING DOUBLE PRECISION.
3300	ITER = ITER + 1 ASSIGN 8000 TO NRET
	CALL RS TA(NCOPY, N, NRET, IQUIT)
	CALL DPSET(N,RHS1,RHS2,D1,D2) DO 3220 K=1,N,1
	RHS1(K) = C1(K)
	RHS2(K) = C2(K) D1(K) = 0.0
3220	D2(K) = 0.0
	NREAD = N CALL READA (NREAD • AM1 • AM2)
2040	ICOL = 1
3240 3250	'IF (ICOL - N) 3260,3250,3320 CALL RCHKA
	GO TO 3370
'3260	CALL RCHKA CALL READA(NREAD,BM1,BM2)
3270	CALL DPRES(AM1, AM2, ANS1(ICOL), ANS2(ICOL))
	ICOL = ICOL + 1 IF (ICOL - N) 3290,3280,3320
3280	CALL RCHKA
3290	GO TO 3300 Call RCHKA
2200	CALLREADA(NREAD)AM1)AM2)
3300	CALL DPRES(BM1,3M2,ARE1(ICOL),ANS2(ICOL)) ICOL = ICOL + 1
3320	GC TO 3240
3320 C	REWIND NCOPY REDUCE THE NEWRIGHT HAND SIDE.

3400	ASSIGN 8200 TO NRET CALLRSETA(NMULT,N,NRET,IQUIT) NREAD = N - 1
	CALL READA (NREAD, AM1, AM2)
3420	IMULT = N - NREAD
	NREAC = NREAD - 1
	IF (NREAD) 3520,3440,3450
3440	CALL RCHKA
	GO T O 3460
3450	CALL RC 1KA
	CALL READA(NREAD, BM1, BM2)
3460	CALL REDUCE(N,IMULT,IORDER(IMULT),RHS1,RHS2,AM1,AM2)
	IMULT = N - NREAD
	NREAD = NREAD - 1
2400	I F (NREAD) 3520,3480,3490
3480	CALL RCHKA
2400	GO TO 3500
3490	CALL RCHKA CALL READA (NREAD • AM1 • AM2)
3500	CALL REDUCE(N, IMULT, IORDER (IMULT), RHS1, RHS2, BM1, BM2)
3300	GO TO 3420
3520	REWIND NMULT
¢	BACK-SOLVE AND CORRECT SOLUTION.
3600	ASSIGN 8400 TO NRET
2000	CALL RSETC(NT1, NRET, IQUIT)
	NREPD = N
	CALL READC (NREAD, AM1, AM2)
3620	NWDS = NREAD
	NREAD = NREAD - 1
	I F (NREAD) 3720,3640,3650
3640	CALL RCHKC
	GO TO 3660
3650	CALL RCHKC
	CALLREADC(NREAD, BM1, BM2)
3660	CALLBSOLVE(NWDS,RHS1,RHS2,AM1,AM2,A1,A2)
	NREAD = NREAD — 1 IF (NREAD) 3720,3680,3690
3680	CALL RCHKC
3000	GO TO 3700
3690	CALL RCHKC
5070	CALL READC (NREAD, AM1, AM2)
3700	CALL BSOLVE (NWDS, RHS1, RHS2, BM1, BM2, A1, A2)
	GO TO 3620
3720	REWIND NT1
	DO 3740 $K = 1, N, 1$
	B1(K) = ANS1(K)
	B2(K) = ANS2(K)
	ANS1(K) = ANS1(K) + A1(K)
3740	ANS2(K) = ANS2(K) + A2(K)
2562	IF (NITER) 3760,3760,3780
3760	
3780	I F (ITER) 3760,3200,3800
3800	RMAX = 0.0
	EMAX = 0.0 Do 3840 K= 1
	$RMAX = MAX1F(RMAX)A\{SF(ANS1(K)),ABSF(ANS2(K))\}$
38400	EMAX = MAX1F(EMAX)ABSF(ANS1(K))ABSF(ANS2(K)))
1	ABSF(ANS2(K) - B2(K)))
-	RERR = EMAX/RMAX
	IF (RERR-EPS) 3860,3860,3880
3860	WRITE OUTPUT TAPE 6, 3940, ITER, RERR, EPS
	RETURN

•

I F (FHOLD1 - RERR) 3890,3890,3900 3880 3890 WRITE OUTPUT TAPE 6, 3945, ITER, RERR, EHOLD1, EPS RETURN I F (NITER - ITER) 3910,3910,3920 3900 WRITEOUTPUTTAPE6,3950, ITER,RERR,EPS,EHOLDI 3910 RETURN 3920 EHOLD1 = RERRGO TO 3200 39400FORMAT (1H0,25X,48HTHF ACCURACY DESIRED HAS BEEN ESTABLISHED AFTER 1 I2,26H ITERATIONS. THE RELATIVE/1H,35X,9HERROR IS 1PE9.2, 234H. THE RFLATIVE ERROR DESIRED WAS 1PE9-2-1H-1 39450FORMAT (1H0+25X+44HTHE ITERATIVE PROCEDURE IS NOT CONVERGING. 12, 131H ITERATIONS HAVE BEEN COMPLETED/1H ,35X,38HBUT THE RELATIVE ERR 20R INCREASED FROM 1PE9.2,4H TO 1PE9.2,7H DURING/1H,35X,52HTHE LAS 3T ITERATION. THE RELATIVE ERROR DESIRED WAS 1PE9.2,1H.) 39500FORMAT (1H0+25X+4HTHEI2+65H ITERATIONS ALLOWED HAVE PEEN COMPLETE 1D BUT THE RELATIVE ERROR IS/1H ,35X,6HSTILL1PE9.2,24H WHILE THAT 2DESIRED WAS 1PE9.2,15H. THE RELATIVE/1H,35X,37HERROR FOR THE PRE 3VIOUS ITERATION WAS 1PE9.2,1H.) 4000 WRITE OUTPUT TAPE 6, 4040, NTEST, PMAX, EPSN, EPSB ISING = 1I F (EPS3 - PMAX) 4020,4020,4030 4020 ISING = 24030 RETURN 40400FORMAT(1H1,25X,68HTHE BOUNDS FOR PIVOTAL ELEMENTS WERE EXCEEDED I 1N DETERMINING PIVOTAL/1H, 35X, 8HELEMENTI3, 43H. THE MAGNITUDE OF 2THISPIVOTAL FLEMENT IS/1H, 35X, 14HAPPROXIMATELY 1PE9.2, 33H. THIS 3 PROGRAM REQUIRES THAT ALL/1H, 35X, 29H PIVOTAL ELEMENTS LIE BETWEEN 4 1PE9.2,5H A N D 1PE9.2,1H.) С PROCEDURFS FOR CORRECTING TAPE ERRORS. IQUIT ASSUMES THE VALUES 1,2, OR 3 ACCORDING TO THE DIFFICULTY ENCOUNTERED. С C IQUITE 1 UNCORRECTABLE WRITING ERROR С IQUIT = 2UNCORRECTABLE READING ERROR IQUIT = 3SHORT TAPE С С WRITING ERROR ON TAPE NCOPY DURING COPYING OF INPUT COLUMNS. 6000 NGO = IQUITMTERR = NCOPYG O T O (9500,10000,9700,225), NGO READING OR WRITING ERROR ON TAPE NMULT DURING REDUCTION. C 6700 NGO = IQUITMTERP = NMULT GO TO (9500,9600,9700,230), NGO **READING** OR WRITING ERROR ON TAPE NT1 OR NT2 DURING REDUCTION. С 6400 NGO = IQUITMTERR # NT1 NTERR ☎ NT2 G O T O (7500,9600,9700,235), NGO WRITING ERROR ON TAPE NMULT DURING MULTIPLIER WRITING. 6600 NGC = IQUITYTERR = NMULTG O T O (9500,10000,9700,240); NGO WRITING ERROR ON TAPE NT2 DURING MULTIPLIER WRITING. C 6800 NGO = IQUITMTERR = NT2G O T O (9500,10000,9700,245), NGO WRITING ERROR ON. TAPE NT3 DURING REDUCEC COLUMN WRITING. C 7000 NGO = IQUITMTERR = NT3GO TO (9500,10000,9700,250), NGO С WRITING ERROR ON TAPE NMULT DURING MULTIPLIER COPYING. 7200 NGO = I J U I TMTERR = NMULT G 0 T 0 (9500,10000,9700,255), NGO

С

C	READING ERROR ON TAPE NT2 DURING NULTIPLIER COPYING.
7400	NGO = IQUIT
7 1 0 0	MTERR = NT2
	G O T O (10000,9600,10000,260),NGO
•	
С	READING ERROR ON TAPE NT3 DURING INITIAL BACKSOLVING.
7600	NGO = IQUIT
	MTERR ≠ NT3
	G O T O (10000,9600,10000,265),NGO
0	
C	WRITING ERROR ON TAPE NT1 DURING INITIAL BACKSOLVING.
7800	N G O = IQUIT
	MTERR = NT1
	G O T O (9500,10000,9700,270),NGO
С	READING FRROR ON TAPE NCOPY DURING ITERATION.
8000	NGO = IQUIT
0000	
	MTERR = NCOPY
	GO TO(10000 ,96 00 ,10 00 C,275), NGO
C	READING ERROR ON TAP" NMUL' DURING RHS REDUCTION.
8300	NGO = IQUIT
0000	MTERR = NMULT
	GO TO(10000,9600,10000,280),NGO
С	READING ERROR ON TAPE NT1 DURING BACKSOLVING.
8400	$N \in C = IQUIT$
	MTERR = NT1
	G O T O (10000,9600,10000,285), NGO
~	READING FRROR ON TAPE NCOPY DURING RESTARTING.
C	
8600	N G O = IQUIT
	MTERR = NCOPY
	GO TO (10000,9600,10000,290), NGO
С	READING ERROR ON TAPE NT3 DURING RESTARTING.
8800	NGO = IQUIT
0000	
	MTERR = NT3
	G O T O (10000,9600,10000,295),NGO
9500	IF (NTERR) 9530,9505,9530
9505	WRITF C JTPUT TAPE 6,9515, MTERR
	PRINT 5515, MTERR
95150	FORMAT(1H0,40HREPEATED REDUNDANCIES IN WRITING LOGICAL,
1	6H TAPE • I 2 • I H •)
	GO TO 9660
9530	WRITE OUTPUT TAPE 6, 9545, MTERR, NTERR
	PRINT 9545, MTERR • NTERR
95450	FORMAT (1H0,40HREPEATED REDUNDANCIES IN WRITING LOGICAL,
1	6HTAPF, I2, 21HAND/OR LOGICAL TAPF, I2, 1H.)
	GO TO 9660
9600	I F (NTERR) 9630,9605,9630
9605	WRITEOUTPUT TAPE 699615, MTERR
	PRINT 9615, MTERR
96150	FORMAT (1HO, 40HREPEATED REDUNDANCIES IN READING LOGICAL,
1	6H TAPE • 12 • 1H •)
	GO TO 9660
9630	WRITF OUTPUT TAPF 6, 9645, MTERR, NTERR
	PRINT 9645, MTERR • NTERR
96450	FORMAT (1H0,40HREPEATED REDUNDANCIES IN READING LOGICAL,
1	6H TAPE, I2, 21H AND/OR LOGICAL TAPE, I2, 1H.)
9660	PRINT 9675
9675	FORMAT (1HO,28HINSPECT TAPE AND TAPF DRIVE.)
	GC T O 9800
9700	IF (NTERR) 9730,9705,9730
9705	WRITFOUTPUT TAPE 6, 9715, MTERR
	PRINT 9715, MTERR
07455	
97150	FORMAT (1H0,40HEND OF TAPF ENCOUNTERED WHILE WRITING ON,
1	14HLOGICAL TAPE • 12 • 1H •)
	GO TO 9760
9730	WRITFOUTPUTTAPE6,9745, MTERR, NTERR

	PRINT 9745, MTERR MTTERR
97450	FORMAT (1H0.40HEND OF TAPE FNCOUNTERED WHILE WRITING ON,
1	14H LOGICAL TAPE , 12, 17H OR LOGICAL TAPE , 12, 1H.)
9760	PRINT 9775
9775	FORMAT (1H0,34HMOUNT A LONGER TAPE ON THIS DRIVE.)
9800	PRINT 9815
9815	FORMAT (1H0,41HPRESSSTART TO RESUME PROCESSING THIS JOB)
	PAUSE
	REWIND NCOEF
	REWIND NMULT
	REWIND NCOPY
	REWIND NT1
	REWIND NT2
	REWIND NT3
	CALL SAVEIT
10000	WRITE OUTPUT TAPE 6, 10020
	REWIND NMULT
	R'EWIND NCOEF
	REWIND NCOPY
	REWIND NT1
	REWIND NT2
	REWIND NT3
	CALL DUMP
100200FORMAT(1H1+123HEITHER A MACHINE ERROR HAS OCCURRED OR THERE IS AN	
1 ERROR IN SUBROUTINE GAUSS OR ITS ASSOCIATED SUBROUTINES. DUMP HA	
25 BEEN / 1H • 29HCALLED TO TERMINATE THIS JOB.)	
END	

1 a t 1 d 2

and the set

```
SUBROUT I NE SAVE I T
                 CALL CHAIN(3,B3)
          FND
      SUBROUTINF RSTART (NRUN)
                NRUN = 1
                RETURN
           END
      SUBROUTINE MDIVI)(N, NA, IMAX, A1, A2)
           THIS SUBROUTINE PERFORMS THE DIVISION NECESSARY IN
С
           COMPUTING A NEW COLUMN OF MULTIPLIERS.
С
           DIMENSION A1(500), A2(500)
                T1 = A1(IMAX)
                T2 = A2( IMAX)
                A1(IMAX) = A1(NA)
                A2(IMAX) = A2(NA)
                A1(NA) = T1
                A2(NA) = T2
                I F (ABSF(T1) - ABSF(T2)) 100,120,120
  100
                      TEMP = T1/T2
               ....
                      R2 = -1 \cdot 0 / (T2 * (1 \cdot 0 + TEMP * * 2))
                      R1 = -TEMP*R2
                      GO TO 140
  120
                      TEMP = T2/T1
                      R1 = 1 \cdot 0/(T1*(1 \cdot 0 + TEMP**2))
                      R2 = -TEMP*R1
                KS ≖ NA + 1
  140
                         K = KS_{9}N_{9}1
                DO
                    160
                      TEMP = Al(K)
                      A1(K) = R1*TEMP - R2*A2(K)
                      A2(K) = R1*A2(K) + R2*TEMP
  160
                RETURN
           END
       SUBROUTINE REDUCE (N, NA, IMAX, A1, A2, AM1, AM2)
           THIS SUBROUTINE PERFORMS THE REDUCTION OF ONE COLUMN WITH
С
           ONE COLUMN OF MULTIPLIERS. THE NECESSARY INTERCHANGE IS
С
C
           PERFORMED.
           DIMENSION A1(500), A2(500), AM1(500), AM2(500)
                 KA = NA
                 K M A X = I MAX
                 T] = A1(KMAX)
                 T2 = A2(KMAX)
                A \mid (KMAX) = A1(KA)
                 A2(KMAX) = A2(KA)
                A1(KA) = T1
                A2(KA) = T 2
                K S ≖ KA + 1
                DO 100
                          K =KS,N,1
                      A1(K) = A1(K) - AM1(K)*T1 + AM2(K)*T2
  100
                      A2(K) = A2(K) - AM1(K)*T2 - AM2(K)*T1
                RETURN
           END
```

```
SUBROUTINE DETER(D1,D2,DET1,DET2,NB2)
C
           THIS SUBROUTINE IS USED IN COMPUTING THE DETERMINANT OF
C
          THE MATRIX.
                T1 = DET1
                T2 = DET2
                DET1 = T1*D1 -
                                    T2*D2
                DET2 = T1*D2 + T2*C1 \sim
               'COMP = MAX1F(ABSF(DET1),ABSF(DET2))
                NADD = LOGF(COMP)/0.69314718
                AYPL = 2 \cdot 0 * * NADD
               DFT1 = DET1 /AMPL
               DET2 = DET2/AMPL
                NB2 = NB2 + NADD
                RETURN
```

```
END
```

~...

SUBROUTINE BSOLVE(K,RHS1,RHS2,COL1,COL2,ANS1,ANS2) С THIS SUBROUTINE IS USED TO OBTAIN THE SOLUTION OF THE REDUCED SYSTEM OF EQUATIONS. С DIMENSION RHS1(500), RHS2(500), COL1(500), COL2(500), 1 ANS1(500), ANS2(500) N = K T1 = COL1(N)١ $T_2 = COL2(N)$ I F(ABSF(T1) - ABSF(T2)) 10,20,20 10 TEMP = T1/T2R2 = -1.0/(T2*(1.0 + TEMP**2))R1 = -TEMP*R2GO TO 30 TEMP = T2/T12 0 $R1 = 1 \cdot 0 / (T1 * (1 \cdot 0 + TFMP * * 2))$ R2 = -TEMP*R1T1 = R1 * RHS1(N) - R2 * FHS2(N)30 T2 = R1 * RHS2(N) + R2 * RHS1(N)ANS1(N) = T1ANS2(N) = T 2KS = N - 1 I F(KS) 50,50,60 50 RETURN 60 DO 80 K = 1, KS, 1RHS1(K) = RHS1(K) - T1*COL1(K) + T2*COL2(K)RHS2(K) = RHS2(K) - T1*CCL2(K) - T2*COL1(K)80 RETURN END

		DESCISION SUDDOUTINE	
*		PRECISION SUPROUTINE	
		DPRES 100	
	COUNT ENTRY	DPSET	(NSYS,REMS,IMMS,RELS,IMLS)
	ENTRY	DPRES	(RECOL, IMCOL, ANS1, ANS2)
DPSET	CLA*	1,4	
DEGLI	STD	NSYS	
	CCA	2,4	
	ADD	=1	
	STA	REMSI	
	STA	REMS2	
	STA	REMS3	
	STA	REMS4	
	CLA	3,4	
	ADD	= 1	
	STA	IMMS1	
	STA	IMMS2	
	STA	IMMS3	
	STA	IMMS4	
		4•4 =1	
	ADD STA	RELSI	
	STA	RELS2	
	STA	RELS3	
	STA	RELS4	
	CLA	594	
	ADD	= 1	
	STA	IMLS1	
	STA	IMLS2	
	STA	IMLS3	
	STA	I MLS4	
	TRA	6•4	
DPRES	SXA	X 4 • 4	
	CLA	1•4	
	ADD STA	=1 RECOL1	
	STA	RECOL2	
	CLA	2,4	
	ADD	=1	
	STA	IMCOL1	
	STA	IMCOL 2	
	CLA*	?•4	
	STO	ANS1	
	CLA*	4,4	
	STO	ANS2 =0C00001C00000,4	
RFPFAT		ANS1	
RECOL1	LDQ EMD	**•4	
RECOLI	STQ	PROD?	
	CHS	TROD:	
REMS1	FAD	** •4	
	STO	TEMP	
	XCA		
RELS1	UFA	**•4	
	UFS	PROD2	
	FAD	TEMP	
REMS2	STO	**•4	
RELS2	STQ	** • 4	
140013		ANS2	
IMCOL1		**94	
REMS3	STQ FAD	PROD2 ** 94	
KEIVI33	STO	TEMP	
	310		07

	XCA	
RELS3	UFA	**•4
	UFA	PROD?
	FAD	TEMP
REMS4	I STO	** • 4
RELS4	STQ	**•4
	LDQ	ANSI
IMCOL2	FΜΡ	**•4
	STQ	PROD?
	CHS	
IMMS1	FAD	** • 4
	STO	TEMP
	XCA	
IMLS1U		**•4
	UFS	PROD2
	FAD	TEMP
IMMS2		**•4
IMLS2	STO	**,4
	LDQ	ANSZ
RECOL2		**•4
	STQ	PROD2
	CHS	
IMMS3'	STO	**•4 * END
	XCA	TEMP
IMLS3U	FA	** • 4
IMC330	UFS	PROD?
	FAD	TEMP
I M M S 4		1 ⊑MP #*94
IML 54 S		**•4
1112040	TXI	*+1.4.1
NSYS	TXL	REPEAT.4.**
x 4	AXT	9 4
	TRA	5,4
ANS1	PZE	
ANS2	ΡZΕ	
PROD1	ΡΖΕ	
PROD2	PZE	
TEMP	PZE	
	END	

ł

•

¥	CHANNEL LBL	COMPATABILITY SUBRO	DUTINE
	COUNT	20	
	ENTRY	CHAN	(NT1,NT2,NOK)
CHAN	SXA	X4,4	
	CLA*	1•4	
	CALL	(IOS)	
	CLA¥	\$(ETT)	
	STO	ТЕМР	
	LXA	X4,4	
	CLA*	2,4	
	CALL	(105)	
	CLA*	S(ETT)	
	SUB	TEMP	
x 4	AXT	• 4	
	TZE	OUT	
	CLA	=00000C1000000	
	STO*	394	
	TRA	494	
OUT	STZ*	3,4	
	TRA	4,,4	
TEMP	PZE		
	END		
		~.	

*	TAPE BACH LBL COUNT	(SPACE SJBROUTINE BSPACE 13	
	ENTRY	BSET	(NTAPE)
	ENTRY	BSPACE	
BSET	SXA	X4,4	
	CLA*	1•4	
	ADM	=020	
	CALL	(105)	
	CAL*	\$(BSR)	
	STO	BSPACE	
X4	AXT	• 4	
	TRA	2 • 4	
BSPACE	PZE		
	TRA	1,4	
	END		

•

*	SUBROUT	INE READA READA
RSETA	COUNT ENTRY ENTRY ENTRY SXA CAL* ACL CALL LDQ* SLQ LDQ*	63 QSETA READA RCHKA X4+4 1+4 =020 (IOS) \$(TRC) TRC \$(TCO)
x 4	SLQ LDQ* SLQ CAL* STA AXT CLA* ARS SUB STO CLA* STA	TCO \$(RCH) RCH \$(RDS) RDS BSR •4 2•4 18 =1 TEMP 3•4 NRET
READA	CLA STA TRA CLA* STD STD CLA SUB STA CLA	4,4 IQUIT 5,4 194 RIO RIO+1 2,4 TEMP RIO 394
RDS RCH	SUR STA PZF PZE	TEMP RIO+1 RIO
RIO	TRA IOCP IOCD	494 **99** **es**
RCHKA TCO	STZ PZE	NBAD ¥
TRC ERROR	PZE TRA SXA LXD TXI TXI	ERROR 194 5494 NEAD94 *+19491 QUIT9495
BSR	SXD BSR XEC	NBAD•4 ** RDS
S 4	XEC AXT	RCH **••4
QUIT IQUIT NRET	TRA CLA STO CAL STA REW TRA	TCO =0000002000000 ** RDS *+1 **
NBAD TEMP	PZE PZE END	

(NTAPE, N, NRET, IQUI)	()
(NREAD,A1,A2)	

*	SUBROUTI	NEWRITEA
	LBL	WRITCA
	COUNT ENTRY	80 WSETA
	ENTRY	WPITFA
	ENTRY	WCHKA
WSFTA	SXA	X4,94
	CAL* ACL	1•4 =020
	CALL	(ICS)
	LDQ*	\$(TRC)
	SLQ	TRC
	LDQ¥ SLO	\$(TCO) TCO
	LDG*	\$(RCH)
	SLQ	RCH
	CAL* SLW	\$(ETT) ETT
	SLW	ETTOFF
	CAL*	\$(WRS)
	SLW	WRS
X 4	STA AXT	BSR • 4
<u>, , , , , , , , , , , , , , , , , , , </u>	CLA*	2,4
	ARS	18
	SUR STO	≖1 TEMP
	CLA*	3•4
	STA	NRET 1
	STA	NRET2
	CLA STA	4,4 1QUIT1
	STA	IQUIT2
ETTOFF	PZF	
	NOP TRA	5,4
WRITEA		1.4
	STD	WIO
	STD CLA	WIO+1 2•4
	SUB	TEMP
	STA	WIO
	CLA	3 • 4 TEMP
	SUB STA	WIO+1
ETT	PZE	
WDC	TRA PZE	SHORT
WRS RCH	PZF	WIC
	TRA	4,94
W10 ·	IOCP	**,,**
SHORT	IOCD CLA	**,,** =0000003000000
IQUI Tl	STG	**
	CAL	WRS
	STA REW	*+ <u>1</u> **
NRET1	TRA	**
WCHKA	STZ	NBAD
TCO TRC	PZE PZE	* FRROR
TNC.	TRA	1•4 ·
ERROR	SXA	54,4

(NTAPE,N,NRET,IQUIT) (NWRITE,A1,A2)

	LXD	NBAD,4
	TXI	*+1,4,1
	ТХН	QUIT,4,10
	SXD	NBAD,4
<u>e</u> sr	BSR	**
	XEC	WRS
	XEC	WRS
	XEC	WRS
	XEC	RCH
54	AXT	¥¥94
	TRA	тсо
QUIT	CLA	=000000100000
IQUI T2	STO	¥¥
	CAL	WRS
	STA	*+1
	REW	**
NRET2	TRA	**
NBAD	PZE	
ТЕМР	PZE	
	END	

*	SUBROUTI	NE READB	
	LBL COUNT	READB 63	
	ENTRY	RSETB	
	ENTRY	READB	
RSETB	ENTRY SXA	RCHKB X4,4	
KJEID	CAL*	1,4	
	ACL	=020	
	CALL LDQ*	(IOS) \$(TRC)	
	SLQ	TRC	
	LDQ*	S(TCO)	
	SLO	TCO	
	LDQ* SLQ	s (RCH) RCH	
	CAL*	\$(RDS)	
	SLW	RDS	
x 4	STA AXT	BSR • 4	
лт	CLA*	2,4	
	ARS	18	
	SUB STO	≈1 TEMP	
	CLA*	3+4	
	STA	NRET	
	CLA STA	494 Iquit	
	TRA	5,4	
READB	CLA*	1•4	
	STD STD	RIO R10+1	
	CLA	2,4	
	SUB	TEMP	
	STA	RIO 2 - 4	
	CLA SUB	3 • 4 TEMP	
	STA	RIO+1	
RDS	PZE	DIO	
RCH	PZF TRA	R I O 4 • 4	
RIO	IOCP	**,,**	
DOLLKD		₩₩ 9 9 ₩₩ NDAD	
RCHKB TCO	STZ PZE	NBAD X	
TRC	PZE	ERROR	
	TRA	1•4	
ERROR	SXA LXD	5494 NBAD94	
	TXT	*+1,4,1	
	TXH	QUIT,4,5	
BSR	SXD BSR	NBAD94 **	
DSK	XEC	RDS	
••	XEC	RCH	
54	AXT TRA	**∍4 TCO	
QUIT	CLA	=00000Cz00000	
IQUIT	STO	**	
	CAL STA	RDS *+1	
	REW	**	
NRET	TRA	**	
NBAD'	PZE		
TEMP	PZE		
	END		3

(NTAPE,N,NRET,IQUIT) (NREAD,A1,A2)

...

*	SUBPOUTT	NE WRITER	
	LBL	WRITFB	
	COUNT	80	
	ENTRY	WSETB	(NTAPE, N, NRET, IQUIT)
	ENTRY	WRITFB	(NWRITE, A1, A2)
	ENTRY	WCHKR))
WSETB	SXA	X4,4	
	CAL *	1,4	
	ACL	=020	
	CALL	(105)	
	LDQ*	\$(TRC)	
	SLO	TRC	
	LDQ*	\$(TCO)	
	SLQ	TCO	
	LDQ#	\$(RCH)	
	SLQ	RCH	
	CAL*	<u>\$(ETT)</u>	
	SLW	FTT	
	SLW	ETTOFF	
	CAL*	\$(WRS)	
	SLW STA	WRS RSR	
x 4	AXT	,4	
X 4	CLA*	2,4	
	ARS	18	
	SUR	=1	
	STO	TEMP	
	CLA*	3 • 4	
	STA	NRET 1	
	ST A	NRET2	
	CLA	4•4	
	STA	IQUITI	
	STA	IQUI T2	
FTTOFF	PZF		
	NOP		
	TRA	5•4	
WRITEB	CLA*	1,4	
	STD	WIO	
	STD	WIO+1	
	CLA SUB	2 • 4	
	STA	TEMP . WIO	
	CLA	3.4	
	SUB	TEMP	
	STA	WIO+1	
ETT	PZF	_	
	TRP	SHORT	
WRS	PZE		
RCH	PZF	wIO	
	TRA	4,4	
WIO	IOCP	**,,**	
	IOCD	****	
SHORT	CLA	=0000003000000	
IQUI Tl	STO	**	
	CAL	WRS	
	STA	*+1	
NDCTI	REW	**	
NRET1 WCHKB	TRA ST7	₩₩ NRAD	
TCO	PZE	NKAD ₩	
TRC	PZĘ	* FRROR	
	TRA	1+4	
ERROR	SXA	\$4.4	
			-1

34

1774-44

+

BSR	LXD TXI TXH SXD BSR XEC XEC XEC XEC	NBAD,4 *+1,4,1 QUIT,4,10 NBAD,4 ** WRS WRS WRS
54	XEC AXT TRA	RCH **∍4 TCO
QUIT IQUIT2	CLA STO CAL STA REW	=0000001000000 ** WRS *+1 **
N R F T 2 NBAD TEMP	TRA PZF PZE END	**

×	SURROUT	INF READC
RSETC	LBL COUNT ENTRY ENTRY SXA CAL* ACL CALL LDQ* SLQ LDQ* SLQ	READC 62 RSETC READC RCHKC X4,4 1,4 =020 (IOS) \$(TRC) TRC \$(TCO) TCO
x 4	LDQ* SLQ CAL* STA AXT CLA* STA CLA STA STA	\$ (RCH) RCH \$ (RDS) RDS RSR •4 2 •4 NRET 3 •4 IQUIT
READĆ	TPA CLA* STD ARS SUB STO CLA SUB STA CLA SUB STA	4,4 1,4 R IO- RIO+1 18 =1 TEMP 2,4 TEMP RIO 3,4 TEYP PIO+1
RDS RCH	STA PZE PZE	RIO+1 RIO
RIO	TRA	K10 494 ★★99★★
RCHKC	IOCD	** • • • ** NRAD
тсо	PZF	*
TRC ERROR	PZE TRA SXA LXD TXI TXH	FRROR 1+4 54+4 NBAD+4 *+1+4+1 QUIT+4+5
BSR'	SXD BSR XEC	NBAD∳4 ** RDS
s 4	XEC AXT	RCH **•4
QUIT IQUIT	TRA CLA STO CAL STA REW	TCO =0000002000000 ** RDS *+1 **
NRET NBAD	TRA PZE	**
TEMP	PZE END	

(NTAPE,NRET.IQUIT) (NREAD,A1,72)

e., ...

¥	SUBROUT	INE WRITEC	
	LBI	WRITEC	
	COUNT	79	
	ENTRY ENTRY	WSETC WRITEC	(NT) (NW)
	ENTRY	WCHKC	()
WSETC	SXA	X4,4	
	CAL″	1,4	
	ACL	=020	
	CALL LDQ#	(IOS) \$(TRC)	
	SLQ	TRC	
	LDQ*	\$ (TCO)	
	SLQ	тсо	
	LDQ*	\$(RCH)	
	SLQ	RCH	
	CAL* SLW	\$(ETT) ETT	
	SLW	ET TOFF	
	CAL*	\$ (WRS)	
	SLW	WRS	
	STA	BSR	
x4-	AXT	• 4	
	CLA* STA	2 • 4 NPET 1	
	STA	NRET2	
	CLA	3•4	
	STA	IQUIT1	
	STA	IQUIT2	
ETTOFF			
	NOP TRA	4,4	
WRITEC	CLA*	4,4	
WINIE	STD	WIO	
	STD	WI0+1	
	ARS	18	
	SUB	=] TEMD	
	STO CLA	TEMP 2 • 4	
	SUB	TEMP	
	STA	WIO	
	CLA	3 • 4	
	SUB	TEMP	
FTT	STA	WIO+1	
ETT	PZE TRA	SHORT	
WRS	PZE	SHORT	
RCH	PZE	DIW	
	TRA	4,4	
WIO	IOCP	**,,**	
QUODT		**,,**	
SHORT IQUITI	CLA STO	=0000003000000 **	-
100111	CAL	WRS	
	STA	*+1	
	REW	**	
NRET1	TRA	**	
WCHKC	STZ	NBAD	
TCO TRC	PZE PZF	* ERROR	
ING	TRA	1,4	
ERROR	SXA	\$4,4	
	LXD	NBAD,4	

(NTAPF,NRET,IQUIT) (NWRITE,A1,A2) A. 1. 17

	TXI	*+1,4,1
	ТХН	QUIT,4,10
	SXD	NBAD,4
RSR	BSR	**
	XEC	WFS
	XEC	WRS
	XEC	WRS
	XEC	RCH
54	AXT	**,4
	TRA	тсс
QUIT	CLA	=0000001000000
IQUI TZ STO		**
	CAL	WRS
	STA	*+1
	REW	**
NRFT2	TRA	**
NBPD	PZE	
ТЕМР	PZE	
	END	