THE SOLUT ION OF LARGE SYSTEMS OF ALGEBRAIC EQUAT IONS

BY
JOHN M. PAVKOVICH

TECHNICAL REPORT NO. 33 (2) DECEMBER 6, 1963

PREPARED UNDER CONTRACT Nonr-225(37)
(NR-044-211)
FOR
OFFICE OF NAVAL RESEARCH

COMPUTER SCIENCE DIVISION

School of Humanities and Sciences STANFORD UN IVERS ITY

Whe

John M. Pavkovich

TECHNICAL REPORT NO. 33

December 6, 1963

PREPARED UNDER CONITRACT Nonr-225(37) (NR-044-m)

OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for

 any Purpose of the United States GovernmentCOMPUIER SCIENCE DIVISION
SCHOOL OF HUMANITIES AND SCIENCES
STIANFORD UNIVERSITY

THE SOLUTION OF LARGE SYSTEMS OF ALGEBRAIC EQUATIONS
by
John M. Pavkovich

The solution of a system of linear algebraic equations using a computer is not a difficult problem as long as the equations are not ill-conditioned and all of the coefficients can be stored in the computer. However, when the number of coefficients is so large that supplemental means of storage, such as magnetic tape, are required, the problem of solving the system in an efficient manner increases considerably. This paper describes a method of solution whereby such systems of equations can be solved in an efficient manner. The problems associated with ill-conditioned systems of equations are not discussed.

The method described on the following pages was implemented on the IBM 7090 at Stanford for equations with complex coefficients. Although all figures quoted related to tape movement and arithmetic speed are for this computer, the ideas behind the method are applicable to any computer which has the ability to read tape, write tape, and compute simultaneously.

Consider the system of equations

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N}=y_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 N} x_{N}=y_{2} \tag{1}\\
& \cdot \\
& \dot{a_{N 1}} x_{1}+a_{N 2} x_{2}+\ldots+a_{N N} x_{N}=y_{n}
\end{align*}
$$

The first step in the solution is to normalize the system, i.e., to multiply each equation by a factor which makes the magnitude of the largest coefficient in that equation approximately equal to 1 . In the case of a binary machine, this factor should be a power of two so that no significant
figures are lost during this process. The reason for normalizing the system of equations is to increase the effectiveness of pivoting (interchanging equations during the solution process) and thus minimize the difficulties associated with roundoff error.

The method used to solve the system of equations is basically Gauss's method with partial pivoting, Briefly, this method is performed as follows. The first column of the system of equations is scanned to find the largest coefficient of x_{l} in absolute value. The equation containing this coefficient is then interchanged with the first equation (or row). A suitable multiple of this new first equation is then subtracted from each of the other equations in order to eliminate x_{1} from each of them. This process is then repeated using the coefficients of x_{2} and Eqs. 2 through N. Coefficients a_{22} through $a_{N 2}$ are examined to determine the largest in absolute value. The equation containing this coefficient is interchanged with the second equation and a suitable multiple is subtracted from each of the remaining equations. This same process of eliminating one variable at a time from all succeeding equations is repeated again and again until a system of equations is obtained in which the i-th equation contains only the unknowns x_{i} through x_{N}. Such a system of equations is

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 N} x_{N}= y_{1} \\
& a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 N} x_{N}=y_{2} \tag{2}\\
& a_{N-1, N-1} x_{N-1}+a_{N-1, N} x_{N}=y_{N-1} \\
& \quad a_{N N N} x_{N}=y_{N}
\end{align*}
$$

This so-calied reduced system can now be solved by starting at the bottom and solving first for x_{N}, then $\mathrm{x}_{\mathrm{N}-\mathrm{I}}$ using Eq. (N-I) and the now known value of x_{N}. This process, known as backsolving, is continued until the entire solution is obtained.

Gauss's method as described above is inefficient when applied to a system of equations too large to fit in core storage. The reason is that
as each variable is eliminated from all subsequent equations, all the coefficients of these equations must be read from tape and the new coefficients written on tape. Moreover, while each coefficient is in core storage, it is used in only one arithmetic operation. What is needed is a method whereby numbers which must be read from tape and written on tape many times, are used in many arithmetic operations while they are in core storage. This can be accomplished by applying Gauss's method in a more subtle fashion in which successive columns of the reduced system are obtained rather than successive rows. This is achieved as follows.

Consider again the system of equations (1). Assume that it has been normalized. As with the ordinary form of Gauss's method, the first column of coefficients is examined to locate the first pivotal element, i.e., the numerically largest coefficient of x_{1}. The location of this element is recorded and this coefficient is interchanged with a_{11}. It is necessary to remember this interchange since this same interchange must be performed in all subsequent columns to accomplish the interchange of the first equation with the equation containing the largest coefficient of x_{1}. After the interchange has been performed, a_{11} is the first column of the reduced system of equations, and will not be involved in any more numerical operations until the backsolving is performed. The remaining elements in column l, i.e., a_{21} through $a_{N I}$, are now divided by a_{11}. The result of this operation will be denoted by $b_{i l}$ and these numbers will be referred to as multipliers since in terms of Gauss's method, $b_{i l}$ represents the factor by which the first equation is multiplied when it is used to eliminate x_{1} from the i-th equation.

Thus, we have

$$
\begin{equation*}
b_{i 1}:=\frac{a_{i 1}}{a_{11}} \quad(i:=2,3, \ldots, \mathbb{N}) \tag{3}
\end{equation*}
$$

The $b_{i l}$'s will be used in processing all of the remaining columns.
The reduction of the second column begins by performing the interchange associated with column 1. The coefficients a_{22} through $a_{N 2}$ are then processed using the relation

$$
\begin{equation*}
a_{i 2}^{\text {NEW }}:=a_{i 2}^{\text {OLD }}-b_{i 1} a_{12} \quad(i:=2, \ldots, N) \quad . \tag{4}
\end{equation*}
$$

In terms of Gauss's method, these are the calculations which occur in the second column when x_{1} is eliminated from Eqs. 2 through N. The elements a_{22} through $\mathrm{a}_{\mathrm{N} 2}$ are now examined to find the second pivotal element. Its location is recorded and it is interchanged with a_{22}. Elements a_{12} and a_{22} are now the second column of the reduced system of equations. Elements a_{32} through $a_{N 2}$ are divided by a_{22} to obtain the second column of multipliers. The second set of multipliers will be used to process all remaining columns.

The pattern for obtaining the successive columns of the reduced systems of equations is now established. Each column is taken in order and reduced using the interchanges and multiplier columns associated with all of the previous columns. The operation reducing the k-th column with the j-th column of multipliers is

$$
\begin{equation*}
a_{i k}^{N E W}:=a_{i k}^{O L D}-b_{i j} a_{j k} \quad(j<k ; i:=j+1, j+2, \ldots N) \tag{5}
\end{equation*}
$$

Note that (4) is just a special case of (5) with $j:=1$ and $k:=2$. After the k-th column has been processed using multiplier columns l through $k-1$, elements $a_{k k}$ through $a_{N k}$ are examined to find the k -th pivotal element. Its location is recorded and it is interchanged with $a_{k k}$. Elements $a_{k+1, k}$ through $a_{N k}$ are then divided by $a_{k k}$ to obtain the k-th column of multipliers.

To obtain the complete reduced system of equations, the operations indicated above are carried out until all the columns have been reduced. 'The right-hand side is reduced in exactly the same way that the N -th column is reduced. The result of these operations will be a reduced system of equations of structure (2). Note that columns of multipliers will form a lower triangular matrix:

```
b}2
b}31\quad\mp@subsup{b}{32}{
b41 b
    •
    \bullet
    b}\mp@subsup{\textrm{DN}}{N}{}\mp@subsup{b}{N2}{}\mp@subsup{b}{NO}{
```

Associated with each column of multipliers is an interchange which must be performed before that column of multipliers is applied.

It should be clear from the preceding discussion that the numbers which are used again and again in performing the reduction are the multipliers. Thus these numbers must be repeatedly read from tape if there is insufficient room for all of them in core storage. However, a little thought will show that it is permissible to process more than one column at a time with the same column of multipliers. This means that while a column of multipliers is in core storage, we should process enough columns with it to allow the next column of multipliers to be read from tape. With a judicious choice of the number of columns one chooses to reduce simultaneously, it is possible to overlap almost all tape movement with computing and still keep the amount of core storage required to a minimum.

For the IBM 7090, the number of columns, K, to be processed simultaneously can be arrived at as follows: The time required to perform arithmetic operations and to read or write tape are as follows:

Floating Multiplication	$24 \mu \mathrm{~s}$ (microseconds)
Floating Addition or Subtraction	$14 \mu \mathrm{~s}$
Read and Write Tape	$100 \mu \mathrm{~s} /$ word
\quad (729-IV Tape Drive 556 Characters/Inch)	
Pass a Record Gap	$7300 \mu \mathrm{~s}$

From (5) it can be seen that it is necessary to perform one multiplication and one subtraction per multiplier element per column being processed. Here we are assuming the coefficients to be real. If each column of multipliers is written as one record, then the following relation is the criterion we wish to satisfy:

$$
\begin{align*}
& \text { Compute Time } \geq \text { Tape Read Time } \tag{7a}\\
& K(M+1)(24 \mu \mathrm{~s}+14 \mu \mathrm{~s}) \geq \mathrm{M} \cdot 100 \mu \mathrm{~s}+7300 \mu \mathrm{~s}, \tag{7b}
\end{align*}
$$

where K numbers of columns being reduced simultaneously, and $M=$ length of multiplier column being read. By solving for K, we find

$$
\begin{equation*}
K \geq 2.63(M / M+1)+192 /(M+1) \tag{8}
\end{equation*}
$$

From the above relation, we see that K should certainly be 3 or larger.

A choice of 6 or 8 would probably be the most reasonable since the record gaps would introduce some lost time only when the length of multipliers became less than 30 or 40 . In the case of complex coefficients the calculation is quite similar. For the program written at Stanford, 4 columns were used.

If the ideas put forth thus far are implemented in a program, it would proceed as follows. Three tapes are required which will be denoted as below:
$I T=$ Input Tape. This tape contains the matrix describing the system of equations to be solved. It is assumed that the system of equations has been normalized and that the matrix is stored by columns on this tape.
MT = Multiplier Tape. This tape will contain all of the multipliers at the conclusion of the reduction process.
RST $=$ Reduced System Tape. This tape will contain the columns of the reduced system at the conclusion of the reduction process.

It will be seen that the program as described below possesses one major difficulty, namely, that there may be some delay while the MT tape rewinds. A method of overcoming this difficulty will be described subsequently. The program proceeds as follows:

1: Read the first K columns of the system of equations from IT into core storage.
2: Reduce these K columns until the first K columns of the reduced system and the first K columns of multipliers are obtained.
3: Write the K columns of multipliers on $M T$ and rewind it.
4: Write the K columns of the reduced system on RST.
5: Read the next K columns of the system of equations from IT into core storage.
6: Reduce these K columns using the multipliers stored on MT. During this process, all of the multipliers which have been previously written on MT will be read.
7: Further reduce these K columns to obtain K more columns of the reduced system and K more columns of multipliers.

8: Write the K new columns of multipliers on $M T$ and rewind it.
9: Write the K new columns of the reduced system on RST.
10: If more columns remain on IT, go to step 5 .
To solve the system of equations for some particular right-hand side, one reduces this right-hand side by processing it with all of the multipliers on MT. The reduced system is then backsolved with this reduced RHS to obtain the solution. During the backsolution process it is necessary to backspace RST before reading each column since they are required in the reverse order from that on the tape. If one has to backsolve the system many times for many different right-hand sides, it is wise to write a tape of the reduced system matrix with the columns in the order in which they are required during backsolving. This can be done the first time the system is backsolved.

As stated previously, the program described above wastes considerable time waiting for the $M T$ to rewind. However, this difficulty can be overcome by using extra multiplier tapes in such a fashion that a tape is always available with the correct column of multipliers ready to be read into core storage. One possible way of doing this using a total of three multiplier tapes will be described here. These three tapes are denoted MT, MT1, MT2. To be effective, this scheme requires two channels.

Tapes MT and MTI are on Channel A and MT2 is on Channel B. Table I describes how the tapes are used. Here K, the number of columns reduced at one time, is 4. By studying Table I, it will be seen that MT contains approximately one-half of the multiplier columns. The remaining columns of multipliers are on either MTI or MT2. Consider line 10 in Table I. At this point columns l-12 have been reduced. Multiplier columns 1-8 are on MT and multiplier columns $9-12$ are on MTl. Columns 13-16 are now read from the input tape and processed using multiplier columns l-8. When this is complete, the rewinding of MT is initiated. Columns 13-16 are then further processed using multiplier columns 9-12. While each of these multiplier columns is in core storage, it is copied onto MT2. Since MTI and MT2 are on different channels it is possible to read multipliers from MTl, write multipliers on MT2, and compute, all simultaneously. After multiplier columns 9-12 have been used, columns 13-16 are further processed to obtain columns 13-16 of the reduced system and
multiplier columns 13-16. The columns of the reduced system are written on RST and multiplier columns 13-16 are written on MT2. The MTI and MT2 are now rewound. At this point, the configuration of the tapes is that shown on line 13 of Table I.

The program is now ready to begin processing columns 17-20. These 4 columns are read from IT and processed using multiplier columns l-8 from MT. Multipliers from MT2 are now used to process the 4 columns in core. While each multiplier column 9, 10, 11, and 12 is in core, it is copied onto MT. Since MT and MT2 are on different channels, there is no delay in the program. As soon as multiplier 12 has been written on MT, it is rewound. While multiplier columns 13-16 are in core, they are written on MII. Columns 17-20 are then further processed to obtain 4 more columns of the reduced system and 4 more columns of multipliers. The 4 columns of the reduced system are written on RST and the 4 columns of multipliers are written on MII. Tapes MTI and MI2 are then rewound and the tapes are in the configurations indicated on line 16 of Table I. The reader should now be able to make his way through Table I_{0}

When all the columns on IT have been processed, it is necessary to copy the multipliers from MMI or Mr2 onto MI if one wants one tape with all of the multiplier columns on it。 This will delay the program siightly, but the delay is of littie significance when compared to the time required for the entire reduction process.

The program written at Stanford performs the reduction as described above. It also has the capability to compute residues using double precision and -iterate the solution to obtain more accurate results. Timing experiments were performed using this program and some representative results are indicated in Table II. A millisecond core clock on the IBM 7090 was used to measure the elapsed time so the measurements are quite accurate. It must be confessed, however, that the results are not exactly reproducible. The reasons for this are related to tape. The start and stop times of various tapes are probably not reproducible from one experiment to another. Also, any tape error further introduces differences since the program is delayed while the tape error is corrected.

TABLE 1

123	Columns Being Processed	Channel A MT	Channel A MTI		Channel B MT2	
			Reading	Writing	Reading	Writing
	1-4	$\begin{aligned} & --- \\ & 1-4 \end{aligned}$				
4 5 6	5-8	$\begin{aligned} & 1-4 \\ & 1-4 \end{aligned}$				$5-8$
7 8 9	9-12	$\begin{aligned} & 1-4 \\ & 1-8 \end{aligned}$		$\begin{aligned} & \text {--- } \\ & 9-12 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 5-8 \end{aligned}$	
$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	13-16	$\begin{aligned} & 1-8 \\ & 1-8 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 9-12 \end{aligned}$			$9-16$
$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	17-20	$\begin{aligned} & 1-8 \\ & 1-12 \end{aligned}$		$13-20$	$\begin{aligned} & 9-16 \\ & 9-16 \end{aligned}$	
$\begin{array}{\|l\|} \hline 16 \\ 17 \\ 18 \end{array}$	21-24	$\begin{aligned} & 1-12 \\ & 1-12 \end{aligned}$	$\begin{aligned} & 13-16 \\ & 13-16 \end{aligned}$			$\begin{gathered} \text {--- } \\ 13-24 \end{gathered}$
	ETC.					

Arrangement of Tape Storage During the Reduction Process

TABLE II
N

40
80
120
160
320

Reduction and Solution for 1 RHS (no Iterations)
11.9 sec
52.8 sec
149.6 sec
327.8 sec
2398.2 sec

Solution for 2nd RHS (no Iteration)

$$
\begin{array}{rr}
0.44 \mathrm{sec} & 0.70 \mathrm{sec} \\
2.47 \mathrm{sec} & 5.32 \mathrm{sec} \\
4.59 \mathrm{sec} & 10.93 \mathrm{sec} \\
7.33 \mathrm{sec} & 18.60 \mathrm{sec} \\
24.57 \mathrm{sec} & -\mathbf{- -}
\end{array}
$$

From the results of the timing experiments, it was possible to construct polynomials which give reasonably good estimates of the running time for solving a system of N equations. These polynomials are as follows:
(1) Reduction and solution for $上$ RHS with no iterations:

$$
\begin{equation*}
\mathrm{T}=(0.000068) \mathrm{N}^{3}+(0.0012) \mathrm{N}^{2}+(0.125) \mathrm{N}+(0.425) \tag{9a}
\end{equation*}
$$

(2) Solution for a second RHS with no iterations:

$$
\begin{equation*}
T=(0.000195) N^{2}+(0.0144) N+(0.078) \tag{9b}
\end{equation*}
$$

(3) Each iteration:

$$
\begin{equation*}
T=(0.000629) N^{2}+(0.015) N+(0.095) \tag{9C}
\end{equation*}
$$

Using polynomial (9a), one estimates that the time required to solve 1000 simultaneous equations with complex coefficients would be about 19 hours. A program to solve equations with real coefficients would require about 30% of this time. Although the numerical operations would require only one-fourth as much time, there is no decrease in the amount of bookkeeping required.

In principle, the program written at Stanford is capable of solving 1000 or more simultaneous equations. However, the use of the present program to solve a system larger than about two or three hundred is rather risky, since the tape routines are not very sophisticated. In their present form, the tape routines make 10 attempts to correct writing errors and 10 attempts to correct reading errors. If the routines are unsuccessful in correcting the tape error, the program halts and the whole computation must be restarted from the beginning. It would be better if the program were able to salvage as much of the computation as possible after encountering bad tape. This could be accomplished by using an extra tape on which a copy of all multipliers and reduced columns was written, so that if any tape failures occurred, the program could continue after new tapes were mounted. This would increase the running time slightly, but it would be well justified by the increased reliability.

SUBROUTINE GAUSS and its associated subroutines are now described briefly and listed in either FORTRAN or FAP.

SUBROUTINE GAUSS

(NSYS, ISOLVD, KITER, EPS, ANS1, ANS2, RHS1, RHS2, KCOEF, KCOPY, KMULT, KT1, KT2, KT3, ISING)

Subroutine Gauss solves a system of up to 500 simultaneous algebraic equations with complex coefficients. The limit of 500 is determined only by the array size in the subroutine and one could increase the maximum allowable size by simply changing the DIMENSION statement and the IF statement which checks to see that the array size is not exceeded.

The arguments of subroutine Gauss are as follows:

NSYS = size of the system to be solved. If NSYS exceeds the array size, a message is printed on-line to save the tape containing the system of equations. The subroutine then rewinds the tape containing the system of equations and then pauses before calling EXIT.

ISOLVD = an integer variable used to indicate whether the system has been previously solved and that only a new right side is to be considered. If ISOLVD is equal to l, the reduction process is not performed and the program assumes that the reduced system of equations and the multiplier matrix are available on tapes KII and KMULT respectively. If any iterations are required, the program also assumes that a copy of the matrix is available on tape KCOPY. If ISOLVD is not equal to 1 , the entire reduction process is performed.

KITER = the maximum number of times the program is permitted to iterate and correct the solution. During the iteration process, the error is measured by the maximum change in any unknown divided by the maximum of the unknowns, i.e.,

$$
\text { error }=\frac{\operatorname{maximum}\left|\Delta x_{i}\right|}{\operatorname{maximum}\left|x_{i}\right|} .
$$

The iteration process stops as soon as either (1) the error is less than EPS, the accuracy criteria, (2) the error for the last iteration is greater than for the previous iteration, or (3) KITER iterations have been performed.

EPS = accuracy criteria for the iteration process. See KITER.

ANS1, ANS2 = one-dmensional arrays which represent the real and imaginary parts of the answer respectively.

RHS1, RHS2 = one-dimensional arrays which represent the real and imaginary part of the right-hand side respectively.

The following 6 arguments of SUBROUITINE GAUSS are logical tape numbers and the purpose of each is described below. In order to perform the reduction efficiently, the program requires that tape KTI be on a channel different from the channel to which KMULT, KT2, and KT3 are attached. The program also requires that KCOEF and KCOPY be on different channels. If these restrictions are not met, the program prints out a message (off-line) and returns with ISING equal to 4.

KCOEF $=$ the logical tape which contains the matrix describing the system of equations to be solved. The program assumes that the matrix has been previously normalized and that the matrix is stored on this tape by columns. Each column is written as one logical record by a statement of the form

WRITE TAPE NCOEF, (Al(K),A2(K), $\mathrm{K}=1, \mathrm{NSYS}, 1$)
where Al and A2 are the real and imaginary parts respectively of one column of matrix elements.

KCOPY = a logical tape on which SUBROUPINE GAUSS writes a copy of the matrix contained on tape KCOEF. During the iteration process, the entire matrix must be used in computing the residues. In order to overlap the tape reading with computing, it is necessary to have a copy of the matrix written by the I/O routines used by SUBROUIINE GAUSS.

KMULT $=$ a logical tape used during the reduction process. At the conclusion of the reduction process, this tape will contain the multiplier matrix. This lower triangular matrix will have been written by the I/O routines used by GAUSS and thus this tape cannot be read by FORIRAN tape statements.

KT1 = a logical tape used during the reduction process. At the conclusion of the reduction process and the initial backsolving, this tape will contain the reduced system matrix. Again, this tape has been written by the I/O routines associated with SUBROUTINE GAUSS.

KT2, KT3 = logical tapes used by SUBROUTINE GAUSS. These tapes are used as scratch tapes during the reduction process.

ISING $=$ an integer variable used to indicate the result achieved by SUBROUTINE GAUSS. ISING will normally be equal to 0 . However, if during the reduction process a pivotal element is encountered which is less than 1.0×10^{-15} or greater than $1.0 \times 10^{+15}$, ISING is set equal to 1 or 2 respectively and control is returned to the calling program. Also, as indicated previously, ISING is set equal to 4 if the channel requirements for the tapes are not met.

Several subroutines are used by SUBROUTINE GAUSS in solving the system of equations. The function, name, and argument list of each is as follows:

ṢUBROUTINE SAVEIT

This subroutine has no arguments and is called by GAUSS whenever an uncorrectable tape error occurs. The subroutine should be written by the user and could call EXIT or take any other action deemed appropriate.

SUBROUTINE RSTART (NRUN)

Since SUBROUTINE GAUSS may mun for a considerable length of time, it should possess the capability to be interrupted and restarted. This can be achieved by writing a routine called RSTART. If sense switch 6 is down, RSTART is called periodically by GAUSS. On returning to GAUSS, all tapes are repositioned if NRUN is equal to zero. If NRUN is positive, tapes are not repositioned before resuming the reduction process.

SUBROUTINE MDIVID (N, NA , IMAX, A1, A2)

This subroutine performs the division necessary to compute a new column of multipliers. Al and A2 are one-dimensional arrays, N elements in length, representing the real and imaginary parts respectively of one column of the matrix. MDIVID first interchanges element NA with element IMAX. Elements $N A+1$ through N are then divided by element NA.

SUBROUTINE REDUCE (N, NA , IMAX, A1, A2, AM1, AM2)

This subroutine is used to perform the reduction of one column of the matrix with the $\mathrm{NA}^{\text {th }}$ column of multipliers. In the argument list above, N represents the order of the system, $N A$ indicates which column of multipliers is being used, and IMAX indicates. which element is to be interchanged with element NA before processing. Al and A2 are onedimensional arrays representing the real and imaginary parts of the matrix column respectively, and AMI and AM2 are one-dimensional arrays representing the real and imaginary parts respectively of the column of multipliers.

SUBROUTINE DETER (D1, D2, DET1, DET2, NB2)

As the system of equations is reduced, the determinant is computed by multiplying together the diagonal elements of the reduced system. This subroutine is used in performing this operation. DENT and DETR are the real and imaginary parts of the accumulated product and D1 and D2 are the real and imaginary parts of the next factor to be used. Because such an' extended product may exceed the range of floating point numbers the computer can handle, this subroutine carries the power of 2 separately as ND2 in order to prevent any overflow or underflow.

SUBROUTINE BSOLVE (K, RHS1, RHS2, COL1, COL2, ANS1, ANS2)

This subroutine is used during the backsolving operation. As with the reduction procedure, the backsolving is carried out by columns. K is an integer which indicates the particular element of the answer that is being obtained. RHS1 and RHS2 are one-dimensional arrays representing the real and imaginary parts respectively of the right-hand side. COLI and COL2 are one-dimensional arrays representing the real and imaginary parts of column K of the reduced system. ANSI and ANS2 are one-dimensional arrays representing the real and imaginary parts of the answer.

SUBROUTINE DPSET (NSYS, REMS, IMMS, RELS, IMLS) SUBROUTINE DPRES (RECOL, IMCOL, ANS1, ANS2)

These two subroutines are the two entry points to the FAP coded subroutine used in the double precision calculation of the residues. As with the reduction and the backsolving, the residue calculation is performed by columns. The first entry point DPSEP is used to indicate the size of the system, NSYS, and the location for the arrays for the most significant and least significant parts of the real and imaginary parts of the residue. The second entry DPRES is used during the calculation of the residues. RECOL and IMCOL are one-dimensional arrays containing the real and imaginary parts of one column of the matrix. ANSI and ANS2 are the real and imaginary parts of the component of the answer associated with the column being processed.

CHAN (NT1, NT2, NOK)
This FAP coded subroutine is used to check that the channel requirements for the tapes are satisfied. NII and NW are two logical tape numbers. If these tapes are on different channels, NOK is set equal to 1 . If they are on the same channel, $N O K$ is set equal to zero.

BSET (NTAPE)

BSPACE

These two subroutines are two entry points to the FAP coded subroutine used to backspace logical tape NTAPE one physical record. BSET is used to set up the backspace instruction for logical tape NTAPE, Thereafter, each time BSPACE is called, tape NTAPE is backspaced one physical record.

RSETA (NTAPE, N, NRET, IQUIT) READA (NREAD, A1, A2) RCHKA

These three subroutines are the three entry points to one of the tape reading routines used by GAUSS. A call to RSETA initializes the routine to read records from tape NTAPE. N is the size of the system being solved. NRET is obtained from an ASSIGN statement and is used to construct a transfer indtruction which is later executed if an uncorrectable tape ermr is encountered. IQUIT is an integer parameter which is used to indicate the nature of the trouble encountered if a return is made using NRET. A call to READA then initiates the tape reading. One physical record is read which should contain the last NRFAD elements of each of the one-dimensional arrays $A l$ and $A 2$, i.e., elements $N-R E A D+1$ through N. A later call to RCHKA checks to see that the reading was completed satisfactorily. If an error has occurred, the tape is backspaced and the record is read again. Up to 5 attempts are made to read the tape correctly. If the routine is unsuccessful, IQUIT is set equal to 2 to indicate an uncorrectable reading error and a return is made using the NREF transfer instruction.

WSETA (NTAPE, N, NRET, IQUIT)

WRITEA (NWRITE, A1, A2)

WCHKA

These three subroutines are the three entry points to one of the tape writing routines used by GAUSS. The arguments above are analogous to those for RSEIA, READA, and RCHKA and the execution of the routine is similar except for the following: Before writing a record, the end of tape indicator is interrogated. If it is on, IQUIT is set equal to 3 and a return is made using the NREN transfer instruction. If a tape redundancy check occurs, the tape is backspaced and blank tape is written before attempting to write the record again. Up to 10 attempts are made to write the record correctly. If the routine is unsuccessful, IQUIT is set equal to 1 and a return is made using the NRET transfer instruction.

RSETB (NTAPE, N, NRET, IQUIT)
READB (NREAD, A1, A2)
RCHKB
WSETB (NTAPE, N, NRET, IQUIT)
WRITEB (NWRITE, A1, A2)

- WCHKB

These subroutines are identical to the above routines ending in A-except for the name.
RSETC (NTAPE, NRET, IQUIT)
READC (NREAD, A1, A2)
RCHKC
WSETC (NTAPE, NRET, IQUIT)WRITEC (NWRITE, A1, A2)
WCHKC
These subroutines are almost identical to the routines endingin A, the difference being that these mu-tines read or write the first
NREAD or NWRITE elements respectively of the arrays Al and A2.

```
    SUBROUTINE GAUSSINSYS,ISOLVD,KITER,EPS,ANS1,ANS2,RHS1,RHS2,
    KCOEF,KCOPY,KMULT,KT1,KT2,KT3,ISING)*
    THIS SUBROUTINE SOLVES A SYSTEM OF UP TO 500 SIMULTANEOUS
    ALGEBRAIC EQUATIONS WITH COMPLEX COEFICIENTS USING GAUSS
    REDUCTION. THF MATRIX FLEMENTS ARE STORED ON TAPE KCOEF
    BY COLUMNS .
    DIMENSION f1(500),A2(500),Bï(500),B2(500),
        C1(500),C2(500),D1(500),D?(500),
        AM1(500),AM2(500),BM1(50C),BM2(500),
        RHS1(500), RHS2(500), ANS1(500), ANS2(500),IORDER(500)
    N = NSYS
    NCOEF =KCOEF
    NCOPY = KCOPY
    NMULT = KMULT
    N T 1 = KT1
    NT2 = KT 2
    NT 3 = KT 3
    IF (500-N) 4,8,8
        W RITE OUTPUTT TAPE 6,6,N
        FORMAT(1HO,10X,29HARRAY SIZE EXCEEDED IN GAUSS./
                        1HO,10X,24HARRAY sl Z E = 5 0 0 N = 1.4/
                1H0,10X,21HEXECUTION TERMINATED.)
        PRINT 7, NCOEF
        FORMAT (1HO,25HPLEASE SAVE LOGICAL TAPEI2,
                        42H. THIS PROGRAM WILL PAUSE WHEN COMPLETED.)
        REWIND NCOES
        pAUSE
        CALL EXIT
    NITER = KITER
    NTERR=0
    Rf-WIND NCOPY
    REWIND YMULT
    REWINDNTI
    I F(ISOLVD-1) 50,10,50
        ITER = 0
        DO 20 K =1,N,1
            C1(K)=RHS1(K)
            C2(K) = RHS2(K)
            ANS1(K) = 0.0
            ANS2(K) =0.0
        EHOLDI=1.0
        GO TO 3400
    ISING = 0
    EPSA=1.OE-15
    EPSB = 1.OE+15
    NSAVE=NT1
    CHFCK COMPATABILITY OF TAPE ASSIGNMENTS.
    IQUIT = O
    C A L L CHAN(NT1,NMULT,NOK).
    I F(NOK) 80,80,90
        WRITE OUTPUT TAPE 6,160, NT1,NMULT
        IQUIT = 1
    CALLCHAN(NT1,NT2,NOK)
    I F(NOK) 100,100,11C
        WRITE OUTPUT TAPE 6,165, NT1,NT2
        IOUIT = 1
    CALL CHAN(NT1,NT3,NOK)
    IF (NOK) 120,120,130
        WRITE OUTPUT TAPE 6,170, NT1,NT3
        IQUIT = 1
    C ALL CHAN(NCOEF,NCOPY,NOK)
        I F(NOK) 140,140,150
            WRITE OUTPUT TAPE 6, 175, NCOEF,NCOPY
```

```
                IQUIT = 1
150 IF (IQUIT) 100)0,20L,155
155
    ISING = 4
    WRITE OUTPUT TAPE 6, 180
    RETURN
    1600FORMAT (1HO,25X,14HLOGICALT A P E SI2,5HANDI2,57HHAVFBEENA S S I G N
    1FDT OKTIAND KMULTRFSPFCTFULLY. THFSF/1H,35X,4?4LOGICALTAPF U
    2NITSARE ON THE SAME CHANNEL.)
    1650FORMAT 11HO,25X,14HLOGICALTAPESI2,5HANDI2,55HHAVEBEENASSIGN
    IEDTOKT1 AND KT2 RESPECTFULLY.. THFSE/?H ,35X,43HLOGICALTAPEUNI
    2TS ARE ON THE SAME CHANNEL.)
1700FORFAAT 11H0,25X,14HLOGICAL T APESI2,5HAN D 12,55H H A V E BEEN A S SIGN
    IEDTOKT1AND KT3 RESPECTFULLY. THESE/IH.35X,43HLOGICALT A P E UNI
    2TSARE ON THE SAMECHANNEL.)
1750FORMAT(1HO,25X,14HLOGICALTAPESI2,5HANDI2,59H HAVE BEEN ASSIGN
    IEDT O KCOEF AND KCOPYRFSPECTFULLY. THESE/1H,?5X,43HLOGICALTAPE
    2 UNITS ARFONTHE SAME CHANNFL.)
1800FORMAT (1HO,25X,79HTHISPROGRAM REQUIRES THAT TAPEKT1 3E ON A CHA
    1NNELDIFFERENTF{כMT H A TUSFDBY/1H,35X,68HKMULT,YT 2, ORKT3. A
    2LSO TAPES KCOEF AND KCOPY MUST BEONDIFFERENT/1H,35X,9HCHANNELS.
    3)
    200
    REWIND NCOEF
    REWIND NT2
    REWIND NT3
C
C
220
THE FOLLOWING STATEMENTSARENECEsSARY TO MAKE THE
COMPILER HAPPY.
    TQUIT = 4
    ASSIGN 6000 TO NRET
    GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
    7600,7800,ROO0,8200,8400,8600,88001
    ASSIGNG200TONRET
    GO TO NRET, (6000,5200,64.00,6600,6800,7000,7200,7400,
    7600,7800,8000,8200,8400,8600,88001
    ASSIGN 6400 TO NRET
    GO TO NRET, 16000,6200,6400,6600,6800,7000,7200,7400,
                            7600,7800,8000,8200,8400,8600,88001
    ASSIGN 6600 TO NRET
    GO TO NRET, (600),6200,6400,6600,6800,7000,7200,7400,
                            7600,7800,8000,8,00,8400,8600,88001
    ASSIGN 6800 TONRFT
    G(T O NRET, (60)0,62L(,6400,6600,6800,7000,7200,7400,
                        7600,7800,8000,8200,8400,8600,88001
    ASSIGN7 0 0 0 TONRET
    GO TONRET, 16000,6200,6400,6600,6800,7000,7200,7400,
                        7600,7800,8000,8200,8400,8600,8800)
    ASSIGN7200TO NRET
    GO TO NRET, 16000,6200,6400,6600,6800,7000,7200,7400,
                        7600,7800,8000,8200,8400,8600,8800).
    ASSIGN7400 TO NRET
    GO TO NRET, (6000,6200,6400,6€U0,6800,7000,7200,7400,
                        7600,7800,8000,8200,8400,8600,88001
    ASSIGN 7600 TO NRET
    GO TONRET, (6000,6200,6400,6600,6800,7000,7200,7400,
                            7600,7800,8000,8200,8400,8600,88001
ASSIGN7800 TO NRET
GO TONRET, 16000,6200,6400,6600,6800,7000,7200,7400,
                            7600,7800,8000,8200,8400,8600,88001
ASSIGN 3300 TO NRET
GO TO NRET, (6000,6200,6400,6670,6800,7000,7200,7400,
                            7600,7800,8000,8200,d400,8600,8800)
ASSIGN 8200 TO NRET
GOTO NRFT, 16000,6200,6400,6600,6800,70000,7200,7400,
        7600,7800,8000,8200,8400,8600,88001
```

$$
440
$$

$$
460
$$

$$
480
$$

ASSIGN 8400 TO NRET
G O TO NRET, $16000,6200,6400,6600,6800,7000,7200,7400$, $7600,78 \mathrm{CO}, 8000,8200,8400,8600,88001$
ASSIGN 8600 TO NRET
GO TO NRET, $16000,6200,6400,6600,6800,7000,7200,7400$, $7600,7800,8000,8200,8400,8600,88001$
ASSIGN 8800 TO NRET
GO TO NRET, $16000,6200,6400,6600,6800,7000,7200,7400$, $7600,7800,8000,8200,8400,8600,88001$
continue
'THE COMPUTATION AND RZDUCTION CAN NOW BEGIN.
$N A=1$
$N B=2$
$N C=3$
$N D=4$
DFT1 $=1.0$
DET2 $=2.0$
NB2 $=0$
DMAX $=0.0$
DMIN $=1 . C$
WRITE TAPENT3, (RHS1(K),RHS2(K),K =1,N,1)
RFAD INAND C O P Y ONTAPENCOPYFOUF C O LUM Ns. IF FEWER
THAN FOUR COLUMNS REMAIN, READ IN AND COPY THE REMAINING COLUMNS.

ASSIGN 6000 TO NRET
CALLWSETA(NCOPY,N,NRET,IQUIT)
NWRITE = N
IF (NA - N) 420,420,10000
READ TAPE NCOEF, (A1 (K), A2 (K), K=1,N,1) NT E ST $=1$
CALL WRITEA(NWRITE,A1,A2)
IF (NB-N) 440,440,500
READ TAPE NCOEF, (B1 (K), B2 $(K), K=1, N, 1)$ CALL WCHKA
NTEST = 2
CALL WRITEA(NWRITE,B1,B2)
IF (NC -N) 460,460,500
READ TAPE NCOFF, (C2(K), C2(K), $K=1, N, 1)$
CALL WCHKA
NTEST = 3
CALL WRITEA(NWRITE,C1,C2)
IF (ND -N) 480,480,500
R E A D TAPENCOEF, (D1 (K), D2 $(K), K \in 1, N, 1)$ CALL WCHKA
NTEST = 4
CALL WRITEA(NWRITE,D1,D2)
CALL WCHKA
IF (NA - 1) 10000,2000,600
BFGIN REDUCTION OF COLUMNS USING MULTIPLIERS STORED
ON TAPE.
ASSIGN 6200 TO NRET
CFLL RSETA(NMULT,N,NIET,IQUIT)
CALLWSETA(NMULT,N,NRET,IQUIT)
ASSIGN 6400 TO NRET
CALLRSETB(NT1,N,NRET,IQUIT)
CALLWSETB(NT2,N,NRET,IQUIT)
NREAD $=N-1$
$M I=4 *((N A-4) / 8)+4$
M2 $=4 *(N A /-8)+5$
MLAST $=N A-1$
CALLREADA(NREAD,AM1,AM2)
CALL RCHKA

NREAN = NREAD - 1
CALL READA(NREAD,BM1,BM2)
IMULT $=1$
RFDUCTIONUSINGMULTIPLIERS IN AM1 AND AM2.
IMAX = IORDER(IMULT)
CALL REDUCE (N, IMULT,IMAX,A1,A2,AM1, AM2)
IF (NB - N) 720,720,800
CALL REDUCEIN,IMULT,IMAX,B1,B2,AM1,AM21
IF (NC -N) 740,740,800
CALL REDUCEIN,IMULT,IMAX,C1,C2,AM1,AM2)
IF (ND - N) 760,760,800
CALLREDUCEIN,IMULT,IMAX,O1,D2,AM1,AM21
initiate tape reading and writing of multiplier and REDUCTION TAPES

IMULT $=$ IYULT +1
NWRITE = NREAD
NREAD = NREAL - 1
IF (IMULT - M1) $820,840,880$
CALL RCHKA
CALLREADA(NREAD, AM1, AM2)
GO TO 1200
IF (IMULT - MLASTI 845,860,10000
CALL RCHKA
C A L READB(NREAD,AM1,AM2)
GO TO 1200
CALL ?CHKA
IF (ND - N) 870,1200,1200
REWIND NYULT
GO TO 1200
IF (IMULT . MLAST) 885,980,1040 CALL RCHKB IF (IMULT - M2) 900,940,970 IF (IMULT - MI - 1) $10000,905,920$

CALL WRITEA (NWRITE,BM1, BM2)
CALLREADB(NREFU,AM1,AM2)
GO TO 1200
CALL WCHKA
CALL WRITEA (NWRITE, BM1, BM2)
CALLREADB(NREAD,AM1, AM2)
GO TO 1200
IF (M1 + 1 - M2) 945,950,10000
CALL WCHKA
IF (ND - N) 955,960,960
REW INDNMUI:T
CALLWRITEB(NWRITE,BMI,BM2)
CALLRFADB(NREAD,AM1, AM2)
GO TO 1200
CALL WCHKB
CALL WRITEB(NWRITE,BM1,BM2) CALLREADB (NRFAD, AM1, AM2) GO TO 1200
CALL RCHKB
REWIND NT1
I F(MLAST - 8) 10000,1000,1020
CAIL WCHKA
CALL WRITEA(NWRITE,BM1,BM2)
GO TO 1200
CALL WCHKB
CALLWRITEB(NWRITE,BM1,BM2) GO TO 1200
IF (MLAST-4) $10000,2000,1050$
IF (MLAST-8) 10000,1060,1100
CALL WCHKA

C
1200

1720
1240
1260
C
C

```
IF (ND - N) 1080,2000,2000 REWIND NMULT GO TO 2000
CALL WCHKB
G O T O 2000
```

```
REDUCTION USING MULTIPLIERS-IN BM1AND BM2. IMAX = IORDER(IMULT) CALL REDUCE (N,IMULT,IMAX,A1,A2́,BM1,BM2) IF (NB - N) \(1220,1220,1400\) CALLREDUCE (N,IMULT, IMAX,B1,B2,BM1,BM2) IF (NC -N) 1240,1240,1400 CALL REDUCF (N,IMULT,IMAX,C1,C2,BMI, BM2) IF (ND - N) 1260,1260,1400 CALLREDUCE (N,IMULT,IMAX,D1,D2,BM1,BM2) INITIATE TAPE READING AND WRITING OF MULTIPLIER ANC REDUCTION TA JES.
IMULT = IMULT + 1
NWRITE = NREAD
NREAD \(=\) NREAD -1
IF (I M U L T - M1) \(1420,1440,1480\) CALL RCHKA CALLREADA(NREAD,BMI, BMŽ) GO TO 700
IF (IMULT-MLAST) \(1445,1460,10000\)
CALL RCHKA
C ALL READB(NREAD,BM1,BM2)
GO TO 700
CA! L RCHKA
IF (ND-NJ) 1470,700,700
REWIND NMULT
GO TO 700
IF (IMULT - MLAST) \(1485,1580,1640\) CALL RCHKB IF (I M U L T - M2) 1500, 1540,1570
IF (IMJLT - MI - 1) 10000,1505,1520
C ALL WRITEA (NWRITE,AM1, AM2)
C ALLREA.DB(NREAD,BM1, BM?) GO TO 700 CALL WCHKA CALL WRITEA(NWRITE,AMI,AM2) CALL READB(NREAD,BM1,BM2) GO TO 700 IF (M1 + \(1-\mathrm{M} 2) \quad 1545,1550,10000\) CALL WCHKA IF (ND - N) \(1555,1560,1560\) REWIND NMULT
C ALL WRITEB(NWFITE,AM1,AM2) CALL READB(NREAD, BM1,BM2) G O TC700
CALL WCHKB
C ALL WRITEB(NWRITE,AM1, AM2) C ALL REACB(NREAD,BM1,BM2) GO TO 700
CALL RCHKB REVINDNTI I F(MLAST-8) \(10000,1600,1620\) CALL WCHKA C ALL WRITEA(NWRITE,AM1,AM2) GO TO 700 CALL WCHKB C ALLWRITEB(NWRITE, AM1, AM2) GO TO 700
IF (MLAST-4) 100(0,2000,1650
```

```
I FIMLAST-8 1 10000,1660.1700
CALL WCHKA
IF (ND-N) \(1680,2000,2000\) REWIND NMULT GO TO 2000
CALL WCHKB
REDUCTIONOFCOLUM NS AFTER PROOCESSINGWITH MULTIPLIERS.
IF (ND-N) 201),2005,2005
REWIND NT2
ASSIGN 7000 TO NRET
CFLL WSETC(NT3,IRET,ICUIT)
PMAX=0.0
\(I N T A X=N A\)
D \(02040 K=N A, N, 1\)
\(C O M P=A B S F(A 1(K))+A B S F(A 2(K))\)
I F (PMAX - COMP) 2020,2040,2040
PMAX \(=\) COMP
IMAX \(=K\)
CONTINUE
IORDER(NA) \(=I M A X\)
NTEST = NA
I F (EPSA - PMAX) \(2(60,2060,4000\)
I F (PMAX - EPSB) 20709207094000
CALL DETER (A1 (IMAX), A2 (IMAX), DETI, DET2,NB2)
DMAX \(=\) MAXIF (DMAX, PMAX)
DMIN \(=\) MINIF \((D M I N, P M A X)\)
NWRITE \(=N A\)
IF (NA - N) 2080,2400,10000
CALLMDIVID(N,NA,IMAX,AI,A2)
CALLWRITEC(NWRITE,A1,A2)
C ALL REDUCE(N,NA,IMAX,RHS1,RHS2,A1,A2)
CALL REDUCE(N,NA,IMAX,B1,B2,A1, A2)
CALL WCHKC
PMAX \(=0.0\)
1 MAX \(=\) NB
DO \(2140 \mathrm{~K}=\mathrm{NB}, \mathrm{N}, 1\)
\(C O M P=A B S F(B 1(K))+A B S F(B 2(K))\)
I F (PMAX - COMP) 2120.2140 .2140
PMAX \(=\) COMP
IMAX \(=K\)
CONTINUE
IORDFR(NB) = IMAX
NTEST=NB
I F (EPSA - PMAX) \(2160,2160,4000\)
I F (PMAX - EPSB) 2170,2170,4000
CALL DFTER (B1 (IMAX), B2(IMAX), DET1,DET \(2, N B 2\) )
DMAX \(=\) MAX \(1 F(D M A X, P M A X)\)
DMIN \(=\) MINIF (DMIN,PMAX)
NWRITE = NB
IF (NB-N) \(2130,24 \alpha C, 10000\)
CALL MDIVID(N,NB,IMAX,B1,B2)
CFLL WRITFC(NWRITE,B1,92)
C ALL RE?UCE (N,NB,IMAX,RHS1,RHS2,B1,B2)
\(C A L L R E D U C E(N, N A, I O R D E R(N A), C 1, C 2, A 1, A 2)\)
CALL REDUCE(N,NB,IORDER(NB), C1,C2,B1,B2)
CALL WCHKC
PMAX \(=0.0\)
IMAX \(=\) NC
\(P O 2240 \mathrm{~K}=\mathrm{NC}, \mathrm{N}, 1\)
COMP \(=A B S F(C 1(K))+A B S F(C 2(K))\)
F(PMAX - COMF) \(2220,2240,2240\)
PMAX \(=\) COMP
\(I\) MAX \(=K\)
```

 CC VTINUF
 IORDFR(NC) = IMAX
 NTEST = NC
 IF (FPSA - PMAX) 2260,2260,4000
 I F(PMAX - FPSB) 2270,2270,4000
 CALL DETER(C1(IMAX),C2(IMAX),DET1,DET2,NB2)
 DMAX = MAXIF(DMAX,PMAX)
 DMIN = MINIF(DMIN,PMAX)
 NWRITE = NC
 IF (NC -N) 2280,2440.10000
 C
CALLMDIVIDIN,NC,IMAX,CI,C2)
CALLWRITFC(NWRITE,C1,C2)
CALL REDUCE(N,NC,IMAX,RHS1,RHS2,C1,C2)
CALL REDUCE(N,NA,IORDER(NA),D1,D2,A1,A2)
CALL REDUCE(N,NB,IORDFR(NB),D1,D2,B1,B2)
C A L L REDUCE(N,NC,IORDER(NC),D1,D2,C1,C2)
CALL WCHKC
PMAX = 0.0
IMAX = ND
D O 2 340K = ND,itel
COMP = ABSF(D1(K)) + /BSF(D2(K))
I F(PMAX - COMP) 2320,2340,2340
PMAX = COMF
IMAX = K
CONTINUE
IORDER(VD) = IMAX
NTEST = N D
I F(FPSA - PMAX) 2360,2360,4000
I F(PMAX - EPSB) 2370,2370,4000
CALLDETER(D1(1MAX),D2(1MAX),DET1,DET2,NB2)
DMAX = MAXIF\&DMAX,PMAX%
DMIN = MINIFIDMIN,PMAX,
NWRITE = ND
IF (ND - N) 2380,2460,10000
CALLMDIVID(N,ND,IMAX,D1,D2)
CALLWRITEC(NWRITE,D1,D2)
CALL REDUCE(N,ND,IMAX,RHS1,RHS2,O1,D2).
CALL WCHKC
GO TO 2500
CALL WFITEC(NWRITE,A1,A2)
CALL WCHKC
GO TO 2700
CALLWRITEC(NWRITE,B1,B2)
CALL WCHKC
GO TO 2700
CALLWRITEC(NWRITE,C1,C2)
CALL WCHKC
GO TO 2700
CALLWRITEC(NWRITE,D1,D2)
CALL WCHKC
C OTO2700
WPITENE W MULTIPL'ERSO N TAPE.
IF (NA - 1) 10000.2505,2520
ASSIGN 6600TONRET
CALLWSETA(NMULT,N,NRET,IQUIT)
GO TO 2540
ASSIGN 6800 TONRET
CALLWSETA(NT2,N,NRET,IQUIT)
NWRITE=N-N A
CALLWRITEA(NWRITE,A1,A2)
CALL WCHKA
NWIRITE=N-M B
CALLWRITEA(NWRITE,B1,B2)

```
```

 CALL WCHKA
 NWRITE = N - NC
 CALLWRITEA(NWRITE,C1,C2)
 CALL WCHKA
 NWRITE = N-N D
 CALLWRITFAINWRITE,D1,D2)
 CALL WCHKA
    ```
```

CALLRSTARTIF RESTART IS DESIRED.
IF (SENSE SWITCH6) 2610,2670 CALL RSTART(NPUN)
I F(NRUN) 10000,2620,2670
REWIND NCOEF RE JIND NCOPY REWINDNMULT ASSIGN' 8600 TO NRET CALLRSETA(NCOPY,N,NRET,IQUIT) NREAD = N DO $2640 \mathrm{~J}=1, N D, 1$ CALLREADA(NREAD,A1, A2) READ T A P E NCOEF, $(\mathrm{Al}(\mathrm{K}), \mathrm{B} 2(\mathrm{~K}), \mathrm{K}=1, \mathrm{~N}, 1)$ CALL RCHKA READ TAPE NT3, (A1(K),A2(K),K =1,N,l)
ASSIGN 8800 TO NRET
CALLRSFTC(NT3,IIRET,IQUIT)
NREAD $=0$
D $02660 \mathrm{~J}=1$, ND, 1
NREAD $=$ NREAD +1
CALL RFADC(NREAD,A1,A2)
CALL RCHYC
REWIND NT1
REWIND NT2
REWIND NMULT
NTEMP = NT1
NT1 = NT2
NT2 = NTEMP
$N F_{1}=N A+4$
$N B=N A+1$
$N C=N B+1$
$N D=N C+1$
GO TO 400
THE REDUCTION IS COMPLETE. PRINT THE VALUE OF THE DETERMINANT AND THE MAXIMUM AND MINIYUM PIVOTAL ELEMENTS.
TEMP $=1.0$
DO $2720 \quad K=1, N, 1$
I F(IORDER(K) - K) 2715.2720.2715
TEMP $=-$ TEMP
CONTINUE
FNB2 $=F L O A T F(N B 2)$
KE1 = FNB2/3.3219281
$K E 2=K E 1$
EXPON = MODF(FNB2.3.3219281)
AMPL $=$ TEMP*(2.0**EXPON)
DET1 $=A M P L * D E T 1$
DET2 = AMPL*DET2
I F(DET1) $2745,2740,2745$
$K E 1=0$
GO TO 2755
I F (ABSF (DET1)-1.01 27469275592750
DET1 $=10.0 * D E T 1$
$K E 1=K E 1-1$
GO TO 2745
I F(10.0.-ABSF(DET1!) 2751.2751.2755

```

```

 CALL RCHKC
 CALL BSPACE
 NWDS = NREAD
 NREAD = NREAD-1
 CALLWRITEC(NWDS,AM1,AM2)
 I F(NREAD) 10000,3080,3(60
 CALL BSPACE
 CALLREADC(NREAD,BMI,BM2)
 CALL BSOLVE(NWDS,RHS1,RHS2,AM1,AM2,ANS1,ANS2)
 CALL WCHKC
 I F(NREAD) 10000,3180,3100
 CALL RCHKC
 CALL BSPACE
 NWDS = NREAD
 NREAD =NREAD-1
 CALLWRITEC(NWDS,BM1,BM2)
 IF (NREAD) 10000,3140,3120
 CALL BSPACE
 CALL READC(NREAD,AM1,AM2)
 CALL 8SOLVE(NWDS,RHS1,RHS2,BM1,BM2,ANS1,ANS2)
 CALL WCHKC
 IF (NREAD) 10000~3180~3160
 CALL RCHKC
 CALL BSPACE
 GO TO 3040
 REWIND NT1
 REWIND NT3
 ITER = 0
 EHOLDI=1.0
 READ TAPENT3,(C1(K),C2(K),K=1,N,1)
 REWIND NT3
 I F(NITER) 3190,3190.3200
 RETURN
 COMPUTE RFSIDUES USING DOUBLE PRECISION.
 ITER = ITER + 1
 ASSIGN 8000 TO NRET
 CALLRSETA(NCOPY,N,NRET,IQUIT)
 CALLDPSET(N,RHS1,RHS2,D1,D2)
 DO 3220 K=1,N,1
 RHS1(K) = Cl(K)
 RHS2(K) = C2(K)
 D1(K) = 0.0
 D2(K) = 0.0
 NREAD = N
 CALL READA(NREAD,AM1,AM2)
 ICOL = 1
 'IF (ICOL - N) 3260,3250,3320
 CALL RCHKA
 GO TO 3370
 CALL RCHKA
 CALL READA(NREAD,BM1,BM2)
 CALLDPRES(AM1,AM2,ANS1(ICOL),ANS2(ICOL))
 ICOL = ICOL + 1
 IF (ICOL - N) 3290,3280,3320
 CALL RCHKA
 GO TO 3300
 CALL RCHKA
 C ALL READA(NREAD,AM1,AM2)
 CfLL DPRES(BM1,:3M2,AI;r1(ICOL),ANS2(ICOL))
 ICOL = ICOL + 1
 GC TO 3240
 REWIND VCOPY
 RFDUCF THF NEWRIGHT HAND SIDE.

```
3460 CALLREDUCE(N,IMULT,IORDER(IMULT),RHS1,RHS2,AM1,AM2)
    IMULT = N - NREAD
    NREAD = NREAD - 1
    I F(NREAD) 3520,3480,3490
        CALL RCHKA
        GO TO 3500
    CALL RCHKA
    CALL READA(NREAD,AM1,AM2)
    CALL REDUCE(N,IMULT,IORDER(IMULT),RHS1,RHS2,BMI,RM2)
    GO TO 3420
    REWIND NMULT
    BACK-SOLVE AND CORRECT SOLUTION.
    ASSIGN 8400 TO NRET
    CALLRSETC(NTI,NRET,IQUIT)
    NREPD = N
    CALLREADC(NREAD,AM1,AM2)
    NWDS = NREAD
    NREAD = NREAD - 1
    I F(NREAD) 3720,3640,3650
        CALL RCHKC
        GO TO 3660
    CALL RCHKC
    CALL READC(NREAD,8M1,8M2)
    CALL BSOLVE(NWDS,RHS1,RHS2,AM1,AM2,A1,A2)
    NWDS = NREAD
    NREAD = NREAD - 1
    IF (NREAD) 3720,3680,3690
        CALL RCHKC
        GO TO 3700
    CALL RCHKC
    CALL.READC(NREAD,AM1,AM2)
    CALL BSOLVEINWDS,RHE1,RHS2,BM1,BM2,A1,A21
    GO TO 3620
    REWIND NT1
    DO 3740 K = 1,N,1
        B1(K) = ANS1(K)
        B2(K) = ANS2(K)
        AN il(K) = ANS1(K) + Al(K)
        ANS2(K) = ANS2(K) + A2(K)
    IF (NITER) 3760,3760,3780
        RETURN
    I F(ITER) 3760,3200,3800
    RMAX = 0.0
    EMAX = 0.0
    DO 3840 K=1,N,1
        RMAX = MAX1F(RMAX,AI SF(ANS1(K)),ABSF(ANS2(K)))
        EMAX = MAXIF(EMAX,ABSF(ANSI(K) - Bl(K)),
                                    ABSF(ANS2(K) - B2(K))!
    RERR = EMAX/RMAX
    IF (RERR-EPS) 3860,3860,3880
        WRITE OUTPUT TAPE 6, 3940, ITER,RERR,EPS
        RETURN
```

```
    3880 I F(EHOLDI-RERR) 3890,389n,3900
    3890 WRITE OUTPUT TAPE 6, 3945, ITER,RERR,EHOLDI,FPS
    RETURN
    3900 I F(NITER-ITER) 391C,3910,3920
    3910 W RITE OUTPITTAFF6,3950, ITER,RERR,EPS,EHOLDI
    RETURN
    3920
    EH!OL\cap1 = RERR
    GO TO 3?00
    39400FORMAT (1HO,25X,48HTHF ACCURACY DFSIRFD HAS BEFN ESTABLISHED AFTER
        1 I2,26HITERATIONS. THERELATIVE/1H,35X,9HERROR IS IPE9.2,
        234H. THE RFLATIVF ERROR DESIRED WAS 1PE9.2,1H.l
    39450FORMAT (IHO,25X,44HTHE ITERATIVE PROCEDURE IS NOT CONVERGING. 12,
    131HITERATIONS HAVE BEEN COMPLETED/1H, 35X,38HBUT THE RELATIVE ERR
    2OR INCREASED FROM IPE9.2,4HTO 1PE9.2,TH DURING/1H,35X,52HTHELAS
    3T ITERATION. THE RELATIVE ERROR DESIRED WAS IPE9.2,IH.I
    39500FORMAT (1HO, 25X,4HTHEI2,65HITERATIONS ALLOWED HAVEPEEN COMPLETE
        ID BUT THE RELATIVE ERRORIS/IH, 35X,6HSTILLIPE9.2,24HWHILE THAT
        2DESIRED W A S 1PE9.2,15H. THERELATIVE/IH,35X,37HERRORFOR THE PRE
        3VIOUS ITERATION WAS 1PE9.2.1H.I
    4000
        WRITFOUTPUT TAPE6,4040, NTEST,PMAX,EPSI,EPSB
        ISINNG = 1
        I F(FPS3-PMAX) 4020,4020.4030
        ISING = 2
RETURN
4030
4040OFORMAT(1H1, 25X,68HTHE BOUNDS FOR PIVOTAL ELEMENTS WERE EXCEEDED I
    IN DETERMINING PIVOTAL/IH,35X,8HFLEMENTI 3,43H. THE MAGNITUDE OF
    2THISPIVOTAL FLEMENTIS/1H,35X,14HAPPROXIMATELY 1PE9.2,33H. THIS
    3 PROGRAM REQUIRES THAT ALL/IH,35X,29''PIVOTAL ELEMENTS LIE BETWEEN
    4 1PE9.2,5HA N D 1PE9.2,1H0)
C PROCEDURFS FOR CORRECTINGTAPEERRORS. IQUIT ASSUMES THE
C VALUESI,2,OR 3 ACCORDING TO THE DIFFICULTY ENCOUNTERED.
C
C
C
    6000
C
    6700
    C
    6400
    RFADING OR WRITING ERROR ONTAPE NT1 ORNT2 DURING REDUCTION.
        NCO = IQUIT
        MTERR=NT1
        NTERR=NT2
        G O T O (7500,9600,9700,235),NGC
    WRITING ERROR ON TAPE NCOPY DURING COPYING OF INPUT COLUMNS.
        NGO=IQUIT
        MTERR = NCOPY
        G O T O (9500,10000,9700,225),NGO
C READING OR WRITING ERROR ON TAPE NMULT DURING REDUCTION.
        NGO = IQUIT
        MTERP = NMULT
        G O T O (9500,9600,9700,230),NGO
6600
            WRITING ERROR ON TAPE NMULT DURING MULTIPLIER WRITING.
600 NGC=IQUIT
        YTERR = NMULT
            G O T O (9500,10000,9700,240);NGO
C WRITING ERROR ON TAPE NT2 DURING MUI.TIPLIERWRITING.
    6800
        NGO = IQUIT
        MTERR = NT2
        GO T O(9500,10000,9700,245),NGO
C WRITING ERROR ON TAPENT3 DURING REDUCEC COLUMN WRITING.
    7000 NGO = IQUIT
        MTERR = NT3
        GO TO(9500,10000,9700,250),NGO
    C WRITING ERROR ON TAPE NMULT DURING MULTIPLIER COPYING.
    7200 NGO = I OUIT
        MTERR = NMULT
        GO T O (9500,10000,9700,255),NUO
```

C

```
C. READING ERROR ON TAPE NT2 DURING NULTIPLIERCOPYING.
        NGO = IQUIT
        MTERR = NT2
        G O T O (10000,9600,10000,260),NGO
    READING ERROR ON TAPE NT3 DURING INITIAL BACKSOLVING.
        NGO = IQUIT
        MTERR = NT3
        G O T O {10000,9600,10000,265),NGO
        WRITING ERROR ON TAPE NT1 DURING INITIAL BACKSOLVING.
        NG O =IQUIT
        MTERR = NT1
        G O T O (9500,10000,9700,270),NGO
    READING FRROR ON TAPE NCOPY DURING ITERATION.
        NGO = IQUIT
        MTERR = NCOPY
        GO TO(10000,9600,100OC,275),N G O
RFADINC ERROR ON TAP" NMUL' DURINGRHS REDUCTION.
        NGO = IQUIT
        MTERR = NMULT
        GO TO(10000,9600,10000,280),N G O
    READING ERROR ON TAPE NT1 DURING BACKSOLVING.
        N G C = IQUIT
        MTERR = NT1
        * G O T O(10000,9600,10000,285),NGO
READING FRROR ON TAPE NCOPY DURING RFSTARTING.
        N G O = IOUIT
        MTERR = NCOPY
        GO TO(10000,9600,1(000,290),NGO
READING ERROR ON TAPE NT3 DURING RESTARTING.
    NGO = IQUIT
    MTERR = NT3
    GO TO(10000,9600,10000,295),NGO
    I F(NTERR) 9530,9505,9530
    WRITF C JTPUT TAPE6,9515, MTERR
    PRINT 5515, MTERR
    FORMAT (1HO,4OHREPEATED REDUNDANCIES IN WRITING LOGICAL,
            6H TAPE,I2,1H.I
        GO TO 9660
        WRITE OUTPUT TAPE 6, 9545, MTERR,NTERR
        PRINT 9545, MTERR ©NTERR
        FORMAT (1HO,4OHREPEATED REDUNDANCIES IN WRITING LOGICAL,
            6HTAPF,I2,21HANDIOR LOGICAL TAPF,12,1H.1
        GO TO 9660
        I F(NTERR) 9630,9605,9630
    WRITFOUTPUT TAPE 6,9615, MTERR
    PRINT 9615, MTERR
    FORMAT (IHO, 4OHREPEATEDREDUNDANCIESIN READING LOGICAL,
            6H TAPE,12,1H.1
        GO TO 9660
        WRITF OUTPUT TAPF 6,9645,:MTERR,NTERR
        PRINT 9645, MTERR,NTERR
        FORMAT (IHO, 4OHREPEATED REDUNDANCIES IN READING LOGICAL,
            6H TAPE,I2,21HAND/OR LOGICAL TAPE,12,1H.1
        PRINT 9675
        FORMAT (1HO,28HINSPECTTAPE AND TAPF DYIVE.I
        GCTO 9800
        IF (NTERR) 9730,9705,9730
        WPITFOUTPUT TAPE 6, 9715, MTERR
        PRINT 9715, MTERR
        FORMAT (1HO,4OHFND OF TAPF ENCOUNTERED WHILE WRITING ON,
            14HLOGICAL TAPE,I2,1H.I
        GO TO 9760
    9730
        WRITFOUTPUTTAPE6,9745, M T E R R,NTERR.
```

```
    PRINT 9745, MTERR,N'TERR
97450 FORMATIIHO,4OHEND OF TAPE FNCOUNTERED WHILE WRITING ON,
    1 14H LOGICAL TAPE,I2,17HOR LOGICAL TAPE,I2,1H.I
9760
9775
980
9 815
PRINT 9775
FORMAT (1HO, 34HMOUNT A LONGER TAPE ON THIS DRIVE.)
PRINT 9815
FORMAT (1HO,41HPRESSSTARTTO RESUME PROCESSING THIS JOB)
PAUSE
REWIND NCOEF
REWIND NMULT
REWIND NCOPY
REWIND NT1
REWIND NT2
REWIND NT3
CALLSAVEIT
10000 WRITE OUTPUT TAPE 6, 10020
REWIND NMULT
REWIND NCOEF
REWIND NCOPY
REWIND NT1
REWIND NT2
REWIND NT3
CALL DUMP
100200FORMAT(1HI'123HEITHER A MACHINE ERROR HAS OCCURRED OR THERE IS AN
    1 ERROR IN SUBROUTINE GAUSS OR ITS ASSOCIATED SUBROUTINES. DUMP HA
    2S BEEN/1H,29HCALLED TO TERMINATE THIS JOB.)
        E N D
```

```
    SUBROUT I NE SAVE I T
            CALLCHAIN(3,B3)
        FNIN
    SUBROUTINF RSTART(NRUN)
            NRUN = ?
            RETURN
        END
    SUBROUTINE MDIVI)(N,NA,IMAX,A1,A2)
SUBROUTINE REDUCE(N,NA,IMAX,A1,A2,AM1,AM2)
THIS SUBROUTINE PERFORMS THE REDUCTION OF ONE COLUMN WITH ONE COLUMN OF MULTIPLIERS. THE NECESSARY INTERCHANGE I S PERFORMED.
DIMENSION A1 (500), A2(500), AM1 (500), AM2 (500)
\(K A=N A\)
\(K\) M AX \(=\) IMAX
\(T 1=A 1(K M A X)\)
\(T 2=A 2(K M A X)\)
\(A I(K M A X)=A 1(K A)\)
\(A 2(K M A X)=A 2(K A)\)
\(A 1(K A)=T 1\)
\(A 2(K A)=T \quad 2\)
\(K S=K A+1\)
DO \(100 \quad K=K S, N, 1\)
\(A 1(K)=A 1(K)-A M 1(K) * T 1+A M 2(K) * T 2\) \(A 2(K)=A 2(K)-A M 1(K) * T 2-A M 2(K) * T 1\)
RETURN
END
```

THISSUBROUTINE I S USEDI N COMPUTINGTHEDETERMINANT.OF THF MATRIX.
$T 1=D E T 1$
$T 2=D F T 2$
DET1 = T1*D1 - T2*D2
$D E T 2=T 1 * D 2+T 2 * C 1$ -
COMP $=\operatorname{MAXIF}(A B S F(D E T 1), A B S F(D E T 2))$
NADD $=$ LOGF(COMP)/0.69314718
AYPL=2.0**NADD
$D F T 1=D E T 1 / A M P L$
DET2 $=$ DET2/AMPL
NB2 $=$ NB2 + NADD
RETURN
END

SUBROUTINE BSOLVE(K,RHS1,RHS2,COL1,COL2,ANS1,ANS2)

THIS SUBROUTINE IS USED TO OBTAINTHE SOLUTION OF THE

 REDUCED SYSTEM OF EQUATIONS.DIMENSION RHS1(500), RHS2(500), COL1(500), COL2(500), ANS1(500), ANS2(500)

$$
N=K
$$

T1 = COLI(N)
$T 2=C O L 2(N)$
I $F(A B S F(T 1)-A B S F(T 2)) \quad 10,20,20$
TEMP $=T 1 / T 2$
R2 $=-1.0 /(T 2 *(1.0+T E M P * * 2))$
R1 $=-T E M P * R 2$
GOTO 30
TEMP $=T 2 / T 1$
R1 $=1.0 /(T 1 *(1.0+T f M P * * 2))$
R2 $=-T E M P * R 1$
$T 1=R 1 * R H S 1(N)-R 2 * F H S 2(N)$
T2 $=$ R1*RHS2(N) + R2*RHS1(N)
Al!Sl(N) $=T 1$
$\operatorname{ANS2}(N)=T \quad 2$
$K S=N-1$
I F(KS) $50,50,60$
RETURN
DO $80 \mathrm{~K}=1, \mathrm{KS}, 1$ RHS1 $(K)=$ RHS1 $(K)-T 1 * C O 1=1(K)+T 2 * C O L 2(K)$ RHS2(K) $=\operatorname{RHS2}(K)-T 1 * C(L 2(K)-T 2 * C O L 1(K)$
RETURN
END

```
* DOURLF PRFCISION SURROUTINF
    LBL DPRES
    COUNT 100
    ENTRY DFSET (NSYS,REMS,IMMS,RELS,IMLS)
    ENTRY DPREC
DPSET CLA* 1,4
    STD NSYS
    CCA 2,4
    ADD =1
    STA REMS1
    STA REMS?
    STA REMS3
    STA REMS4
    CLA 3.4
    ADD =1
    STA IMMSI
    STA IMMS?
    STA IMMS3
    STA IMMS4
    CLA 4:4
    ADD =1
    STA RELSI
    STA RELS2
    STA RELS3
    STA RELS4
    CLA 594
    ADD =1
    STA IMLSI
    STA IMLS2
    STA IMLS?
    STA I MLS4
    TRA 6,4
IRPRES SXA X4,4
    CLA 1,4
    ADN =1
    STA RECOLI
    STA RECOL2
    CLA 2.4
    ADD =1
    STA IMCOLI
    STA IMCOL2
    CLA* ?.4
    STO AlISI
    CLA* 4.4
    STO ANS2
    LXD =0C00001C00000,4
RFPFAT LDQ ANS1
RFCOLI FMP **,4
    STQ PROD?
    CHS 
    STO TEMP
    XCA
RELS1 UFA **,4
    UFS PROD2
    FAD TEMP
REMS2 STO **,4
REL.S2 STQ **,4
    LDQ ANS2
IMCOLI FMP **,4
    STQ PROD2
REMS3 FAD **,4
    STO TEMP
```

| RELS 3 | XCA | |
| :---: | :---: | :---: |
| | UFA | **,4 |
| | UFA | PROD? |
| | FAn | TEMP |
| REMS 4 | STO | **,4 |
| RELS 4 | STO | **,4 |
| | LDQ | ANS 1 |
| IMCOL2 | FMP | **,4 |
| | STQ | PROD? |
| | CHS | |
| IMMS 1 | FAD | **,4 |
| | STO | TEMP |
| | XCA | |
| IMLS 1 U | F A | **,4 |
| | UFS | PROD2 |
| | FAD | TFMP |
| IMMS 2 | STO | **,4 |
| IMLS 2 | STO | **,4 |
| | LDQ | ANS 2 |
| RECOL2 | F M P | **, 4 |
| | $\begin{aligned} & \text { STQ } \\ & \text { CHS } \end{aligned}$ | PROD2 |
| IMMS3' ${ }^{\text {F }}$ | A D | **.4 |
| | STO | TEMP |
| | XCA | |
| IMLS3U | F A | **, 4 |
| | UFS | PROD? |
| | FAD | TEMP |
| | STO | **,4 |
| IMLS4S | T Q | **,4 |
| | TXI | * +1.4 .1 |
| NSYS | TXL | REPEAT,4,** |
| x 4 | AXT | , 4 |
| | TRA | 5,4 |
| ANS 1 | PZE | |
| ANS2 | PZE | |
| PROD1 P | PZE | |
| PROD 2 P | PZE | |
| TEMP | PZE | |
| | END | |

* CHANNEL COAPATAEILITY SUBROUTINE

```
LBL CHAN COUNT CHAN
ENTRY CHAN
(NT1,NT2,NOK)
CHAN SXA X4.4 CLA* 1.4 CALL (IOS) CLA* \$(ETT) STO TEMP LXA X4.4 CLA* 2,4 CALL (105) CLA* \$(ETT) SUB TEMP
\(x 4\) AXT •4 TZE OUT CLA \(=0000001000000\) STO* 394 TRA 4,4
OUT STZ* 3:4
TRA 4:4
END
```

TEMP PZE

| * T | TAPE B | KSPACE | (NTAPE) |
| :---: | :---: | :---: | :---: |
| | COUNT | 13 | |
| | ENTRY | BSET | |
| | ENTRY | BSPACE | |
| BSET | SXA | $\times 4.4$ | |
| | CLA* | 1.4 | |
| | ADM | $=020$ | |
| | CALL | (IOS) | |
| | CAL* | \$(BSR) | |
| | STO | BSPACE | |
| $\times 4$ | AXT | . 4 | |
| | TRA | 2,4 | |
| BSPACE | PZE | | |
| | TRA | 1,4 | |
| | END | | |

| * | $\begin{aligned} & \text { SUBROL } \\ & \text { LBL } \\ & \text { COUNT } \end{aligned}$ | $\begin{aligned} & \text { INE READA } \\ & \text { READA } \\ & 63 \end{aligned}$ | |
| :---: | :---: | :---: | :---: |
| | ENTRY | QSETA | (NTAPE,N,NRET,IQUIT) |
| | ENTRY | READA | (NREAD,A1,A2) |
| | ENTRY | RCHKA | |
| RSETA | SXA | X4,4 | |
| | CAL* | 1,4 | |
| | ACL | $=020$ | |
| | CALL | (105) | |
| | LDQ* | \$(TRC) | |
| | SLQ | TRC | |
| | LDO* | S(TCO) | |
| | SLQ | TCO | |
| | LDQ* | S(RCH) | |
| | SLQ | RCH | |
| | CAL* | \$(RDS) | |
| | SLW | RDS | |
| | STA | BSR | |
| x 4 | AXT | , 4 | |
| | CLA* | 2,4 | |
| | ARS | 18 | |
| | SUB | $=1$ | |
| | STO | TEMP | |
| | CLA* | 3,4 | |
| | STA | NRET | |
| | CLA | 4.4 | |
| | STA | $1001 T$ | |
| | TRA | 5.4 | |
| READA | CLA* | 194 | |
| | STD | RIO | |
| | STD | RIO+1 | |
| | CLA | 2,4 | |
| | SUB | TEMP | |
| | STA | RIO | |
| | CLA | 394 | |
| | SUR | TEMP | |
| | STA | R10+1 | |
| RDS | PZF | | |
| RCH | PZE | RIO | |
| | TRA | 4,4 | |
| RIO | IOCP | **, ,** | |
| | IOCD | **, ${ }^{* *}$ | |
| RCHKA | STZ | NBAD | |
| TCO | PZE | * | |
| TRC | PZE | ERROR | |
| | TRA | 1,4 | |
| ERROR | SXA | S4,4 | |
| | LXD | NEAD, 4 | |
| | TXI | * $+1,4,1$ | |
| | TXH | QUIT, 4,5 | |
| | SXD | NBAD, 4 | |
| BSR | BSR | ** | |
| | XEC | RDS | |
| | XEC | RCH | |
| S4 | AXT | **, 4 | |
| | TRA | TCO | |
| QUIT | CLA | =0000002000000 | |
| IQult | STO | ** | |
| | CAL | RDS | |
| | STA | * +1 | |
| | REW | ** | |
| NRET | TRA | ** | |
| NBAD | PZE | | |
| TEMP | PZE | | |
| | END | | |

| * | SUBPOUT | NF WRYTFR | |
| :---: | :---: | :---: | :---: |
| | LBL | WRITFB | |
| | COUNT | 80 | |
| | ENTRY | WSFTR | (NTAPE,N,NRET,IQUIT) |
| | ENTRY | WRITFB | (NWRITE,A1, A2) |
| | ENTRY | WCHKR | |
| WSETB | SXA | $\times 4,4$ | |
| | CAI. * | 1.4 | |
| | ACL | $=020$ | |
| | CALL | (10.5) | |
| | LDO* | \$(TRC) | |
| | SLO | TRC | |
| | LDO* | \$(TCO) | |
| | SLQ | TCO | |
| | LDO* | S(RCH) | |
| | SLO | RCH | |
| | CAL* | \$(ETT) | |
| | SLW | FTT | |
| | SLW | ETTOFF | |
| | CAL* | \$(WRS) | |
| | SLW | WRS | |
| | STA | RSR | |
| x 4 | AXT | , 4 | |
| | CLA* | 2.4 | |
| | ARS | 18 --. | |
| | SUR | $=1$ | |
| | STO | TEMP | |
| | CLA* | 3.4 | |
| | STA | NRET 1 | |
| | ST A | NRET2 | |
| | CLA | 4.4 | |
| | STA | IQUIT1 | |
| | STA | 1QUIT2 | |
| FTTOFF | P ZF | | |
| | NOP | | |
| | TRA | 5,4 | |
| WRITEB | CLA* | 1.4 | |
| | STD | W10 | |
| | STD | W10+1 | |
| | CLA | 2,4 | |
| | SUB | TEMP | |
| | STA | WIO | |
| | CLA | 3.4 | |
| | SUB | TEMP | |
| | STA | $\mathrm{WIO}+1$ | |
| ETt | P ZF | | |
| | TRP | SHORT | |
| WRS | PZE | | |
| RCH | PZF | w I 0 | |
| | TRA | 4.4 | |
| WIO | IOCP | **, ** | |
| | IOCD | **.,** | |
| SHORT | CLA | $=0000003000000$ | |
| IQUI TI | STO | ** | |
| | CAL | WRS | |
| | STA | *+1 | |
| | REW | ** | |
| NRET1 | TRA | ** | |
| WCHKB | ST7 | NRAD | |
| TCO | PZE | * | |
| TRC | PZF. | FRROR | |
| | TRA | 1,4 | |
| ERROR | SXA | \$4.4 | |

| | LXN | NBAD, |
| :--- | :--- | :--- |
| | TXI | $*+1,4,1$ |
| | TXH | QUIT, 4,10 |
| | SXD | NEAD, |
| BSR | BSR | ** |
| | XEC | WRS |
| | XEC | WRS |
| | XEC | WRS |
| | XEC | RCH |
| 54 | AXT | $* *, 4$ |
| | TRA | TCO |
| QUIT | CLA | $=0000001000000$ |
| IQUIT2 | STO | $* *$ |
| | CAL | WRS |
| | STA | $*+1$ |
| | REW | $* *$ |
| NRFT2 | TRA | $* *$ |
| NBAD | PZF | |
| TEMP | PZE | |
| | END | |

| * | SURROU | FFEADC | |
| :---: | :---: | :---: | :---: |
| | LBL | RFADC | |
| | COUNT | 62 | |
| | ENTRY | RSETC | (NTAPE,NRET-IQUIT) |
| | ENTRY | READC | (NRFAD,A1, 2) |
| | ENTRY | RCHKC | |
| RSETC | SXA | X4,4 | |
| | CAL* | 1,4 | |
| | ACL | $=020$ | |
| | CALL | (IOS) | |
| | LDO* | \$(TRC) | |
| | SLO | TRC | |
| | LDQ* | \$(TCO) | |
| | SLQ | TCO | |
| | LDO* | S(RCH) | |
| | SLQ | RCH | |
| | CAL* | \$(RDS) | |
| | SLW | RDS | |
| | STA | RSR | |
| x 4 | AXT | , 4 | |
| | CLA* | 2,4 | |
| | STA | NRET | |
| | CLA | 3,4 | |
| | STA | IQUIT | |
| | TPA | 4.4 | |
| READC | CLA* | 1,4 | |
| | STD | R 10 | |
| | STD | R10+1 | |
| | ARS | 18 | |
| | SUB | $=1$ | |
| | STO | TEMP | |
| | CLA | 2,4 | |
| | SUB | TEMP | |
| | STA | R10 | |
| | CLA | 3,4 | |
| | SUB | TEYP | |
| | STA | R10+1 | |
| RDS | PZE | | |
| RCH | PZE | R10 | |
| | TRA | 4.4 | |
| RIO | IOCP | **, \#** | |
| | IOCD | **, *** | |
| RCHKC | STZ | NRAD | |
| TCO | P ZF | * | |
| TRC | PZE | FRROR | |
| | TRA | 1.4 | |
| ERROR | SXA | S4,4 | |
| | LXD | NBAD, 4 | |
| | TXI | * $+1,4,1$ | |
| | TXH | QU1T,4,5 | |
| | SXD | NBAD, 4 | |
| BSR ${ }^{\text {d }}$ | BSR | ** | |
| | XEC | RDS | |
| | XEC | RCH | |
| s 4 | AXT | **, 4 | |
| | TRA | TCO | |
| QUIT | CLA | $=0000002000000$ | |
| IQUIT | STO | ** | |
| | CAL | RDS | |
| | STA | * +1 | |
| | REW | ** | |
| NRET | TRA | ** | |
| NBAD | PZE | | |
| TEMP | PZE | | |
| | END | | |

| * | SUBRCUT | NE 'NRITEC | |
| :---: | :---: | :---: | :---: |
| | LB1 | WRITFC | |
| | COUNT | 79 | |
| | ENTRY | WSFTC | (NTAPF,NRET, IQUIT) |
| | ENTRY | WRITEC | (NWRITE,A1,A2) |
| | ENTRY | WCHKC | |
| WSETC | SXA | $\times 4,4$ | |
| | CAL" | 1,4 | " |
| | ACL | $=020$ | |
| | CALL | (IOS) | |
| | LDQ* | \$(TRC) | |
| | SLO | TRC | |
| | LDQ* | \$(TCO) | |
| | SLQ | TCO | |
| | LDQ* | \$(RCH) | |
| | SLQ | RCH | |
| | CAL* | \$(ETT) | |
| | SLW | ETT | |
| | SLW | ET TOFF | |
| | C AL* | \$ (WRS) | |
| | SLW | WRS | |
| | STA | BSR | |
| x 4 - | AXT | , 4 | |
| | CLA* | 2,4 | |
| | STA | NRET1 | |
| | STA | NRET2 | |
| | CLA | 3.4 | |
| | STA | IQUIT1 | |
| | STA | IQUIT2 | |
| ETTOFF | PZE | | |
| | NOP | | |
| | TRA | 4,4 | |
| WRITEC | CLA* | 1,4 | |
| | STD | W10 | |
| | STD | W10+1 | |
| | ARS | 18 | |
| | SUB | $=1$ | |
| | STO | TEMP | |
| | CLA | 2,4 | |
| | SUB | TEMP | |
| | STA | WIO | |
| | CLA | 3,4 | |
| | SUB | TEMP | |
| | STA | W10+1 | |
| ETT | PZE | | |
| | TRA | SHORT | |
| WRS | PZE | | |
| RCH | PZE | WIO | |
| | TRA | 4,4 | |
| WIO | IOCP | **, *** | |
| | IOCD | **, *** | |
| SHORT | CLA | =0000003000000 | . |
| IQUITI | STO | ** | |
| | CAL | WRS | |
| | STA | *+1 | |
| | REW | ** | |
| NRET 1 | TRA | ** | |
| WCHKC | STZ | NBAD | |
| TCO | PZE | * | |
| TRC | P ZF | ERROR | |
| | TRA | 1.4 | |
| ERROR | SXA | S4,4 | |
| | LXD | NBAD. 4 | |

| | TXI | *+1,4,1 |
| :---: | :---: | :---: |
| | TXH | QUIT,4,10 |
| | SXD | NBAD,4 |
| QSR | RSR | ** |
| | XEC | WFS |
| | XEC | WRS |
| | XEC | WF.S |
| | XEC | RCH |
| 54 | AXT | **,4 |
| | TRA | TCC |
| QUIT | CLA | =0000001000000 |
| loul T2 | Sto | ** |
| | CAL | WRS |
| | STA | *+1 |
| | REW | ** |
| NRFT 2 | TRA | ** |
| NBPD | PZE | |
| TEMP | PZE | |
| | END | |

