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Abst r act

The gradient projection nethod has been applied to the problem of
obtaining the elastic-plastic response of a perfectly plastic ideal truss
with several degrees of redundancy to several independently varying sets of
quasi-static loads. It is proved that the nininization of stress rate
intensity subject to a set of yield inequalities is equivalent to the
maxi m zation process of the gradient projection method. This equival ence
proof establishes the basis of the conputational nethod. The technique is
applied to the problem of investigating the possibilities of shake down and
to limt analysis. A closed convex "safe |oad domain" is defined to represent
the |oad carrying capacity characteristics of a truss subjected to various

conbi nations of the several sets of | oads.
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Gover nnent.







1. [ ntroduction

This paper is concerned with the elastic-plastic analysis of trusses
by nmeans of the gradient projection nethod of nonlinear programming which
has been devel oped by one of the authors [4 5] It is a method of obt aining
the gl obal maximum of a nonlinear concave function in a convex region defined
by linear or nonlinear constraints. |n this paper, however, the application
of the nethod is restricted to the case of linear constraints

The geonetrical representation of a state of stress given by Prager
enabl es one to represent a change of state of stress in a truss as an
infinitesimal vector in a convex yield polyhedron defined in a stress space.
The mninum principle of Greenberg [1]is interpreted in this geonetrica
context. It is proved that the infinitesimal response vector obtained by
use of the mninum principle is identical with that described by the
maxi m zation process of the gradient projection nethod, provided that the
objective function is so chosen that the gradient vector always coincides
with the direction determned by the increnents of the load factors. The
equi val ence proof establishes the basis for the application of the conputational
nethod. The technique is illustrated by neans of a sinple exanple.

If the prescribed |oading path is piecew se linear, the nunber of
maximzation steps is equal to the nunber of segments of the path, regardless
of the degrees of redundancy of the truss., Because of this fact, we can
readily investigate the possibilities of shakedown [3,6,7] if a |oading cycle
is prescribed or if it can be assumed that all the variations of the applied
| oads are bounded by a polyhedron or by a parallelopiped. A practica
exanple is studied in detail to illustrate the technique. The results

obtained from GP are shown to he identical with those which can be obtained




graphically for this relatively sinple case The load carrying capacity
nmust be defined with respect to a particular conbination of the applied |oads
A set of all the load carrying capacities defines a closed convex "Safe Load
Domain".  This may be obtained by the G procedure

It is expected that this conputational technique can be applied to
frame structures. In this case an infinite nunber of yield strips are
obtained corresponding to an infinite nunber of cross-sections of the nembers
of a frame. Each yield strip represents the yield condition for a particular
cross-section. The fact that nost collapse modes of frames consist of a
finite nunber of plastic hinges inplies that even if continuously distributed
| oads are applied to a frame, the corresponding yield conditions can be
represented by a polyhedron and not by a smooth convex hypersurface
Therefore we have again linear constraints and the gradient projection method

can bhe used wthout nodification.

2. Geonetrical Representation of State of Stress

The geonetrical representation of a state of stress as given by Prager
(2, 3] is introduced here in a generalized formto prepare for the ensuing
- di scussi on
An ideal truss is conposed of n bars of elastic-perfectly-plastic
materials. It is assuned that the velocities of settlenment of the supports
are-all zero. Let f be the nunber of reactions and h the nunber of
joints. Suppose there are s sets of loads characterized by s independent

load factors {¢.} in the form

{gl Pu}’ {52 PQI}"”"{ES Psl}
(2.1)




acting upon the given ideal truss. Then the equations of equilibriumform

an inhomogeneous system of l|inear algebraic equations of the form

n+f s
Y e Sy = _E E. Dy, (¢ = 1,2,...,2h) (2.2)
k=1 =1

where Sl, Sysnees8) denote the internal forces in the bars, Sn+l,“.,sn+f,

the reactions at supports and b, P, mul tiplied by a direction cosine,

il

The coefficients 8, ae essentially the direction cosines of the kth
bar. Unknown quantities are {Sk)(k = 1,2,...,n4f).
If ntf-2h = r > 0, then the set {Sk} is not uniquely determned by

(2.2) and the truss has r degrees of redundancy. Let

(Slj], [Sej}...u{ssgl
by a set of s particular solutions of the s inhonmogeneous systems the
ith of which is obtained by replacing the right-hand side of (2.2) by the

ith inhomobgeneous term {bil} and
{le}, {jo),...,{Rrj],

a set of r linearly independent solutions of the honbgeneous equation
obtained from (2.2). Athough (2.2) cannot have a unique solution, any
solution of (2.2) nust be contained in the general solution given by a |inear
conbi nation of s linearly independent particular solutions [Sij]and r
linearly independent solutions {Rkj} of the honbgeneous system obtained

from (2.2).




(3 = 1,2,...,ntf).

where s are arbitrary parameters. The particular solution (sij] can
be obtained by inposing r additional conditions on deformation that the
truss responds elastically under the particular set of |oads (bil} (£ = 1,2,...,2h).

Thus [Sij) represents an elastic state of stress. (R .} 1is obtained by

kj
considering the statically determnate structure which can be produced by
replacing r redundant forces by a set of known forces. {Rkj] then represents
a state of self-stress.

It is always possible[2]by form ng |inear conbinations of [sij] or {Rkj}

to construct an orthonormal set of (s+r) solutions in the sense

10
~ a S . S . = o} .
2j§l J kj id ki
1 n
= S ., =0 2.4
5 jzi %35 P15 Vg (2.%)
n
1
= a. R,.R. =5
Qng e om Im
(x, i =1,2,...,8; L, m=1,2,...,r)
|. . .
wher e o =g JA s tj denoting the length of bar j, A.J Its cross-section
J J
and E.J its elastic nmodulus, and where Ski and 5£m are Kronecker delta's,

It is to be understood in the follow ng that [Sij) and {Rkj} denot e
elements of this orthonormalized set where j varies froml1l to n. The
original load factors can then be expressed by linear conbinations of the

gi's for this orthonormalized set.




The elastic strain energy corresponding to the set of internal forces

{SJ.] given by (2.3) is defined by

1 2
€ =% E a, S,
] E
Lo tf hoy e Eonng®
== a, [ E. S.. + . R .1
2j=l b T S ] k "kJ
By virtue of the orthonormality (2.4), (2.5) is reduced to
S L2
z l + E T]k <2°6)

k=1

Wth this preparation, we can now make use of the concept of "s-tress
space.” Any solution {SJ.}, and the corresponding strain energy, is

conpletely determned by the set of parameters

(gl’§2"“’§8; LERRRERE :T]I.) (2.7)
as shown by (2.3) and (2.6). If we consider an (s+r)-dinmensional stress
space whose Cartesian coordinates are 3L SRR Y R IPL PYRRRRL WP then

any state of stress of the truss can be represented by a point in this space.
Any state of loading is then represented by the set (gl,ge,..,.,gs) whi | e
any state of residual stress by (nl’“z’“"’"r)'
Since all the bars are assumed to be conposed of perfectly-plastic
materials, the corresponding yield conditions nust be satisfied. The

condition that the stress in any bar should not exceed the yield limt can

be witten




k=1 (2.8)

wher e cj and tj denote the yield limts of bar j in conpression and
in tension, respectively. Each one of the n inequalities in (2.8) defines
a strip between two hyperplanes. The set of all the inequalities define a
convex polyhedron in (s+r)-dinensional stress space as the common region

of all the yield strips. Therefore, only the set of points on or inside

the yield polyhedron can represent actual states of stress.

3. Ceonetrical Interpretation of the Mninmum Principle.

The mninmum principle of Geenberg [1] is expressed in the geonetrical
terms according to Prager [3] to prepare for the later use in Section 4.

In order to obtain the response of a given truss to a particular
| oading program (s-1) relations between s load factors nust be prescribed

resulting in a "loading path" in the s dinensional |oad factor subspace.

Let a vector

de = (dg, at,,....,de )
define a set of infinitesimal changes of load factors from an instantaneous
state of |oading (gl,g2,,__,,gs), 3§ being a tangent vector to the |oading
path. Corresponding to this change is an infinitesiml translational

di spl acenent of the r-dinensional subspace of equilibrium The corresponding
new state of stress nmust be represented by a point in this displaced subspace

of equilibrium If we consider a |local coordinate axis ¢in the direction

of E’g at a stress point denoted by




—}?z (§11§2}"‘°)§S; nl)n2)"'inr))

and an (r+l)-di mensional cross-section of the yield polyhedron spanned

by £, Mys....,m, axes, then any stress change due to d¢ can be represented

by a vector

Ix = (at, dnl,,...,dnr).
wher e dn , dnyseensydn denote the variation in s Moy eeeesm,, cor respondi ng
to de. The problemis then to determine dx which does not violate the yield
conditions (2.8).

The quantity ternmed as stress rate intensity by Geenberg may be
witten as

2

he = d§2 + dni +....+dnr

(3.1)
= idl?

Since the new stress point nmust lie in the displaced subspace of equilibrium

(a hyperplane in E and in the yield polyhedron, a vector dx is said

r+l)
to be admissible if the point X + d2 is in the displaced hyperplane of
equi | i brium bounded by the yield polyhedron. Adnmissible vectors form a
fam |y any one of which can represent an admissible stress change. The
mninum principle can be stated as follows: For a given 52, the actua
stress change is given by the vector which mninmzes the absolute val ue of
dx anong all the adm ssible vectors. In other words, we wish to obtain the

shortest distance froman initial point to the intersection of the equilibrium

hyperpl ane and the yield pol yhedron




4, Equi val ence Theorem

The use of the gradient projection (G°) method is based essentially
on the fact that in GP the global naxinumis sought by cutting across the
interior of the convex region of definition, if possible. It is proved in
this section that the stress change dx obt ai ned by use of the m nimm
principle stated above exactly coincides with the vector determned by GP,
provided that the objective function F is chosen so that the gradient
vector is always in the direction of the tangent to a prescribed |oading
pat h.

A hyperplane of equilibriumis expressed by

H : ¢ = const. (k.1)
The afore-mentioned condition will be satisfied if F is defined by

F=t¢ (k.2)
in the local coordinate system  Then

grad F = g = (1, 0,...,0) (4.3 )

(o]
and

e = ae g’o (L. 4)
The following prelimnary results are required for the equival ence
proof. Gven an myx n real matrix Awe let the finite set [Ai}

represent all submatrices which can be formed with linearly independent




colums of A For each such A, we can formthe myx m projection
matri x P, = | - Ai(Ai Ai)'l Ai, whi ch takes any mdinensional vector into
the space orthogonal to that spanned by the col ums of A Ve | et

P= [Pi,l] be the finite set of all P, and the myx midentity matrix.

Lemma

G ven an mdinensional vector g and the convex cone A x >0, the
gradient projection algorithmwll formthe projection matrix P, ¢ P,  such

t hat

e, ell - Pr;e;xP<HPigH ‘A’Pig > o} (k.5)

The proof follows directly from equation (4.48) in reference [5], which
shows that an appropriate basis change is made whenever such a change will
increase the norm of the projected gradient, subject to the feasibility
restriction.

The mninmum principle [1] for the elastic-plastic truss can be stated
as that of finding a vector x which satisfies the follow ng quadratic

programm ng probl em

mn {x'x | A'x > 0, g'x = 1} (4.6)

The colums of A represent the active constraints of the yield pol yhedron
at the point considered, and g is a normal vector to the equilibrium
hyper pl ane H, . The desired stress change dx is then given by dx = xdt.

Equi val ence Theorem

1f P& is the solution of (4.5), then x = aP,g is the_solution

of (4.6), where a >0 is a scalar.




Proof: Ve consider all the possible projection matrices P, eP, and | et
Xy = aiPig. In order to satisfy g X = 1, we require
2 -2
o8'Pg = o [Pel” =1, or o =I[Pel "
Then xix, = uPigW% so that the value i =t which maxinizes [Pl

in (4.5) also gives the desired minimumin (4.6)

5, Thr ee-bar truss.

A truss consisting of three bars shown in Figure 1 is subjected to a
vertical varying load P. Let the internal forces transmtted by the bars 1
(or 3) and 2 be s; and S,, and the tensile rigidity (4;/AE) beland 2
for sinplicity.

The equation of equilibriumis witten as

S. +8 =P (5.1)

and the conpatibility equation

P
s, =2,8, =% (5-3)

the normalized set is

1 1
{Sll’SlQ] = [ﬁ ) ﬁ} (54)

The state of self-stress is shown in Figure 2. After nornalization, we obtain

. 1
(Ry1s Bpps = {ﬁ B (5.5)

thus a typical state of stress can be written

10




Figure 1. THREE-BAR TRUSS

Figure 2.STATE OF SELF-STRESS
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S_ae-'.+ﬂ

1 /2
s - £ _ 1
For the sake of sinplicity, let the yield limts of the bars |(3) and

2 be +,2 and + respectively. Then the yield conditions are

ONd e

_2<E+n<2
(5.7)
-1<¢g-1n<1

The feasible [_egi on Ris deternmined by the yield conditions (5.7) and
the lines of equilibrium Figure 3 shows the yield polygon (Hl, H,, By Hh)’
the upper and |ower extreme val ues of the load factor ¢ (HS' H6) and the
correspondingly inward drawn unit vect or'§1 n. (i =1,2,...,6). The objective
function is F = ¢ whose contour lines are a famly of equally-spaced
parallel dotted lines which are the lines of equilibrium themselves.

Consi der the |oading and unloading process given by
t: 0 -14500-5-1.2 50 1.k (5. 8)

The initial point is the origin with the gradient lé’ol = 1.0. The largest

permitted step length in the direction of go W thout leaving Ris to H .

-

The projection P.g) is shown in the Figure 3, where P I's the corresponding
projection matrix to H. Since Pg, —(2,2) the new direction

- - - . . —_
z, = Plgl/|Plgl| is IB. The | argest step length is to H, giving

2 = é’o as shown. At this point B, the projection of g, on K becones

12




H,

X2=n

Figure 3. THE YIELD POLYGON
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zero because H5 is one of the contour lines. Thus at B the maxi mum
of F=¢ is achieved first. The conputer describes exactly the path
52\, BB whi ch represent the actual response of the truss. It should be
noted that the conmputer stops at the point B where the maximum first
achieved although there are an infinite number of points of naxinma along H5.
For the unloading process, €, 1.4 - 0--1.2, the program nust be
started with the newinitial point B. The corresponding mathenmatical
problemis stated as fol | ows:
Maximze F = -¢
subject to the constraints &> -1.2, -t£>-1.4 and (5.7) with the
new initial point B.
Tabl es 1 &2 showtheresults obtained by GP. Theydenonstrate that the actual

response of the truss to the prescribed variation of ¢ is exactly traced

by the conmputer within the round-off errors in the last digit.

14




Table 1. Response |.

No shakedown.

X (¢) X, (n) Loadi ng
0 0 +
1 0 Loadi ng
1. 40000000 0- 39999997
-0. 60000002 0. 39999997
- 1. 20000000 -0.19999997 Unl oadi ng
0. 80000003 -0.19999997 *
1. 40000000 0.39999997 Loadi ng
Table 2.  Response II.  Shakedown.
X () X5(n) Loadi ng
0 0 +
1 0 Loadi ng
1. 40000000 0. 39999997
0- 59999999 0. 39999997 Unl oadi ng
1. 40000000 0. 39999997 Loadi ng
0- 59999999 0- 39999997 Unl oadi ng

15




6. Shakedown.

In many practical cases, the precise variations of the l|oads applied
to a structure are not known or are so conplicated that it is difficult to
prescribe them For the purpose of designing structures, certain bounds on
the working |oads can be assumed which are based on statistical data. It is
assunmed here that the variable |oads applied to the structure have a finite
peri od

The shakedown problem may be stated as follows: Consider a structure
subjected to a set of periodically varying |oads, whose bounds of variations
are prescribed. We wish to determne whether the structure will shakedown
to a state of self-stress after a finite nunber of cycles of |oading and
unl oadi ng process ;hch that its response to all further cycles becones
purely elastic. |,

An exanple will be considered first. Figure 4(a) shows a sinply
redundant ideal truss of 8 bars with 5 joints subjected to a vertical |oad
P and a horizontal load Q which vary independently. The el enents
(slj}, {ng} and [Rj] of the orthonormal stress set for the present
exanpl e are shown in Figure 4(f) and in Table 3. The original varying |oads

P and Q may then be witten as

P: L

750 2
_ 2 L
Q—J—S‘ggl +J—5—6 §2

The yield conditions for the eight menbers may be expressed as

16




.1<_.'3Ji,g gl-JE—O gz-——j- n<1
1< 3§§ N ']%5~§2"f§ n<1
2 < 3%; £ -‘ggg £, <2
2< fs e+ 0 ¢, <2
(6.1)
1< FlS £+ A - ié' n1<1 ? l
17 30 52773
1< 375'@ 51+j/§%— 52 +53 n<1
-15-1;/—5—-5- El'% §2+-§— n<l
-1 < - g?; £+ j%g £ - !%; n<l

where the yield limts of the bars are chosen as

1 fOI’ J = 1,2,5:6)7)8)

tj = |ch|_

2 for j = 3,k

This choice of tj and cj prevents the truss from collapsing due to
yielding of the bars 3 and 4 in an inconplete mode. The yield pol yhedron
for this truss is shown in Figures 5 and 6.  Suppose a conplicated peri-

odical loading path is entirely contained in a rectangular region given by

-1.5 <, < 0.5
1.2 <8, <0.1

(6.2)

i




Table 3. THE ORTHONORMAL SET OF STRESS SETS

P 513 523 B
__c _ 2
1 35 J30 23
3
| 4 L 2
5[5 {3 Fo 3
2
2 2 o2
B | & °
2 i 0
»/;5 ﬁﬁo
2 4 L b2
345 5 3
1 2 Y 2
35 /30 3
1 o |l 2
55 J30 3
1 -2 g i
3 5 3 30 3

18



fp 5 Tohr Z -

(a) The Truss - (e) The Yield Limits of Bars

4

(d) A State of Residual Stress (f3)
Figure 4
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According to the general shakedown theorem if there exists any state of
self-stress which would enable the truss to respond.in a purely elastic
manner to all further cycles of loading, then it will shakedown. In order
to show that the truss will shakedown, it suffices therefore to find only
one state of residual stress to which it mght shake down. Any purely
elastic response is characterized by the fact that the response curve is
entirely on a plane parallel to &, &, plane. Then the problem may be
concei ved geonetrically as that of inbedding the prescribed region of
| oading program into the yield polyhedron by a translational displacenent
normal to itself Only [3]). This leads us to investigate the possibility of
i mbeddi ng the rect z_ingul ar region defined by (6.2) into the yield polyhedron.
The inmbedding can be achieved if the fictitious response to the worst
possi bl e |oading cycle,which consists of the circunference of the rectangle,
shows that n beconmes a constant eventually.

In the yield pol yhedron shown in Figure 5, the response to the piecew se

linear cycle: 0 -=1=-2 53 sk 55 52

2(-1.5, -1.2)e 5(-1.5, 0.1)

1(-1.5, 0)

o(o, 0)

3(0.5,'-1.2) > 4(0.5, 0.1)

s constructed as shown by the arrows

T, 2", 2,35, 85,5; 8,8

20




X, (£)

X, (1)

X, (&)

Figure 5. NON~SHAKEDOWN CYCLE




the corresponding stepwise fornulation of the problemin terms of GP is
given in Table 4. The result given in Table 5 shows the coincidence with
that obtained graphically. The steps 5 and 6 require plastic deformation
so that the truss will not shake down if all possible arbitrary |oading
cycles in the rectangul ar region nust be‘taken into account.

In order to illustrate the case where shakedown actually occurs, the

response to the small rectangular region

13 <6 0.5

12 <E,<0.1

INA
IN

(6.3)

has been obtained as shown in Table 6. The result illustrated in Figure 6
shows that this smaller rectangular region is indeed inbedded in the
pol yhedr on.

This procedure can easily be generalized. [If a truss of r degrees
of redundancy is subjected to s sets of |oads characterized by s |oad

factors whose bounds are prescribed by
LiS§lSU-1 (i =1,2,...,s) (64)

wher e l_i and U:.L denote the |ower and upper bounds on £ respectively,
then any conceivable variation of the set [gl] is contained in the
paral | el opi ped defined by (6.4). In this case we have r n-type paranmeters
which will be denoted by Nyseeesfe A yi el d pol yhedron is then considered
in an (s+r)-dinensional stress space. Shakedown will occur under any

| oading cycle contained in the parallelipiped if it can be inbedded in the

yield polyhedron by translation normal to itself only. By virture of the

22




convexity of the yield polyhedron, it is sufficient to consider a fictitious
response of the truss to that |oading cycle which passes through all the
corners of the parallelopiped. If this response shows that all the M 'S
become constant after a finite nunber-.of cycles, then the inbedding of the
paral | el opi ped is indeed achieved and shakedown occurs, The |oading cycle
may be piecewi se linear from one corner to another. Hence the GP program
can be applied. On this basis it appears that the nunber of steps required
to show the shakedown will be at least 2° and at most 2 x 25, In the

case of the exanple, s = 2. The nunber of steps N required should be
L<N<8

Six steps were necessary for the l[oading path chosen as above.

Table 4. FORMULATION FOR THE NON SHAKEDOM CYCLE

gl—) Xl' 52") X2) T]—’ XB

3 Maxi m ze Subj ect to:
tepF_ .
- Bounds Yield Ineq. Pat h
= x >-1.5 -x > -0.5 (6.1) ~(6.16) |x, =0
-X, x, > -1.2 x> -0.1 ‘ " x = -1.5
3 X, x1|>_-1.5 X, > -0.5 \ : x, - -1.2
. ) ) | |
|1+ | X, I x2§_—1.2 -x,2>__—0.1 | X 0.5
5 ] = x, > -1.5 -x1>=-0.5 ‘ " x,= 0.1
4L x =
6 2 X > 1.2 X501 ; 115

2
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Tabl e 5.

THE RESPONSE TO THE NON- SHAKEDOM CYCLE

Step Maxi mum F x, (&) x, (&) x5 (n)
1 1. 50000000 - 1. 5000000 0 0
2 -1.5000000 -0. 71174686 0
2 1. 20000000 - 1. 5000000 -1. 20000000 0.37819922
3 0. 50000000 0. 50000000 - 1. 20000000 0.37819922
L 0. ... 0. 50000000 0. ... 0.37819922
5 -1.3474396 0.37819922
5 1. 50000000 - 1. 50000000 0. ... 0.185223 9C
6 -1.50000000 -0.95086989 .. 1852239¢
6 1. 20000000 - 1.50000000 -1. 20000000 0.3781992%
Table 6. FORMULATI ON FOR A SHAKEDOWN CYCLE
Step Maxi m ze Subj ect to: .
F = Bounds Yield Ineq. Pat h
1 - Xy X, > -1.3 -x, > -0.5 (6.1) ~ (6.16) X, =0
2 % x,>-12 x> 0.1 - x, _ L5
3 x; xl>-1.3 -xl>-0.5 " x, = -1.2
4 X, x2>-1.2 -x2>-0.1 " x, = 0.5
) X xl>-1.3 -xl>-0.5 " x, = 0.1
6 X x, > -1.2 -x, > -0.1 " xl:-1.5
Table 7. THE RESPONSE TO THE SHAKEDOWN CYCLE
Si:ep Maxi mum F Xy (51) X, (52) 5 (n)
1 1. 30000000 -1..30000000 0 0
2 1. 20000000 - 1. 30000000 -1. 20000000 0.25170814
3 0. 50000000 0. 50000000 -1. 20000000 0.25170811+
L 0.09999999 0. 50000000 O . ... 0.25170814+
5 1. 30000000 -1..30000000 e 0.25170814+
6 1. 20000000 -1..30000000 - 1. 20000000 0.25170814+

2k
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To investigate more extensively under what kind of |oading cycles the
given truss will shake down, it is necessary to know the shapes of the
el astic subspaces defined by n = cons-t. i.e., cross-sections of the yield
pol yhedron parallel to FEA plane. Responses of the truss are characterized
by a famly of an infinite nunber of elastic subspaces to which the truss
coul d shake down. Since the original yield polyhedron is convex, these
el astic subspaces are convex polygons. W& will tentatively call any of these
pol ygons a "shakedown polygon". Any loading cycle under which the given
truss will shake down nust therefore be contained in one of this famly of
an infinite nunber of shakedown polygons. For practical purposes, severa
shakedown polygons will be sufficient to reveal the shakedown characteristics
of a truss. If mé‘can draw them by some means, then it can be inmediately
inspected whether or not a given loading cycle or region can be inbedded
into the yield polyhedron, or how it may be enlarged or should be shrunk, if
the truss is to shake down.

In the present exanple it is not difficult to obtain these shakedown
pol ygons graphically since there are only eight inequalities as given by
(6.1). However, as the number of bars increases, the graphical solution
) becomes cunbersome. Furthernore, if the truss has r degrees of redundancy

then a shakedown polygon is an intersection of the yield polyhedron (Er+2)

and r hyperpl anes given by
n, = const., N, = const,...... >, = const.

where the truss is subjected to two independently varying sets of |oads.
These shakedown pol ygons can easily be obtained by use of the GP as

follows. Since any shakedown polygon is convex, it is always possible to
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circunscribe it by a rectangle as shown in Figure 7. There are, in general
four points of contact with the rectangle or some of the sides of the polygon
may coincide with those of the rectangle. Then it is obvious that the

following five steps of maximzation suffice to describe the polygon com

pletely
L omx. F, o= £ with the initial point 0
1»2: mx. F, = ¢, " > 1
2-3: mx. 35 =-§ " , 2
3- 4: max. F, = =& ! , 3
bos1: max.  Fg o= g . , b

As long as the truss is subjected only to two independently varying | oads,
Fl, F2,...,F5 remain the same through all the shakedown pol ygons of the
famly. Only the right-hand sides of r equality constraints {ni = const. )}
are changed. The results fromthe GP program give all the vertices of the
polygons. If the nunber of independent |oad factors is greater than two,

then this technique cannot be used because it is very difficult to describe

all the vertices of a conplicated pol yhedron by neans of GP.

7. Load Carrying Capacity and Safe Load Domain.

If a structure is subjected to a set of |oads characterized by only
one load factor, then the corresponding |oad carrying capacity is uniquely
defined. However, if it is subjected to s sets of l|oads characterized
by s independently varying load factors [gl], then the set [gi] at
col | apse depends upon the prescribed loading path. |In order to obtain all

the sets [gi] at collapse, it suffices to consider a famly of straight

line paths defined by
o7
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wher e (ml’“b’--'w’ms) is a set of numbers which determne the ratios

bet ween £, 's. This famly covers the s-dinmensional |oad factor subspace
conpletely. To every one of these paths there corresponds a set (gl,ge,.”,gs)
at collapse. Al these sets (51’52"°')§S) form a closed hypersurface in
the s-dinensional |oad factor subspace. Since this hypersurface can be
regarded as a projection of the yield polyhedron into the s-dinensional |oad
factor subspace, it nust be a convex polyhedron in E,. This will be called
the "safe |oad dongin". This domain is characterized by the property that
any conbination of the s sets of |oads represented by a point interior to
it does not cause collapse if the loads are nonotonically increased from
zero. This can easily by obtained by the GP method since some equality
constraints have only to be added.

It should be noted that if we denote an igfinite nunber of regions of
shakedown pol ygons by Dl’De’”"Dm’ ..... then the union Dl LIDQIL..UDﬁU.“
gives a safe load domain approxinmated frominside i.e., from safe side.

In the case of the exanple, since there are two load factors all the
ratios gl/g2 nust be considered. By virtue of the symetry of the yield
pol yhedron, we have only to consider a famly of straight Iine paths
originating fromthe origin which cover a half £ & pl ane conpl etely.

The safe load domain in this case is a polygon and practically severa

straight line paths suffice to draw the polygon. The result is shown in

Figure 8.
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Figure 7. SHAKEDOWN POLYGON
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Figure 8.SAFE LOAD DOMAIN
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8.  Concluding Renarks.

An application of the gradient projection nmethod of nonlinear
programmng to the elastic-plastic analysis of trusses has been shown to be
straightforward and fruitful. It should be enphasized that as long as
| oadi ng paths are piecewi se linear, G automatically gives integral results
for every segment of the paths and the exact elastic-plastic responses of
mul tiply redundant trusses to several independently varying |oads can
readily be obtained by GP

It has also been shown that the gradient projection nmethod is usefu
and powerful to investigate shakedown and |oad carrying capacities of
trusses. Frame structures can be treated in the same nmanner as trusses
without nodification. In the case of a frame, it is expected that we have
an infinite nunber of yield inequalities corresponding to an infinite number
of cross-sections of its menbers. However, since nost of the collapse nodes
of frames contain a finite nunber of plastic hinges, it appears that we
shoul d expect to obtain yield polyhedrons rather than smooth convex
hypersurfaces. Hence those |inear constraints make it possible to use the

sanme technique as above.
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