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A FAST DI RECT SOLUTI ON OF PO SSON S EQUATI ON
USI NG FOURI ER ANALYSI S*
by
R W Hockney
Abstract.

The demand for rapid procedures to solve Poisson's equation has |ead
to the devel opment of a direct nethod of solution involving Fourier anal ysis
whi ch can sol ve Poisson's equation in a square region covered by a 48 x 48
mesh in 0.9 seconds on the I1BM 7090. This conpares favorably with the best
iterative nethods which would require about 10 seconds to solve the sane
probl em

The method is applicable to rectangular regions with sinple boundary
conditions and the maxi mum observed error in the potential for severa
random charge distributions is 5 x 107 of the maxi mum potential change in
the region

1. [ ntroduction.

In many engineering problens concerning plasnas, electron tubes and
ion guns, it is desired to follow the notion of nunerous electrostatically
interacting charged particles in two dinensions. |If the region involved is
divided into a |arge nunber -of cells, and the velocity and position of each
charged particle is recorded, then this sinmulation of space charge flow may

be performed stepwise in tine as follows:

*First presented to the Denver neeting of the A.C M August 1963.
Applications of the method to the Conputer Sinulation of Plasma phenonina
have been reported tothe San Di ego nmeeting of the A P.S. Novenber 1963 and
to the Plasma Instabilities nmeeting at Berkeley April 1964.




1. The charge distribution;

At the beginning of each tine step the position of each particle
is examned and the charge of each particle is associated with the center
of the cell in which the particle resides.

2. The potential;

The charge distribution found in step 1 is used as the source
termor right-hand side of Poisson% equation, the solution of which gives
the electrostatic potential in the region

3. The acceleration,

The potential distribution found in step 2 is differenced to
give an approximation to the electrostatic field acting on each particle
This field is then allowed to accelerate each particle individually for a
short tine interval. The new position and velocity of each particle is
recorded and the cycle repeats at step 1. The description is thus anal ogous
to the projection of a notion picture.

For such a sinulation to be useful it is necessary to follow
several thousand particles through several hundred time-steps and this
means that the overall cycle time nust be reduced to a few seconds or |ess.

The acceleration of all the particles is a sinple calculation
and can be performed in about-a second on the |BM 7090%. The sol ution
of Poisson's partial differential equation in step 2 is nore difficult but
it is clear that the solution nust be obtained in about the sanme tine if

the sinulation is to he useful

* Conputation times given in this paper will be for this machine except
where specified,




H thertoo the tendency has been to use iterative nmethods to
solve such an elliptic equation. Theoretical estimates of the conputing
time for the best iterative methods,namely the two [ine cyclic Chebyshev
(2LCCO) and Alternating Direction Implicite (ADI) methods, have been made whi ch
conpare well with the experinental results of Hageman [1] and Price and
Varga [2].

These lead to solution times of 10 secs, 30 secs and 60 secs for
respectively ADI, 2LCC and SOR nethods when applied to a 48 x 48 square
mesh and an error reduction of 1075

These solution times are thus roughly 10 times too slow for this
application.

The iterative nethods of solution named above are very general
and can be used to solve Poisson's equation in systems with conplicated
el ectrode shapes and boundary conditions. |n Plasma applications however,
where the behavior of the space charge distribution is of primry
importance, it is often permssible to sinplify the boundary conditions in
order to obtain a faster solution.

In this paper we describe an alternative direct nethod of
solution which takes advantage of this simplification,is applicable to
a certain class of inportant problems,and iS 10 tines faster than the best
iterative nethods so far reported.,

2. Mdtivation and Discussion.

The problem to be discussed is the solution of Poisson's equation in
a rectangul ar domain where the boundary conditions are given on the
perineter of the domain only. The boundary conditions may be Dirichlet,
Neumann or periodic (conbination being permtted provided that the sane

type of condition pertains along the total length of any side). The
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nethod shows to best advantage in (x,y) cordinates and we shall consider

this case and take the boundary conditions to be zero potential around the

peri met er
% have
2 2
d ;P(}ZC)Y) + ) Cg(;:Y) - p(x,y) 0 <x S ) (l)
X J O0<y<m
o(x,y) =0 for x =0, a ory=0 m

2.1 , Fourier Analysis.

The boundary conditions allow o(x,y) to be expanded in a Fouri er
series in either the x direction, vy direction or as a double Fourier
series in both directions A double Fourier expansion was suggested as
|l ong ago as 1952 by Hyman (7] and is essentially the nethod of Tensor

~ Products reported recently by Lynch et al [8]. However the determnation
of Fourier coefficients is a tinme consuming job on a conputer and we have
found that the fastest conputer programme is obtained if we expand in
only one direction and choose this to be shortest. Let this be the x

direction then the expansion is

°(5,7) = L 7 () sin I (2)

and simlarly for p(x,y) where 5k (y) is the Fourier anplitude of the
kth harnoni c.

On substituting (2) into the partial differential equation (1) and
using the orthogonal properties of the Sine functions we obtain a set of

ordinary differential equations relating the Fourier anplitudes of

o(x,y) and o(x,y)

2~k
W) (2 5K () = B () (5)
dy



In the continuous case an infinite nunber of harmonic anplitudes
are required in the representation of o(x,y). However when we perform
the finite anal ogue of the expansion (2) to express the value of o(x,y)
at a discrete nunber of mesh points only,we find the nunber of harnonics
required for the exact representation of the nesh function is equal to the
numberof mesh points (see for exanple Jeffreys and Jeffreys [6] paragraph
14.01).

Due to the fact that the Sine functions satisfy the boundary cond-
itions and are the eigenfunctions of the differential operator in equation
(1), the ordinary differential equations (3) for each harnonic are
i ndependent of each other. This change of a partial differential equation
into a set of independent ordinary differential equations is the first
crucial sinplification of the method. It can only be carried out in
certain sinple geonetrical situations when,for example,the externa
boundaries are parallel to the coordinate axes and the boundary conditions
are of the type nentioned above. The presence of any internal conductors
for exanple imrediately couples the harnmonics in equation (3) and makes
the method as it stands inpractical. However a nodification of this
direct method is being investigated which will allow the inclusion of
interior boundaries and is suitable for cases where Poisson's equation is
to be solved repeatedly for different space charge distributions but with
fixed interior electrode surfaces. Some prelimnary calculation, done
once only, is required after which it is expected that the solution tine
will be no nore than doubl ed.

2.2 Tridiagonal systens.

The ordinary differential equations (3), which in the finite

anal ogue becone a tridiagonal matrix equation, can be solved in a variety
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of ways. Qur experience has been that the best technique depends on the
boundary conditions inposed

In the case that the potential and therefore 5k(y)has prescri bed
values at y = 0, m the method of Gauss Elimnation in the neat form as
given by Varga [9] and others is suitable and may be used for any nunber
of mesh points. Gauss elimnation is an inefficient method to use if the
boundary conditions are periodic and a new technique of 'recursive cyclic
reduction' has been devel oped for this case which is particularly neat if
the nunber of mesh points is of the form2P or 3x 2P (see section 6).
This does not seem a severe restriction considering the resulting increase
in computing speed. Indeed 'recursive cyclic reduction' may be applied to
the Dirichlet boundary conditions for these special nunbers of nesh
points and has the advantage over Gauss Elimnation that it does not
require the precomputation and storage of the auxiliary vector o (see
Varga [9] p. 195).

An interesting and qui ck method of solution has been suggested by
0. Buneman for the case that 5k(o) is given and we have an open ended
Neumann condition that

—x
di-;.kzo t = o in
% P at y (%)

In this case the equations (3) or their finite difference anal ogue nay

be factorized as foll ows,

& - (’{,—%} &) T =5 (5)

introducing the auxiliary function @k (y) defined by




{3‘37 - <’-§5>} AN I e) (6)

we have

{g—+ <}j—k)} () = ¥ (v @

Applying the condition (4) to (7) we see that @k(w)= 0.
Integrating equation (6) inwards frominfinity we see that ﬁk (y) =0
until the first charge is encountered, at y = § say. In practice therefore
(6) is integrated only fromy = $toy = 0 yielding ?k(ﬁﬂ to ¥ (0).
Knowi ng the right hand side, equation (-7) may be integrated fromy =0
to y= 79 starting with the known val ue of 5k (0). This technique is
known as the 'marching method" and if the march is perfornmed in the
directions given with the factorisation shown there is no build upoferror
due to the honobgenous solutions of equations (6) and (7).

Havi ng obt ai ned 5k (y) as the solution of equation (4) the potential
®(y) is obtained by Fourier synthesis from equation (2).

Due to the reciprocity of the Finite Fourier analysis and synthesis
the program for Fourier synthesis wll have much in common if not all in
conmmon with the program for Fourier analysis.

Summarizing we see that the solution is obtained in three stages.

1. Fourier analysis of the charge distribution

o(x,¥7) = F (v)

2. Solution of k independent sets of ordinary differentia

equations or the corresponding tridiagonal nmatrix equations

) - ()




3. Fourier synthesis of the potential distribution

7 () > o(x,y)

2.3 Conputer time.

If we examne the nunber of conmputer operations* required to perform

this calculation the nethod does not, at first sight, seem particularly

attractive. This is mainly due to the tine required to performthe

Anal ysis and Synthesis,as may be seen if we consider the domain of the

, of the n
solution to be spanned by an (n x n) mesh. For stage 1,on each/linesof

constant y we nust conpute n Fourier conponents each of which require

3

n operations giving a total of n° operations for the whole mesh. The

solution of the n equations for one harmonic in stage 2 may be conpl eted

in the order of n operations giving a total of approxinately e

operations for stage 2. Stage 3 of course also takes n’ operations, As

the conventional iterative nethods will require of the order of ,°
operations per iterations it seenms that the Fourier technique will only
pay off if the number of iterations required is considerably larger than
n. Inastep by step simulation, when a good guess for the potential is
available fromthe last time step,it seems quite likely that satisfactory
convergence can be obtained in less than n jterations (n is typically 50
to 100). In this case no advantage has been obtained by the Fourier

transformati on and we have unnecessarilly restricted ourselves to certain

sinple types of boundary conditions

* Here we mean a multiplication and the addition that usually
acconpanies it,




2.4 Sinplifications.

Two further sinplifications are, however, available in the Fourier
met hod which conpletely reverse the above assessnent. In the first
place if a suitable nunber is chosen for n (such as 12, 24,48) there is
a tremendous symmetry in the Sine functions which may be used to reduce
the conputing time for analysis and synthesis to about a tenth of the

original estimate (see section 9b). Furthernmore the two-cyclic nature of

the finite difference equations allows one to replace the original n®
2
equations involving all the points in the mesh to a set Ofn?T slightly

nmore conpl ex equations involving only the points on the even lines of the
nmesh.  This process known as cyclic-reduction may be done at the start

and fortunately gives a set of revised equations which may also be solved

by the Fourier nethod. The Fourier analysis and synthesis is then perforned
on only half the nunmber of lines and conputing time is reduced. The
solution is conpleted by solving for the potential on the odd l|ines of

the mesh directly fromthe known solution on the even lines. W have

called this process odd/even reduction (see section 4).

2.5 Repeated reduction.

The revised equations on the even lines are thenselves two-cyclic and
it is attractive to consider whether it pays off to do another stage of
cyclic reduction or even to perform cyclic reduction repeatedly until only
a few lines of the nesh are left. The nunmber of nesh points involved in
each finite difference equation increases rapidly as the reduction process
is continued and this neans that 5 diagonal, 9 diagonal equation systens
and worse nust be solved when recovering the solutions on the omtted |ines

These band equations can be solved by Fourier analysis and synthesis as




well as by CGauss elimnation or simlar nethods, and we have estinated
that, is the case n = 48, systenms wider than 5-diagonal are sol ved
faster by Fourier analysis, |If Fourier analysis is used to solve these
equations it is easy to see that cyclic reduction has not significantly
changed the process and the conputing time wll be unchanged. Qur
experience with the n = 48 case is that nothing is to be gained by nore
than one stage of cyclic reduction, This conclusion will be reversed for
n large enough because the nunber of operations in the Gauss process is
proportional to n conpared with n° for solution by Fourier analysis.

The Fourier nethod as described above applied to (x,y) geonetry
can sol ve Poisson's equation of a (48 x 4) mesh in 0.9 sec with an error
of about 107%. This time corresponds to about 10 conputer operations per
mesh point and if we estimate that an iterative will require at least 2
operations per point per iteration, we can see that an iterative nethod
woul d have to converge in 5 iterations or less for it to be faster. It
is hardly credible that any iterative nethod can achieve this.

Throughout the calculation new results may overwite old and the
storage required is very little nore than the original nesh at n? poi nt s.
Wth the aid of the results of section 9 we can extend the conparison made
by Lynch in [8] of the total-nunmber of arithnetic operations required to

sol ve Poisson's equation on an (N x N) nesh:

SOR Tensor Product AD1 Fouri er

3
14N° Logn | o LON® 1og™N %‘5‘ + 9.5
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On the basis of these estimtes the Fourier nmethod when applicable isalways
superior to SOR and the Tensor product nethods and is superior to ADI for
N < 2500 which includes all practical cases that can be solved on present
day machi nes.

2.6 Qher geonetries.

(x,y) geonetry is not always very realistic as it inplies the
existence of an infinite systemin the z dinension., For many applications
axially symretric geonetry on (r,z) coordinates is nmore appropriate
The Fourier method may be applied in these coordinates as described above
if the Fourier analysis is performed in the z direction and the only
change is that the tridiagonal system of equations in stage 2 now has
variable coefficients. The cyclic reduction nmethod is not suitable for
such equations but the Gauss elimnation method is as efficient in radia
coordinates as in the x-coordinates. Thus if the z direction is the
shortest there is no change in conputing speed due to the change in the
coordinate system However if the z direction is the largest, as it
frequently will be in electron tube work, the conputing time will be
increased and the alternative nust be considered of performng a Bessel
anal ysis and synthesis in the shorter r-direction. The Fourier method
with Bessel analysis procedes in 3 stages as before however there is no
symmetry in the Bessel analysis and the reduction of the number of operations
by a factor of about 10 cannot be achieved as it could in the case of
Fourier analysis. The odd/even reduction, however, may be performed as
before. For z long enough a Bessel analysis in the shorter r-direction
will be beneficial. Prelimnary estimtes suggest that Bessel analysis

should only be perfornmed if (z/r) is greater than about 8.
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2.7 Ceneralization.

The basic principle of the Fourier method is the expansion of the
solution in terns of the eigenfunctions of the Laplace operator for the
problem This principle can be used as a technique for solving certain
types of matrix equations (see section 11.1) as well as a nethod for solving
other types of linear differential equations (see section 11.2). The fact
that there may be no analytic form for the eigenfunctions does not nmatter
because these may be precomputed and stored in the conputer. It is
i mportant however that the eigenfunctions have a large amount of symetry.
In the plasma problem considered in sections 3 to 10 the arithnetic
operations are reduced by a factor of about 10 due to symmetrices in the
Sine and Cosine functions which are the eigenfunctions. In the general
case with the absense of this symretry the conputation tine would be
increased about 5 fold and the best iterative nethods will probably be
conpetitive.

Next we consider,in detail, the application of the Fourier nethod
to a particular situation arising in a plasm study which uses a (48 x 48)
mesh and report on the neasured speed and accuracy of the solution. The
boundary conditions being periodic are slightly different from the problem
di scussed above but the principle of the method is unchanged.

The Fourier method has also been successfully used in the Transient
study of the Magnetron by Yu and Kooyers [10] using a (48 x 96) mesh with
a solution tine for Poi sson% equation of 4 1/2 secs, and by Buneman and
Wadhwa [|1] in an ion gun problemusing a (24 x 100) nesh with a solution
time of 2 secs. Both the above prograns are in Fortran and coul d be

speeded up significantly by witing in nachine code.




3. The (48 x 48) Pl asma Probl em

Consider a square region in (x,y) geonetry covered by a square

48 x 48 mesh, with the boundary condition that the solution be periodically
repeated in both the x and y directions,*
Using the usual 5-point difference approximation, Poisson's equation

my be witten in finite difference form as

cPi-l)j + (Pi+l’j + cpi’j_l + q)i’j_'_l ‘4‘Pi’j - qi,j (8)
for i,5 = 0,1, ..., (n-1) n =48

wher e wﬂj is the potential at the (i,3) node of the mesh and %
Is the charge associated with the (i,3) node of the mesh. The mesh
nunbering and interaction nodule for this approximtion is shown in
figure la.
The boundary conditions are
Pitin, j+km = @
Utkn, jkn - 44,
where Kk is any integer
A convenient way of including these boundary conditions is to state
that all indices are to be interpreted modulo n, and this will be
assumed in the rest of this paper,
The equations (8)with boundary conditions (9) may be witten in

bl ock matrix form as follows

* |n order for the potential to be doubly periodic it is necessary for

the total charge in the repeat square to be zero, W assune this to
be the case.
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oA %1 g
BQ = 0 = (10)
0 I A I
l 0-++0 | A ERn—l %(n-l
cPoj q°j
- P . - .,
wher e e = 13 and g, q%a (11)
Pa-1, 3 -1,
and -4 1 Q0 =++ 0 é
1 -k 1 .
A= 0 0 (12)
0 1 -4 1
10 220 1 -k
4. (Qdd/ Even reducti on.

The first step in the solution of equation (10) for the unknown
potential on 48 lines of the mesh is the reduction of the problemto the
solution of 24 nore conplicated equations for the unknown potential on
the even nunbered lines of the mesh only. After solving for the potentia
on the even lines the potential on the odd lines is obtained by exact
interpolation as described in section 8.

Consi der three neighboring equations from the matrix equation (10)

Ry A1ty = 91
Li1 VALY 4 By = 9 (13)

@5 + A% + By T Yn
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for J=2,4, ..., n wth the indices interpreted nodul o 48.

By nultiplying the second equation on the left by -A and adding we obtain

(21 -2 9. + 9 (14)

¥s5-2 Bst B0 7 Y501 AL+ Yy

for j =0, 2, ..., n-2

The equations (14) are 24 equations for the even lines with a 7

point interaction module as shown in FIG |b. In expanded formthey are
o2 TP, | T8Oy TPt B s O e
= 91 T 9, t 4 4G 7 L4, 0 Y

5. Fourier Analysis.

To solve equation (14) we first forma nodified charge distribution

on the even |ines defined by

9-\‘36 2j-1 - A/%J . 9./j+l ] = 0) 2, oy 46 (15)
which in expanded formis
q?!..e,j = ,q'i oo qi_l,+ 4 q;_ - qi"'l,j + ql,J+l (16)
fori =0,1, . . . . 47, ] =0, 2, ..., 46.

From the point of view of machine storage the nodified charge
density on the even lines may overwite the original charge density as
it is forned.

Next the potential and charge distribution are expanded in Fourier

conponents as fol | ows:
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23 .

1 1 —c i 2nki —g 2nki
P1,572 %o,5* 5 i, 5 (1) +k§1{ Pi,3 €% TTE * Py, Sin ‘EB"} (1)
wher e

47 )
- 2 2nki
K, - Eg‘F;G?i, 3 cos 5
and \ ) (18)
L7 .
—S 2 2nki
(pk:J - 18 E ® 2d Sin L8
i=0 J

wi th anal ogous expressions for gq¥ ., a*,
Ll kK, J

—S
and qkf..
The Sine and Cosine functions satisfy the orthogonality relations

gb cos Z%EL cos %%éi =8, %? k a=1 2 23
i‘)_:ocosz'rllrgl‘cosgﬁé‘i—f’u% k=4=0o0r 24

_ (19)
gOsz—%i—S 231%3:51:5% K a=z1 2 2:9
FZ Sin Z%EL Co gﬁéi =0 k=1 2 ..., 23
- -

0, 1, ..., 24
Substituting the expansion (17) into (14)

and using the orthogonality
relations (19) we get the finite Fourier transformof equation (1L)

Pe,3-2 7 M P,y Y R, g TNy (20)
where @ and g*

refer to either the sine or cosine harnonic and

)‘k = -2(8 - 8 Cos _25}(8}5 + Cos -li—jgs) (21)
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V& note that, because the chosen sines and cosines are the eigen
functions of the matrix A the equations (20) are 48 independent sets of
24 equations, one set for each of the 48 harnonic anplitudes.

The fourier transform of the nodified charge distribution on the
even |ines, Ei,j, may overwite the modified charge density on these
lines. The storage layout and resulting interaction nmodule is shown in
FIG Ic

6. Recursive cyclic reduction.

The set of 24 equations for any of the 48 harnonic anplitudes may

be witten
.9 + )\.CPJ + q’)J+2 = q_ (22)

j =0, 2, ..., 46
where the bar, star and constant subscript k have been dropped for
brevity. These equations form a tridiagonal system with periodic boundary
conditions and a particularly efficient method of solution has been devised
in collaboration with Dr. G CGolub. This involves the recursive application
of the process of cyclic reduction as follows.

Equation (22) is identical in formto equation (10) except that the
matrix A is replaced by the scalar X and the subscript advances in
steps of 2 instead of 1.

The process of reducing the nunber of equations by half as described
in equations (13) and (14) may now be simlarly applied, leading to 12

equations linking every fourth line, nanely:

(2) _,(2)

i =0, 4, ..., 44
17




wher e

and (24)
(2)

s =a, 5, -Ma, 9,
R R - B B

+

The 12 equations (23) are of identical formto the equations (22)

but with a nodified right-hand side, qj, and central coefficient, A,

as given by equation (24). The quantity qgg) may, for storage econony,
overwrite the g,, 9y, 93 . . - Q),» while q,, A Qg - - - Yg A€ kept

unchanged in their |ocation.
The process of reduction may therefore be carried out recursively
until a small nunber of equations are obtained which are solved directly.
If we let 't' be the depth of the recursion the recurrence

formul ae becone

ot * AR T o -q{® (25)
for j =0, 2% ..., (48-2%
wher e A1) —(X(t))g )
(26)
gt+l) _ (t£_2t (1) qgt) N qgf;t
with V1) s -
(1) _ 21
qj = qj

Three applications of the reduction process leave us with 3 equations

for ¢_, 9, and P whi ch cannot be further reduced, nanely:
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S ] P ()

C Q= 1 >\.()+) 1 “16 = q?g)
S B P A

(28)

The ei gen-val ues, by and vectors, u., of the matrix C are known:

W = (1,1, 1) with u =2+ ¥
¥ = (1, -2, 1) w, = 2
w? = (1, 0, -1) NG

A/3 p.3 =
where the prime denotes transpose. '

Expanding the solution in ternms of the eigen-vectors.

t hen Cgpi=gvfalululfa2u2u2+a5u5u
and ’ (4) (k&) (4)
Lo % The "%
1 U.l,. ul 5()\.(l+) + 2)
4 4 N
% u2/ - U, 6(>\(h) 1)
oy - 3 g chu) i qég) /
S - (4)
Uz cUs 2(Zv - 1)

substituting equations (32) into (30)we get the solution

S
I

o A+ O v oag
P1g - O ~ 20 + )

(952 = Q- OL3

19
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(33)




In order to find the other values of ® we interpolate internediate
val ues recursively. First determining Pgs Ppys P then @y, @15, Oy,

Pogr Pzgr Pyys  ELC from the relation

I BN B } .
for t =3, 2 1 and for | = 2t step ,t+l until (48 - Et)

where all the quantities on the right hand side are known.

The process of cyclic reduction described here is essentially a
floating point algorithmdue to the fact that the magnitude of x(t) can
grow very quickly particularly for the higher harnonics. Consider for

example the harnonic with k = 24, when

(1) _ \

qu = -34

(2) _

Ny, = -1154 >

Wi(3) = -1.33 x 10 6 (35)
M) = -1.77 x 10 12

This mght be thought of as a disadvantage, bringing as it does the
danger of machine overflow In fact the phenononon may be turned to
advantage on a floating point nachine-by noticing that if,at any |evel of
t he reduction, x(t) > 10" and we are only interested in conputing with a

precision of 1 part in 10", then equation (25) may be witten

(2 g = gl¥) (36)
J J
for j = 0 step 2% until (48 -2t)
where the first and third terms of the left hand side have been negl ected

in conparison with the second
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th

Thus the sol ution wj at the t | evel can be determned by

sinple division from equation (37)

9, = ;‘(]gy (37)

and interpolation of internediate values started imediately.

An alternative scaling of the cyclic reduction nmethod can be nade
in which nunbers decrease in magnitude and which is therefore suitable for
a fixed point machine. However it appears that an extra multiplication is
I ntroduced.

7. Sol ution on the Even |ines.

The solution of the equations (22) by the technique of recursive
cyclic reduction has determned the values of all 48 harnonic anplitudes
on the 24 '"even' lines of the mesh. The solution on the even lines is
found by the process of Fourier synthesis using equation (17), and the
stage indicated by FIG 14 is reached.

8. Solution on the Odd lines

The solution for the potential on the odd lines can be found from

equation (13).
(38)

for | = 1 step 2 until 47
where the potential vectors on the right hand side are the known val ues
on the even |ines.

The equation (38) is a tridiagonal system with periodic boundary
conditions and again is nost conveniently solved by recursive cyclic

reduction, starting from the expanded form of equation (38)
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q)i""l,j - h‘ q)i P (p,i'*'l | =,q.i | -(P;L j_l_cpi’j_l_l (39)

for j = 1 step 2 until 47, for i = 0 step 1 until 47

9. Qperation Count and Speed

In order to get nore general formulae for the number of operations
we shall consider an (n x m) nesh where the Fourier analysis is perforned
in the 'n' direction. The nunber of operations for the different stages
of the calculation are as follows:

a) Form nodified charge density on even |ines,

According to equation (16) this takes 5 additions per point¥.

There are n points per line and m2 lines therefore a total of

§><5 = 2 12 nm additions
(40)
and zero nmultiplications

n X

b) Fourier analysis of the nodified charge on even I|ines,

According to equation (18) Fourier analysis would require n
mul tiplications and n additions per harnonic per line, There are n

harmonics and m/2 lines therefore without any sinplification we get a

total of
. 2
nxnxzs=zm additions
n2 - . (1)
and = n mul tiplications

If however we make use of the symmetry of the sines and cosines, grouping
and adding together all ternms multiplied by the same factor, before
performng the multiplication, the nunber of operations can be drastically

reduced, See for exanple Wittaker and Robinson [3].

*The nultiplication by 4 is an addition to the exponent of a floating
poi nt nunber.
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For the case n = 48 which has been programmed we find that all

48 harnonics on a given line can be found with 325 additions and 89

2
mul tiplications. For this spot case of n = 48 this corresponds to %—
2

additions and % multiplications to determine all the harnmonics on one
line, giving a total with grouping of

m n2 n2

5 X35 =igm addi tions

5 9 (42)
m n n . . .
5 X3z =Zzm mul tiplications

c) Solution of harmonic anplitudes of potential on even |ines.

For a line of points 48 long equations (27) and (34) show the

operational counts for the process of cyclic reduction to be

2 x 2k additions and 24 multiplications to find q(e) from q(l)
2 X 12 additions and 12 nultiplications to find q(3) from q(2)
(4) (3)

2 x 6 additions and 6 nultiplications to find q from g
8 additions and 7 nultiplications to find P Pigo cp52
2 x 3 additions and 3 multiplications to find Pgr Doy Pug
2 x 6 additions and 6 nultiplications to find Pys Pyps oves Py
2 x 12 additions and 12 multiplications to find Pps Py =oes Pp

2 X 24 additions and 24 multiplications to find Pyr Pgr o Dy

2 x 95 additions and 94 multiplications in total
In general we may say for a line q points long cyclic reduction takes

L x g additions and 2 x g nultiplications (43)

In the determnation of the harmonic anplitudes at this stage there are

n tridiagonal systens to be solved each %Iong. The total count is
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therefore b xn x g 2 nm additions

(44

and 2 xn x= nm mltiplications

2

d) Fourier synthesis.

The Fourier synthesis required to obtain the potential from the
harnmoni c anplitudes of potential via equation (17) can be sinplified by
grouping of ternms to the same nunber of operations as for Fourier analysis

in step b) giving a further

2
%ﬂ m additions
2 (45)
and = m mul tiplications

e) Solution on Qdd lines.

First we formthe right hand side of equation (38) for all points

on the odd lines. There are n x g such points giving 2 x %? = nm addi tions

Next the tridiagonal system of equation (38) is solved by recursive

cyclic reduction. There are g such systems each n equation |ong,

Using the results of c¢) we have for the solution of these equations

b on o g =2 nm additions
S (46)
and 2 -n-z= nmn mitiplications
The total operations for stage e) is therefore
3 n m additions
47

and nm nmultiplications
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Total operations and storage,

The nunber of operations for the solution of Poisson's equation given

a right-hand side is therefore

2 2
(nTm+ 7%n m additions and (%+ 2 nn nultiplications
n2m 1 (MS)
or in total (3—§+9§ n nm arithnetic operations

where it nust be remenbered that the reduction factors of 7 and 26 appearing
inthe n° terms are known to be true only if n = 48.1n general these
reduction factor may well be functions of n.

Throughout the process new results may overwite old and we need
basically only one nmesh of (n x n) storage locations, These originally
contain the charge distribution which is overwitten by the Fourier transform
of the charge, which is overwitten by the Fourier transform of the potential,
which is finally overwitten by the potential solution.

The only other storage required is for the Fourier harnmonics themselves.
In general there would be (n x n) nunmbers describing the shape of the n
har noni cs however due to the symetry of the sines and cosines only 1’%

di stinct numbers occur.

The total date storage is therefore (n xm + E—)o
Tables 2 and 3 show the estimated tines for each stage in the process using
the operation counts above for the IBM 7090 and 7094, t ogether with the
measured tine on the 7090,

For the purpose of estimation we have used the follow ng speeds for

the floating point operations
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Machi ne addi tion mul tiplication

| BM 7090 15us 25us

| BM 7094 bus 10ps
TABLE 1.

The measured tine is taken froma floating point symbolic FAP program

Due to the large nunber of additions some increased in speed could be

obtained by programming in fixed point.

| BM 7090
. L esti mat ed estimated | Total esti- |nmeasured
stage | additions time secs mults ti me secs mated time tine
a 2 1/2 ni|m 00086 0 0 00086
2 0.319
nm
b i 0.118 Fy 0.05% 0.171
C 2nm 0.069 n m 0.058 0.127 0.168
n’m 2
d T 00118 g 0.058 00171 0.230
e 5nm 0.103 n m 0.058 0.161 0.189
Sol uti on of Poissons equation on 48 x 48 mesh|= 0.716 0.906

TABLE 2,
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| BM 7094

) . estimated esti mat ed Total esti- ,
t . , .
stage | additions {i e mults fime mated tine tine
a 21/2nm 0,035 0 0 0.035
n’m 2
b I 0.047 n o 0,021 0.068
C 2nm 0.028 n m 0.023 0.051
n"m 2
d Tk 0.047 r=-5—2=“ ) 00021 00068
e 5nm 0.041 nm 0.023 0.064
Sol ution of Poissons equation on 48 x 48 nesh|= 0.286 0.358

TABLE 3.

The difference between the neasured and estimated tines of about 254

is accounted for by conputer 'housekeeping' operations. Using this factor

on the 7094 estimated figure we obtain 0.358 secs as a realistic estimte
for the time of solution on the 709%. It is interesting to note from
Table 2 that two frequently repeated generalizations are untrue. [t is
for exanple,

not even approximately true, that additions may be neglected

conpared with nultiplications, because in each stage of the process the

time spent on additions is in fact greater than the time spend on nmultipli-
cations. It is also untrue that it is satisfactory to consider only the
hi ghest power of 'n' for in this case the tine spend computing the

stages with operations proportional to nm is less than the time spent

on stages with operations proportional to n m.
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10.  Accuracy

The accuracy of the nethod has been examned by testing its ability
to reproduce a given random distribution of potential

W start by generating a randomdistribution of potential, o¢*, on
the points of the mesh. Next the charge distribution, g, which corre-

sponds exactly to ¢* is conmputed from equation (8) nanely

9,5 7 Ph,d O 0 O g+ 0 - R Ly (50)

The Fourier technique was then used to derive a potential distribution,
¢, fromthe charge distribution qid’ and the exact distribution ox
and the solution ¢ were exanined,

The random di stribution generated varied between -1/2 and +1/2 and

the largest value of the error, (p* - 9), obtained with 7 different

distributions was 3.3 x 107,

11.  Ceneralization

11.1 Solution of matrix equations

Consi der the general matrix equations

Be=g Q1Y)

where B is partitioned into (mx m square blocks B.. of size
1J
(n xn). ¢ are g are partitioned into (mx 1) vectors Qﬁ of length

(nx1).

B Bpp Bim 2 4
B.. B

B= | 21 "22 s o= %2, o= (52)
Bml B EBm m
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Such a system of partitioned equations naturally arises in the finite
difference form of a two-dinensional partial differential equations, when
the nesh is confined to a -rectangular region with m lines each containing
n nesh points.

The Fourier technique can be applied to the solution of equation (51)
provided each block matrix Bij can be diagonalised by the same gjpilarity
transformation.

If this is the case let the (n x n) transformation matrix e 0

and the resulting (n x n) diagonal matrices be p
I

t hen =
© P 97 By (53)

We can also define the transformed vectors

Q3 =Qq QJ

and (54)

with the inverse transfornation

and . } (55)

23 =0Q &
aj = Qg
wher e
-1
-2
| 2 N
2| 2= (56)

-n
anj cpJ.

and j = 1 step 1 until m.
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The operation Q'l can be seen to correspond to the step of Fourier

analysis and Q to Fourier synthesis in the example given earlier in this
paper. In general we shall refer to the operation Q'1 on the vector cg,
as the analysis of the vector into harnonic conponents @S and the ’
operation Q is the synthesis of the harnonic conponents cp" into the

oJ

actual vector components ¢, ; oOf fgj' This process becones Fourier

’d

analysis and synthesis in the special case that the vectors conprising the

transformation matrix Q are sines and cosines.

Consider the itB row of equation (51)

J
m (67N
Jg:l Bij 92594
mul tiplying through by Q'1 we have
m -1 _ -
jgl RS
u (58)
or D.9.=4q
L%k

witing equation (58) in full and witing the diagonal elenments of p. as

iJ
=k
Di.j we have:

=1 =1 =1
D} 4 0 P a
= BIEJ ‘Fﬁ 5
L | o : = |- €)
=N -n -n
for i = 1 step 1 until m.
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The equations for different harmonic nunbers are independent and the

equations (59) may be reordered to give n jndependent sets of m

equations, one set for each of the harnonic nunbers.

=k =k =k —k -k

Dll D12 o o e Dlm Cpl ql

=k =k =k ~k -k

D o e .

P21 Dos Do ®s - % (60)
=k =k =k Kk

Dnl o o o o o Dmm Cpm \q_m

for k=1 step 1 until n

The Fourier technique of solution of the equations (51) would proceed

as follows:
a) analyse each line into harnonics by the operation Q'1 as in
equation (54). In the absence of any symetry in the matrix Q this

leads to
2 -
nm additions
and n°m mul tiplications

b) Solution of the sets of equations (60) for each harmonic nunber.
Solution by a direct nethod would require of the order 5 mul tiplications

per harnmonic or a total of

n m3 nultiplications

c) Synthesis on each line by the operation Q as in equation (55).

As in step a) this leads at worst to

n2m addi tions

and n2m mul tiplications
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In total the set of n x m equations (51) can be sol vedbythe Fourier rethod
with about n m3 + 2 n2m operations. A direct nethod such as gauss
elimnation applied directly to (51) would require of the order
(n m)5 - oom oper ati ons.

A Bl ock Gauss-Seidel iteration on equation (51) would require the
order of n°m operations per iteration. The iterative nethod woul d be
faster if the number of iterations required was |ess than 'm*, which is
a plausible situation.

The Fourier nethod is nmuch more likely to be faster for problens in
which the transformation matrix @ and Q'1 have symetry, so that
the number of operations required in formng the product @™*q in step
a) and Q 9 in step c) can be reduced to %T , Wwhere F is some factor
of reduction. In the special case discussed earlier when Sines and
Cosines are the conponents of Q F is about 10

The Fourier method will benefit further if special direct nethods
are available for the solution of equation (60) in step b). In the case
that the matrix operator in equation (60) can be diagonalised by the sane
simlarity transformation for every value of k then equation (60) can
itself be solved by the Fourier technique. This would require of the
wor st of the order n(m? + n} instead of n n3 Aso if (60) is
tridiagonal then (60) may be solved in the order of m operations for
every k or a total of the order n m operations. Furthernore if the
Block formof the matrix B is tridiagonal it is likely to be worth-
while to perform at |east one step of Qdd/Even reduction before intro-

ducing harmonic analysis, as described earlier in section k.
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11.2 Solution of Differential equations

An inportant class of differential equations which lead to matrices

of the formthat can be solved by the Fourier nethod are those of the form

( L(x) +My)}ol(x,y) - s(x,y) (61)

where L(x) is a linear operator which nay be a function of x only

and My) a function of y only. The boundary conditions nust be

specified on the surface of the rectangle, g < <4, 0<y <4, and
be of the form

o
H
g
+
o’
'_l
ES]
1]
I
o

cl(y) al ong x

- (62)
8, S, T, ¢ = cg(y) al ong x

I
S5

or the periodic condition ¢(x,y) = o(x + ﬂ,l,y) wher e 815 8y, b

b
1" =2
are constants e, ¢, may be functions of y and the form
a5(x) % +b5(x) ¢ = c5(x) alongy =0
- (63)
au(x) 5 + bu(x)cp = cbr(x) along y = £,

or the periodic condition o(x,y) = o(x,y + gg) where all a, b, ¢ may

depend on x.

Exanpl es of equations satisfying these conditions are Laplaces, Poi sS0NS
and Hel mhotz equation in a rectangle where all paraneters occuring in the

equation and boundary conditions are either constant, or depend on only one
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variabl e.

Cartesian, polar, or spherical systens.
These are
Vie=o
2
Vie=o
§72 o + 2

It is interesting to note that in

The coordinate system may be any pair of coordinates from

¢ =s

the case of Laplace's equation there

is no change in the conplexity of the calculation if the nine point finite

difference module is used instead of the more conmon five point fornula

The bi harnmoni ¢ equat i on, §74 9 =0,

in the rectangle may al so be

solved with the 25 point difference nmodul e [4].

If the index, i,

variable y

(L, + M) 0,

wher e Li
J respectively.

rectangle and we suppose i =1, 2,

corresponds to the variable x and,

and N% are difference operators acting on the indices i

j, tothe

then the finite difference formof equation (61) wll be

=S..

s (64)

and

Any finite difference mesh may be taken within the

n and j =1, 2, ..) m

The matrix formof equation (64) is of the formof equation (51) with

Bij a multiple of the identity matrix

boundary‘ conditions (62) ensures that B

condition is satisfied that all B.l.J
simlarity transformation

formed by all the eigenvectors of B

11
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i # 3.

= B = e+ = B
mm

o and the

11

can be diagonalized by the same

The transformation matrix Qis the matrix

whi ch can be precal cul at ed.




If the boundary conditions at y = 0, 4, are also of the restricted
kind of equation (62) then x and y can be interchanged and the
transformation matrix can be formed from the eigenvectors of the matrix
equi val ent of the operator MJ. Whi ch choice is the better depends on a
bal ance between the symetry of the eigenvectors and the length of the
eigenvector. The greater the symetry the larger will be the reduction

factor F in the analysis and synthesis steps. n the other hand the

2
nunber of operations is IE;D and increases rapidly with the Iength of

the vector, that is to say the number of mesh points in the direction of
the analysis. To increase the value of F it wll be advantageous to
have a uniform nmesh spacing in the direction of the harmonic analysis.

If we are concerned with second order equations it appears that the
greatest amount of symmetry in the matrix Q occurs if its conponent
ei genvectors are sines and cosines which have zero slope or value or are

periodic at the boundaries. This inplies that the operator in the chosen

2
direction of analysis is sinply { —95 + kg} and the boundary conditions
ax

(62) are further restricted to be of the form

ei t her =0or o =0along x =0

65
ei t her (€%)

e ¢

=0 or ¢ =0 along x = 4
or the periodic condition ¢(x,y) = o(x + zl,y).

In certain cases it may be worthwhile perfornming a transfornation
on the whole problemto achieve this sinple form FI G 2 shows
diagramatically the types of problens nmost suitable for solution by the

Fourier nethod.
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The Fourier nethod, providing as it does a fast method for the solution
of Poissons equation over a rectangle, can be used as the basis for various
bl ock iterative schemes for nore conplex regions that can be divided up
into rectangles. (One could consider for exanple a block 48-line iteration
anal ogous to the block |-line and 2-1ine nethods [5].

Concl usi on

For the special problenms involving (x,y) geometry in the rectangle
for which the Fourier method is well suited there seenms little doubt that
it is a faster nethod of calculation than any direct or iterative nmethod so
far suggested.

For other problens where the nethod can be applied but is not wel
suited the position is less clear and we will have to await the results
of practical nunerical experiments before the fastest method can be chosen.
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0 i= 47 0 i= 47 1 k= 48
a) BEFORE b) AFTER C) AFTER
ODDY EVEN  REDUCTI ON ODD/EVEN REDUCTI ON FOURI ER ANALYSI S

d) AFTER e) SOLUTION ON
FOURI ER SYNTHESI S ODD LI NES
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///////—

\\\@\\x
1/ periodic

S S
g / / AT
N0 N\

AN A AT

P X

»

FOURI ER ANALYSI S

FIG 2
PROBLEMS MOST SUI TABLE FOR FOURI ER METHOD

a) Rectangul ar region

)

b) slab type property changes @, ® etc.

c) sinple boundary conditions

d) uniform mesh at least in analysis direction
e) typical equation

Un(y) Volx,y) + K (3) o(x,5) = S(x,y)
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