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Introduction,

The QD-algorithm - which stands for the quotient-difference algorithm -

has been developed by H. Rutishauser, In several papers, the first of which

appearedZn1954, Rutishauser has treated the theory and a number of applications

of the algorithm. In this treatment the theory is based on properties of continued

fractions.

In 1958 Peter Henrici based the theory of the m-algorithm on the theory of

analytic functions0 Furthermore Henrici gave some new results,,

The present article is a new introduction to the subject. In this paper the

theory of the @-algorithm is treated by means of classical algebraic methods. The

present paper however treats only a part of this theory. Although some of the

results developed are general the main part of the paper is limited to a special

case which, as indicated in the title, may be described as the part of the theory

of the Q,D-algorithm needed for finding the roots of a polynomial the roots of which

are known to be positive, by means of the algorithm.

With this limitation it is possible to prove some important results which

cannot be proved in the general case, First the existence question of the w-scheme

can be solved; that is the &D-scheme will always exist in the case of positive

roots - as may be shown by examples this is not true in the general case.

Furthermore the question of convergence of the columns of the &D-scheme can

be solved, In the case of positive roots we can prove that the columns will con-

verge to the roots under all circumstances (and not only in the case of different

roots). Again this is not true in the general case, where complex roots may spoil

the convergence.
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Rutishauser has also developed the so-called LR algorithm which may be con-

sidered as a more general method than the @-algorithm0 The LR algorithm may

be used to determine the eigenvalues and eigenvectors of matrices., Since - to

a given polynomial - there corresponds a matrix the eigenvalues of which are

the roots of the polynomial, the roots may be found by means of the LR-algorithm,

Furthermore, to most of the results concerning one of these algorithms there

corresponds a similar result concerning the other.
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Summarv.

THE QD-ALGORITHM

AS A METHOD FOR FINDING THE ROOTS OF A

*POLYNOMIAL EQUATION WHEN ALL ROOTS ARE POSITIVE >

BY

Chr. Andersen

In Sections 1 and 2 the Q&scheme, symmetric functions and some results from

the theory of Hankel determinants are treated. Most of the results have been known

for a long time. Aitken [1] and Henrici [6] have used these for the same purpose

of rootfinding as treated here. However, theorem 2.4 by means of which the

existence of a positive constant c such that Hi > c (positive roots) may be

proved, seems to be new.

Section 3 contains some well known relations expressing the elements of the

QD-scheme by means of the Hankel determinants, and the existence theorem mentioned

above*

In Section 4 the question of convergence of the columns of the QD-scheme is
.

treated. An exact expression for q: is developed for the case of different roots.

This expression seems to be new. It is proved that the columns of the &D-scheme

will converge not only in the well known case of different roots, but in all cases

where the roots are positive,

A part of the present paper was first presented at the Matrix Symposium in

Gatlinburg, Tennessee, April 13-18, 1964.

Reproduction in Whole or in Part is Permitted for any Purpose of the United

States Government. This report was supported in part by Office of Naval Research

Contract Nonr-225(37) (NR 044-211) at Stanford University.



Section 5 contains a detailed examination of the convergence to the smallest

root. In this section an exact expression for < is developed. This expression,

is correct in all cases of multiple positive roots,

It turns out that the convergence of the columns of the Q,D-scheme to the roots

of the polynomial equation may be slow, and it becomes necessary to speed up the

convergence before the Q,D-algorithm  can be of use in practice.

In [ll] Rutishauser uses the principle of replacement as a device for accele-

rating the QD-algorithm. This principle has also been used by Faddeev and

Faddeeva [4]. They remark, that the method may be useful as soon as the Q,D-scheme

"has stabilized". It is however not easy to give general and useful criteria

for such "stability? Furthermore, Rutishauser [16] remarks that the computation

practice with the method of replacement has not always been successful,,

numerical experiments in which I have tried to use the Aitken E2-process on

the columns of the &D-scheme has not indicated that this process will be useful in

connection with the Q,D-algorithm in all cases.

In the case of positive roots it is however possible to use the principle of'

replacement in such a way that faster convergence will be obtained. Theorems con-

cerning this question are included in Section 5*

Finally, in Section 6, it is shown that the progressive form of the &D-algorithm

is only "mildly unstable".

In Part 2, that is Sections 7 and 8, some ALGOL programs and some results ob-

tained by means of these, are given. The examples show that the QD-algorithm works

nicely in practice in cases where the roots are positive, and the difficulties

which arise in cases where several roots are equal or almost equal do not give

too mch trouble., .



A few words about the practical use of the &D-algorithm as a general rootfinder

may be added. In numerical experiments with real polynomials with complex roots

(polynomial with real roots may be transformed into polynomials with positive roots)

the algorithm works perfect in many cases; but in cases where several roots were

of the same, or almost the same, modulus (apart from conjugate roots) the ALGOL

programs written by the present author failed to work properly. This fact does

not mean however that the QD-algorithm should not be used in such cases. But it

means that the QD-algorithm should be combined with other algorithms. Used in

the beginning of a general root-finding program the QD-algorithm may give some

very useful information concerning the roots and this information can be used in

other algorithm for the final determination of the roots.
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Part 1: The Q,D-algorithm.- - m -

1. The m-scheme.m-

lo1 Formulation of the problem.- -

Let

(1.1) p,(x) = aNxN + a xN-l +
N-l

000 + a x + a
1 0 aN fo

be a polynomial of degree N, let a0 f 0 and let the roots of p,(x) = 0 be

numerated such that

The-coefficients ao,al,' 0 'aN may be complex.

The problem we will treat is to find the roots of p,(x) = 0 by means of the

Q,D-algorithm, or better, to find approximations to the roots by means of this

algorithm.

It turns out to be difficult to treat this problem in its full generality;

at least it seems to be difficult to use the w-algorithm with success for all poly-

nomials. In the present work the problem to be considered is then limited to the

following:

Let p,(x) be a polynomial with real coefficients, and let it be known- - - -

that all the roots of p,(x)- - - - = 0 are real and positive.P-P Find approximations to

the roots by means of the &D-algorithm.---p-v-



1.2 The progressive form of the QD-algorithm.-v-F

The w-scheme.- -

We begin with the formal rules for constructing a &D-scheme, which consists

of two sets of elements, called k
and k

%l en' written as follows:

.qi.

. .

. .

0

e:
' 1
el. .e .. ' .l q;*

e20 :
1

e2

2
q1

.
.

2'
92

m

.

.

2
el

2
e2

.
.

.
0

3
q1 .

3
92

. .

.
N
q1

N-l
el .

N
el0

N
%

N-l N
e2 : :2. . .. . .

The upper index k in qkn runs from 15 k 5 N and in e,"t k runs from

O<k<N. The lower index n- - runs from l< n < ~0 in both cases. The index

k is the column number and n is the row number.

The form and the notation used in this paper is the same as Henrici has used

in [7]; it differs from the notation used by Rutishauser and by Henrici in [6].

In the progressive form of the Q,D-algorithm the elements in the first q-row-s-w

and the first e-row must be given. Furthermore the first and the last e-column

has zeros in all places.

From these quantities we construct the following rows in the Q,D-scheme by

means of the recurrence relations:

(1.2) C l -
k

+ -e -ek-1 + kn n %l k = 1, 2, . . . N; n = 1, 2, OeO



(1.3) ek
n+l = c+;/<+l x e; k = 1,2,oeo,N-1; n = 1,2,0*0

These formulas are used as follows:

First (1,2) for k = 1,2,ee* ,N to obtain the "q-part" of a new row

and then (1,3) for k = 1,2,oae ,N-1 to obtain the remaining "e-part" of the

same row.

We remark, that the construction cannot be carried out if $ = 0 for some

k<N- 1, andsome n>O. In this case the Q,D scheme is said not to exist0-

The formulas (L2) and (L3) are known ai the rhombus rules (Stiefel)

since they connect four elements, the configuration of which is a rhombus, in the

&D-scheme.

1.3 The forward form of the Q,D-algorithm.- - - -

The formula (1.3) may be written in the form

k+l k k
q?+l = en+l en/ x kcln+1

and by putting k + 1 instead of k in (1.2) this may be written as

.k+L = k+l k+l k
cln+1- gn + en n

The formulas (1.4) and (1.5) show, that a new column (k+l) may be obtained

from column k; that is the @-scheme can be built up from a given e-column and

a given q-column. In this case the @-scheme is not limited to the right, and

we can only find elements < and e
k
n for which n > k. This form of the

@-scheme is obtained by means of the forward form of the &D-algorithm.---v

6



As we will show in Section 6, the forward form of the Q,D-algorithm is not

suited for numerical purposes since this form is unstable.

In the remaining part of the paper we shall only use the progressive form

of the Q,D-algorithm.

L4 The first row of the &D-scheme.- - - - - -

When the Q,D-algorithm is used as a method for finding the roots of
m--

p,(x) = 0 the first row is constructed from the polynomial,

p,(x) = atiN + aNmlxN-l + 000 + a x + a
1 0 '

as follows:

2<k<N- -
(107)

0 Nel = el = 0

k aN-k-l
el =

aN-k
l<k<N-1- -

Until now we have assumed that aN f 0 and a0 f 0. From the last of the

formulas (lo7) follows that all the other coefficients must be different from

zero in order to start the @-algorithm,

By means of a simple substitution x = x1 + c it is always possible to ob-

tain an equation where all the coefficients are different from zero.

7



It is more serious if one of the q-elements computed by means of the formula

(1.3) becomes zero and then spoil the algorithm. By means of an example it is

easy to show that this may happen.

Example 1.1

P,(X) = x3 + ax2 + b x + c

QD-scheme

0e

0

e’

-a

b C
a E

b
;;5 - a

c b
b-a

e2

Now q: = 0 if z-a = 0 and < =() if i-

@-scheme will not exist.

cl3
0

C- -
b

b 0-= ~
a

e3

0

In these cases the

It is however possible to show, that the QD-scheme always exists, if allw-

roots of p,(x)- - = 0 are real and positive.m - - This will be proved in another

section.
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2. Symmetric functions. Hankel determinants.

In Section 2.1 we state some well known results about the symmetric functions

in the roots of a polynomial equation. These results will be used to prove a

theorem which is fundamental for the solution of the existence problem.

2.1 The elementary and the complete symmetric functions.- -

The elementary symmetric functions in the roots zl,*-*zN of the polynomial

equation p,(x) = 0 are defined as follows:

(2J)

The polynomial

g =l0

a1 = z1 + l ** + ZN

a2 = z1z2 + z1z3 +
l  * *  +  ZNmlZN

0

0

0

aN = '1'2 l ** �N

aP
=0 for p<O or p>N

p,(x) = aNxN + aNWlxNW1 + 0e- + a x + a
1 0 caN f ‘1

may be expressed by means of the elementary symmetric functions as

p,(x) = aN(OoxN-l + 02xNw2  + e.e + (-l)No,)

that is we have the relation



(2.2) ( 1) k aN-kok= -
&N

The complete symmetric functions in zl,".,zN  are defined as follows

so = 1

'1 = 'l+ Ooo + ‘N

2 2

(2.3)
s2 = z1 + z1z2 + z1z3  + l 0* + ZNBIZN  + ZN

3 2 3s3 = z1 + z1z2 + O** + ZN

..

S =o
P

for p<O

The complete symmetric function Sn of degree n consists of the sum of all

different terms of the form

(24 al %
'1 Ooo 'N

N
where O<apN l<i<N and = n- - c

i=l
ai

Theorem 2.1

Let Sn denote the complete symmetric function of degree n in the N

variable 0e.z
'lJ N'

( 1and let Snr denote the complete symmetric function in

the (N-l) variable z~,~~~z~-~, ~l,~eo~N. Then

10



(2.5)

Proof

S
n=

( >
'r 'n-1 + 'nr ( 1r-- )..., N; all n)

The terms of Sn may be divided into two sets, the first of which consists

of all terms with z
r as a factor and the second set of all other terms. Hence

(2.5) is true.

By means of a similar argument we may prove the corresponding relation

between the elementary symmetric functions:

(2.6) ( 1ru =z un n-l +U ( >r
r n' ( 1g= )***J N; all n)

where CJ ( >r
and 0 (1)

n-l n denote the elementary symmetric functions of degree

b-1 > and n, respectively in the (N-1 > variable Z1'*-'zr-l' Zr+l'*->ZN*

Theorem 2.2

For all positive values of n the complete and the elementary symmetric

functions in N variables are connected by the relation

(2.7) Sri=== s1 n-l - '2 Sn-2 + l ** + (-l)n-l an S
0

Proof
.

By induction with respect to N.

N = 2, In this case o1 = z1 +.z2, a2 = z
1 z2

and 0 = o for ~23~ Hence
P

(2.7) has the form

sn = (z1+z2  > sn-l - ‘1’2 ‘n-2 ’

which, with S = zy + zn+l n+l
n 1 z2 + � l l + z1z2 + z; and the corresponding

expressions for S
n-l and Sn-2' is true.

11



We assume (2.7) is true for 2, 3,...N-1 variables, respectively and for all

values of n in these cases, and consider the case of N variables zl, z2,...,zN.

We prove that (2.7) holds in the case by induction with respect to n. n=l; that

is s1 = a1 which is true.

Let (2.7) be true for 1, 2,...,n and consider the case n+l. We have to

prove

(2 l 8) Sn+l = '1 'n - a2 'n-1 + ‘3 S
- * l �n-2

+ wn on+1

(N)
By means of (2.5) we have - with the notation S'p instead of Sp - that

S
'1 n - “2 'n-1 + ‘3 S

- � l *n-2
+ wn a,+1

= ‘lcZN ‘n-1 + s;) -a2 (ZN sn,2 + &) + 03 (‘N Sn-3 + ‘A-2) - * * * @on+1

=ZN(CJlSn1-a2  Sn~2+~3Sn-3-aoo(~1)
n-l

53)

S'
+'l n

IS'- '2 n-l + 03 SA-2 - Ooo + wn un+l

= ZN sn

+ ( ZN 0; + 6;) Sk -(ZN 0; + Us) SA-1 +(ZN 06 + UJj) SA-2-  O” o +(-l)n(ZNu~+un~l’

=ZN n
S + ZN(~; SA - 6; SA-l- *'* + (-l)n on)

+ (ai SA - 0” S’2 n-l + "j n-2 -S' Ooo + (-l)n all,l)

=ZN ns + s;+l .

In the calculations we have used (2.7) three times, and we have used (2.6)

too. The last expression however is equal to Sn+l and we have proved theorem 2.2

by induction.

12



2.2 Hankel determinants,

The Hankel determinants will be used as the basic tool in the following

treatment of the &D-algorithm. The relation (2.10) which is of special importance

-is used by Aitken [l] and by Henrici [6] for solving the same problem as we

treat, and the sketch of the proof follows the same lines as used in [6] and in

Householder [8].

Definition of Hankel determinants.

Let 000 aB2.’ awl7 aoj al' a2 0.. be any sequence of complex numbers, then

we define the Hankel determinants HknJ for - n > 0, as follows:

Hk 1= ; Hk =
0 n

"k "k-1 ** "k-n+1

ak+l ak
0 0

0
0 .

"k+n-1 *ak

n = 1, 2, 3, 0.0

We may prove the following relation:

(2.10)
Hk-l Kk'l

(H >
k2+Hk k

non-n n-l Hn+l z 0 n>l;

Consider the determinant of order 2n + 2:

13



n

n+l

n+2

n+3

2n+l

2n+2

1 2 n n+l n+2 2n 2n+l 2n+2

ak ak-l l l l &k-n+1
0

. ..a
k-n

0 1 0 0
ak-n+l 0 0

I
I 0.
I 0

.
I 0

’ 0

I

0 0 “k-n ’ ’

ak+l
0
0
0

ak+n-l ak+n ak 0 ’ 0 0 0 0 0
I
I

ak+n ak+n-l ak-l
0 1 0 0 ' "k 1 0

I

ak
0

ak+l
0

ak+n-l 0

ak+n 0

0 . . 0 ak-l I ak-2 &k-3 l l l �k-n � �

I

0 ak 1 ak-l ak-2 l � l ak-n+l � �

0 I
0

0

0 I
0

.

0

. I 0

0
0 I 0

0
&k+n-2 1 ak+n-3 ak+n-4 l l ak-l ' '

0 'k+n-1 'a
I k+n-2 &k+n-3 l . ak 1 0

If we subtract row (n+l+i) from row i for i = l,... ,n + 1 and then add column

(2+i) to column (n+i) for i = O,l,...,(n-2) we find that this determinant must

be equal to zero. On the other hand if we compute the determinant by expanding

by (n+l)-order minors we obtain two times the left side of (2.10). For further

details see Householder [8].

2.3 Hankel determinants in the symmetric functions.- -

Hankel determinants in the elementary symmetric functions and in the complete

symmetric functions are related. We prove

14



Theorem 2.3

Let

and

Hi =

n
Ck =

'k ak-~ooouk-n+l

Ok+1

0
00

'k+n-1

'k
0

0

0

0

0

0

'k

'n Sn-l*-* * Sn-k+1

S
n+l

0
0
0

'n

Sn+k-1
000000

'n

and let 1 < k < N- -

If Hi f 0 for all non-negative n, then

(2011) Hkn = c;

Proof

E3y induction with respect to k.- -

k = 1: We have to prove that Hi = Sno

( n order)

(k order)

n = 0,1,2,.r**

This may be proved by induction with respect to no- -

n = 0: Hi = So is correct since both sides are equal to 1,

n = 1: 1
Hl = al = Slo

15



I
I Now we may assume that Hi = Sn for n = 0,1,2,.,.,p - 1 and we consider the

, case n = p

H1
P=

5

a2
0
00
0
0

CTn

1 0 0 0 0

= al HGBl -

1 1

= al HP-1 - O2 HP-2 + 0.0 + (-l)p-l ap

a2

a3

53.

1

5 10
.

5

= 0.0

(n-l order)

= al Sp-1 - a2 sp-2 + 000 + (-l)p-l ap

=s 0
P

The last result follows from theorem 2.2. Hence we have proved theorem 2.3 in

the case k = 1.

NOW we assume that (2.11) is true for k = 1,2,...,p and for all  non-negative

n in each case. By means of the relation (2.10) we find for n > 0;

H;+l = [(HE)2 - Hz+l Hi $I;-'

= [ q2 - c;+l c;-ll/c; 1

Cn= p+l 0

16



We remark that in case p = 1 we have used HP-l
n

= J$ = l= c:. For n = 0 we

have Hp+l = 1 = Cicl'0 and we have proved theorem (2.3) by induction.

In the following the notation HE will only be used for Hankel determinants

in the elementary symmetric functions.

2.4 A fundamental theorem.

Until now zl, 0.. zN have been arbitrary complex numbers, and this being

the case the Hankel determinants may vanish, This cannot happen if
'1 ." 'N

are real and positive numbers.

Theorem 2.4

Let z1,z2, 0.. zN be positive. Define

I %l OC.&?2 *'* u@n

w

0

Dn = :
0

0

0

u
03ll 72n2

where Q
aij

are elementary symmetric functions.

Let

(i) ail > ai > 0.. > ain

( >ii alj <cQj <*o* <mj

U
arm

c

l<i<n- -

l<j<n- -



Then

0)Dn >O for all n>l

and, if

cxii= k i = l,...,n

where 0 < k < N, then Dn- - (N) > min (l,(aN)").

Proof

By induction with respect to the number of variables N.

N = 1: Then u = 1, ul = z1 and u = 0 for p { 0, 1.
0 P

We use induction with respect to n.

n=l: D (1)
1 = uaLf The theorem is obviously true.

Assume, that the theorem is true for n = 1,2,...,p-1 and consider

0)Do
P

If O$Q f 0,l it follows from the conditions (i) and (ii) that the p--i%

row or the p-th column consists of zeros; that is D 0) = 00
P

If cxpp = 0; that is u
o$?P = 1, we have (by means of (ii))

(1)D =l.D0)
P P-l

If cxpp = 1; that is u
wp = zl' we have (by means of (i))

D (1) (1)
P = z1 Dp,1

18



In all cases the theorem is true for n = p and we have proved theorem (2,4) in

the case N = 1,

Let the theorem be true for (N-1) variable zl, 000 zNml and let up

denote the elementary symmetric function of degree p in these (N-l) variables,

Let z1 2 z2 > 000 2 zNO We use a relation between elementary symmetric functions:

(2.12)
"P = 'N $1 + $ p= - -0, -I- 1, + 2, 000

To prove (2.12) we remark that the terms of- u
P

may be divided into two sets, the

first of which contains all terms with zN as a factor and the other set of the

remaining terms,

By means of (2,12) we may write (N)Dn as follows

(2.13) Dp) =

'N %11-l + $11 'N %l2-1 + CT'a12 * a * 'N u&n-l
+ u.'

aln

'N %1-l -I- $21

'N %nl-1 + $xnl 0 0

'N Onn-1 * unn

(N)From (2.13) follows that Dn may be written as a sum of 2n determinants, The

conditions (i) and (ii) show, that each of these determinants may either have

proportional columns - and then have the value zero - or the indices will again

satisfy (i) and (ii), The non-zero determinants, from which z
N may be removed,

are then non-negative and as a sum of these D (N)
n must be non-negative itself,

Now let aii = k, 0 < k < N0- -



If k < N we consider the term with zi, say D(N-l)
n . By the induction

#-l)assumption n 1 min (1, (zl . . . zN-l)n).  Since

min (1, (zl 0.. zN)") 5 min (1, (zl 0.. zN ,)") we have

09
Dn > D(N-l) > min (1, (uN)")- n

If k= N we consider the term with zi, that is zi . An where An has

( �1 l oo �N-1 1
in the diagonal, and zeros below the diagonal. Hence

n
zi . An = uN , and again( 1

Dn(N) 2 min (1, (a,)") ,

and we have proved theorem (2.4) by induction.

Theorem 2.5

Let z1 1 z2 > .*. 2 zN > 0.

Then

HE > min (1, (uN)") l<k<N- -

Proof

n>O

Since the Hankel determinants satisfy the conditions (i) and (ii) from

theorem 2.4, and since the diagonal elements have the same index this result is.

nothing but a corollarv to theorem (2.4).
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3. The existence theorem in the case of positive roots.v---

3.1 Formulas for < and e
k
n

Let the Q,D scheme for the polynomial p,(x) be started as in section (1.4)

and continued by means of the rhombus formulas (1.2) and (1.3). Then the elements

k k
Qn

and e
n

may be expressed by means of the Hankel determinants Hk in then

simple symmetric expressions.

Theorem 3.1

If the Hankel determinants nHk are different from zero, then

(3.1)
Hk Hk-l
n

R" = Hk
n-2
k-l

n-l Hn-l

n = 2, 3, . . .

k = 1, 2, . . . N

and

(3.2) ek

Hk+l Hk-l
n-l= -

n H' Hkn n-l

n=2, 3, . . .

k = 1, 2, . . . . N-l

Proof

By induction with respect to n

n=2

We have to prove that

Now

k k _ .k-1 k
qz=e1 1 +ql

aN-k-l "N-k=--
a
n-k "N-k+1

where we have used (1.7). By means of (2.2) we find

k
92

= - ak+l+ 'k

'k 'k-1
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On the other hand

'k Ok+1=---
"k-l 'k

t

and we have proved (3.1) for n = 2,

Since

e: = c$+‘/qi  X et

m.:’ 1 ..,‘*., ..‘;,‘.
,

H2 1
k+l Hk-1

= -
k Hk

9

H2 1

formula (3.2) is also correct for n = 2.

X

Hk+l
1

Hk1

Now assume that (3.1) and (3.2) holds for 2, 3, .Oe n, and all k in

question and consider the case n + 1. We obtain:
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Hk+l Hk-l Hk Hk-2
n n-l n n-l= -

Hk Hk
n-l

+ Hk-l k-l +
n n Hn-l

Hk+l Hk-l
n-l

H' Hk
n n-l

Hk
n

=pT
n-l

Hk-l
n-l

=gF
n-l

(H,“;;)2
'Hk-lHk -
n n-l

Hk+l Hk-l
n n-l

Hk Hk
n n-l

(Hk)2 - H;-' Hrl

Hk-l
n

Hk-l Hk k
n-l n-l 'n+l Hk

n+l
Hk-l
n-l

=yJT Hk-l Hk
n-l n

= F l - 'Hk-l '
n n n

that is (3.1) holds for n + 1. We remark, that we have used (2.10) twice.

Now

Hk+l Hk
n+l n-l o

= Hk+l Hk
n. n

Hkn Hi-'

Hk k-l
n+l'n-1

Hk+l Hk-l
n+l n= -

Hk k
;

n+l Hn

Hk+l Hk-l
n-l

H' Hkn n-l 1

and (3.2) has been proved for n + 1.
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Theorem 3.2. The existence theorem.

Let the roots of p,(x) = o satisfy the conditions z1 > z2 2 ..,, 2 zN > o.

Then

k
%l

> c > o k = 1, 2, 0.. N all n > 2

where c is a constant.

Hence the w-scheme always exists in the case of positive roots.

Proof *

From theorem 3.1 we have

and from theorem 2.5 we know, that

Hence we may conclude that c > o.

In order to prove that c > c > o we use the following

Lemma 3.1--

N k
CQn = 0 1 for all n > 1
k=l

Proof

For n = 1 this follows from the first row in the Q,D-scheme,  where

1 k91 = 01 and 91 = 0 for 2 <k<N.

Let it be true for 1, 2, O.O n, and consider
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N

c ( ek - ekml + k=
k=l n n %>

= eN
n-

N

e: + kxl G=

N
= O+ c

k=l

k
gn

It follows that the lemma is true for n + 1.

Lemma 3.2- -

for all n > N

Proof

+k-N = <+1-N  l $+2-N '** c

H1 H2
1

n+l-N ,
HN Hn-l

= n+2-N Hn-N ... n n-2

H1 H2
1

n-N n+l-N Hn+l-N
HN N-l
n-lHn-1

HN

=8n-l

= ON

Lemma 3.3

l<k<N n>2- -
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Proof

Since c>o and; <=
k=l

o1 the lemma is obviously true.

Lemma 3*4- -

l<k<N n>N- -

Proof

Since < < 'Jo and since the lemma is obviously true.

From lemma 3.4 follows that $ > c, where c = aN ~~11~~ for n > N.

We consider < for 2<n<N.

Since HE > min (l,(oN)I1), and since n < N we have

HE 2 min (l,(o,)N-l) '

for the n's in question.

Then

k
%I

> c
- 1

= [min (l,(~~)~-l)]~/M

where

M = max (Hk k-1)
2<n<N n-l Hn-l

Hence

J Cl1 >o l<k<N n>2

and we have proved theorem 3.2.
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We remark, that polynomial equations, the roots of which are known to be

real but not necessary positive, may be solved by means of the Q,D algorithm as

soon as a lower bound for the roots has been found. This being the case a

transformation may be carried out and the theory for positive roots can be used.

4. General convergence properties.

In this section we examine the columns of the QD scheme for a polynomial

equation pN(x) = 0. As usual we assume that z1 2 z2 > l . . 2 zN > o. This-

being the case we may prove that the q-columns converge. Precisely, that

k
% +Zk as n+m for l<k<N.- a In order to prove this result we must

develop some formulas for the Hankel determinants as functions of the roots

'1' '2 l ** 'N'
The formulas used until now seems not to be useful since the

ntiber of terms in Hkn tends to infinity with n.

4.1 HE as a function of the roots.- - v - -

(44

The basic formula is

H; =

sn sn 1 l l l s

n-k+1

Sn+l.
.

in+k 1 l l l * sn

l<k<N

n = 0, 1, 2, . . .

and we begin by finding Sn as a function of the roots.

Theorem 4.1

Let the roots be different, that is in our case z1 > z2 > 0.0 z
N

> o, then
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(4.2)

Proof

N
‘n = C

i=l

ZN-l
. nZ i N > 2, n = 1, 2, .OO

By induction with respect to the number of variables N.

N=2

By definition

sn = z; + zy-l z2 + 0-0 * + z;

which is the right side

Let the theorem be true for 2, 3, o.e, N-l variables and for all n in

each case. We consider 'n of N variables.

(4.3)

n+l n+l
z1 -z2=

z1 - z2
( z1 > z2)

2-l 2-l
z1 n z2=
zl-%

zl+ z2- z z2n (N = 2)
. 1

of (4.2) in this case.

From theorem 2.1 we have

sn = z 1 'n-1
(1) (2). + sn = z2 sn 1 + sn ,

where S (1) 0)=
n sn (2)= sn by' z 3’ '** "Nl*

The formulas (4.3) give

S 6
(2) (1)

n-l= n - sn )/(z, - z2)
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or with n + 1 instead of n:

(4.4) (2) (1)
sn = (sn+l - sn+J(zl - z2L

Now we may use (4.2) with N - 1 to obtain

s Z-L-
n z1-z2 I(

N-2
z1.

‘1-‘3) l l l (zl-zN)
n+l
z1 +

N-2
z3

(z,-z,)  (z3-z3)  l l l (z,-z,)

n+l
z3

+* l l +

N-2 N-2

+ ZN n+l z2 n+l
(zN-zl)(zN-z3)*~*(zN-~N-l)  'N - 7z2-z3)-•(z2-zN) '2 -

N-2
z3 n+l

zN-2
4

(Z3-z2)(z3-z4)***(Z3-Z~)  ‘3
n+l-... a

~z,-z,)~zN-z+***(zfz~~~)  'N 1
=

N-l
z1

(zl-z2)  (z,-z,)  l . l (zl-zN)

N-l
z2

(z2-zl)  (z,-z,)  l l l (Z2�ZN)

N
ZN-l

+ c
i [‘i-‘2 - (‘i-‘l)  I n _

Z.i=3 (zl-z2)(Zi-Z1)(Zi-Z2)***(Zi-Zi~l)(Zi-Zi+l)***(zl-ZN)  1

N
= c

i=l

ZN-l
i

-Tr
N (zi-zj)

i=l,i#j

and we have proved theorem 4.1 by induction.

Theorem 4.2

Let z1 > z2 > 0.0 zN > 0.
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Then

(4.5) Hk =
n c

N
( >k

( > N-kz~l**' Zak
(z . . . z >n 15k_<N
5 'k

n>k

where the sum is taken over all (fl) combinations
z~l'** Zak

of k roots

taken out of the N roots.

Proof

From the general formula (4.2) for

we may write Hk in the form
n

(4.6) Hi =

N N

c
n

c. z. c
n-l

c. z. 0
1i= lil

N N
c

n+l
c

n
c. z. c. z. l

1=i 1= =
0

.

i

c
n+k-1N

c. z. c
n+k-2

c. z. 0
lli lli

sm and the formula (4.1) follows that

N

c
n-k+1

0 0 c. z.
1i=

N

0 0 c
n-k+2

c. z.
1i=

N

r
n

c. z.
lli

(k rows)

where the constants c.; i = 1, coo, N are independent of
1 k and nO At this

point we have used n > k.-

It follows that Hi may be written as a sum of Nk determinants
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(4.7) Hk =
n 1

where 1 < ai < N

n n-l
cal zal C&2 ZB2 l

n+l n
cal zal ce2 za2 l

0

0

0

n+k-1 n+k-2
c☺2 za2 l

i = 1, . . . k.

n-k+1. .
cBn Zak

n-k+2. .
Cek Zak

n
Cak Zak

From (4.6) we know that the determinants, in order to be non-zero must

have different roots in all columns; that is Hkn may be written as a sum of

p(N,k) determinants. In (4.7) we then have to take the sum over all p(N,k)

permutations (a,, R2, . . . . A?,) taken out of (1, 2, . . . . N)

Now the p(N, k) determinants may be divided into (z) sets, where the

members of each set have the same k roots in their columns. Hence we may

write

n

zql
0

0
n+k-1
z41 -

n-l
z 0
92

0 0

n+k-2
z92 l

n-k+1

"k

n
Z

%

where the sum LII must be taken over all k! permutations (ql, . . . qk) of

(a,,  Jp l **> a,) and the sum CI must be taken over all (E) combinations

(a,, 5’ l **> ~3~) of (1, 2, . . . . N). Since the constants ca , . . . . c are
1 'k

the same for all members of the same set, these may be taken out as shown in

(4.8). It follows that we may write (4.8) in the form
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y?!!$“‘,.I
._‘.’I . .
,

HE = & 'f- cd
i=l

-fj- ba
i i=l i

)n-k+l&I

Zk-l

ql

k

zql

Zk-2
. 0

92

k-l
zq2 l l

z2k-2 ,2k-3
ql q2

0
0
"k

. Z1
'k

0
Zk-l

'k

We introduce the powers S' of the roots za , za , . . . za by
1 2 k

sp = zp + l ** + z
P

5 'k
P = 0, 1, 2, . . .

Then

Sk-l Sk-2 0

Sk
Sk-l 0

0

A= l

;2k-2 S2k-3 0

0 SO

0 S1

=

0 Sk-l

k-l+. . .+zk-l
% i?k * *
k +***+zk

'k

•2k-~*..+  2k-2* *
zal "k

Now

0
0 z; +““+Z

1 'k

0 k-1+.. . +zk-l
z% 'k

It follows that A may be written as a sum of k2 determinants. Of these

only k! are different from zero and the sum of these is

Sk-l Sk-2
0

Sk
Sk-l 0

0

0 . SO

0 0 S1

;2k-2 ,$k-3 0 0 0
Sk-l

1 1 1

zal za2

k-l k-l

zal "k

"k

k-l

z%
k-l

za2

k-l

"k

cII *

zJll
zQ21

ZQkl

32



Since the product of the matrices corresponding to the two last determinants

is the matrix corresponding to the determinant on the left side.

Since

k-l k-l
zal z12

k-l

"k

k
=

Tri=l,j>i (Za
j

za ) and
i

k-l
zl?☺ l

khl
z☺2 l

k-l
Zek '

k
=

TT-(Zj -"a)
i=l,j<i j i

follows'that

Err = R j -f-pzj - Z& >. .= i 3
(=W ky) 1 ,jpj - zj I2 ’ ). . .= 9 i J

Hence

H; = EI ‘ficj
i=l

fi(zj  )n-k+1  ‘fi-
ii=1 i

+- (za - za ) = EI ‘t(cj
i=l j=l,j#i i j i=

‘$- ( za-za ) z;-~+‘)
i j=l,jfi i j i

where the sum must be taken over all (c) combinations of k roots taken of the

N roots.

With

we obtain

N-l
zai

N-l

'ii = N _

zai
=

TT-
( z >'Bi- j zli- z,4? >

j=l,j+J$ j

Hk
k

=
n

N-k+n
zk! i

N

T r
( ZR.- zB >

j=k+l ' j
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or

(4.9) Hk =
n

(z
5

. . . z
'k

)N-k

(ZR - za >
i j

and we have proved theorem 4.2.

The formula (4.9) may be written as

(
n

zn 0.0 z* )

>
n0 z

'k

(4.10) ' Hk =
n E

"1 "k
N k

t;;b(k)'T  fi - (' - 'ejlza,)

0

i=l j=k+l

4.2 General convergence theorems.

By means of the formula (4.10) we may prove

Theorem 4.3

Let z1 > z2 > 0.. > zN > 0.

Then

Hk
lim + = z l 0.z

n-m H 1 k*
n-l

Proof

Since the roots are different we have

(n > k)

where the sums now are taken over all combinations zel...zJk different

from zl...zk.
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Since z1 > z2 > 0.. > zN > o it follows that

z&1�  l l Z☺k
z1 0 0 .z k

<l

for all combinations in question. This means that all the terms in the sums

in both the numerator and the denominator tend to zero, and since there are a

finite number of terms in these sums the fraction in (4.11) tends to 1.

Hence we have proved theorem 4.3.

Multiple roots

Theorem 4.4

Let z1 2 z2 > 0.. 2 zN > 0.

Then

Hk
lim +
n+aHn-l

= z 1 . ..zk;

that is the result from theorem 4.3 is true also for the case where one or

several roots of p (x)
N

= o are of multiplicity greater than one.

Proof

We begin with the case where one of the N roots, say zr, is of

multiplicity 2, and the remaining (N - 2) roots are single roots; that is the

roots of p,(x) = 0 are z1 > z2 > 0.. > zr 1 = zr > 0.. > zN.

Now we consider the polynomial equation pi(x) = o, which has the roots

z1
> z2 >

l ** 'Zr + e "r'
l ** > z

N�

Let HE(e) denote the Hankel determinant corresponding to this equation.

From the definition of H:(e) as a determinant in the complete symmetric
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functions follows that H:(E) is a continuous function of E. Hence we

find H:(O) = lim HE(e).
'z-w

By means of (4.9) we may write

(4.11)
( N+n-k
z1 z2 l ** Zk)

b l * *  ZN)

N+n-k

H:(E) = 1
zl-zk+☺  * l * ( Zk-ZN)

+ 0.0 + N-k+1

(ZN-k+l-Z1)  * * l (ZN-ZN-l) �

where z Zr-l= r + E.

The terms of (4.11) in which e occurs in the demoninator must be combined;

that is we'have to consider all combinations (z . ..z
- '1 'k

) of which zr-1 but

not zr
is a factor and all combinations where zr but not zr 1 is a factor.

N - 2
There are (k _ 1) combinations of each kind; we take them pairwise as in

the following example where we assume r > k

u =
(zl * l  l  Zk 1 zr l)N+n-k

k-l
( Zi-zr) (Zr-l-zr)

where
l(zi-zj) l

+
(zl l  l  l  Zk 1 zr)N+n-k

>

k=l z

T r �

-z

i r-l> (zr-zrBl)
Tr
N (y .>

i=l j=k,jfr,r
J -rr2

Then with zr 1 = zr + e we obtain
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( zl*  l l zk l)N+n-k
u =

Tr
2

( Z1� l l zk l)N+n-k
=

Tr2

('r + E)
N+n-k

E k-1
l-r'

z i-zr)
lT
N ('r j --z fE)

i=l j=k,j#r,r-1

z N+n-k
r

ek-1

lT-
(zi-Zr-E)

i=l

Let t(e) and b E) denote the numerator and the denominator of the last

( zr+c >
N+n-k y(

Z
i=l

k-l
E-rr(zi-zr)
i=l

fraction, respectively.
N

Then t(o) = b(O) = 0; b'(O) = ( 'T (Zr-Zj)2).
j=l,jfr,r-1

We find

t'(o) = (
N+n-k N+n-k-l

1 >z
k-l

r (-1-j

N
- (-l)k-l C

j=k,jfr,r-1

Hence

lim u = (-l)k-l
E-m

(4.M

( N+n-k
�1� l �ZkBl r

z >

N r, k-l N

-TT( Zr-Zj)~  ‘~j=l,j#r,r-1
‘~ (z’-Z.>

i=l j=k,j#r,r-i '

( N+n-k 11 ) n

(&J
i r

+

+

&&-3 >
j=k,j#r;-1'
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where lim u is written as the sum of two terms in order to preserve the number

of terms in HL. The limits of the remaining pairs obviously have the same

structure as (4.12), and we may write a formula for HkTI covering the case of
II

N- 1 different roots.

In this formula, which again consists of (ff, terms of the

M (z N+n-k
Cal**.Bk a,'"Za, ) t the coefficients may have a factor N+n-k

( l1 )

By means of the technique used above we may use the first result to obtain

form

new formulas covering the cases two roots of multiplicity 2 or one root of

multiplicity 3 (all other roots single in both cases) etc. until we obtain the

following result:

Let r be the number of different roots of p,(x) = o, and let the

multiplicity of these roots be ml, m2, . . . mr, respectively.

Then we may write Hkn in the form

(4.13) Hk =
n c

all (,",
b) (z

Cil***jk al***z~k > N+n-k

comb."

( >In this formula cjn. DO is of the form
1 'k

(4
C~l***~k =

where CJl***ak
is a constant; -TV Z.1-z j)a contains powers of the differences

between different roots and o f pQ < mi-1 (1 < i < r). By means of (4.13)
i-

- -

we obtain
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(4.15 >

Hk

;;i;E=n-l

N+n-k

N+n-l-k

where the sums are taken over all (z) - 1 combinations (z . ..z
'1 'k

) different

from (zl*  l l zk).

Among the combinations (z **"z
'1 'k

)

zal***zek = z~*.*z~, and among these we

there mY be some for which

choose the term with IIBX [(N'n-k)...(

p%

N;;-k)  ] .
k

By division in the nominater and the denominater, respectively, with these

functions of n, the fraction in (4.15) will tend to 1 as n tends to

infinity. Since

lim (U
.n+m Ni;-k� * l l (1

y, ]/ ☯ (N+;-l-k)  0 0 0

k 5

we have

lim (HL/HE-~) = Z~O-Z~
n+m

and we have proved theorem 4.4.

Theorem 4.5

Let zlz z2 > 0.. 2 zN > 0 .

Then

(N+n-l-k

"k

>I )=l .
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Proof

From theorem 3.1 we have

Hk Hk-l
n

4 = Hk
n-2
n-lHn-l n-l

Hk

I

Hk-l

=f-

n-l

n-l
Hk-l
n-2

Hence by means of theorem 4.4 -

lim < = (z~*~*z~)/(z~-z~-~)  = Zk
n+m

Theorem 4.6

Let z1~z2>...~zN>o

Then

ek +o as n+=n

Proof

By induction with respect to k.

k=l

From (1.2) we have

dl
e1 “+l

+ = nmen %

or - since e" = 0 -
n
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Hence

lim e,' = lim
1

n+= %l+1n+m
- lim d

n-+a

=
z1 - z1

= 0 0

We assume theorem (4.6) holds for k

(1.;) may be used.

- 1 and consider the case k. Again

We obtain

Hence

lim ek = lim
k
%I+1 - lim qkn + lim ek-'

n-+a n-9 n+m nn+m

= Zk - Zk + 0

= 0 9

and we have proved theorem 4.6 by induction.

In special examples the theorems 4.5 and 4.6 may be proved without using

theorem 4.4. We consider two cases. -

Example 4.1

N=2

(i> z1 > z2 > 0
n+l n+l

Now H' = Sn = z; + z;-l z2 + 0.0 + z; = z1 -z2

z1 - z2
; H2 = (Zl Z2)n andn

we find directly by means of (3.1) and (3.2):
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1
%

=

< = z1 z2

2

; e' =
n

-(z
1 z2)n

( z1 - z2)

(
n+l n+l n
z1 - z2 z1 -I( $1

n-l n-l
z1 - z2 0

n n
z1 - z2

From these formulas it is obvious that

( >ii z1 = z2 > 0

Then Hi = Sn = (n + 1) z$ H?
2n

n = z1 , and we find

1 n+l
%l

= - zl;n e’ = -
n

2n 0 1
z1

(n+l)zy n zy-l

1
=&

2n
z1( = '2(n-l)

(n-l)zn-2 n 1 n 1
n-l1 = -+- z1 = + z2 0

z1
n z

1

Again it is obvious that

4 +zl, c +z2(=z1) and ei -+o as n -+~a

Example 4.2

N arbitrary; all roots equal, that is

z1 = z2 = *O* = ZN > 0

We have

;

N kok = k z1( 1 k = 1, 0.0, N
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-

,

I ‘,

I ,

Now

- 'k-1 'k+l

'k 'k-1

(4.16)

and

k
e2 = -

Hk+l Hk-l
2 1
k

H2 1
Hk

= -

z1 k = 1, 2, l . . N

( >
2

Ok+1 - Ok ak+2
2
% - ak-l ak+l

Since

N
(k-1)
N

( >k
z1

'k-1
0

'k

k = 1, 2, 0.0, N-l

(4.16) and (4.17) may be written in the following form:

k = 1, l ... N

(N-k)k
eg =-(k+l)o z1 k = 1, . . . . N-l

By induction we may prove that
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(4.18)

(4.19)

k
%l

(n-l)(N+n-1)
= (k+n-2)(k+n-1)  '1

ek (N-k)k=-
n (k+n-l)(k+n)  '1

k = 1, 0 0 0, N

k = 1, l ... N-l

For n = 2 (4.18) and (4.19) holds as we have shown above.

Now we assume that (4.18) and (4.19) holds for n and consider the case

n + 1:

+

(N-k+l)(k-1) (N-k) k (n-l)(N+n-1)
(k+n-2)(k+n-1)  - (k+n-l)(k+n) + (k+n-2)(k+n-l)]

n(N+n)
= (k+n-l)(k+n)  '1

which is (4.18) with n + 1 instead of n.

Then

= - (N-k)k
(k+n)(k+n+lr '1

which is (4.19) with n + 1 instead of n.

From the formulas (4.18) and (4.19) we find

R" j Zk(=Z1) and ek +o as n -+w.
n
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5. -The convergence to the smallest root- -

The formulas developed in section 4 show that the convergence of the

q-columns may be very slow. In this section we shall examine the question of

the speed of convergence to the smallest root zN of p,(x) = o. Furthermore

we shall show that it is possible to use an acceleration technique to obtain

faster convergence to the smallest root.

5 .l A formula for {

In 'section 4 we have given a qualitative formula for Hkn valid for the

case of multiple roots. In order to examine the convergence of { to ZN

in detail we need a precise formula for { which cover the case of multiple

roots. As usual we assume that z1 > l . . 2 zN > o.

Lemma 5.1--

(5.1)

Proof

By definition

#
-1 =

n

'N-1 'N-2 l

☺N 'N-1
. .

.
.

.
.

ON ON-:1
(

n
= cJN

:n row:

(1 1
'1 Fl"'ZN > G2($ ..2 )

-1 ,ZN
a& . .A )

1 ZN

1

1 “1(i . .2
1 ZN
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In the proof of theorem 2.3 we have shown that the last determinant has

the value Sn[$ , 1 , . . . 1 ]
z2 ZN

and we have proved lemma 5.1.
1

Lemma 5.2- -

Let p(N, n) denote the number of terms in the complete symmetric function

'n
in N variables.

Then

(5.2)  1 p(N, n) = (Ngyl) = (N+rngl) N>2 _n>o

proof

By induction with respect to n.

n = o

Since So = 1 and (N 1N-1) = 1 (5.2) is correct for N > 2. We assume

that (5.2) holds for 0, 1, 2 . . . . n-l and all N > 2 and consider the case-

n. By means of the relation Sn[zl**azN] = z1 Sn l[~l***~N] + Sn[z2***zNI,

which has been proved in theorem 2.1, we may obtain

P(N, n) = P(N, n-l) + P(N-1, n)

= 'p;') + p(N-1, n)( _

= . . .

where we have used that ~(1, n) = 1.
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Since

1 + (Y) + (nil) + l ** + (N;;')

= (“:l) + (“:l) + . . . + (N;;‘)

= (n+2 >2 +*** +
N+n-2

( N-1 )
= . . .

= (N+n-1 1N-l '

we have proved lemma 5.2.

Lemma 5.3

Let z1 be of multiplicity m (1 < m < N) and let the other roots be- -

different. Then

N+n-m
z1=
N , . . .

--IT<

-L ](N~;l)zl+...+(-l)m-lsm  1[+

Z, -z, 1
'loZN -

,..A-lzm-l
l-'m+l ?lBzn ' 1

j=m+l L J

N
= c
j=m+l

ZN+n-l
i

(
N

Zi-zl)m
-T-r

( Z. -z.> .
13

j=m+l

Proof

The proof may be given by means of the limit technique used in section 4.

In this case however the notation is so much handier that we may prove (5.3) by

induction with respect to N.

=2N
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If z1 > z2 (5.3) is nothing but (4.9) which is correct and if = z
z1 2

we find Sn[zlzl] = (n+l)zr which is correct too. We assume (5.2) is true

in all cases with N-l roots and consider the case with N roots.

If z1 is of multiplicity N, we find by (5.3) that Sn[zl...zl]=(N~~l)z~.

From lemma 5.1 follows that this is correct. If m=l (5.3) again is (4.9)

and we may assume that l<m<N.

By means of (4.4) we have

s,☯.zl�...  zm+l,  l � l �Nl

m

= sn+$ zl,. . . zl, zm+2� l l �Nl - sn+lu zm+l�  � l l �N1
(�l-�m+l)

l w
, I/

m m-l

The complete symmetric functions in the parentheses are functions of N-l

variables and we may use (5.3) to obtain

sn = [ ';:l",;PN:fll)  - Sl[~m+2)..+Nl(N~~l) z1 + .,, ].
j=m+2

N
z N+n-1

$I c
i

km+2 (Zi-zl)m
N
lr.

( z.- z.>
13

j=m+2,j#i

N

c
i=m+l

ZN+n-l
i

( i-'l)
m-l

Z N z
-IT

( -z >i j
j=m+l,jfi

N+n-m+l
z1
N >*** (zl-zm+l)

7-r

( ‘l”j >

j=m+l

By reduction of corresponding terms and by use of the formula

s +-
r z1-zm+2

,...,+ ] +
l-ZN

,... 1 I = s +-
'loZN r 'l-'m+l

,...) 1 I
Z1-ZN

we end up with (5.3). Lemma 5.3 has been proved by induction.
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As an obvious consequence of lemma 5.3 we have the following general

result

Lemma 5.4

Let p,(x) = o have r different roots z1 > z2 > l .0 > z* > 0 of-

multiplicity ml, 9 '0.) mr respectively. (Cm
i

= N). Then - with the

notation spp-l=s+- -L 1 1

I -t
J

p zi-zlY zi-zl' "'zi-zl)"*Qi-z '*'*Z.-z-L I (jfi) -
r 1 r

1

\
m
r

snrzl*..zl ,..., Zr...Zr]

r ZN+n-mi
.

=
m.
J

L

(;+;l) - sl& ](N+n-l)z.+***+(-l)mi-l s
i- j mi-2 IL 112

[ mJ lzmi-1,
Z.-z ii-l 1 j I

Now

= �N l

HN-1
n-2
-1I?
n-l

which by means of lemma (5.1) may be written as

(5.5)
N

%l
=

s [’n-2 z II
1
“**‘z

N

s [An-1 z -11 '
1
'*"Jz

N
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We use the notation from lemma 5.4 and obtain

r

cl E
=
i=l

( >1 N+n-mi-2-
Z.1

r

J& (

1 1- - -
. . . Z.= > IL = 'j

[( N+n-3mi-1
i=l

( )
1 N+n-mi-‘l
Z.

1

r

J &(

1 1- - -
. ZZ >

. izi
'j

(N+n-2m,-1 +*'*) I

In this formula zr denotes the smallest root of p,(x) = o. Furthermore,

both the denominator and the numerator consists of N terms.

5.2 The monotonic convergence of c$

We consider

N
E =

%I - z
n N

N=
Qn

- z
r

and treat the two cases m- = 1 and m- > 1 separately.

m =l; that is
r - -

By means of

E =
n

(5.6)

the smallest root is a single root.P-m

(5.5) we find

( >1 N+n-3
7

1 N+n-2
c- >Z

r
r-l

lTr(
1--

j=l 'r

1.-

'j

lrnj

( 11 N+n-2
Zr

r-l

lr(
1 1- - -

j=l 'r 'j

jrnj

+

1(- 1
N+n-mrl-2

7

-r-l
r

--IT-
j=l,jfr

( 1 1- - -
-1 'r-1 'j

jrnj

( 1
>
N+n-mr-l-l

Zr-l
r

-l-T-
j=l,jfr-

1(- _ jrnj1
- zlZr-1 j

+. . .

N+n-3[(m -J+
r-l

N+n-2[(, J+*
r-l

. .

. 0

l ] +y2
- 1

num
i=l

] +ri2 denom
i=l
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(5.7)

From (5.6) follows, that en may be written in the form

E =n c (y--zr 1" b(n) )
r-l

where b(n) -+l as n-3~.

Hence we have proved

Theorem 5.1

Let z1 2 z2 3 l ** > z
- N-l > ZN > 0.

Then

En+l 2L
cn 'N-1

mr-> 1; that is the smallest root is a multiple root.- - - -a

(5.8)

By means of (5.5) we find

E =
n

( >1 N+n-mr-2
Z
r

r

J& (

1 1-0-
. Z
= > 'i i 'j

I
(- >1 N+n-mr-1

Z

- z
r

[(N+n-3
m,-1 >+***I +rf nm

i=l i

N+n-2C( >+-*Im,-l-

r-l

+c
i=l

denom

( >1: N+n-mr-1
Z r

r

lr(
1 1-0-

j=l,jfi'i 'j

N+n-2[( >+***Imr-1

r-l

+c
i=l

denom .

i

From (5.8) follows, that en may be written in the form
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F!gJ
:. a, _,’

I

’

En b(n)

m,-1
=

' (N+n-2)

where b(n) +l as n -3 00.

We have proved

Theorem 5.2

Let ,zl > Z2 > l a* > zN 1 = zN > 0, that is the smallest root is a

multiple root.

Then

cn tends to zero as $ .

Theorem 5.3

The last column of the Q,D scheme forms a monotonically increasing sequence:

0 = gf: < 92” < “’ < $ < cp+l < l l l

Proof

Since

Cl1 eN+=n
- ey-l + N
% Qn

EC -eN-' + N
n Qn 9

we have

N N
N-1 > 0%1+1 - Qn = -en J
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,

.
” ’

Since

eN-’ < 0n for all n .

From theorem 5.3 and the convergence of { to ZN follows

(5.10) o < N
%l <zN n>2

We remark, that a similar theorem concerning the convergence of

the largest root z1 may be proved:

Let z1>z2>e*o >zN>O. Then

1 1
q; > c$ > l * a > g, > g,,, l ** > z1

Theorem 5.4

Let z1 1 z2 > l ** ,> zN > o, and let N > 2 .

Then

(5.11) (N-1) c 1 ‘N

Proof

The proof is based on the following

lemma 5.5PV

For symmetric functions of N positive variables, where N > 2_ > and

all n > 1

(5.12)
'n L "1 'n-1
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For N = 2 (5.12) may be proved to hold for all n by direct calculation.

~ Now we assume, that (5.12) holds for N - 1 positive variables

z1 L 22 L l ** 2 ZN > 0. For n = 1 (5.12) holds. We assume (5.12) holds for

N variables and for n and we have to prove that

(5.13)

Now

Sn+l S '1 'n

Sn+l = 'N 'n + 'n+l

5 ZN sn + 0’ s’
In

where we have used

sn = zN 'n-1 n '+ s'

that is

Hence we have proved lemma 5.5 by induction.

The equation (5.11) may be written in the form

N N
%Pz- N
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Since we have by means of (5.5):

sn-2 [1. . ..) 1
= N

zl' ZN

s [I 1
n-1 z ) "" y

1 N

lL 11 sn2 [L ..*0

> 'n

a1 zl’ ’ o “’ ZN
z1 iN1

9
s [1.n-l z '**

1 iN'

which result by means of lemma (5.5) shows that N { >, zN, and we have

proved Theorem 5.4.

5.3 An acceleration device

The formulas (5.7) and (5.9), in which zr denotes the smallest root of

p,bd = ', proves the following

Theorem 5.5

Let z1 1 z2 > l .- l 2 zN > o be the roots of p,(x) = o, let 0 < c < zN,

and let p:(x) = o have the roots

z1
-c>z - c > 0** > z

-2 - - N
-c>o.

Then the convergence of the last column of the Q,D scheme corresponding

to pi(x) will be faster than the convergence of the last column in the scheme

corresponding to p,(x) = o.

In order to use theorem 5.5 we have to find a constant c in the interval

o<c<z
N'

The formula (5.10) shows that an arbitrary element

from the last column of the Q,D scheme may be used as the constant c in theorem 5.5.



The results from theorem 5.4 and 5.5 prove that the following algorithm

may be used to find ZN
within a prescribed error E.

Algorithm

Let z1 2 z2 > l em _ N> z > o be the roots of p,(x) = o, and let E > o

be an arbitrary real number.

Compute rl rows of the Q,D scheme. If (N - 1) x gf: < E then
1-

N cc'N - ‘rl - otherwise compute r2
rows of the QD scheme corresponding

to the polynomial with roots z1 - < , . . . . zN - 2 O If (N - 1) x qN < E
r2 -

then zN - <
1

- c$
1 1

< E otherwise compute rows of the QD scheme
2- r3

corresponding to the polynomial with roots z1 - r1(9" + $f >, *'*> 'N - ({
2 1

+ c 1,
2

etc.

6 . - Stability of the QD-algorithm- - -

6.1 The stability of the progressive form of the Q,D-algorithm- - -m-w

In the following considerations concerning the numerical stability of the

QD algorithm we assume that the computations are carried out in floating point

arithmetic on a computer for which the basic formulas of Wilkinson [B3] holds.

In Wilkinsons notation, if x and y are floating point numbers, then

fl(x+y) = (x+y) (lfe)

fl(x-y) = (x-y) (l+s)

fl(xy) = KY (l-t4

fl(x/y) = (X/Y) (1+e) >
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(6.2)
k

Qn and Ekn for the floating point numbers which actually are in

the computer instead of $ and k
en' respectively.

(6.3)

(6.5)

(6 6).

where I I-E <2
-t ) if the mantissa has t binary places. Since our

examination will be quantitative only, the statements obtained in this section

will also hold for computers for which the floating point addition and

subtraction are less accurate than supposed in (6.1).

In this section we use the following notation:

S(tcl) = <+1 -(EE - Ei-l + 4)

G(e;+l) = Et+l -(<;;/<+l x Ek)n

We want to express the,errors  on qk+l and ekn+l' that is r(c+l) and

‘(ei+l) bY means of the errors from row n.

The formulas used in the progressive form of the QD algorithm are

67 >
kgn+l = e: - et-l + c

ekn+l = c=;/c+l x ei

In the computer these formulas may be substituted by means of
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pJgq
. ‘,i
I .. . .

.
, ‘.

(6.9)

(6.10)

Now

and we obtain

(6:11) 'kit 1 >+ = r(eE) -r(ey + r(<) + s(~+1) a

k
Qtl+l = [(E; - Et-') (1 + cl) + ($1 (1 + e2)

EE+l = + g)xEil (l+ e4)

r(<+1) = <+1 - Rk+1

(E
k - Ek-' + k-l=
n n-

4) + S(C$+$ - ez - en

0
k k-l=
n- nek) - (En - e:-') +(< - $1 + SC<+&

Furthermore

k+l k+l

r(e
k Qn+1

) = 7
%l+1

n+l
Q9-l

x Ei + G(eL+l) - 7 X et

+1 %+l

which may be approximated by

(6.12 >
k

de >n+l

k+l

) + 9n+l r(ek

k+l ek

C+l n

) %+l n
k 2

(a1+ 1
'(c+l) + Ne;+l)

Before we draw any conclusions from the formulas (6.11) and (6.12) we

consider the terms 6($+1) and 6(ei+l). By means of (6.5) and (6.9) we find
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( 6 . 1 3 )

\. .,..;“.+

..I: ,
.. ‘\.

.

k-le(c$+$ = [@; - En > (1 -t- cl) + <I (1 + c2) - (Et: - E;-' + <)

(E
k= - Ek-'
n n 1 ( cl + [ (EE - EEol] (1 + y) + eh"] c2

k* (E - Ek-'
n n ) ( 5

a ( ek - ek-'
n n > ( ElfE2)f<E2 .

(6.6) and (6.10) may be used to obtain

*e
k
n+l ( s + E4) '

From the limjti theorems we know that ei -+ o and k
Qn

--,Z
k

as n 400.

Hence

and

Furthermore (6.12) give
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(6.15)
k 'k+lr(e )a-n-t1

'k

These results together with (6.11) show that although the error

r%i 1+ > may not decrease with increasing n this error will not increase

very rapidly.

Hence we may conclude:

The progressive form of the &D-algorithm $- only "mildly" unstable.p-v-

6.2 The stability of the forward form of the QD-algorithm,-m p m - - -

When the formulas (1.4) and (1.5) from the forward form of the algorithm

are used instead of (6.7) and (6.8) we find the relations

ek
k k k

(6.16) r(cIi)
e n+l %ll k en+l %+l

ek
rh;+ll + + r(en+l > -

n ek
n ( >ek 2n

(6.17)
k+l

den > = r(
k+l
Q+$ - de') + de:) + C$+')

Since n + 0 and ~n+~ -3 zk asek
k

n + 00 we may conclude from (6.16)

that the forward form of the QD algorithm is "strongly" unstable.p m - -

Part 2:- - ALGOL procedures and numerical experiments

7. The procedure QDPOSITIVE

7.1 Introduction

The numerical experiments with the QD-algorithm were carried out on the

Burroughs B 5000 computer at Stanford. The programs were written in
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Extended ALGOL for the B 5000.-mm The part of this language used in the programs

is so close to the corresponding part of the ALGOL 60, that I have chosen to

show the B 5000 procedures whichhave been used in practice instead of ALGOL 60

procedures. In fact, the only changes needed in the following B 5000 procedure

QDPOSITIVE  in order to have a correct ALGOL 60 procedure are:

1) The basic symbol+ should be changed to *= .

2) BEGIN, COMMENT etc. should be begin, comment etc.

3) The brackets following the array identifiers in the specification should

be removed.

7.2 Description of the procedure- -

In order to avoid to many comments in the procedure a description of the

parameters, the main features of the algorithm, the' storage; requirements

-etc.are given below:

1. Parameters

Input parameters:

N

POLY

the degree of the polynomial.

an array which holds the (N + 1) coefficients of

% xN +
'.' + "1 x + a with

0 a~ in POLYCOI,  aNml

in POLY[l] etc.

EPS

JUMP a label to which exit is made when the roots are not

a real number specifying "the tolerance." cf. section 3

below.

an integer specifying the maximum numbers of rows of

the QJ scheme to be used.

found by means of less than MAX rows.
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Output parameters:

ROOTS an array which upon exit holds the N roots of the

polynomial equation.

ROWS an integer which upon exit holds the number of rows used

in the calculations.

2. Method

In the general case Q,DPOSITIVE computes N rows of the QD scheme. Then

N
a translation from 0 to

gN is carried out, and N rows of the new QJ scheme

are computed etc., until (N - 1) q; < EPS. Now the smallest root is computed,

and the process is continued with (N - 1) rows until the next root is computed

etc.

Before the Q,D schemes are computed the procedure checks if all the remaining

roots are equal. This check is carried out by means of a very simple device

which consists of a comparison of the arithmetic and the geometric mean of the

remaining roots. When the roots are positive these means will be equal if and

only if the remaining roots are equal.

3. Accuracy

The theory of the algorithm used (chapter 5) says that the maximum error

should be less than or equal to the value of the parameter EPS. Since the

progressive form of the QD-algorithm is mildly unstable and since the

translations used will introduce other errors this will in general not be true.

In numerical experiments with equations of degrees between 4 and 10 the first

five digits have been correct in all cases (see the examples in 7.4).

4. r e q u i r e m e n t sStorage

The procedure uses approximately (N + 4) X N cells for storing local

variables.
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7.3 QJPOSITIVE

P R O C E DURE QDPOSITIvE~N,POLY,ROOTS~EPS~MAXIJUMP,ROWS)JVALu~  N#EPS,MAxJ

INTEGER N,MAX,ROWSJARRAY  POLY~01,RODTSfllJREAL  EPSJLABEL  JUMP)

BEGIN I N T E G E R  SBKIR,I,TJREAL  AMdMdOR,COJLABEL STOP,AGAINJ

ARRAY QtltN,l~NJ,~,PDL~POL~~O8N~J

FOR Sq) S T E P  1 UNTIL  N  D o  POLtS)~POLI~tSl+POLYtSl  JCOR+COqW?~OJ

F O R  S+N S T E P  -1 UNTIL  2  D O

B E G I N  AM+ABS(PO~fl]/S)JGM~ABSCPO~tS~~Cl/S))J

‘IF ABSCAM-GM)W’S T H E N

4 B E G I N  FOR T+l S T E P  1 UNTIL  S DO ROOTs~TJ+AM+CORJ

Go TO STOP

ENDJ

AGAIN8

F O R  I+1 S T E P  1  U N T I L  S-1 D O

BEGIN ~tlrI~+OJ~t~)+POLt~+il/POt(fll

ENDJ ’

R+R+l J

FOR T*2 S T E P  1 UNTIL  S D O

EMGIN  F O R  I+1 S T E P  1 UNTIL  S  D O

O[T,I)~EtIf~E[f-l)?OtT-l,IJJR~R~~J

F O R  I+1 S T E P  1 U N T I L  S-1 D O

E~Il~Q~TrI+lf/OCT,fJxEttl

ENDJ

IF CN-l)xOCS,SJW?S  THEN

B E G I N  ROO~SCSJ~AM~OCS~S]+CORJ

IF ScN THEN AM+AM"ROOTSCS+13J

F O R  I+S  S T E P  4 UNTIL  1 D O
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F O R  ‘l-1 STEP 1 UNTIC  I DO

FOR I+1 S T E P  1 U N TI L  9’1 DO POLCIl+POl.ItIll

I F  Sm2 T H E N  ROOTS~~~~QL~P~~+CORJ

E N D  El.SE

B E G I N  CORGOR + QCS~SlHX~QtSrS)I

IF Rk MAX THEN GO TO JUMPI

F O R  I+S S T E P  -1 U N T I L  1 00

F O R  Tel STEP 1 UNTIL I D O

GO TO AGAIN

END)

END)

. iTOPt  ROWS*R1(

END Q6POSItfVE~
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7.4 Examples

1. p4(x)
4= -x 8 2 + 24 x2 - 32 x + 16

Exact roots: 2, 2, 2, 2.

The following output was obtained:

Table 1

COEFFICIENTS:

1.00000000 -8.00000000 24. oooooooo -32.00000000 16.00000000

EPS = 0.00000001 NUMBER OF ROWS = 0

ROOTS:

2 . 0 0 0 0 0 0 0 0 2 . 0 0 0 0 0 0 0 0 2.00000000 2.00000000

2. P,(X) = x 4 - 8 2 + 23.98 x2 - 31.92 x + 15.9201

Exact roots: 2.1, 2.1, 1.9, 1.9.

The following output was obtained:

Table 2

COEFFICIENTS:

1.00000000 -8.00000000 23.98000000 -31.92000000 15.92010000

EPS = 0.00000001 NUMBER OF ROWS = 54

ROOTS:

2.09999999 2.09999999 1.90004137 1989995865

The details of the computation in example 2 are shown on the next pages where

the 54 q-rows and the 54 e-rows are printed.
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3. p4(x)
4

= x - 8 I? + 23.9999 x2 - 31.9996 x + 15.9996

Exact roots: 2.01, 2, 2, 1.99.

The following output was obtained:

Table 3

COEFFICIENTS:

1.00000000 -8.00000000 23.99990000 -31.99960000 15.99960000

EPS = 0.00000001 NUMBER OF ROWS = 72

ROOTS:

2.00996394 2.00087 089 1.99912488 1.99004029

4. piO(x) = x1' 9 8 7 6 5- 20 x + 171 x - 816 x + 2380 x - 4368 x

4+ 5005 x - 3432 I? + 1287 x! - 220 x + 11.

The following output was obtained:

Table 4

COEFFICIENTS:

1.00000000 -20.00000000 171.00000000 -816.00000000 2380.00000000

-4368moooooo 5005.00000000 -3432.00000000 1287.00000000 -220.00000000

11.00000000

EPS = 0.00000001 NUMBER OF ROWS = 191

ROOTS:

3.918988~ 3.68250232 3 a30972557 2.83082807 2.28463026

1.71537022 1.16916998 0.69027853 0.31749293 0.08lol4o5

The polynomial plo(x) is the characteristic polynomial corresponding to

the matrix considered in example 8.1 in the next chapter. In all cases the first

six figures are correct and all eight figures are correct in the three smallest

roots.
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8. Examples of computation of eigenvalues.

8.1 Introduction

The following two examples ought to be considered as illustrations of the

Q,D-algorithm  as a rootfinder, and not as examples of the QD-algorithm as a

method for finding eigenvalues. The reason for this point of view is simply

that the method used in the examples merely consist of a computation of the

characteristic polynomial followed by the use of a &D-procedure similar to

Q,DPOSITIVE. This does not mean that the Q,D-algorithm in general cannot be

considered as a good method for finding eigenvalues, but it means that the

starting row of the QD-scheme should be computed directly from the elements of

the given matrix and not via the coefficients of the characteristic polynomial.

8.2 fi example of the computation of the eigenvalues of a symmetric three-- v mw - -

diagonal matrix.

The matrix used was the following 10 x 10 matrix

A =

2

1

-1

2 -1

-1 2 -1

-1 2 -1

0

0

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2
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(8.1)

The eigenvalues of A are given by means of the formula,

E
P

= 2 sin2 2 N+l
e7)

, p = 1, 2, . . . . N

where N is the order of the matrix (N = 10).

The following output was obtained (the numbers in the column "CORRECT EV"

were computed by means of (8.1))

THE CHARACTERISTIC POLYNOMIAL HAS THE COEFFICIENTS:

1.oooooooc@+oo

-2.00000000&+01

1.7 1oooooc@+o2

-8.16000000@+02

2.38oooooc@+o3

-4.368ooooc@+o3

5.00500000@+03

-3.432OOOOc@+O3

1.2~0000c@+03

-2.20000000@+02

1.1000000@+01

NUMBER OF ROWS = 138 EPS = 0.00000001
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EIGEN-VALUE NR

1

2

7,

8

9

10

EV COMP QD-ALGORITHM CORRECT EV ERRORxlOOOOOO

3.918986773@+00 3.918985945@+00 8.276~9-01

3.682505627@+00 3.6825qo63@+00 -1.43@I+oo

3.309722197@+00 3.3Og21464@+00 7*333@-01

2.83082987@+00 2.83083 0022@+00 -1.434@-01

2.28462g1$1@+00 2.284629673@+00 6.103@-02

1.71537.29@+00 1.71537032c@+OO -2.5933-02

1.16916997~00 1. ~69169972@+00 6.956@-03

6.90278532x+01 6:90278530&+01 1.432@-03

3.174929343@-01 3.174929336@?-ol 6.858~04

8.1014052'77@-02 8.101405259@-02 1.835~04

8~3 & example of the computation of the eigenvalues c 2 symmetric full matrix.- - - -

The matrix used was the following 4 X 4 matrix, which is used in Faddeev

and Faddeeva [ 4 ] (p. 281)

A =

1.00 0.42 0.54 0.66

0.42 1.00 0.32 0.44

0.54 0.32 1.00 0.22

0.66 0.44 0.22 1.00_

The characteristic polynomial of A is

A4 - 4 h3 + 4.752 h2 - 2.111856 h + 0.28615248

where the coefficientsare computed exactly.
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Faddeev and Faddeeva give the following eigenvalues (computed within

5.10.9):

5
= 2.32274880

h2
= 0.79670669

5 = 0.63828380

h4 = o, 24226071

The.following output was obtained:

THE CHARACTERISTIC POLYNOMIAL HAS THE COEFFICIENTS:

1. oooooooo@+oo

-4.00000000@+00

4.7 520000@+00

-2.111856oc~+oo

2.86152480@-01

NUMBERS OF ROWS = 24 EPS = 0.00001000

EV NR EV COMP BY QD

1 2.322748800@+00

2 7.96706688gjh01 .

3 6.382838028@-01

4 2.422607 083s01
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c51

C61

c71

PI

c91

Cl01

cu
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