
MAXIMIZING A SECOND-DEGREE  POLYNOMIAL
ON THE UNIT SPHERE

.

BY
GEORGE E. FORSYTHE and GENE H. GOLUB

TECHNICAL  REPORT CSl6
FEBRUARY 5, 1965

COMPUiER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY I

,





MAXIMIZING A SECOND-DEGREE POLYNOMIAL ON THE

UNIT SPHERE *J

bY

George E. Forsythe

and

Gene H. Golub

ABSTRACT-

Let A be a hermitian matrix of order n, and b a known vector

in
n

C . The problem is to determine which vectors make 0(x) = (x-b)H A(x-b)

a maximum or minimum on the unit sphere U = [x
H

: xx=
13 l

The problem

is reduced to the determination of a finite point set, the spectrum of

(A,b). The theory reduces to the usual theory of hermitian forms when b = 0.
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1. The problem.

Let A be a hermitian square matrix of complex elements and order n.

Let b be a known n-vector of complex numbers. For each complex n-vector

x, the nonhomogeneous quadratic expression

OJ) o(x) = (x-b)HA(x-b)

(H denotes complex conjugate transpose) is a real number. The problem,

suggested to us by C. R. Rao of the Indian Statistical Institute, Calcutta,

is to maximize (or minimize) o(x) for complex x on the unit sphere

s {x: xHx= = 1). Since 0 is a continuous function on the compact set S,

such maxima and minima always exist.

In summary, our problem is:

O-2) maximize or minimize a(x) subject to xHx =l .

The purpose of this note is to reduce the problem (1.2) to the deter-

mination of a certain finite real point set which we shall call the spectrum

of the system (A,b) (defined at end of Sec. l), and show that a unique

number h in the spectrum determines the one or more x = xh which maximize

Q(x) for given b. Theorem (4.1) is the main result. The development is an

extension to general b of the familiar theory for the homogeneous case when

b = 8, the zero vector. No consideration to a practical computer algorithm

is given here.

In Sec. 7 we show that determining the least-squares solution of an

arbitrary system of linear equations Cy = f, subject to the quadratic
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constraint yHY = 1, is a special case of problem (1.2).

Phillips (9.2) and Twomey (9.3) begin the actual numerical solution

of certain integral equations by approximating them with algebraic problems

very closely related to the minimum problem (1.2).

⌧1 5 ⌧2 < l l l < ⌧n- - be the (necessarily real) eigenvalues of A,

by..,Un3 be a corresponding real orthonormal set of eigenvectors,

= X+u; (i=l,...,n).

Let

and let

with Aui
I L

103)

Let a given b be written

n
b = c

i=l
biui .

(1.4) Theorem. If x is any vector in S for which o(x) is stationary

with respect to Sg then there exists a real number X = X(x) such that

(105)

(1.6)

Conversely, if any real

X renders Q(x) stationary.

A(x-b) = Xx ,

Hxx=1 .

X and vector x satisfy (1.5, 1.6), then

Proof. Let xo be a point of S. Now, as shown in lemma (8.7),

Q(x) is stationary at x0 with respect to x in S, if and only if there

Y exists a real Lagrange multiplier X such that q(x) = (x-b)HA(x-b) - h xHx

is stationary at x0 with respect to all neighboring complex vectors x.

Since

0 = -& grad q(x,) = A(xo-b) - X x 0 ’

the theorem is proved.
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To see what conditions are satisfied by the X of theorem (1.4), we

note that the system (1.5, 1.6) is equivalent to the system

(1.7) (A-hI)x = Ab ,

om Hxx=1 .

Let

n
X= c X.U. l

i=l 1 1

Then (1.7) is equivalent to

0-Y) f (Xi-X)xiui = i hibiui .
i=l i=l

Definition. By the spectrum of the pair (A,b) we mean the set of all

real X for which there exists an x such that (1.7) and (1.8) are satisfied.

Given any X, x satisfying (1.7) and (1.8), we shall say that x

belongs to X, and frequently write x x
in the form x .

Note that the spectrum of (A& is the ordinary spectrum (Xi] of

A.

2. Special case: no Xibi = 0.

Assume for the present section that Xibi # 0 (all i). This implies

that all Xi # 0, i.e., that A is nonsingular. If X is in the spectrum

of (A,b), (1.9) implies that X # Xi for all i, and also that



(2J)

Then the requirement that

I (2.2)

Xibi
X =-
i Xi-X

is equivalent to the condition

xHx = i IXi12 = 1
i=l

(2.3) g(x) =

(iFl,...,n) .

n

c
i=l

= 1.

Although all h corresponding to stationary values of o(x) are

known by theorem (1.4) to be real, it is useful to define gw bY (2.3)

for all complex X not in (xil'

Let G be the set of complex numbers X such that g(X) = 1.

For small enough El Ibi t G is the union of n simple closed curves in
i=l

the complex plane, the k-th of which surrounds 'k. As the biI I grow 9
adjacent curves first coalesce in double points, and then merge into single

curves. For very large values of all ]bil, G is one simple closed curve

including all I 'il in its interior. The family of sets G resembles the
n

family of lemniscates m
i=l

IX-Xi1 = const.

Note, moreover, that g(X) > 1 for h inside any component curve

G. of G, while
3

g(X) < 1 in the exterior of all components G. of G.
3

Now'we shall show for the special case of Sec. 2 that each X in

G determines a unique xh which satisfies (1.7, 1.8). For that xh



(2.4)

where we define f bY

(2.5)

@(XL) = f(h) )

n Xilbi12
fW = lx12 c lx LIZ l

i=l ; -

Fix X, and drop the superscript X on x. To prove (2.4), note that

(1.7) says (hi-X)xi = hibi. Thus

(hi-X)(Xi-bi)  = ‘ibi - bi(‘i-‘)

=Xbi .

Xence

x. - b
Xbi

1 i=F '

and

(P,(x) = Jl hilxi-bi12
l -

= I Ix2

proving (2.4).

Since the Lagrange multipliers X must be real, the spectrum of

(A&) is the intersection of G with the real axis. This consists of from
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2 to 2n distinct real numbers. How many numbers are actually in the

spectrum depends on b; this will be discussed in Sec. 5 for n = 2.

We wish to determine which X in the spectrum corresponds to the

maximum [minimum] value of fW Let G.
3

be any component curve of the set

G.,

(? t 6 > Theorem. The maximum and minimum real parts of X, for X in any

both occur for h on the real axis.

Proof. Let h = D + iT, with c,'~ real. Then-

X’i lbi12
(cr-hi)2  + T2 l

Hence, for T > 0 and fixed 0, g(h) strictly decreases as +-c increases.

Then-in the upper half plane z > 0, any line u = constant intersects Gj

in exactly one point. The theorem follows from this.

Definition. Let AR[AL] denote the unique real value of X of

maximum [minimum] real part in the set G.

(2;7) Theorem, Under the assumptions that A is regular (i.e., Xi { 0- -

for all i ) and bi # 0 (i=1,2,....,n), for all X in G such that

hfJ'&, h{nT, wehave

f(~) < fW < f(Q '

Proof. Let ai = kf lbi12 (i=l,...,n). Introduce two independent

complex variables X,p, where p will later be set equal to 51. In order

to study the gradients of the functions g, f, and h (defined below) for
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complex X, we shall use the tools of Sec. 8. This requires extending

these functions into the space of X and +

Let X =c+i? (cT,~ real). For all complex X # Xi, define the

functions gl and g2 by

where

how) = i
a.1

i=l (hi-X)(hi-Pl  l

(This definition is consistent with (2.3).) Then

(2*8)

($+ i>)=[2],, , byhnma  (8.1)

n a.

c
1=

i=l (Xi-X)(Xi-7C)2

n a.

c
1=

i=l l+A12*(hi-X)  l

For all complex X # Xi, define f(X) by (2.5). We then define

the functions fl and f2 by

fW = fl((T,T) = f2(X,X) ,

where
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(2.10)

and note that

h(h) = f(X) + F [l-@;(X)1 ,

(2.11) hW = fWY for XEG .

As with f and g, we introduce functions hl and % so that

where

-Then

(2.12)

h(h) = J+,‘d = h2(x,d Y

ah, af,

qT=qT

=h-CL %
2 a, + $[l-g2(bd1 , by (2.9) .

Hence

(2.13)

=$!z(%+ -i>)+$[l-g(h)1  l
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Now any component Gj of the set G where g(h) = 1 encloses a

region where g(x) > lo On G the gradient vector of g,

is non-zero, is normal to G.,
3

and points to the interior of G..
3

Then,

by (2.12), the gradient vector of h on G.,
3

namely

$q non-zero forAL 7#o and points along the tangent to G. in the direction
3

of increasing CT* Hence

h(X) is strictly increasing, as X traces G. '
J=

the direction of increasing u.

From (2.14) it follows that h(h) assumes its maximum value, for each

separate ccmponent curve G. of G,
J

at the point p. on G. of maximum
J 3

real part, By theorem (2.6), pj is on the axis of real X.

Note that setting p = x = X in (2.12) yields the result that

(2.15) h'(X) = 1 - g(X), for real X .

To complete the proof of the present theorem, we much show that f(X)

!is larger at the pofnt a.
3

of least real part on the component G. of G
3
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than it is at the right-most point Sj-l of the component G.
J-1

of G

immediately to the left of G..
J

Note that g is continuous for X E [Bj-l,~jl, and that

g(pj 1> = g(aj) = 1 but g(h) < 1 for pj 1 < X < a.. Then
3

h(aj) = h(Bj-1

Thus

(2.16)

’ h-g(~)ld~ , by (2.15)

> h(Bj-l)Y since
43w c 1 l

as was to be proved.

We conclude that h(X) increases, as X increases along the real

axis between adjacent components of G. Since h(h) = f(X) on G, we

see from (2.14) and (2.16) that

min f(h) = f(5) .
X EG
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It follows trivially from theorem (2.7 ) that the maximum and minimum

values of fW over the real numbers in G

w4 in the present case) are also f(fQ

( i.e., over the spectrum of

and f(+)Y respectively.

BY bY), our condition that no hibi = 0 implies that h # Xi for

all i and for all X in G. Hence s and %
are not eigenvalues of

A, and so neither A - n,I nor A - %I is a singular matrix. Therefore

we can solve equation (1.7) uniquely for xmax and xmin'

X =x%
rnax = (A-+I)-lAb ,

X = x"L
min , = (A-,I)-'Ab .

These equations give unique solutions to the problem of minimizing and

maximizing Q(x) = (x-b)HA(x-b),  for nonsingular A and b such that

no bi = 0.

It would be desirable to be able to prove that h(aj) < h(pj), in

the notation of theorem (2J),without analyzing h(X) and g(h) for complex

values of he

30 General case: Some Xibi = 0.

We now study the general case where one or more Xibi = 0. To be

explicit, let c= (a: h,b,=O), a set of integers. We wish to examine

the spectrum of (A,b)~

Define x as the set Pa: a E Cl.
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First, given one a E c, if X # La and X is in the spectrum

of (0)
x

with corresponding vector x , then (1.9) shows that xk = 0.

Thus, if X is in the spectrum but not in the set or , then xi = o

for all a E e and, just as in the derivation of (2.3), h will satisfy

the equation

(3*1)
n

c
i=l

=l

Conversely, any real solution X of (3.1) -which is not in the set 0z

will be in the spectrum of (A&), and its corresponding vector xx will

have xk = 0 for all a E e . If we interpret O/O in (3.1) as 0,

then it is possible that some eigenvalue Xk in J will also satisfy (3.1).

Tf so, we will show that this Xk is also in the spectrum of (A,b). How-

ever, the spectrum may also contain eigenvalues Xk in % which do not

satisfy (3.1), as we shall now show. No eigenvalue xk not in 2 can

be in the spectrum, because X = Xk would make the left side of (3.1)

equal to 00 .

Fix attention on one Xk for k E e. We wish to examine the

possibility that this Xk is in the spectrum of (A,b). Let m be the

multiplicity of hk as an eigenvalue of A. Let b, = {i: hi = kk) so

that card (Q )k = m. If Xk is in the spectrum, then (1.9) shows that

haba = 0 for all a in I!3k. Moreover, if Xk is in the spectrum, then

the corresponding vector x = x'k has the properties

hi bi
x. =1 hi-Xk ci 6 ‘,, ,

13



and, by (2.1 ), also

(3.2)
x’i lbi12
Ixisxk I2

<l .

Conversely, if (3.2) holds then we can always define xi for all

I-Qic k in such a way that

(303) : c
ic &I

k
I Ix 2i

=l- c
i fi$ Bk-

‘1 lbi12
IXi-hk  I2 l

Hence, by (3.2) and (3*3), equation (1.8) holds and, since (1.7) is

satisfied, hk is in the spectrum of (A,b).

If equality holds in (3.2) then xi must be 0 for all i E B k;

i.e., Xk satisfies (3.1), and x'k is unique. But if inequality <

holds in (3.2), then there is an (m-l)-dimensional sphere z/ of values

of {xi), for i E Bk, which satisfy (3.3). For, if a point

( X .

=1
,.*0,x.1 > is in 3, then so are all points of form

m

(all
'i real) Y

since c I I 2i E fi, xi
is constant for all of these. In this case

uniqueness of x
'k

is lost. The sphere is analogous to (in fact is a

generalization of) the sphere of unit eigenvectors of a hermitian matrix

A belonging to an eigenvalue of multiplicity m.

14



Note that an inequality < in (3.2) states that Xk is in the

exterior of the graph

i.e., 'k can be joined to 00 by an arc not cutting G. Thus, in brief,

the spectrum of (A,b) consists of the union of all real numbers in the set

(3.4)
f

..
n

c
i=l

Xf lbi12

1x,-x I2
= 1 i

J

where we interpret O/O as 0, with those numbers 'k
which are exterior

to the graph G. (If G is the null set, then b = 8 and the spectrum

of (Aye) consists of all eigenvalues hk.)

We must now examine 0(xX) for X in the spectrum of (A,b). The

study of Q(x'), for real h E G in (3.4) is the same as in Sec. 2,

and yields the same results (2.4) and (2.5): First, for X c G,

QQ 1
n hilbi12

= f(X) = IhI2 & Ix xl? , where O/O = 0. Second, let pR,
- -

i-

pL be the right-most [resp. left-most] points of G. Then f(pR) maximizes

[resp. f(PL) minimizes] f(X) for X C G. It remains to consider

'k
@b 1.9 for eigenvalues Xk outside G.
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(3.5) Theorem. For any X in the spectrum of (A,b) we have

(3.6) @(XX> = h(X) = f ( X )  + Xbg(Ql Y

where f(X) is given by (2.5), with O/O intepreted as 0.

Proof. Take any X in the spectrum of (A,b).

If h # hk (k=l,...,n), then h E G, and everything proceeds as

in the proof of (2.4), showing that Q(xh> = f(X). Since g(X) = 1, we

have proved (3.6) when X # Xk.

If h=Xk, an eigenvalue of A, let xi denote the i-th coordinate

of any x
'k which satisfies (1.5) and (1.6) (and hence (3.2) and (3.3)).

Since 'k is in the spectrum of (A&), we have hibi = 0 for all

iE. kY/9 where Qk is defined above after (3.1), and as

'i I xi-bi

(307)

2 = LjXi12 = XklXi12, for all i E k. Then, by (3.3),

c
i E

Xjlxi-bi12  = $ ‘ilbi12

k 1bk (Xi-hk)2

where o/o = 0 .

Moreover, like (2.4) we can prove
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(3.8)
2= hk n xi bJ2

c
i=l (+Xk)2 '

where o/o=0 .

Adding (3.7) to (3.8), we get

@(xx) = f hi Ixi-bi12
i=l

(3.9)
2 n

= xk i=lc

n

c
i=l

= f(‘k) + hkb-g(hk)]

= h(Xk) .

This proves (3.6) when k = hk.

It is property (3.6) of h which motivated our use of h in Sec. 2.

Note. It "Is easily shown from (3.6) or (3.9) that, for all h in

the spectrum of (A,b),

(3.10)
n hi lbi12 ’

h(h) = h + h c
IL-hi '

where O/O = 0 .
i=l

If h is in the spectrum of (A,b), but is not an eigenv@ue of A,

we can derive (3.10) as follows. Let x belong to h. Then



Q(x) = (x-b)HA(x-b)

= (x-b)HLx , by (1*5)

= x xHx -, HX'b x

= x - X bHx , *by ( 1 . 6 )

= x -

x -h

by (1*7)

We shall not make use of (3.10’) here.

We now use formula (3.6) to extend the domain of h to all real X

where g(X) < 00, i.e., to all h except where, for some i, h = Xi

and Xibi # 0.

As stated before (3.5), we know that the largest value of = h(X)

for X in G occurs at the right-most point vR of G. It remains to

see whether h(hk) may be still larger for any Xk in the spectrum of

(Ad if pR<Xk'

The answer is furnished by formula (Z.l5), which is valid for the

general case of Sec. 3 with the understanding that O/O = 0. Thus h is

increasing on all segments of the real axis between or exterior to components

of the curve G. It follows that h(h) takes its maximum at the rightmost

point n, of the spectrum of (A,b) and its minimum value at the left-

most paint % of the spectrum of (A&), whether or not these are

eigenvaluee of A.
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From the considerations following (3e3), we see that

X is unique if CR E G. If, however, % is not in G

eigenvalue of A of multiplicity m, then the maximizing

points of an (m-l)-sphere of nonzero radius, whose center

when bf8.

the maximizing

and is an

X include all

is not at 8

The above result about hR and % for the case where some hibi = 0

can be obtained by continuity from the case where no alibi = 0. It is not

clear that we could use continuity to deduce the nature of the maximizing

and minimizing vectors, for multiple roots

b0 The main result.

In Sets. 2 and 3 we have proved our result:

(4.1) Theorem. Given A, hermitian with eigenvalues Ihi and bJ

arbitrary, define Ibil as in (L3) Then the spectrum of (A,b)

consists of all real X such that

n Xf lbi12
dU = c = 1 (o/o = 0; l/O = OJ) ,

i=l

together with each eigenvalue hk of A for which g(Xk) < 1.

For each X in the spectrum with g(X) = 1, a unique xh 2

found by solving (1.7, 1.8). For each X in the spectrum with g(h) < 1,

there exists an (m-l)-sphere of xh satisfying (1.7, 108), where

m = card (X.: h. = hkjO
J J
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Each xh so found renders Q(x) stationary on S. Let

%= max(X : X E spectrum); let = min{X :

+L 33
%

= any x ; let xmax = any x . Then @(xmin

x E spectrum). Let xmin

1 minimizes Q(x) on S,

and Q(xmax) maximizes o(x) on S.

50 The number of points in the spectrum.

As we noted in Sec. 2, if A is of order n, then the spectrum of

(A,b) contains anywhere from 2 to 2n real numbers. When does it have

the full amount 2n? If any Xibi = 0, then the discussion of Sec. 3

showed that the spectrum necessarily has fewer than 2n points. So we

are limited to the case where all Xibi # 0. But then, as shown in Sec.

2, we know that the spectrum is the intersection of the graph of

(5.1)
n A: Ibi12

P = c
i=l jXi-hi2

for real X with the line p = 1.

The graph of (5*1) for real x consists of n + 1 branches between

the n vertical asymptotes X = Xi (i=l,...,n). Since p>O forall

A, and p--+0 as h-+co and h-+-co, the right-most and left-most

branches necessarily cut p = 1. The spectrum has the full number 2n of

points if and only if each of the n - 2 interior branches of the curve

reaches its minimum with p < 1. For general n a condition for this is

probably too complicated to derive. For n = 2, however, we can answer

the question, as follows:

20



(5.2) Theorem.1 _*-.

(5.3) Let n = 2, and assume A is in diagonal form with hl < X2.

If the spectrum of (A,b) consists of 4 distinct numbers, then

(5.4)

and also

(5.5)

O< P&l )

(5.6) Conversely, if (5.4) and (5.5) hold, then the spectrum of

(A,b) consists of 4 distinct numbers.

Proof of (5.3). Let ai = l$bi12

were zero, then the development in Sec. 3

sists of at most 3 points. Hence a1 > 0

Let M = (a2/al)li3. Now the development

spectrum of (A&) consists precisely of

(i=1,2). If either a
1

or
a2

shows that the spectrum would con-

and a3 > 0; i.e., (5.4) holds.
L

in Sec. 2 shows that the

the real roots h of the equation

(5.7) g(U = "1 + "2

(A-q2 (bA2)2
=l .

Since (5.7) has 4 real roots, we know that two roots must

(X1,X2). Now let p be the unique real root of

g'o4 =
-2al

2a2
3 - 3 =o .

lie in the internal

(?dp (x-x2y

21



Then, because there are two roots of (5.7) in (hl,A2),

(5.8) dd < 1 l

We now show that (5.8) implies (5.4).

Solving g'(p) = 0 shows that

whence '

- 5 = +M b& >

A2 - P = & b2-h1>  l

Hence

@;(I.4 =
al(l+M)2

+
a2(l+M)2

(x2-q2 &x,-q2

= (l+M12 + “2
(h2-Xl)2 “l I?[ 1

2

(1+M)2 a?
=

b2-512 [ 1+ i
al + "2

22



Thus g(p) < 1 implies

1 2

(54)
3
"1

i+ a2 < oy5>
3

9

which implies (5.5). Thus (5.3) is proved.

Proof of (~6)~ We have al > 0, a2 > 0, and (5.9). The above steps
are reversable, and so dd < 1, whence there are 4 real roots of g(p) = 1.

Thus theorem (5.2) is completely proved.

Condition (5.4) says that neither hl nor h2 is 0, and that the

point b = (bl,b2) does not lie on an axis of the (xl,x2)-plane. Condition

(5.5) requires that (b b ) be inside a curve1' 2 I? which depends only on

the ratio “2/5’ If X2/X1 = 2, for example, the curve I' is

_I Ibl
2/3 + 12b2 t2i3 = 1.

Figure 1
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In Figure 1 the number of points in the spectrum of (A,b) is

indicated for different b in the first quadrant by integers in circles.

If j~,lq > 2, the curve I-' includes values I Ibl > 1. But

]x,/L,I > 1 implies that, on I?, lb21 < 1.

6. Geometrical interpretation.

Thesurfaces Q(x) = k are similar conic surfaces with center b in

the euclldean n-space En of vectors x. The maximum problem (1.2) is to

find the conic surface with maximum k which touches the constraint sur-

face S, the unit sphere in 6,. The rotation of A to diagonal form is

a rotation of En (leaving S "invariant,

axes of the conic surfaces to coincide with

of course) which causes principal

the axes of Ene

The vector Ax - b is half the gradient of o(x), and x is the

radius vector. Condition (1.5) merely states that at a point where Q4

is stationary, for x on S, the surface Q(x) = k is tangent to S.

Fix x at a solution of (1.5), and let t be real. If the constant

A, of (1.5) is positive, the value of @(tx) increases as t increases

from 1; if X is negative, o(tx) decreases as t increases from 1.

The main result of Sets. 2 and 3 is that the maximum problem of Sec.

1 is solved for the largest value: of X satisfying (1.5), for x on S.

The authors see no obvious geometrical reason why this should be so.

If all biXi # 0, then Sec. 2 shows that any vector x = xh which

makes Q(x) stationary on S is uniquely determined by X.

Figure 2 shows, for n=2 and O<Xl<X2, a case where there are
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4 distinct points of tangency of an ellipse with the unit circle. All

ellipses have center b and common value of k2/Xl > 2. Since

Figure 2

$I5 > 2, it was shown in Sec. 5 that 4 distinct tangencies were possible

for certain b outside S.

Whenever some bk = 0, then, provided that (3.2) holdswith the

inequality sign <, we get more than one x belonging to a given X. That

is illustrated in Fig. 3, where n = 2 and k = 1. What is not obvious to

the authors is a geometrical reason why necessarily X = Xk in this case.

another x

Figure 3
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7. A constrained least squares problem.

Let C be an m x n matrix (m 3 n) and f an m-vector, both

over the complex field. We wish to study the set of complex n-vectors y

of euclidean length IIYII = (YHYY2 = 1 such that

') 2lb-f II = (Cy-f)H(Cy-f) = min.

The constraint is

II II2Y = YHY =l .

Because euclidean length is invariant under unitary transformations,

it is useful to rotate coordinates in both the space of y and the space

of fo To do this, let r = rank(C), and write

where U, V are unitary, and where the only non-zero elements of D are

the first r elements of the leading diagonal, which we may arrange so

that

dl > 5 ,> l *e>dr>O .-

~ Now let Vy = x and Uf = g. Then
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Cy - f = #DVy - UHUf

Hence

(7.4)

= UH(Dx-g)

IICY-f II2 = llDw\\ 2

= i Idixi-gil2 +- -
i=l

f Igil ’
i=r+l

The problem (7.1, 7.2) is to minimize

r

c I dixi-gi I2 rd2= c
i=l i=l

i I Xi-gi/di  I2

-subject to the constraint

(7.5) il  Ix 2i
=l

i=l

0 ( i = 1,2,...,n-r)

Now let Xi =

d2n+l-i (i = n-r+l,...,n) ,

0 ( i = 1,2,...,n-r)

and let bi =

gn+l-i
d ( i = n-r+l,...,n) .
n+l-i

We then have changed our problem to one of minimizing
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(7.6)

subject to the constraint (7.5), where

(7.7) 0 = hl = l l l = hnvr < ⌧n r+l < l l l < ⌧n .
-

role ofThis is precisely the minimum problem (1.2) of Sec. 1. The special

the n - r zero eigenvalues of CHC becomes-evident.

Thus the general problem of the least-squares solution of Cy

with constraint (7.2) is a special case of our minimum problem (1.2

= f

1 .

8. Lemmas from comDlex function theory.

In this final section we state and prove three lemmas relating partial

derivatives of certain regular analytic functions of several complex

variables to gradients of real-valued functions of vector variables. This

technique is common in the study of second-order partial differential

equations; for example, see (9.1). We include the material mainly to

keep our treatment self-contained, and partly to call explicit attention to

the fact that the Lagrange multiplier X must be real even though complex

variables are used.

(8.1) Lemma. Let @(X,p) be a regular analytic function of two complex_ _. .- -

variables X, p such that, for all real x, y,
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N-2 1

is real-valued. Then

F(X,Y 1 = Q(x+iy, x-iy)

(8.3)

dF +i$
a4

dx =2q I
.

X=x+iy
p=x-iy

Proof. Differentiate (8.2):

Add (8.3) to (8.4) x i:

03.5,). Lemma. Let F and G be real-valued differentiable functions of real

variables X1'Yy*'JXn'Yn' For abbreviation, let zk = xk + iyk, and let

Z = ( zy->  nz 1. Then, for F(z) to be stationary at z = a with respect

to all neighboring z such that G(z) = G(a), it is necessary and

sufficient that there exist a real Lagrange constant h such that

(8*6) 3F
axk

=O

for z = a and k = l,...,n.
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Proof. Condition (8.6) is nothing but the usual condition that the

real gradient vector

be parallel to the vector

The use of the complex variables zk is unessential.

Given any vector z = (zl,. "'zn), we let z denote the vector of

complex conjugates (Z,,...,Z,).

(8,.7J Le- o Let Q(z,w) and q(z,w) be regular analytic functions of the.- -

two complex vector variables z = (zl,.*.,zn) and w = (wl,...,wn) with

the property that @(z,y) and q(z,z) are real. Then @(z,z) &

stationary at z = a with respect to all z such that IJr(z,z) = *(a,&

if and only if there exists a Lagrange constant h such that

for z = a and w =a and k = 1,2,...,n.
, I

Proof. Let z = x + iy. Then 0

lemma 8~. applied to each variable zk,

(z,;) = F(x,Y>, ‘h (z,;) = G(x,y)- BY
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for z = a, w = a, and k = l,...,n.

Then lemma (8,7) follows from lemma (8.5) .
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