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ABSTRACT-

Let A be a hermtian matrix of order n, and b a known vector

in Cn.

The problemis to deternine which vectors nmake ¢(x) = (x-b)H A(x-b)
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1. The problem

Let A be a hermtian square matrix of conplex elenents and order n.
Let b be a known n-vector of conplex nunbers. For each conplex n-vector

X, the nonhonmbgeneous quadratic expression

(1.1) o(x) = (x-b)IA(x-b)

(H denotes conpl ex conjugate transpose) is a real nunber. The problem
suggested to us by C R Rao of the Indian Statistical Institute, Calcutta,
is to maxinize (or ninimze) 2(x) for conplex x on the unit sphere

s {x: Kx = 1). Since © is a continuous function on the conpact set S,
such maxima and mnima always exist.

In summary, our problemis:
(1.2) maxinmize or nininize ®(x) subject to xx =1 .

The purpose of this note is to reduce the problem (1.2) to the deter-
mnation of a certain finite real point set which we shall call the spectrum
of the system (4,b) (defined at end of Sec. 1), and show that a uni que
nunber ) in the spectrum deternmnes the one or nore x = " which maxinize
¢(x) for given b. Theorem (4.1) is the main result. The devel opnent is an
extension to general b of the famliar theory for the honogeneous case when
b =6, the zero vector. No consideration to a practical conputer algorithm
I's given here.

In Sec. 7 we show that determning the |east-squares solution of an

arbitrary systemof |inear equations Cy = f, subject to the quadratic




constrai nt yHy =1, is a special case of problem (1.2).

Phillips (9.2) and Tworey (9.3) begin the actual numerical solution
of certain integral equations by approximating them with algebraic problens
very closely related to the mnimum problem (1.2).

Let A <Ay o aen M be the (necessarily real) eigenvalues of A

and | et (uy5005u ) be a corresponding real orthonormal set of eigenvectors,

W th Au; = M, (i=1,...,n).

L

Let a given b be witten

n
(1.3) b= ‘gl biui

(1.4) Theorem If x is any vector in S for which ¢(x) is stationary

wWith respect to s, then there exists a real nunber A = X(x) such that

(1.5) A(x-b) = Xx
(1.6) xx =1

Conversely, if any real X and vector x satisfy (1.5, 1.6), then

x renders ©®(x) stationary.

Proof. Let xo be a point of S. Now, as shown in lemma (8.7),
®(x) is stationary at X with respect to x in 'S, if and only if there
exists a real Lagrange multiplier X such that y(x) = (x—b)HA(x—b) - xx
is stationary at x  wth respect to all neighboring conplex vectors x.
Since

0 =4 grad w(xo) = A(xo—b) - Mxg

the theoremis proved.



To see what conditions are satisfied by the » of theorem(1.4), we

note that the system (1.5,1.6) is equivalent to the system

(1.7) (A-)\I)x = Ab
(1.8) xHx =1 .
Let
n

Then (1.7) is equivalent to

n n
(1.9) 'E]_ ()»i-k)xiui = igl Mbiug
Definition. By the spectrumof the pair (A b) we nean the set of all
real » for which there exists an x such that (1.7) and (1.8) are satisfied.
Gven any A, x satisfying (1.7) and (1.8), we shall say that x
belongs to A, and frequently wite x in the formx™

Note that the spectrum of (4,8) is the ordinary spectrum () of

A
2. Special case:_no ib, = 0.
Assume for the present section that xibi;é O (all i). This inplies
that all xi;éo, i.e., that Ais nonsingular. If Mis in the spectrum

of (Ab), (1.9) inplies that x;éxifor all i, and also that




(2.1) X, = —= (i=l,...,n)
Then the requirement that
n
H _ 2 _
(2.2) xx—.z Ixil =1
i=1
is equivalent to the condition

(2.3) g(:) = igl mz— =1

Although all A corresponding to stationary values of ®(x) are
known by theorem (1.4) to be real, it is useful to define g(\) by (2.3)
for all conplex » not in {xi].

Let G be the set of conplex nunbers \ such that g(X) = 1.
For snmall enough ‘E| bil, Gis the union of n sinple closed curves in
the conpl ex plane, lﬁe k-th of which surrounds X . As the [b,| grow,
adj acent curves first coalesce in double points, and then merge into single

curves. For very large values of all lbil’ G is one sinple closed curve

including all (2) inits interior. The famly of sets G resenbles the
n

fanily of lemiscates TT [r-1 | = const.
i=1

Note, noreover, that g(X) > 1 for A inside any conponent curve
Gﬁ of G while g(X) <1 in the exterior of all conponents 9 of G
Now we shall show for the special case of Sec. 2 that each A in

G determ nes a uni que x* which satisfies (1.7, 1.8). For that "




(2.4) o(x") = f(h) ,
where we define f Dby
2
n A, |b.|
2 i'7i
2.5) £(A) = A
( iz=: e
Fix A, and drop the superscript A on x. To prove (2.4), note that

(1.7) says (xi-x)xi =

Hence

and

proving (2.4).

Since the Lagrange nultipliers

(A,b)

(xi-x)(xi-bi)

is the intersection of

A.b.. Thus
11

1l

Ab. - bo(M,-\)
11 1 1

= Ab,
1
Mby
Xp = by =5x=% >
1
& 2
o(x) = 1§l )"il,xj_-bj_l
2
> & Mlbyl
= pff —
=1 n, M|
1
= f()\.) })

A nust be real, the spectrum of

Gwith the real axis. This consists of from



MRS o aob i aditain b Eachl. Ll Rl 2iaicd
b

How many nunbers are actually in the

nunber s.
5 for n = 2.

2 to 2n distinct real
be discussed in Sec.

spectrum depends on b; this wll
W wish to deternmine which A in the spectrum corresponds to the

maxi num [mininun] value of f£(\). Let GLJ be any conponent curve of the set

G.
The maxi mum and mnimum real parts of », for ) in_any

(2.6) Theorem
A on the real axis.

one G,, both occur for
Proof. Let N =o¢ +it, with o,t real. Then
n 22 Ib.\I2
1 1
g(k’) = gl(U)T> = 2 2
i=1l (o-1y) T
1
Hence, for * > 0 and fixed o, g(») strictly decreases as t increases.
= constant intersects Gj

Then-in the upper half plane 7 > 0, any line o
in exactly one point. The theorem follows from this.

Definition. Let AR[AL] denote the unique real value of X of

maxi mum [mninmun] real part in the set G

Under the assunptions that A is regular (i-e., M £0

(2.7) Theorem
for all i ) and b, #0 (i=1,2,...,n), for all X in G such that

A 7’=AR, X#AL we have

f(AL) < f(\) < f(AR) .

Introduce two independent

2 2 ;.
= A5 |b. |7 (i=1,...,n).
X. In order

Proof. Let a, = \; .
1 1 1

where u wll later be set equal to

and h (defined below) for

conpl ex variables A,u,
to study the gradients of the functions g, f,



conpl ex A, we shall use the tools of Sec. 8. This requires extending
these functions into the space of :» and u.
Let » =o + it (o,r real). For all conplex » # xi, define the

functions 8 and ggby

g(r) = 81(0',7) = 82()")x> s

wher e

(hon) = 2 (%] -X)(x )

(This definition is consistent with (2.3).) Then

og Jg 0
1 1
3 (ac + 1o ) - [aie]Fx . by lemma (8.1)

n
(2.8) = }:

1]

: 2 -
i=1 ]xi-xl .(xi-x)

For all conplex A # My define f(X) by (2.5). W then define

the functions £y and £, by

£(1) = £y(0,7) = £,(0,1)

wher e



i=1
Then
) wmp www wwm
sl *tise)= = e ; by lemma (8.1)
n a; _n a;
=X ) ———s * A .Mu _ —
s D W PR N =1 M (v M) (M -N)
1" 1 11 1
n a, -
=r Y = R
2 —
11 A M- ] RN
11 1
=\
& 2,y =
1= g Ty A
%,
=\ mml, 5 by (2.8) .
H=A
I.ed,
J 3
(2.9) = N
H=M AR TEY

While it is possible to use (2.9) to study the behavior of f(A) on
the set G where g(\) - 1 =0, it is more convenient here and in Sec.
3 to introduce a new function h(\), which agrees with f(A) on G. For

all complex A\ # yH“ define



(2.10)

n(r) = (X +—2—[l—g

and note that

(2.11)

wher e

- Then

(2.12)

Hence

(2.13)

h(x) = £(x),

As with f and g, we introduce functions and h2 so that

h(r) = b (6,7) = hy(hu)

h2(>~,u) = fg(X,u) + %H' [1-52()":“)]

i 3[1-g,(3 1)) -

o)
=_)»_2-_t1_5u_gQ+ %[l-ga(hu)] » by (2.9)

] _ s by (8°l)
L=A



Now any conponent Gj of the set G where g(h) = 1 encloses a

region where ¢g(x) >21. On Gthe gradient vector of g,

Og; . %8,
3 TSt ¢

IS non-zero, is normal to GJ, and points to the interior of GJ. Then,

by (2.12), the gradient vector of h on Gj, nanel y

OBy . s oy x og; ' og;
s tiz it i)

iz non-zero for T # O and points along the tangent to GJ in the direction

of increasing o. Hence

h(X) is strictly increasing, as A_traces S‘ in

(2.14)

the direction of increasing o.

From (2.14) it follows that h(h) assunes its maxi num value, for each
separat e component curve S; of G at the point 53 on GJ of maxi num
real part. By theorem{(2.6), B is on the axis of real .

Note that setting w= X =1 in (2.12) yields the result that
(2.15) h'(X) =1-g9(X), for real .

To conplete the proof of the present theorem we nuch show that f(X)

is larger at the point a, of least real part on the conponent JG of G

10




than it is at the right-nost point Bj-l of the conponent GJ-l of G

imediately to the left of GI

Note that g is continuous for A € [5j_l,aj], and t hat

&(B; 1) = g(@,) = 1 but g(h) <1 for By <M <o Then

.
h(aj) = h(Bj_l) +k/; I onr(n)an
3-1

a,
hpy )+ [ 9 es)le by (2.5)
J—
> h(Bj-l>’ since g(A) <1
Thus
2.16 . .
(2.16) h(By_ 1) <nlay)
as was to be proved.
We conclude that h(X) increases, as X increases along the rea

axis between adjacent conponents of G Since h(h) = f(X) on G we

see from (2.14) and (2.16) that

max f(\) = £(A.) ,
)»QG( (Ag

in f(h) = .
T £ = lay)

11




It follows trivially from theorem (2.7) that the maxi num and m ni mum
values of f(») over the real nunbers in G (i.e., over the spectrum of
(A,b) in the present case) are also f(%) and f(AL), respectively.

By (1.9), our condition that no Mby o= O inplies that :» # A for
all i and for all »in G Hence A and Ay are not ei genval ues of
A, and so neither A - Al nor A - ARl Is a singular matrix. Therefore

we can solve equation (1.7) uniquely for X o and X in’

« =xR

o =X R = (8-AT) AL

A, _
x L= (A_A.LI) Tap

x
0]

These equations give unique solutions to the problem of mnimzing and
maximzing @(x) = (x-b)HA(x-b), for nonsingular A and b such that
no o; = 0.
It would be desirable to be able to prove that h(ocj) < h(aj), in
the notation of theorem (2.7),without analyzing h(X) and g(h) for conplex

val ues of \.

3. General case: Sone kibi = 0.

W now study the general case where one or nore Mb = 0. To be
explicit, let C = {a: APy = 0}, a set of integers. W wish to examne
the spectrum of (A,b).

Define L as the set (A @ € Cs.




First, given one aGC, i f x,l-xa and » is in the spectrum

A

of (A,b) wth corresponding vector x>‘, then (1.9) shows that Xy T 0.

Thus, if M is in the spectrumbut not in the set of, t hen xg =0

for all o€ ( and, just as in the derivation of (2.3), » will satisfy

the equation

nooA8 lb.]2
1 it

(3.1) =1

=1 )P
1

Conversely, any real solution X of (3.1) -which is not in the set Pet
will be in the spectrumof (A,b), and its corresponding vector x* will
have xé‘C:Ofor all aeC . If we interpret dOin (3.1) as O,

then it is possible that sone eigenvalue »_in & will also satisfy (3.1).

k

If so, we will showthat this » is also in the spectrumof (A,b). How

k
ever, the spectrumnay al so contain eigenval ues M in J& which do not
satisfy (3.1), as we shall now show. No eigenval ue A not in & can

be in the spectrum because » = M woul d nake the left side of (3.1)

equal to « .
Fix attention on one M for k ¢ €. W wish to exanine the
possibility that this M is in the spectrum of (A,b). Let m be the

multiplicity ofA, as an eigenvalue of A Let @k = {i: Moo= M so

k
that card (@k) =m |If M is in the spectrum then (1.9) shows that

My = 0O for all ain l@k. Mor eover, if Mo Bsoin the spectrum then

t he corresponding vector x = 'k has the properties

A, b,

X. i (i ﬁ &k) 2

i xi-xk

13




and, by(2.1), also

S o, |
(3.2) Lox, 17 = RS LI
1g0, 1 1R, o P )

Conversely, if (3.2) holds then we can always define X4 for all

i€ }gk in such a way that

, INE
(.) . Z .2-__ _ 1 1
3.3 Ey XIT=1- X e

ERL I

Hence, by (3.2) and (3.3), equation (1.8) holds and, since (1.7)is

satisfied, A s in the spectrumof (4,b).
If equality holds in (3.2) then x; Mmust be ofor all i € ﬁk;
A
i.e., a satisfies (3.1), and x K s unique. But if inequality <

holds in (3.2), then there is an (ml)-dinensional sphere 7/ of values

of {xi}, for i € N whi ch satisfy (3.3). For, if a point

k)

(xi,..c.,x1 ) isin U, then so are all points of form
1 m
i6; 6
(xie yeeesXy € ) (all 0, real) ,
1 m
: ) 2 . .
since - [x.|® is constant for all of these. In this case
i € /Sk i

A
uni queness of x K islost. The sphere is analogous to (in fact is a

generalization of) the sphere of unit eigenvectors of a hermtian matrix

A belonging to an eigenvalue of nultiplicity m.

1L



Note that an inequality < in (3.2) states that M Is in the

exterior of the graph

25 o, |°
_1} ,

G=JL>» : i g l9k ]xi-x|2 i

i.e., A can be joined to « by an arc not cutting G Thus, in brief,

the spectrum of (A,b) consists of the union of all real nunbers in the set

2 2
noong |l _ 11

(3.4) G =JL)» : & —lxi_x 12 ]

where we interpret Q' O as 0, wth those nunbers M which are exterior
to the graph ¢. (If Gis the null set, then b = 6 and the spectrum
of (A,0) consists of all eigenval ues xk-)

Ve must now examine ®(x") for A in the spectrum of (4,b). The
study of <I>(x>‘), for real » e Gin (3.4) is the sanme as in Sec. 2,

and yields the sane results (2.4) and (2.5): First, for » € G

2

A o 0, Moyl
o(x" ) = f(X) = |r] 2 — where QO = 0. Second, letug,

121 "

ug be the right-nost [resp. l eft-nost] points of G. Then f(uR) maxi m zes

[resp. f(pL) mnimzes] f(X) for » € G It remins to consider

A
o(x k), for eigenval ues »_ outside G

k

15




(3.5) Theorem For any A in the spectrum of (A,b) we have

(3.6) o(x*) = h(X) = f(X)+ rl[1-g(r)],

where f(X) is given by (2.5), with QO intepreted as O.

Proof. Take any :» in the spectrum of (A,b).

If £ Mo (k=1,...,n), then A € G and everything proceeds as
in the proof of (2.4), showi ng that <D(x>‘) = f(X). Since g(X) =1, we
have proved (3.6) when \ # Mo

| f xk =X
of any x X which satisfies (1.5) and (1.6) (and hence (3.2) and (3.3)).

an eigenvalue of A et X denote the i-th coordinate

Since M is in the spectrumof (a,b), we have My = 0 for all

i€ lgk, wher e @k is defined above after (3.1), and as
M lxgby 12 = Jxg 1P = A%, B, for all i€ B . Then, by (3.3),

A |os |
D I S P S R W I 4
e A, el = 1 £ R, 00 )

(3.7)
= ok lpilz wh Jo =0
—kl—lg'm , ere o/o=0.
i "k
Moreover, like (2.4) we can prove

16




(3.8) :

Addi ng (3.7) to (3.8), we get

n
‘D(x)") = Z M |x -bi]2
2 2
n A, |b,]| n x|, |
(3.9) _)\iz _i—li*-kk‘l— 22_2
= i=1 (xi-xk) ©i=1 (xi-xk)

£(h) + M [1-g(r )]

h(xk) )

This proves (3.6) when A = M

It is property (3.6) of h which notivated our use of h in Sec. 2.

Note. It is easily shown from(3.6) or (3.9) that, for all A in

the spectrum of (4,b),

2
n A lbi\
(3.10) h( h) =x+xi);l vl where QO =0 .

If Ais in the spectrumof (A,b), but is not an eigenvalue of A,

we can derive (3.10) as follows. Let x belong to A. Then

17



o(x) = (x-b)"a(x-b)
_ H
= (x-b)"rx by (1.5)
= 2% - b
=X - Mbx, by (l.6)
=N - A bH(A-xI)'lAb s by (1.7)
2
n A, |b|
1 1
R I ey
i=1 i

VW shall not make use of (3.10:) here.

VW now use formula (3.6) to extend the domain of h to all real
where g(X) <00, i.e., to all :» except where, for sonme i, A = M
and A by # O.

As stated before (3.5), we know that the largest value of a(x*) = h(X)
for »in Goccurs at the right-nost point p, of G It remmins to
see whether h(\, ) may be still larger for any » in the spectrum of
(A,0), if g <A

The answer is furnished by formula (2.15), which is valid for the
general case of Sec. 3 With the understanding that QO = 0. Thus h is
increasing on all segments of the real axis between or exterior to components
of the curve G It follows that h(h) takes its maximm at the rightnost
poi nt Ag of the spectrum of (ADb) and its mninmmvalue at the left-

most peint A of the spectrum of (A,b), whether or not these are

ei genval uee of A

18



From the considerations follow ng (3.3), we see that the maxim zing

x 1S unique if Ap € G If, however, ARis not in G and

eigenvalue of A of nultiplicity m then the maximzing x

IS an

i nclude all

points of an (ml)-sphere of nonzero radius, whose center is not at 6

when b # 6.

The above result about A_ and A.L for the case where sone xibi

R
can be obtained by continuity fromthe case where no A.b. =

0. It is not

clear that we could use continuity to deduce the nature of the maxim zing

and mnimzing vectors, for multiple roots

4., The main result.

In Secs. 2 and 3 we have proved our result:

(4.1) Theorem Gven A  hermtian wth eigenval ues [xi}, and b,

arbitrary, define (bi} as in (1.3). Then the spectrum of

consists of all real » such that

n 25 ||
gr) = ) —2:1(0/0:0; /0 =
i=l | -\

(A b)

@),

together with each ei genval ue Mo of A for which g(xk) < 1.

For each M in the spectrumwith g(X) =1, a unigue XXE

found by solving (1.7, 1.8). For each :» in the spectrum w th g(h)

there exists an (ml)-sphere of x>‘ satisfying (1.7, 1.8),

wher e

m = card ()S: ﬁ =M1

19
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Each x so found renders Qx) stationary on S. Let

Ag= max{h : A € spectrum); J\% A =min(r i A € spectrum. Let x .
=any x, let x . =any x. Then o(x , ) nininizes &(x) on S
and o(x ) meximzes ®(x) on S.

max I— -

5. The nunber of points in the spectrum

As we noted in Sec. 2, if Ais of order n, then the spectrum of
(A,b) contains anywhere from 2 to 2n real numbers. Wen does it have
the full amount 2n? If any Mby = 0, then the discussion of Sec. 3
showed that the spectrum necessarily has fewer than 2n points. S0 we
are limted to the case where all A, #0. But then, as shown in Sec.

2, Wwe know that the spectrumis the intersection of the graph of
n A5 b, |2

(5.1) P, W

for real » with the line u = 1.

The graph of (5.1) for real A consists of n + 1 branches between
the n vertical asynptotes A = My (i=1,...,n). Since u >0 for all
A, and p->0 as A -w and A - - o, the right-nost and |eft-nost
branches necessarily cut u = 1. The spectrum has the full nunber 2n of
points if and only if each of the n - 2 interior branches of the curve
reaches its mininmumwth o < 1. For general n a condition for this is
probably too conplicated to derive. For n = 2, however, we can answer

the question, as follows:

20




(5.2) Theorem

(5.3) Let_ n =2, and assume A is in diagonal formwith M <y

|f the spectrum of (Ab) consists of 4 distinct nunbers, then

(5.4) 0< 1blxl| and 0 < |b2x2| R
and al so

2 2 2
(5.5) byr 13+ oy |3 < (apry )

(5.6) Conversely, if (5.4) and (5.5) hold, then the spectrum of

(A,b) consists of 4 distinct nunmbers.

Proof of (5.3). Let a; = Ixibilz (i=1,2). If either a, or g

1 2
were zero, then the devel opnent in Sec. 3 shows that the spectrum woul d con-

sists of at nost 3 points. Hence a;, >0 and a,>0; i.e., (5.4) holds.

1 2
Let M= (ag/al)l/3. Now the devel opment in Sec. 2 shows that the

spectrum of  (A,b) consists precisely of the real roots A of the equation

8+ "2 _ 1
2 2 ’

(5.7) g(n) =

Since (5.7) has 4 real roots, we know that two roots nust |je in the internal

(xl,xg). Now | et p be the unique real root of

—Eal 2a2

g'()») = - > =0
(ny)® ()

21




Then, because there are two roots of (5.7)ir1(xl,x2),

(5.8) glp) <1

W now show that (5.8) inplies (5.4).

Solving g'(p) = 0 shows that

Xe-u
e C M
Bt
whence
1
S M()‘z'xl) ’
M
M-k = gy (Aph)
Hence
al(1+M)2 a,2(1+M)2
g(p) = 5t y: 5
(phy ) (hgory)
(1+M)2
7 |27
(Ay-2q)

22



Thus g(p) < 1 inplies

1 1 2
3 . 3
(5'9) al + 8,32 <(X2->\’l) s

which inmplies (5.5). Thus (5.3) i s proved.

Proof of (5.6).wehave a

L > 0,8, >0and (5.9). The above St€ps

are reversable, and so g(u) <1, whence there are 4 real roots of g(p) = 1.

Thus theorem (5.2) is conpletely proved.

Condi tion (5.4) says that neither xl_ nor x2 is 0, and that the
point b = (b

1’b2) does not lie on an axis of the (Xl,xg)—plane. Condi tion

(5.5) requires that (bl' b2) be inside a curve T which depends only on

the ratio xg/xl. | f )‘2/)‘1 = 2, for exanple, the curve |' is

16123 + fev, 273 < 1.

b2
(0, 2/3) ®
Od o 9
, @/ = b,
(-2,0) © (2,0)
(O) '2/5)
Figure 1
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In Figure 1 the nunmber of points in the spectrumof (a,b)is
indicated for different b in the first quadrant by integers in circles.

1t [\, /A | > 2, the curve I includes values [o,| > 1. But

l"\2'/>”1| > 1 inplies that, on T, Lb2| < 1.

6. Ceonetrical interpretation.

Thesurfaces ®(x) = k are simlar conic surfaces with center b in
the euclidean n-space 8n of vectors x. The nmaxinum problem (1.2) is to

find the conic surface with maxi mum k which touches the constraint sur-
face S, the unit sphere in £ . The rotation of A to diagonal formis
a rotation of En (leaving S "invariant, of course) which causes principal
axes of the conic surfaces to coincide with the axes of gn.

The vector Ax - b is half the gradient of ¢(x), and x is the
radius vector. Condition (1.5) nerely states that at a point where &(x)
is stationary, for x on S, the surface ¢(x) = k is tangent to S.

Fix x at a solution of (1.5), and let t be real. If the constant
» of (1.5) is positive, the value of @(tx) increases as t increases
from1; if » is negative, ©&(tx) decreases as t increases from 1.

The main result of Secs. 2 and 3 is that the nmaxi mum probl em of Sec.
1 is solved for the largest value: of \ satisfying (1.5), for x on s.
The authors see no obvious geonetrical reason why this shoul d be so.

A

If all oAl # 0, then Sec. 2 shows that any vector x = x whi ch

makes ®(x) stationary on S is uniquely deternmined by A.

Figure 2 shows, for n=2 and 0< M <\, a case where there are

2k




L distinct points of tangency of an ellipse with the unit circle. a1l

el lipses have center b and common val ue of xz/xl > 2. Since

Figure 2

xe/xl >2, it was shown in Sec. 5 that & distinct tangencies were possible
for certain b outside S.

Whenever sone b =0, then, provided that (3.2) holds with the
inequality sign <, we get nore than one x belonging to a given \. That
is illustrated in Fig. 3, where n = 2 and k = 1. \Wiat is not obvious to

the authors is a geometrical reason why necessarily » = x_in this case

k
X
anot her x

Figure 3
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7. A constrained |east squares problem

Let Cbe an m X n matrix (m3 n) and f an mvector, both

over the conplex field. W wsh to study the set of conplex n-vectors vy

of euclidean length |y|| = (yHy)l/2 = 1 such that
(7-1) |]Cy-i;l||2 = (cy-£)¥(cy-£) = nin.
The constlr aint is

(7.2) P = vy =1 .

Because euclidean length is invariant under unitary transformations,
it is useful to rotate coordinates in both the space of y and the space

of f£f. To do this, let r = rank(C, and wite
(7.3) c=vDv ,

where U, V are unitary, and where the only non-zero elenments of D are
the first r elenents of the |eading diagonal, which we may arrange so

t hat

a, >d, > @ *e>dr>0 .

1 2

Now let W = x and Uf = g. Then
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oy - f = Uovy - vtle
= v(px-g)
Hence
ley-£ P = Ipx-g]]?
(7.4) r m
= iglldixi-gil2 + i:éﬂlgil2

The problem(7.1,7.2) is to mnimnze

r I
2 2 2
£§;| a%578; | = gg; T Ixs-ey/ay

-subject to the constraint

2
(7-5) L IXIT =1
i=
0 (i =1,2,..0,n-1)
Now | et A, =
1
2
4l -i (i = n-r+l,...,n) ,
0 (i =1,2,...,n-r)
and let b, =
1 g )
n+li1 (i = n-r+,...,n)

Ve then have changed our problem to one of mnimzing
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& 2
(7.6) PIRRIR LT T
subject to the constraint (7.5), where

(7.7) e Ay e Mg Mg pal ot Mg

This is precisely the mninmum problem (1.2) of Sec. 1. The special role of
the n - r zero eigenval ues of cfc becomes- evi dent .
Thus the general problem of the |east-squares solution of Cy = f

with constraint (7.2) is a special case of our mnimmproblem(1.2).

8. Lemmas from complex function theory.

Inthis final section we state and prove three | emmas relating partia
derivatives of certain regular analytic functions of several conplex
variables to gradients of real-valued functions of vector variables. This
technique is conmon in the study of second-order partial differentia
equations; for exanple, see (9.1). W include the material mainly to
keep our treatnent self-contained, and partly to call explicit attention to

the fact that the Lagrange nultiplier X nust be real even though conplex

variabl es are used.

(8.1) Lemma. Let ®(x,p) be a regular analytic function of two conplex

variables \, o such that, for all real x, y,
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(8.2) F(x,y) = ®(x+iy, x-iy)

is real-valued. Then

OF .1 OF -5 ad
ox Sy R A=x+iy
pu=x-1iy
Proof. Differentiate (8.2):
o) o0 o)
(8.3) S-F-1egcr o
OF o0 ., o0 .
(8.4) B§=BT'1'EJ’1

Add (8.3) to (8.4) x i:

(8.5) Lemma. Let F and G be real-valued differentiable functions of real

vari abl es Xy oYy e sX ¥y For abbreviation, |et 2, =%t iyk, and | et

z = (zl,...,zn). Then, for F(z) to be stationary at z = a with respect

to all neighboring z such that z) = ({a), it is necessary and

sufficient that there exist a real Lagrange constant A such that

OF ., OF oG . oG\ _
(8’6) 5%+13‘y§—)\.(yk+lsy—k) =0
for z =aand k =1, , n
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Proof. Condition (8.6) is nothing but the usual condition that the

real gradient vector

(BF OF OF OF . ¥ aF)
Oy 7 9y T Iy 7 Sy Fy " oy

be parallel %o the vector

(aG oG oG oG oG oG
6xl’®l’.5x2’5y2’ ’&;’53_[;

The use of the conplex variables Z) is unessential.

G ven any vector z = (zl,. ..,zn), we let z denote the vector of

conpl ex conj ugat es (El,...,zn).

(8.7) Lemma . Let ¢(z,w) and y(z,w) be regular analytic functions of the

two conpl ex vector variables z = (zl,...,zn)ﬂld w = (Wl""’wn) W th

the property that ®(z,z) and v(z,z) are real. Then ¢(z,z) is

stationary at z =a wth respect to all z such that v(z,z) = ¥(a,a),

if and only if there exists a real Lagrange constant A such that

Q/
He

—
o
=
N
I
Q
Q
>
o
=
I
o

a and k = 1,2,...,n.

Proof. Let z =x +iy. Then ®(z,z)= F(x,y), ¥(z,2z) = G(x,y). By

| emma 8.1 applied to each variable 2y
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k
o _ 8G+i oG
awk éxk 5§k
for z=a, w=a,and k =1,...,n.

Then | emma (8,7) follows fromlemm (8.5) .
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