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1. Introduction

This paper will deal with the theory and application of the difference

correction nethod to two-points boundary value problens of nonotonic type,

i.e.:
(1.1) y' = £(x,y)
(1.17) ay(a)-gy (a) =A
(1.1%) vy y(b) + 8 y'(b) = B

with several conditions on f(x,y) and the constants «, 8, y, 6.

A thorough discussion on the practical aspects of the difference cor-
rection method can be found in Fox [1957] and Fox [1961] where the nethod
is applied to a wide variety of problems. Considering boundary value
problens for the Poisson equation in two dinensions Bickley, M chael son
and OGsborne [1961] have pointed out sonme theoretical aspects of the differ-

ence correction when applied to that problem

In Henrici's book, "Discrete variable methods in ordinary differential

equations" [1962] p.377, it is indicated that, if a difference correction
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is added to an approximate solution of 1.1 then the order of the discreti-
zation error is increased in at least two units. After giving some notation
in Section 2 a discussion of (1.1) witha=y =1 p=38=01is givenin
detail in the follow ng sections. The asynptotic behavior of the discretiza-
tion error is discussed in Section 3, following the lines of Henrici with cer-
tain changes which make it nore general and allow us to introduce several
ways of performing the difference correction.

In Section 4 the n° i mprovement property of a generalized difference
correction is proved.

In Section 5 two possibilities (different fromthe classical) are inves-
tigated for the case p = 2, and in Section 6 nunerical results and conpari -
sons with other nethods are presented, showing that it is faster and nore
accurate to use correction differences than a direct nethod of equivalent

or der.

In Section 7, the results of Sections 3 and 4 are extended to the general

problem (1.1) and in Section 8 a nunerical exanple is presented.

2. Notation and known results

As we want to use several results by Henrici [1962] ' Chapter 7, and we prefer
to avoid repeated references, we wll adopt its notation and we will give a
sunmary of these results.

A non linear boundary val ue problem Will be called of_class M if it is

of the form (1.1) and, a) the initial value problem y" = f(x,y)
y(a) =a,y'(a) = A with Aarbitrary, has a unique solution. ©b) fy(x,y)
is continuous and

(2.1) fy(x,y) >0 for a<Xx<b -2o<y<w,




c) the boundary conditions are,

y(a) =a , y(b) = 8
It is proved then that a problem of class M always has a unique sol ution.
The finite difference approximtions that we wll discuss are of the form

2
5.0 - . _
(2.2) Vool ¥ 2 m Yy RO MBg T v B £ 4B, F 3 =0

n==1,2, . . . . NI

where 8, + B, + 8, =1 B, =8, h = (b=a)/N (N integer), Vo =% Yy T B
and the rest is standard notation. The limtation of taking this kind of
equations appears naturally if we do not want to consider grid points outside
of the interval [a,b]. By introducing some special matrices and vectors,

- part of the follow ng discussion can be sinplified. W wll use no special
notation for matrices or vectors, but we hope that their meanings will be

clear in each context. Let

i
Yo £lxryy) 0
Y= f(y) = } a =
0
2
Yy-1 flxg_15¥y.q) B-Boh T (%, B)




j2 -1 B, B
;102 -1 5. B B,
J = . B= * )
.-l o
102 Pa
\\ \ o P
(2.3)
fy(l) 0
0 fy(e)
F(y) = i .
0
0 fy(N-l)}
;/nere f.(j) = fy(xj, yj) :
For instance, formula (2.2) can now be witten,
(2.4) Jy + 2 Bf(y) -a =0
where the vector a takes care of the boundary val ues.

A Newton type iteration used to solve the systemof non-linear
equations (2.4) is insured to be convergent under certain restrictions,
mainly on the first approxinmation and on the step length h (Th. 7.7,

Do 373, lec.) . If the first approximation is called y(o), then the formul as

for Newon nmethod are in this case,

(2.5) rr 1)y = o)+ w2 me(p (D) - g,




Hk .
P

(2.6) P e ALl D o)
and finally,
(2.7) oy ()

If the conputed approximation is called y* and the exact solution
of (1.1) is called y, then theorem 7.8, p. 374 gives for the components

of the discretization error, e = y* -y the follow ng bound,

(x -a)(b-x_)
(2.8) le | < ———"= (Cr® + K1

where C is a constant which depends on the nmethod and on the problem
itself, and p is the order of the nethod. K and q are arbitrary
non negative constants which stemfromthe assunption that the New on

iteration is stopped when the conponents of the residual vector satisfy
qt+2
(2.9) |rn| <Kh

This is a very inportant practical fact, because it permits us to perform
an inconplete iteration (the only possible kind in actual conputation) be-
fore applying the difference correction technique. W wll assume that

g>p+ 4 in order to avoid interference of this termin the discussion

of the discretization error.



A difference operator L[y(x);h] is naturally associated to the dif-

ference scheme (2.2),
(2.10) Liy(e)sh] = -y(x,p) + 2v(x) - Y(x_ )
+u (e, v (k) +By (v, v (k)

Ll{y(x)s;h] operates on all functions y(x) sufficiently differentiable.

By expanding in Taylor series all the terms of (2.10) it is possible to

find,

(2.11) Lly(x);h] = hp‘“ecp+2 v + hp“*cwL y ) () + omP*6)
where p is called the order of the method.
Ve will also need sone notions about nonotone matrices.

A matrix Ais said to be reducible if and only if it is simlar to

a block matrix of the form

A 0
Pl ap =| A A
\ ev 22
where A,,. A are square and P is a permutation matrix. In partic-

11" 722
ular, a tridiagonal matrix A = (aij) is irreducible if and only if,




#1,1-1 £ 0 (i

1
N
N
-
=}
=

and

8,441 £ 0 (i

1
-
l\)

,n-1) .

I f by the notation v > 0 (either for vectors or matrices) we nean that

all the elements are non-negative, then we can define: z patrix Ais
monotone if Az >0 inplies z >0 Adirect consequence of the definition
s that every monotone matrix is not singular.

A fundamental result of this theory is: g matrix A is nonotone iff

A'lz 0.

Another inportant fact is the following: jf A is irreducibly diagonally

dom nant and has non-positive off-diagonal elenents then A is nonotone.

Finally we quote for further use, gf A and B gre _.nonotone and

“B.< Athen A% <3t

3. Asynptotic behavior of the discretization error

Following the lines of Henrici, pp. 375-377, we will now derive an
expression for the discretization error which will be useful in the dis-
cussion of the difference correction method.

W recall that, if formula (2.2) is used as a finite difference
approxi mation to problem (1.1), and y_ is the approximte solution of
the system of equations, then the discretization error, e, = v, “¥(x )
(n =0,1,....N satisfies (2.8). W will assume that p > 2 and that

the exact solution y(x) is (p+t6) tines continuously differentiable.



Therefore,

20x¥,) - £ ,y(x)) = £ (xLy(x) (r,-v(x,)) + o)

or, by calling g = fy(xn,y (Xn));

G0l £lxppvy) - flx,y(x ) Lg ey 0(n°P)

ASBO+Bl+B2 1 and B, = B, we get,

2

(5.2) yPP(x ) = p + (P2 (p+2)

n 0

(p+2)(x.ﬂ )

Xpq) + B Y n+1

QX)+BEy

-, 12 v ) + o)

Now we will construct a difference equation for the discretization

error, by subtracting (2.11) from (2.2)

2 .
Vo1 T2V, -Yy + D (BO £+ B T, + 8, fn+1) - L[y(xn),h] -

(2r2) (L P ¢

y n pth

y T (5 ) +0(mP*E)




Or, letting d = f(xn,,yn) - f‘(xn,y(xn))

2 .
(BO dn-l * Bl dn +62 dn+l) =

y<p+2)(xn) - hp+hcp+h y(%;ug + O(hp+6) .

p+e n

Using now the relation (3.1), dividing through by v and defi ni ng the

magni fied error En = h'pen ve get,

—_ —_ -— 2 — —
(3.3) -e 1+ 2. -e, tnlg e, ;e tBg e+

}=-nfc vy St

(p+4)
+Bg gn+l en"’l p+2 n p+)+ y (Xn)

+ O(hé)
I ntroducing now (3.2) and defining,
(3.4) o =g e + Y(p+2)(xn> c

(3.3) is transfornmed in,




If we solve the boundary val ue problem of class M

5-6) (X = gbe) ebe) + 0y T )

by the nmethod (2.2), we will obtain equations (3.5) with zeros in the

right hand sides. Then, by (2.8) we get,

2
I L

(p+h)
0 (x,) +

pte Bo - Cp+Ll-) y

+ 12 Gz )+ o(nPtH)

where e <1 .

In other words,

_ p p+2
(5-8) y(x ) =y - B e(x ) + 0"
with the error leading termgiven in (3.7).

L, The difference correction.

The last fornula of Section 3 indicates a way of inproving the
approxi mate sol ution Y, by at least two orders in h. To do so, we
have to know how to conpute e(xn)_ Actually, it is enough to know

how to conpute a quantity eX whi ch sati sfies,

10




ex = elx ) + o(h?) ,

and that isthe one which we will be able to obtain. The difficulty in
2
solving (3.6) is that we do not know y(p+ )(xn)- Consequently, a

reasonable step is to replace y(p+2)(xn) by a known appropriate val ue,

r(xn). The only thing we will requirefromr(xn)is that it fulfills

(k1) $ P (x ) = rlx ) + sx) B2+ O(n?)

where s(x) 1is a sufficiently differentiable function, and

|s(x)] < K a<x<b.

Let us now define the follow ng differende problem

>
—o¥ * - * * * * =
(+.2) ShitP eh T eh T (By OF )+ By Ok + B, %) =0
with
* = * |
(Dn gn en * Cp+2 r(xn) .

The problemhas a solution since the matrix Q@ = (J + n° B F) being

nonotone (for h sufficiently small) has an inverse. Moreover,

o<945f1.

On the other hand, the exact solution of (3.6) satisfies,

11




(4.3) -, )+ 2 elx) - eleyg) + B (B 0,1+ By 0, +8, 8,))
(p+2) >
c e (xn)

y P )

The difference of (4.2) and (4.3) gives us an equation for the error

My = ?ﬁ - e(Xn) ’

or

(J+1n BF) n=c¢

p+2 ° pt2
=V
: -1 2 -1 L :
Using now the fact that @ = =(J + h" B F) Is a positive matrix we
get,
- -1 -
(1.5) In] = 127" vl < e7H vl < Tyl

It is clear that,

L P2
|V|§Cp+2(Kh + h Ep+2)§

12



where ¢ is a vector with all conponents equal to one, and

1P 2) ()| < E

o2 X e[a, b].
Then
* L pt+2 -1
\en - e(xn)l < Cp+2 (Kh™ +n Ep+2)(J E)n
with
(x -a)(d-x)
-1 n
(I &)=
. on?
or by using an uniform bound,
2
_ 2 P b - a
(4.6) lex - elell, < €y & B+ WP B ) (o)
which finally gives the desired result,
2
* —
(&.7) ey - e(xn) = o(n") .
p+e

Sunmarizing, the conplete procedure to obtain an h order in the

discretization error IS,

1) Conpute yn(n = 0,1,...,N by the method of order p given by
formula (2.2). The iteration in Newton method can be stopped when
the residuals are less than X nP"2

2) Conpute -hP e* by using (k.2), and add this quantity to v, The

new approxi mation will hold (3.8).

13




The remaining discussion will deal with some possible choices for the
approxi mation (& .1).

The classical choice is,

-D-2 D
(4.8) r(xn) = h™PTeaPr2 Vntqrl (P =2q) -

8Py o = PTG+ B s ) + 0P
where we have assuned enough differentiability on y(x).

In this case the quantity o e¥ is called the difference correction
by Fox [19571].

By extension we will keep calling difference correction to any
quantity conputed in this way, whatever the approximation r(x) be.

In the next Section we will give two nore expressions for r(x) in
the case p =2. W wll also show there, that the use of the difference
correction instead of a direct fornula with the same order, results in |ess
conputational work for the same accuracy. There are two reasons for this
saving; on one side the fornmula used in the Newton iteration is much sinpler
and on the other side, the nunmber of iterations needed is smaller. That
is explained since, when the difference correction is used, the q of
(2.9) has only to be equal top + 2, while in the other case it has to

be at |east p + 4.

14




5. Two expressions for the correction term

As we are considering the equation,

y' = f(x,y)

and we want to approximate y(u)(X) (p =2), a natural idea is to consider,

(5.1) Yy = & Hx Y

dx

which imediately gives place to two new forms for r(x). we will prove
they are valid expressions, in the sense that they satisfy (4.1).
i)

(5.2) r(x) = h?

2
3) f(xn’yn)

W want to prove that, if

(5.3) v, = v(x ) + 10 ex ) + 0(n')
t hen,
¢ 2 8°f(x ,y )
i .Y(X) X - d f(X,y(X)) - n’’n 2
(5.4) I 3 e o(n%)

If we were using y(x ) instead of y, then (5.4) would be trivially

true, but as y_ only satisfies (5.3), sone nmanipulations are needed.

2
d f(xy(x)) . 12 "
(5.5) > S fXy y' o+ fYY(y )<+ f‘y v

dx

15




On the other hand,

(5.6) 8 £lx,¥,) = £x

n-l’yn—l) -2 f(xn)yn) + f(xn+l’yn+l)
and by developing in Taylor series we get,
2
(5.7) o° £lxy) = (07 wp) £y ) + b (v - vy )
£, v )+ [y g - v ) (v, - v(x ) )
xy''n’ n n-1 n n+tl n’ *

- oy, - YOO+ 2 Gyle)) w6 e y(x)
+ O(# ).

The coefficient of fyy can be expressed in a nore convenient way.

By using(5.3),
(v . G+ (v, ¥ )P - 2y, - y(x ) =
C (0 ) - yc) + 2 el )P (v, p) - vle) + 8 elrgy))” 4
N

+ 0(n') = (-y'(x )h + [F y"(x) + e(x )1 0% +

Cylen - 5 ¥ )+ elx, 1 BDF 4 ol

16




and the final expression is,

(5.8)  (ryy v )T+ (v, - v )P - 2ly, - v(x )P =
2 .2 L
=2 (y'(x )" n% + o(n’) .

Then (5.7) and (5.8) inply,

2 2
Y £ (x,y(x.)) > Yn (x_,y(x ) o a1 ~ Yoo
2 = xx YVt T2 v Y ¥/t 2h

2
- L3 (xv(xy)) + O

&

whi ch proves (5.4).
An inmmedi ate advantage of using 8°¢ instead of 64y is that no

external values are required to conpute the differences at points close

to the boundary, avoiding the use of special fornulas and information

unrelated with the problem

Since the val ues fb%fyh) are already conmputed (fromthe |ast

iteration in the solution of (2.2)) no extra work is necessary and there is

always |ess conputation in carrying 2nd differences conpared with the 4th.
ii) In cases in which f(x,y) is easily differentiated, it would be

worth to use the approximation

17



> fy(xn,yn) f(xn’yn)

For instance, if f(x,y) is independent of x,(5.9) becores,

5 + fy(xn, ¥,) £x sy )

If f(x,y) = g(x) y + h(x) then,
Yoo =, _
r(x) = &"(x)) vy + g (x) B 4 @0 )y o+ n(x) +
+ glx) hix )
and so on.

()

The proof that (5.9) is an approximation to vy x) of order at

| east n® goes in the sane fashion than the proof for (5.2).

6. Nunmerical results and conparison of different methods.

W will now state two other finite difference procedures, the
Numerov-M I ne fourth order approxinmation, and a truncated version of
the Fox difference correction. After that, we will conpare themwith
the two nethods described in the previous section and with a shooting

type technique.

The Numerov-MIne fourth order method is,

(6.1) Jy = -n° Bf(x,y) + a
with Bo = By = 1/12 | B, = 10/12 .

18




B can also be witten as,
B=1I- L

12

The Fox difference correction with fixed fourth order Iength uses first,

a second order approximation given by the solution of,
2 —_
(6.2) Jy = -h” f(x,y) + a

then one difference correction in the form

(6.3) Je = -n° F(x,7) e - f; 7%y
and finally
(6.4) Y= 7 +h°e

Thus, the use of fourth differences makes it necessary to conpute
external values for y. Fox suggests the use of equation (6.2) to
extrapol ate values out of the interval of integration, giving the two

speci al fornul as,

= 2a2a - vy o+ h2 f(a,q)

2

19




Equatians (6.1) and (6.2) through (6.5) will be referred to as Methods |
and |1, respectively. Methods Ill and IV will be the ones which stem from
formulas (5.2) and (5.9).

The procedure used for these nethods is simlar to the one used for

Method |1, the change appearing in equation (6.3).
For Method Il we get instead of (6.3),

(6.6) Je = -b° P(x,5) e + 11-5 IP(x,7) .

Method 1V expressed in conponents is

1

2 = 2 -
{6.7) “n-1 * 2en T Che1l T h fy(xn’ yn> en T 12 l:h fXX(Xn’yn) *

-\ = — 1 == N
+h fxy(xn,yn)(yn+l = yn_l) + —)I fy_y.(xn’ yn)(yn+l - yn_l)

o - -
+ h fy(xn’yn) f(xn’yn} .

In spite of its conplicated aspect, nethod IV turns out to be the fastest
and the nost accurate whenever the partial derivatives of f-(x,y) are
sinple and can be cal cul ated easily.

Now we want to point out a common feature of the nethods using the
correction difference. W recall that if Newon's method is used to solve

(6.2) the fornulas are (care has to be taken on the boundary points),

20




(6.8) ry)y 2 ay(B) 4 02 (x5t
(6.9) e JC AL T Al

and

(6.10 1) | (3) ()

In solving either the linear systens (6.3), (6.6) or (6.7) we get

equations which resenble very much those above. In fact, the changes are:
in the expressions for r(y(i)); (6.10) becones y(i+l) = y(i) - hQAy(i)

and only one iteration is required.

The r(y) corresponding to (6.3), (6.6) and (6.7) are respectively,

(6.11) ((y) = - = 3%
12h

(6.12) r(y) = 75 3(x,7)
1

(6.13) ry) =-1 v .

In (6.13), v stands for the vector obtained fromthe second termin the
right-hand side of (6.7).

Thus, if the difference correction is conbined with Newton's nethod
in the earlier stages, practically the same code can be used in both parts.
W have witten an Extended Algol program for the B5000 at Stanford which

took advantage of this situation. The program nodifications for the

21




different nethods were very slight, and the procedure followed in the nu-
merical conparisons has been to introduce these nodifications in the nost
direct fashion.

Anot her inportant observation, fromthe tine consunming point of view,
is that the quantities f(x,y) and F(x,y) do not have to be conputed
again in order to performthe difference correction since the values cal-
culated for the last iteration of the Newon nethod are in general good
enough, and no noticeable inprovenent is observed when these values are
reconput ed.

W have chosen as our first exanple a probl emwhich has a known ana-
lytical solution and is conpletely worked out in Collatz [1960] pp.145-147.
The method used there is a conbination of shooting and interpolation.

By using the sane step length, h = 1/5, we have conputed approxinate
solutions with the four nethods described above.

The problemis,

(6.14) y'=2¥5 v =k, y@) =1
with one solution equal to
: L
(6.15) y(x) = 5
(l+x)
In all the methods the first guess y(o) was constructed froma |inear

interpolation of the given data

A9 ) = -3l

22




In Table | the values of the five approximate solutions are given; and
in Table Il information about number of iterations, conputing tine, and
deviation fromthe true solution is recorded. The subscripts stand for
the nunbering we have given to the different nethods. Method V is the

one used in Collatz and y(x) is the exact solution (6.15).

TABLE |
x y(x) 1 Y11 Yrrz Vv Yy
0 k.00000 k. 00000 4,00000 4. 00000 k4 ,00000 k. 00000

0.2 | 2.71718 2,77680 2.77718 2.77719 2.77757 2.79464
0.4 | 2.04082 2.03995 2.04019 2.04019 2. 04054 2,05787

0.6 1.56250 1.56191 1.56202 1.56202 1.56226 1.57519
0.8 1.23457 1.23427 1.23431 1.23431 1.23443 1.24138

1.0 1.00000 1.00000 1,00000  1.00000 | 1.00000 1.00003
TABLE II

1 Yix Y111 Yiv Yy
Number of
Iterations in 4 3 3 3 -
Newton Part.

- -4 -4 -4
Hy(x) - ym,R.II2 9.75 % 10 %1 6.29 x 10 6.27 X 104 | 278 x 10 293 x 10

Computation time
in seconds y 1.70 1.63 1.62 i.63

y In the Burroughs B5000 at Stanford Conputation Center.

23




It is observed that this is a problemin which method IV is fairly con-
venient. In fact, (6.13) becones
- ¥ e nf ks 7).

Method V is included as a matter of reference, but no attenpt is made in
conparing it with the finite differences type procedures since they are
conpletely different in principle.

Met hods | through IV have been nunbered-in order of increasing speed and
accuracy. There is no discussion about the accuracy in this exanple.

One word has to be said about the speed. The figures in the third row of
Table Il show that the conputation tine was practically the same in al

four nmethods with a tiny seven hundreth of a second in favor of the differ-
ence correction. This situation will also be noted in the second problem
presented at the end of this section. However, we can nention some reasons
which lead us to believe that the ordering is also meaningful in so far as
conputational speed is concerned.

The solution by Newton's method of the system(6.1) is nmore com
plicated than the solution of (6.2) which is basic for all the nethods using
the difference correction. MNbreover, as was mentioned in Section %, the
requirements of precision in these latter methods are less than for the
Numerov-MIne nethod. That inplies, that in general less iterations can
be expected for nethods II, Il1l, and IV than for method I. That is shown
inthe first row of Tables Il and IV. O course, one nore iteration (the

difference correction) has to be counted, but in general, as can be seen

2k




in formulas (6.11), (6.12) and (6.13), this iteration involves |ess conpu-
tation than the one corresponding to the regular Newton formulas. That is
nore noticeable after recalling that f and F do not have to be reconputed

for this correction.

A last remark is that all the linear systens involved in this discussion
are tridiagonal, and a sinplified Gauss-type elimnation procedure can be
used, saving both conputation and storage (see, for instance, Henrici [1962]
pp. 351-354, or D. H. Thurnau [1963]).

To finish with this section, we present another exanple which behaves

in the same fashion as the first one

¥ = e 5 y(1) =0, y(2) =1n(2)

The exact solution is y(x) = In (x)

The step length used was h = 1/16, and in Tables IIl and IV we give the
nunerical results corresponding to the nodal points x =1, 1.25, 1.5, 1.75.

Si nce

-2 y =D )
£lx,y) = -e roy)=2e™ 5 £ (ny) = -2f, (%)
(6.13) becones
_ N -5 _ . _ e
() = - 35 ST T Gy - 005 (g m¥ ) ]
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TABLE III

x y(x) Yy Y11 YT Yy

1 0 0 0 0 0

1.25 | 0.223143551 | 0.223143676 | 0.223143656 | 0.223143656 | 0.2231L43525
1.50 | 0.405465108 | 0.4O5465225 | 0.405465209 | 0.4O5KE5209 | 0.405465088
1.75 |. 0.559615788 | 0.559615853 | 0.559615847 | 0.5596158L7 | 0.559615778

TABLE IV
1 11 Y111 Vv
{ Number Of

Iterations in L 3 3 5
Newton Part.
ly(x) = v, pp 12.9 X 1078 10.9 X 1078 10.9 X 1078 2.7 X 1078
Conput ation tine
in seconds k.24 k.17 4.20 4,13
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Ve note again that nethods Il, IIl, and IV are about the same in speed

and sonehow faster than method |. Methods Il and IIl gave practically the

sane results when h was fairly small. There is a noticeable increase in

accuracy when passing frommethod | to IV.

7. Boundary conditions of SturmLiouville type.

In the nore general problem (1.1) the conditions on f(x,y) are the
same as in the problems of class M discussed before. For the constants

a, B, 7, & we have the follow ng requirenents,

(7 .1) 0< o B, 7,083 ay+ad+ py>0

- Under these conditions this problemis also of monotonic type and it has
an uni que soluton (Schrdoder [1956]).

Now the finite difference procedure has to be nodified in points close
to the boundary.

To clarify the ideas we will only consider in detail the case p = 2,
and the corresponding difference correction. For  n=1.. . N-1the
approximation is the same as described in (2.2) (wth B, = B, = 0, B, = 1).
hserve that now Yo and y, are al so unknown. To handl e these two new
unknowns we need two nore equations.

By using the formula,

)zﬂ}‘fh)'Y(X—h)
2h

oM
=
<
—
>

(7 .2) ' (x



(w thout - % h° v (x) ) conbined with the first boundary condition (1.1')

we get at x = a,

(7 .3) SRR CR AR VA

-y-l+2y0 -yl = - fo h
and by using (7.3) and nultiplying through by g,
(7.%) (2p + 2ah) Vo - 28 yl:-Bfé h2+2h A
Simlarly, at x = b (n =N,
2
(7.5) 26le+(26+27h)yNZZBh-Bho

Wth (7.4), (7.5) and the N - 1 equations (2.2) we have now as many

equations as unknowns. On the other hand the exact solution satisfies,

(7.6) (28 + 20 h) y(xy) - 28 v(x)) =

2 L o1
- B £(xg vlxg) ) 0"+ 2h A= Ent (k)

h 1"t
S 5By (xg) + o)
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and,

(7.7) (20 + 2n 7) ylxg) - 26 y(xy ) =
3
- -1 s f(XN, y (xN) ) +2h B + 8 —1;— v’ (xN) - —117 B SyIV(x.N) + 0(h°)

Now, by taking the corresponding differences we get for the error of discre-

tization at the boundary points,

(7.8) 5 4 2oh 2 _ w3 4 pate
( B+goh)eo 2e1—®o(h M +h K)
2h 2 .3 q+2
+ 2y . - @ +
(2 2 gy b ) NI Oy (n M, + h K) .

Together with (7.8) we have the equations for the inner points,

(7.9) - et 2 e et n® g, €, = @1;1’ (hq+2 K + hl+ Gz) (Henrici (1.c.) p.375)
or in matrix form

(7.10) se=b

wher e,

(7.11) s, =2+n g =1 .. N

29




S()0=l+g[:_s—h+gc’2h
Sl\m=1+16—h+gNzhz
i+ T %1, <7t =0, » N
and
bl=®;'(hq+2K+ thZ)» 7=1... NI
(7.12) b, = €5 (n¥F 5+ 10 ¥

4 (hq+2 E + h5 M)

by = 8y 2 )

If pand  are different fromzero then S is irreducible, otherw se
we can skip the corresponding equation and the resulting matrix will be

irreduci ble. Moreover,

i) 83 <0 i3 i,j=0 N
N
ah 2
i) Sn: = — +g, b >0
j:8J A 02
N
Y S =ng >0
j=0 '
N
ES..= 12+g v > 0
o N 5 N 5
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Consequently S is nonotone.

Now we will try to find a bound for the discretization error.

(71.13) 1+ P, -1 0

-Where

and

O
]
—
no



W know that

o<s? < gt
1 Ml
Let's conpute a bound for S
C C
— 12
g1 _ 11
€y Ceo

where the C'l'J are blocks with the sane sizes as the corresponding ones

in § .

From Househol der [1953], p. 78, we obtain for %"l,

. 1
-1 -1
Coqg =Gy (s o o o)
(7.14) T
Cip = ‘a1

- . -1
with a_l_j being the elements of A
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It is easy to show that,

ﬁu N N2 L

N-1 NI N2 ...

1
=
&

_ iN . 1
(Cll)lj -a,. t —m_hs (N-l)) + E

[EEN

Then, lel < s b

N-1
lely <loglim-ie T4 (NP + ) T o |+ L ||
=0, .. M

N-1
: 1
lely < & Hbol * ‘bnl ' j§ lbjl]

33



N-1
Si nce -1+ ) T Jv.] < W-1F %2 g 4 o g z]
mh =1 J

<nd K +1¢ Z (b-a)

1 2

and bl NI+ =7 < ¥ g+ B2

0

we finally obtain,
n e lell. < 2v® [G Z (b-a) + -M']+ 2K'n%[1+n]

which is the result (2.8) corresponding to this problem For the interior
points the treatnment of Section 4 is carried over in this case, the only
—changes appearing at the boundary points. Consequently (4.2) is used for
n=1 . . NI, and also at 0O, N in order to construct the corresponding
modified equations. e also need y/(x) = t(x) + h° u(x) + 0 (h*)
wth t, u smoth. Now we are able to define the two boundary equations

to be added to (4.2),

2
2 _ h h
(2ra+2 g + 1 B g(0))e¥ -2 pex = ﬁi—lg r(0) + 53 t(0)
(7 .16)
2 s B R 8h
(2h7+26+h6g(1\1))e§-26 e = b (N - 31—,(1\1)
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The equivalent of (3.6) is,
e" (X) = g(x) el(x) +,Cu3§h)(x)
(7.17) ae(a) B e (a) =By (a)
y e(b) +se(b) =gy (b)
whose solution satisfies (4.3) at the interior mesh points and

(2ha + 2 B + n° B g(0)) e(xo) -28B e(xl) =

2 " _
s Ly M) + B oym )+ B M )

ho 5%
(270 +206+ 0 5g(N) elg) -2 6 elxy )

L

= f% n° &(4)(XN) - %é v () + {% e(hkik)
at the boundary.
From here we obtain the n equati ons,
(1+‘§h+%—2—g<o>>no-nl=
(7.19) B A SRS RO
1+ fn+ %ﬁ ey) Ty~ My.y = 1: s (xy) + ?; u () - %; e(h)(im)
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But now the n system we have obtained is of the form
(7.20) Sn=v

where v has conponents with the same orders in h as b in (7.10).

Hence the same result (7.15) is obtained for ||| (with different constants),
1o Ihll, = 0(n%)
which finally inplies,

(7.22) eX - e(x ) = o(n

n

Consequently, in this nmore general problem the difference correction,
being applied not only to the differential equation, but also to the
boundary conditions, inproves the solution in tw orders in h, asin

the sinpler case.

8. Nunerical exanple for the SturmlLiouville case.

Equation (6.14) with the boundary conditions,

y(0) -2 y'(0) =20
(8.1)
2y(1) +3y (1) =-1
was integrated by using a suitable modification of nethod Il1l. Since this
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probl em has the same solution (6.15) as before we only list the new results

This time

forcing severa

the first guess (a linear function) turned out to be fairly bad,.

Newton iterations before reaching the required precision.

Step (h) |Number of conput . e = || y(x) - vapg lls ¢ after
Newton iter. Ti me (Sec) ‘ diff. correc
(before diff. correc.)
/5 5 2.6 1.1 x 10 -1 9.6 X 10-3
1/20 6 8.1 7.8 x 10-3 4 x 10 -5
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