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PART 1: GENERAL CONSIDERATIONS

Introduction.

The problem to be considered is that of obtaining polynomial approx-

imations to continuous functions or empirical data in such a way that

the approximating polynomials are convex in some prescribed interval.

This problem arises naturally in connection with data smoothing and

was in fact suggested to the author by a problem requiring the calculation

of derivatives from data,

The difficulties arising from the use of interpolation and least

squares methods for data smoothing by polynomial approximation are well

known. There are excellent discussions in Lanczos [lo]", and Hamming

[7]. There appears, however, to be very little literature which treats

the problem of interest by methods of constrained polynomial approximation.

Such problems are usually posed in terms of minimizing functionals,

which suggests treatment by variational methods. A similar problem has

been so treated by Boltjanskii [3]. He examined the problem of approx-

imating continuous functions with functions whose n-th derivatives

satisfy a Lipschitz condition. By application of the Pontrjagin maximum

principle [15 1, he obtained necessary

problem must satisfy. The problem of

stated in a manner similar to that of

tation does not appear to help in the

approximations.

conditions which solutions of the

interest here can be formally

Boltjanskii, but such a represen-

study of means of computing best

Methods of polynomial approximation where the polynomial coefficient

vectors are constrained to lie in a convex set are treated in the recent

*
Numbers in brackets indicate references in the Bibliography.



paper of Rice [16]. He showed that the problem of obtaining best

approximations to continuous functions with n-th degree polynomials

whose k-th derivative is positive on [O,l] has solutions and gives

conditions for uniqueness and location of these solutions. However, he

does not find the problem of computing such approximations to be tract-

able.

The difficulties that Rice encountered are of two kinds. First,

the problem is essentially nonlinear, having nonlinear constraints.

Second, the geometry of the constraint set is difficult to deal with

because it is not given explicitly.

In this work, both of the aforementioned difficulties will be

dealt with. In this first part, after development of some necessary

preliminaries, a theory for treating a class of nonlinear approximation

problems is presented. This class is of interest not only because it

includes the convex polynomial approximation problem, but because it

provides a potentially useful generalization of the linear theory. A

typical problem of this class is expressed as follows: Given an element

f of a real normed linear space V, a set [xi(z) : i = l,...,k) of

elements of V which are continuous functions of z in a subset S

of
n

E , and a set H in k3 , determine an element W,z*l in

H x S so as to minimize

Ilf - (Y,X,(z) + l  o o  +  Y,⌧,(z))I☯  l

To the writer's knowledge,this class of problems is being treated

for the first time in this work. Questions of existence, uniqueness,
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and location of best approximations of this type are discussed in

Sections 5 and 6. Except as otherwise noted, the theorems given there

appear to be new. One concludes from these results that under fairly

general conditions, this class of problems exhibits most of the nice

features of constrained linear approximation problems.

In the second part, the geometry of the set of polynomials convex

on b,ll is developed. The theorems which represent the convex poly-

nomials in such a manner that the results of Part 1 are applicable are

given in Sections 10 and 11. These theorems appear to be new; in

essence, they say that the problem of convex polynomial approximation

on an interval can be reduced to a problem of minimizing a function

subject to linear constraints. Further, the problem exhibits features

which make it amenable to treatment by readily available computational

procedures. In particular, the function to be minimized cannot have a

relative minimum even though it need not be convex. It is also shown

that under certain conditions solutions can only lie on the boundary

of the set of constraints.

Computation of best least squares approximations by convex poly-

nomials is illustrated in an appendix.

1. Definitions and Notation.

Throughout, V will denote a normed linear space over the real

numbers with norm II II ; elements of V will be denoted with letters

f,g,x. En will denote n-dimensional Euclidean space. It will be

convenient to have two means of referring to coordinate systems in

Euclidean space: the element y of E
n+l will be written in either
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of the forms

Y  =  (Yl�*.�,Yn+l)  or Y  =  (Y,,-�,Y,)  l

Sets or sequences of points are denoted by capital letters such as

A, B. The elements of a set or sequence are indicated by enclosing them

in brackets, and the customary procedure of writing "X is the set of

all x which have property P" as

X = ( x : x has property P)

is used.

The closed interval

The finite set of points

0 < t < 1 will be .written as- - CO,11 or I.

on I given by 0 = to < tl < 0.. < tN = 1

will be denoted by T. The linear spaces of real-valued continuous

functions f(t) on I or T will be written as C(1) and C(T)

respectively. CO) is a Banach space with norm

II IIf = n-lax If(t)1 ;
te1

C(T) is a Banach space with norm

II IIf Z ITlaX

O<i<N
IfCti>i '

- -

Other norms can be put on these linear spaces to obtain Banach spaces.

The spaces cp(I), P ,> 1, are obtained with definition

IIII  [J-
1 1 l/Pf

P= 0
if(t)l'dt
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and the spaces cp(T) are obtained when

II IIf
P= =

[j. ifo~p]l/P '

The same notation is used for both norms, but context will always make

the usage clear.

Inner product notation for sums of products will be used whenever

convenient: y l x = yoxo + l 00 + y,x, for x, y in E
n+l

. With the

convention that x"(t) = (l,t,...,tn),  polynomials p(t) of degree

< n can be written in the form

p(t) = y l xn(t) = y, + ylt + l ** + y,t"  l

If p(t) > 0 on a set S, it will simply be called positive on

S; if p(t) > 0, it will be called strictly positive

It is now possible to state the convex polynomial

on S.

approximation

problem: Given an f(t) in C(1) or C(T) normed in one of the ways

given above, an integer n, and a set H in En+l , determine an ele-

ment y+ in H such that

IIY l ⌧n - fll

is minimized at y = y3c subj:ect'to the condition that

d2
- Y
dt2

l ⌧n(t) = 2y2 + 6y3t + l a= + n(n-l)yntne2  > 0

for all t in I.



2. The Problem is Reasonable. )

It is worthwhile to inquire as to whether the problem posed at the

end of the last section is reasonable in the following sense: Given a

function convex on CO,ll) are there polynomials convex on Lo,11

which are arbitrarily close to the function in some norm? If the answer

is yes, the problem will be considered reasonable.

The desired affirmative answer is contained in the following

The,orem 2.1: Let f(t) be a function -which has positive k-th derivative

on [O,l]. Then given any s > 0, there is a polynomial p(t) with

positive k-th derivative on co,11 such that

O<Y<l
Ip(t) - f(t)1 < e .

- -

The desired result is the special case of this theorem with k = 2.

The theorem is proved as a consequence of two other theorems, the

first of which is S. Bernstein's version of the Weierstrass approxi-

mation theorem.

For a function f(t) defined on co,11 9 the expression

Bn[f(t>3 = f f(;)(;)tm(l-t)"-"
m=l

is called the Bernstein polynomial of order n of the function f(t)*

With this definition, one can obtain

Theorem 2.2 (S. Bernstein): If f(t) is continuous on [O,l], then

lim Bn[f(t)] = f(t)
n-3.00
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uniformly on co,11  l

Proof can be found in Natanson [l&l.

Now, define forward differences of f(t) at t = m/n by

N(E) = f( F, - f(f) ,

Akf(Z, = n(ak-lf(;))  , k = 2,3,...

Then, by direct differentiation and term rearrangement, the following

expression for the k-th derivative of QfWl is obtained:

Bf)[f(t)] ;; nik Akf(;)(nk)tm(l-t)n-m-k=-
l m=O

for k = 1,2,...,n. If the k-th derivative of f(t) is positive on

CO,ll, then akr(f) is positive for 0 < m 5 n - k. This proves

Theorem 2. 3: If f(t) has positive k-th derivative on [O,l], then

the Bernstein polynomials of f(t) have positive k-th derivative on

Lo,11 l

The proof of Theorem 2.1 follows directly from Theorems 2.2 and 2.3.

The above results are contained in Lorentz [ll]. Convergence in

the uniform norm implies convergence in any of the norms for C[O,l]

considered in Section 1.

Armed with the comforting knowledge that there are convex poly-

nomials close to convex functions, it is now interesting to ask the

following question: Among all n-th degree polynomials convex on co,11

is it possible to find best approximations to a given function (in

particular, a convex function)? Here, "best" will mean the usual thing:
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best in the sense that some norm is minimized.

To answer this question, the problem of Section 1 will be imbedded

in a larger class of problems. To do this, and to facilitate discussion

of the geometry of convex polynomials, the next two sections will be

devoted to a development of results on convex sets and cones.

30 Convex Sets.

, A set S in En is convex if for each pair of points y' and y2

in S, the points y = 63~' + (1-0)~ 2 are in S 9 where 0 < 8 < 1;

that is, the line segment join,ing y' 2and y lies in S. S is called

strictly convex if 0 < 0 < 1 causes the points y to lie in the in-

terior of S. For a fixed vector x and a constant c, the plane En

determined by

Y .x=yx +...+yx  =c
1 1 n n

is called a supporting plane to S if the plane contains at least one

point of S and S lies entirely in one of the half-spaces

{Y:Y'x > cl, EY:Y*x 5 4. Any half-space containing S is called a

supporting half-space to S. Theorems relating these concepts can be

found in many places; for example, Karlin C81 proves:

Theorem 3.1: A closed convex set is the intersection of all of its

supporting half-spaces, and every boundary point of the set lies on a

supporting plane.

The dimension of a convex set S is defined as the dimension of

the linear subspace of smallest dimension which contains S.
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If the set S is convex, closed, bounded, and n-dimensional, it is

called an n-dimensional convex body.

A supporting plane to

if it contains exactly one

called an extreme point of

definition that an extreme

segment joining two points

a closed convex set S

point of S. In such a

s. It is an immediate

point cannot lie in the

of se

will be called proper

case, that point is

consequence of the

interior of a line

The following theorems give relationships between convex sets,

extreme points, and supporting planes. Their proofs can be found in

Berge [2].

Theorem 3.2: If S is a compact non-empty convex set in En, it has

an extreme point; further, every supporting plane of S contains an

extreme point of S.

Theorem 3.3: A compact non-empty convex set S in En is the inter-

section of the closed convex sets containing the set of extreme points

of so

Theorem 3.4: If R and S are compact convex sets in En, each having

at least one interior point, then R and S are homeomorphic.

4. Convex Cones.

A set K in En is a convex cone if for each pair of points y'

and y2 in K, the points y = ayl + BY2 are in K, where a, p>O.

A convex cone is a convex set. The relationship of convex cones and

supporting planes is shown by

Theorem 4.1: Let K be a closed convex cone in En. Then every



supporting plane to K contains the origin, and a supporting plane can

be proper only at the origin.

Proof : Suppose y l x = c is a supporting plane to K at y#O.

Then c = 0, else there are points of K, namely ay for a < 1

and a>l, on both sides of the plane. This shows that every support-

ing plane to K is of the form y l x = 0 from which both parts of the

theorem can be concluded.

For convenience, it will be supposed that any x which defines a

supporting plane to a closed convex cone K is always taken so that K

lies in the half-space given by y l x ,> 0, The intersection of the

translate y l x = 1 of a supporting plane to K with K will be

called a cross section of K. If K has a 'proper supporting plane,

its corresponding cross section is called a proper cross section, and

K is called pointed (the origin is an extreme point).

Theorem 4.2: Let K be a closed convex cone in En. A cross section

of K is bounded if and only if it is proper.

Proof: For each fixed vector x, yax is a continuous function

n
on E .

greatest

Define the set S = [y:y e K, /yII = 1) and let ~1 be the

lower bound of

a y in S for which

Y *x on S. S is compact, so there exists

Y ' x = p.. By convention, y 0 x > 0 for each

y in K, so p>o. If )1>Oj then for each y in S there is a

number X, suchthat hy l x =l. This says that the cross

section corresponding to x is bounded if and only if ~1 > 0. If

P = 0, there is a non-zero y in K such that y . x = 0, which

makes the supporting plane improper. The desired result follows

immediately.
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5* Existence.

Throughout this section and the next, y = (yl,...,yk)  will denote

a point of Ek J and z=(zy**,zn) a point of En. The unit sphere

2
y1 +

l ** + y; =l

in E
K will be called U.

Achieser [l] gives the fundamental existence theorem for approxi-

mation in normed linear spaces as follows:

Theorem 5.1: Let xl,...,xk be k linearly independent elements of

V. Then for any element f in V there exists a point y+ in Ek

such that the function

cp(Y>  = IIY  l x - f II

attains its greatest lower bound (and hence its minimum) at YJC.

Rice Cl61 shows that (p(y) will also attain a minimum if y is

constrained to lie in a closed set H in k
E .

The approximation problem under consideration involves the para-

meters nonlinearly. Thus, it would be useful to have an existence

theorem which-covers the situationof interest and might also be appli-

cable to other approximation problems. A rather general theorem is

given by Young [221, and discussed by Rice [17], but appears difficult

to apply. The theorem which will be given here is appropriate to the

situation and is an extension of Theorem 5.1.

Definition 5.2: Let x,(z),..., kx (z) be k continuous functions on
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En into V. Let S be a subset of En. If for each z in S, the

set B(z) = {xl(z),...,xk(z)]  is linearly independent in V, then the

set B(S) = {B(z) : z s S) is called a basic set on S, or simply a

basic set.

An example of a basic set is obtained by taking V = C(I), S the

square in E
2 given by 0 < zi-< 1, i = 1,2, and x,(z) = t

z1
, x,(z)

2-l-Z
2= t 0

Definition 5.3: Let B(S) be a basic set and define the function

If (Y,‘> = IIYox(z)ll = IIylxl(z) + “* + ykxk(z)iI  O

Since q(y,z) is positive, it has a greatest lower bound ~1 > 0 on

the set U x S in Ek X En. If p > 0, B(S) is called an admissible

basic set.

The example of a basic set given above is admissible. It would be

tedious to show this by direct computation; however, the reason for the

truth of the assertion is contained in the following

Lemma 504: Let B(S) be a basic set. If S is a compact set in nE ,

then B(S) is admissible.

Proof: Since S is compact in nE , TJ x S is compact in Ek X En.

The function Jr(y,z) given in Definition 503 is continuous on Ek X En

and hence attains its greatest lower bound ~1 on U X S. Now, let

(p9z*) be a point in U x S such that

Q(y�,z*)  = lp+*)II  = P l

Since B(S) is a basic set, the xi(z*) are linearly independent.

12



Hence p = 0 if and only if Pi = 0, all i. Since y++ is in U,

p # 0 and B(S) is consequently admissible.

Theorem 5.5: Let f

S 'a compact set in

be an element of V, H a closed set in Ek,

En* Let B(S) be a basic set in V with elements

X,(Z>,*‘*,Xk~z>* Then there exists an element (y+,z*) in H X S such

that the function

cp(Y,Z)  = llY*XW - fll

attains its greatest lower bound on H-x S at (&z*).

Proof: U is compact in Eke Thus, for each fixed z in S,

the continuous function

attains its greatest lower bound p(z) on U. By Lemma 5.4,

p(z) 2 p > 0, where p is the greatest lower bound of +(y,z) on

u x s. Also, observe that for any y in Ek and z in S,

Now, let p be the greatest lower bound of Cp(y,z) on H x S.

By the inequality just derived,

IlY*x(z>  - fll 2 IIYOX(Z)ll  - llfll 2 t y;
l/2

( )
p - f .II II

i=l

Thus:, 5f y is taken such that

>l
cl

(P + 1 + llfll> = r )



then \

llY4d - fll>p+l .

This shows that only those y in the sphere

R= y:
-t

k

c
i=l

permit Cp(y,z) to approach p-

' R is closed and bounded, so R n H is closed and bounded and

hence compact in Ek . S is compact in En, so (R n H) x S is com-
pact in Ek X En- Since cp(y,z) is continuous on Ek x En, it will

attain its greatest lower bound on (R n H) X S which by the above

.argument is its greatest lower bound on H x S, and this is what was

to be proved.

Theorem 5.1 can be obtained from Theorem 5.5 as the special case

when X1~""Xk are constant linearly independent elements of V.

Conditions under which solutions of approximation problems such

as those under discussion are unique are discussed in the next section.

Location of solutions is also discussed.

6. Uniqueness and Location of Solutions.

Achieser [l] proves a uniqueness theorem for linear approximation

in a finite dimensional linear manifold in V under the condition that

V is a strictly normalized space. This condition holds whenever

equality in the expression

14



llf + gll I llf II + IMI (f,g # 0)

holds only for g = af(CX > 0).

Rice [16] gives more specific results. Let H be a closed set in

Ek 9 and let xl,...,x k be fixed linearly independent elements of V.

Let f be an element of V and suppose that

min k kx - fll < min /y*x - fll .
YCE Y"H

Rice proves:

Theorem 6.1: (1) Every local minimum of IIy*x - f/ on H is a global

minimum on H.

(2) If y++ minimizes Ily*x - f/ on H, then J+ is in the

boundary of H.

(3) If H is strictly convex, then sljc is unique.

(4) If v is strictly normalized, then ysC is unique.

(Rice actually proves a slightly different statement than (4), but

it is essentially the same in the present context.)

Some theorems similar to those of Rice can be proved under some

assumptions on the nature of the mapping of H x S to the set of

possible approximations in V.

Let 0 denote the mapping which associates the element y l x(z)

in V with the element (y,z) in Ek X En. Let C = Q(H X S).

Henceforth, it will be assumed that C is a closed convex set in V.

It will also be assumed that @ sets up a 1 - 1 correspondence

between H x S and C. If 0 is a homeomorphism between H x S and

15



C’ then C will automatically be closed because H x S is closed.

Definition 6.2 (Riesz-Nagy C181): A Banach space V is called uniformly

convex if for each f, g in V such that IIf IL llg II L IL + E and
llf + gll 2 2’ then llf - gll < c*

It can be shown (Clarkson [5]) that of the spaces defined in Section

1’ c2w is uniformly convex, but C(1) is not.

Theorem 6.3: If V is a uniformly convex space, then

'p(y,z>  = IIy*x(z> - fll has a unique minimum in H x S.

Proof: Let {(yn,zn)) be a minimizing sequence for cp. Let

gn = yn
l x(z") and p be the minimum of cp on H x S. Then given

E > 0, there is an N sufficiently large so that for m, n > N,

Ilgn-f
P ’

Ilgrn-fl~ < l + E .
P -

NOW, because C = @(H x S) is assumed convex, $( lc+grn) is an element

of C and

which implies

By the assumed uniform convexity of V, it then follows that

II8 - grnll < PC 3

which shows that kn3' and hence any minimizing sequence in C, is

a Cauchy sequence. By the completeness of V and the fact that C
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is closed, this sequence converges to an element g of c. The element

g is unique in C,

is also a minimizing

that Qz is a 1 - 1

for if (hnj is another minimizing sequence, then

1 1 2  2
g ,h ,g ,h , ... ,gn,hn,  l .-

sequence which must converge to g. The assumption

correspondence implies the existence of a unique

element (Y'Z) in H X S with cP(y,z) = p, which is what was to be

proved.

Theorem 6.4: Let cf, be a homeomorphism. Then every local minimum of

Cp(y,z) on H X S is a global minimum on H X S.

Proof: Using the notation of the previous theorem, let g' and

2
Q be elements of C such that Ilg'-fIl < llg2-fll. The elements g

of the line segment between g' and g2 in C are given by the

expression.

43 = egl + (14)g2, o<es1 ._

By hypothesis, the points O*'(g) lie on a continuous path from

1 1
(y ,z ) to

2 2(y ,z ) in H X S. Along this path, Cp(y,z) is monotone,

since

Ileg1 + Wk2 - fll < e~~t&fll + (Wllg2 - fll 5 llg2 - fll l_

Now, let Cp(y,z) have a global minimum at (Y1'Z1) and a candidate

for a local minimum at
2 2

(Y 'Z I* Construct the path from
1 1

(y ,z )

to 2 2(y ,z ) as indicated above. Because the path is continuous and

Cp is monotone along it, it is not possible for a relative minimum to

17



be at (y2,z2). This completes the proof.

There are several conditions which can cause 0 to be a homeo-

morphism. In particular, if H is compact, then 0 is a 1 - 1 con-

tinuous map from a compact space onto a Hausdorff space and hence a

homeomorphism. Also, if C can be decomposed into a product A x B

and Cp into a product Q1 X a2 such that Ql is a homeomorphism of

H onto A and O2 is a homeomorphism of S onto B, then it can be

shown that 0 is a homeomorphism.

It is now interesting to inquire about conditions which would force

solutions to lie on the boundary of H x S. A set of conditions for

this is given in

Theorem 6.5: Let @ be a homeomorphism. Let H X S be closed, con-

vex, and have interior points in Ek X En. Let (&z*) be a point

of Ek x En such that (yntz*> is not in H x S and

cP(~+,z*) < cP(y,z) for all (y,z) in H x S. Let V* be the smallest

linear subspace of V which contains @ = p l x(z*) and C. Then

if C has an interior point in the relative topology in V*, the

minimum points of Cp on H x S must be on the boundary of H x S.

Proof: It is easily shown that 0 is a homeomorphism of H x S

onto C considered as a subset of v*. Let g2 = y2 0 x(z2) be a

candidate for a minimum in the relative interior of C corresponding

to a point 2 2(y ,z ) in the interior of H X S (guaranteed by the

homeomorphism). Construct the line segment from @ to g2. Because

C is closed and convex with an interior, this line segment must meet

the boundary of C in exactly one point which will be called g'.

By the same argument used in Theorem 6.4, /f-g11 is monotone along the

18



line segment gjc to g2, and consequently is also monotone from g'

to g2. Under the homeomorphism, 2 corresponds to a point (YY)

on the boundary of H x S and 'p(yl,zl) 5 (p(y2,z2). This completes

the proof.

The remainder of this work is devoted to an example in which the

foregoing theorems apply.
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PART 2: CONVEX POLYNOMIALS

7. Methods of Representation.

Some kind of parametric representation of the set of polynomials

of degree < n which are convex on my11 is needed before a com-

putation of best convex polynomial approximation can be attempted. One

such representation is suggested by Section 2: form Bernstein poly-

nomials with coefficients whose second differences are positive. The

second difference expressions will yield a finite set of linear in-

equalities which the coefficients must satisfy, which is desirable,

but this method will be rejected since it can be shown that not all poly-

nomials of degree < n which are convex on [O,l] can be repregented

exactly by Bernstein polynomials of degree 5 n (see Section l-2).

Another method would be the direct method of Section 1: make the

polynomial y l x"(t) satisfy the infinite set of constraints

2Y2 + 6Y3t i- 000 + n(n-l)yntn-2 2 0

for each t in CO’11 0 This is the method found intractable by Rice

Ml.

The method which will be adopted here derives from the existence

of a parametrization of the set of polynomials of degree < n which

are positive on CO’1 1 J It has the desirable property that the para-

meters must satisfy a finite set of linear constraints. This repre-

sentation can be integrated twice to obtain a representation of the

polynomials of degree < n + 2 which are convex on CO’11 0

20



8. The Cone of Positive Polvnomials.

The results of this section and the next were obtained by Karlin

and Shapley [9] by less direct means.

The point y = (yo,yl,...,yn) in En+l representing the poly-

nomial y l xn(t) = y, + ylt + :f: + y,tn corresponds to a polynomial

positive on ~O,ll when y-0 xn(t) > 0 for each t in [O,l]. Let-

Kn denote the set of all y in En+l which have that property.

Theorem 8.1: I? is a closed convex cone in En+l whose boundary con-

sists of points representing polynomials of degree < n which have roots-

in [O,l] but are otherwise positive there.

Proof: If Pl and P2 are polynomials of degree < n which are

positive on [O,l], then so also are the polynomials apl + pp2 for

all a,p 2 0; hence, Kn is a convex cone. Since a polynomial is a

continuous function of its coefficients, a polynomial p(t) which is

strictly positive on CO’11 will remain so in an open neighborhood about

its coefficient point in En+l ; hence, that point must lie in the

interior of Kn* If p(t) is positive but has a root at t
0

in CO,ll,

then each open neighborhood of its coefficient point contains a point

corresponding to a polynomial which is negative at t l

0 ’
hence, p(t)

corresponds to a boundary point of - Kn. Since Kn contains its boundary,

it is closed.

Corollary 8.2: The planes of the form

p(,to) = y, + ylto + l ** + ynton = 0 '

where p(t) is positive with a root at t
0

on [0,11 are supporting

planes to Kn.
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Proof: If q(t) is a positive polynomial of degree Cn on

co,~l’ then q(t) 1 p(t,) = 0, so Kn 1ies to one side of the plane

p(t,> = 0. By hypothesis, p(t) corresponds to a point in the plane,

so p(t,> = 0 is a supporting plane.

If p(t) has a root at to on [O,l], then so does ap(t) for

all a > 0. Thus, the supporting planes of the form p(t,) = 0 cannot

be proper. Kn does have a proper supporting plane, however. This fact

is used to prove

Theorem 8.3: I? is pointed.

Proof: It will be shown that the plane

1y, + F y1 + l *a +

1
Zi 'n = o

is a proper supporting plane to J?. First, the plane meets Kn at

the origin. Second, if y # 0 is in Kn, then p(t) = y . x"(t) > 0

for t in ~O,ll, but p(t) is not identically zero, so

1
1

yo+2& Y1+ l ** +-n+l yn = p(t)dt > 0 .

The rest of the proof follows immediately from Theorem 4.1 and the

definitions of Section 3 and 4. -

90 The Cross Section Pn.

Theorem 8.3 implies that Kn has a proper cross section defined

by the intersection of Kn with the plane

1
y. + 5 y1 + l ** +

1
n+l yn = 1 .
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This cross section will be called Pn and will be described in detail.

Theorem 9.1: Pn is an n-dimensional convex body.

Proof: It must be shown that Pn is convex, closed, bounded, and

n-dimensional.

is closed and convex because it is the intersection of two

closed convex sets. E@ Theorem 4.2, Pn is bounded. To show that Pn

is n-dimensional, observe that the points in Pn corresponding to the

polynomials 1, 2t, 3t2,. .,(n+l)t" lie in the plane defining the

cross section. Thus, the n vectors

(-Lw,~,  l  * * � 0) �

(-L%3’%  l l l �0) �

. . .
’

(-1,0,0,0,  l . . , 0, Ml) ,

formed by subtracting the vector to the first point from those to the

others, all lie in the plane of the cross section and are clearly

linearly independent. The dimension of the plane must therefore be at

least n. Since the dimension of the plane must also be < n + 1, the

proof is completed.

Theorem 3.3 says that to describe Pn, it suffices to describe

its set of extreme points. The nature of the extreme points of Pn is

given by

Theorem 9.2: The extreme points of Pn correspond to polynomials which

have n roots (counting multiplicities) on [O’ll l

Proof: Each polynomial corresponding to an extreme point of Pn

must be of degree n exactly. To see this, suppose p(t) corresponds
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to an extreme point but is of degree < n. Then the polynomials tp(t)

and (1-t)p(t) are positive on [O,l] and both are of degree < n. It

is then clear that positive scaling factors "1 and "2 can be found

so that

further,

altp(t) and a2(1-t)p(t) correspond to points of Pn, and

there will be a 8, 0 < 8 < 1, so that

p(t) = eytp(t) + (1-e) a2(l-t)p(t) '

which contradicts the hypothesis that p(t) corresponds to an extreme

point.

Now, if p(t) is positive on [O,l] but does not have all of

its roots there, then its corresponding point in Kn cannet be an

extreme point of Pn, for p(t) must then have a root a < 0, a

root b > 1, or a pair of complex roots c + id. This implies that

p(t) is expressible in one of the forms

p(t) = (t-a)u(t) = i (t-2a)u(t) + $ tu(t> ,

p(t) = (b-t)v(t) = ; (2b-l-t)v(t) + ; (1.t)v(t) ,

p(t) = [(t-c)2 + d2]w(t) = (t-c)2w(t) + d2w(t) ,

where u, v, and w are polynomials positive on CO'll. All three of

the right-hand expressions can be scaled so that they are of the form

ml(t) + (1-e)p2(t) with 0 < 8 < 1 and pl and p2 corresponding- -

to points in Pn. This proves one half of the theorem.

Now, suppose p(t) is a polynomial corresponding to an extreme

point of Pn, and that there are polynomials Pi(t)' p,(t)
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corresponding to points of P" and 8, 0 < 8 < 1, so that

p(t) = 6pl(t) + (1-8)p2(t).  Because pl and p2 must each have the

same roots as p, they must be identical, for p(t) already has the

maximum possible number of roots. Thus, the supposed convex

is impossible, and this completes the proof.

Knowing the permissible disposition of all of the roots

combination

makes it

possible to write down polynomials proportional to those corresponding

to extreme points of Pn. Any roots in the interior of c0,11  must

be' of even order; Roots of odd order can occur only at 0 and 1.

Hence for n even (n=2m), the extreme polynomials are

n m-l

I-P t-z )2
2j-1 or t(l-t) 1 (t-z2j)2 ,

j=l j=l

and for n odd (n=2m+l), they are

m

t fl  (t-z2j)2
or (l-t) i (t-z2j-l)2 ,

where the z i are in CO’11 and need not be distinct. The subscripts

were taken as shown for later convenience.

One would expect that a convex linear combination of n + 1

extreme points would be required to represent an arbitrary point of

Pn. However, it is a remarkable fact that every point in
n

P , and

hence any point of Kn, can be represented by a unique positive linear

combination of at most two extreme points, and the extreme points can

be chosen in a completely systematic manner. That this is so is stated

in
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Theorem 9*3 (Karlin-Shapley): Every polynomial corresponding to a

point y of Pn has a unique representation by a pair of polynomials

corresponding to extreme points of Pn as follows:

m m-l
n .
c
i=O

Yitl = a ~ (t-z2j_l)2  + Bt(lot) TT (t-Z2j)2

j=l j=l

if n = 2m, and

m m
n .
c yitl = 0%
i=O

II ( t-Z2jJ2 + B(l-t) fl  (t-z2j-l)2

j=l j-l

if n = 2m + 1, with a > 0, B > 0' 01 zi-<  z2 < l ** 5 Znl<l.II -

Moreover, y is interior to Pn if and only if all of

are strict. Note that a and @ are not independent.

the inequalities

They are

actually of the form a = a'zn, B = PGZ,)' _ _0 < zn < 1, where a'

and p' are scaling factors which make the corresponding extreme points

lie in Pno

The proof of this theorem is too lengthy to repeat here. See Karlin

and Shapley [gl. Note

by 0 5 zls """5 Znol 5 1 .generates two linearly independent poly-

that each point in the simplex in E
n-l defined

nomials proportional to polynomials corresponding to extreme points of

Pn. A sketch of the cross section is shown in Figure 1.
.

Corollary 9.4: Every polynomial corresponding to a point y of

has a unique representation of the same type as that given in Theorem

9030 Here, a and S may be regarded as independent.

Proof: Every element of Kn is a positive multiple of an element

in
n

P .
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The representation of Theorem 9.3 will be used to generate the

desired parametric representation of the convex polynomials.

10. Convex Polynomials.

Let Zn denote the set of those z in En whose components

satisfy the relations 0 5 z1 < O"* 5 Znol 5 1, 0 5 zn 5 1. It is

clear that Zh is a compact convex set. Define the mapping 5 from

Zn to P" bY E(z) = the element in Pn corresponding to the poly-

nomial given by Theorem ge3.

Now, define the mapping v from E
n+l

to En+3 as follows:

dY,' l **,Y, ) ( 1 1 1
= Oyoy  ⌧ yOy  3.2 yly��y  (n+z)(n+l)  yn

1

l

Under the corresponding relation between polynomials, the polynomials of

1
degree < n are mapped into their indefinite double integrals. Let

Q
n+2

= v(Pn).

Theorem 10.1: Qn+2 is an n-dimensional convex body homeomorphic to Zn .

Proof; By Theorem ge3, E is a 1 - 1 continuous map of Zn

onto
n

P . Z
n

is compact and Pn is Hausdorff, so 5 is a homeomorphism.

Also, 7-j is a linear 1 - i continuous map of Pn onto
n+2
Q from

which the rest of the proof follows.

The polynomials corresponding to points in n+2Q can be realized

as images of points in Zn in the form q(z,t) = 7(!(z)) l xnf2(t),

where xn+2(t) = (l,t,...,tn+2).  Let Cnf2 denote the set of poly-

nomials of degree 5 n + 2 which are convex on CO’1 1.

Theorem 10.2: Each element of Cn+2 has a unique representation of the
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form

Y, + Ylt + Y&t)

with q(z,t) defined as above and (Y,,YpY2 > a point in E3 subject

to the condition y2 2 0.

Proof: Let p(t) be convex on co,11 l There is no loss of

generality if it is supposed that the degree of p(t) is exactly

n + 2. Let p'"(t) be the second derivative of p(t). By Corollary

PO&, there is a scale factor y2 > 0 so that p"(t)/y2 corresponds

to a point of Pn and a unique point z of Zn which represents that

element of Pn. By Theorem lOJ, the point z determines a unique

element of Qn+2 and a corresponding polynomial q(z,t). It follows

that y2q(z,t) agrees. with p(t) except for the terms y, and ylt

I which are absent from y2q(z,t). The rest of the proof follows easily.

In the proof of the last theorem, it is observed that the degree

of any of the polynomials q(z,t) is > 2,. Thus, for each fixed z,

the set O,t,dz,t)l is linearly independent in the space of poly-

nomials of degree sn+2. Since Zn is compact, this proves

Theorem 10.3: Lt,dz,t)3 is an admissible basic set.

Now define H = (y : y = (y,,y,,y,) in 3E , y2 > 01. H is

closed. Define the mapping @ from H x Zn to C(1) by the

expression

a(Y,z> = Y, + Yp + Y2dO) l

Theorem 10.4: The mapping 0 is a homeomorphism of H x Zn onto

n+2
c 0
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and

Then

E2 X

form

Proof: Let E+ = {y, : y2 > 01, E'(t) = {Y, + ylt : (Y,,Y$ E E21,

n+2
cO

= the set of all polynomials of Cn+2 with y, = yl = 0.

the mapping @ can be considered as a mapping from

(E+ x Zn) to E'(t) x Ci+2. Now, Q, can be decomposed into the

(Dl x Q2 where Q1 maps E2 to E'(t) and @2 maps E+ x Zn

n+2to co . By definition Q2 is 1 - 1, continuous, and onto Ci+2.

A product of an open interval in E+ and an open set in Zn is

mapped to an open set in C
n+2 because Qn+2 is homeomorphic to zn.
0

Thus, Q2 is an open mapping and consequently a homeomorphism. (Pl is

a homeomorphism by definition From the remarks following Theorem 6.4,

it follows that @ is a homeomorphism.

11. Convex Polynomial Approximation.

Theorem 10.2 isolates the class of convex polynomials and Theorems

10.3 and 505 establish the fact that the best approximations exist with-

in the class Furthermore, Theorems lOa4 and 604 give assurance that

during computation of best convex approximations to f(t), if a local

minimum of the function lly, + ylt + y2q- f/l is found, then it is a

solution to the problem.

Now, observe that .with the definitions of H and Zn given in

Section 10, H x Zn is a closed convex set with interior in En+3 3

Observe also that Cn+2 is a convex set of dimension n+3 in either

C(1) or C(T). Thus, the linear subspace of either of these spaces

generated by C
n+2 is just the set of all polynomials of degree

sn+2, and in this subspace C
n-1-2

has interior points (by an

extension of Theorem 8.1). Thus, an immediate application of Theorem
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6.5 yields

Theorem 11.1: Let f be an element of C(1) or C(T). Suppose the

best approximation to f by polynomials of degree < n + 2 in one of

the norms of Section 1 is not convex. Then the best convex polynomial

approximation to f is obtained on the boundary of H x Zn.

In computational practice, one may as well allow H to be all of

E3 2 in which case either the best convex or the best concave poly-

nomial approximation will be found. Since best approximations must occur

in a compact part of E3 Y application of Theorem 11.1 implies that

all solutions are on the boundary of whenever the unconstrained

best approximation is not already convex or concave.

Computational examples are described in the Appendix.

1 2 . A Note on the Bernstein Polynomials; Some Unsolved Problems.

A look at Figure 1 shows that it is impossible to express the poly-

nomial (t-$)2 as a positive linear combination of the polynomials t2 J

t(l-t), and (l-t)2. Thus, it is not in general possible to obtain

a best approximation by positive polynomials of degree 5 n by taking

positive linear combinations of the polynomials tk(l-t)k, K = O,l,...,n.

The set of polynomials just referred to is linearly independent, so any

polynomial of degree 5 n can be represented as a linear combination

of them. However, conditions on the coefficients making the polynomial

positive are not known. This is an interesting problem which would

bear investigation.

For reasons much the same as in the positive polynomial case, the

attempt to represent all polynomials convex on [O,l] by linear
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combinations of the same kind with a condition on the second differences

of the coefficients will fail.

Another difficulty with the ordinary Bernstein polynomials is that

no matter how many derivatives the parent function has, the order of

convergence of B,(f) to f is o(i). See Voronowskaja [21] or

Lorentz [ll]. Butzer [4] has shown that certain linear combinations of

the ordinary Bernstein polynomials converge to f like n
-k if f is

bounded and has 2k derivatives on co,11 l The question of whether

Butzer's polynomials exhibit properties-like that of the parent function

is also open.

Now that best convex polynomial approximations can be computed,

the problem of order of convergence estimation for these approximations

becomes more interesting and should be investigated. However, no

course of attack is immediately evident.
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APPENDIX: COMPUTATIONAL EXAMPLES

The spaces C2(I) and C2(T) defined in Section 1 are uniformly

convex, so best convex polynomial approximations in these spaces will

be unique. Furthermore, the functions of the form IIf - y*x(z)l~~ which

are to be minimized are differentiable functions ofthe parameters in

the cases to be considered. One example will illustrate approximation

in C2(IL the other in C2(T)*

Alo Convex Cubic Approximation in C*(I).

This case can be solved exactly. This is facilitated by the use

of the Legendre polynomials on the interval [Oyll, the first four of

which are (see Milne [13])

p,(t) = 1 ,

p,(t) = 1 - 2t ,

p,(t) = 1 - 6t + 6t2 ,

p,(t) = 1 - 12-t + 30t2 - 20t3 a

These polynomials are orthogonal on co,11 ; in fact, they satisfy

the relationship

s

1 0 Y
Pi(t)Pj(t)dt =

i#J

0 (2j+l)+ i = j .

They are linearly independent, forming a complete orthogonal set;

hence any polynomial of degree n can be written as a unique linear

combination of the first n + 1 of them.
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Polynomial

are obtained by

3
IIf - z Yipi 11~

i=O

where the right hand side has been obtained by using the orthogonality

approximations of the third degree to f(t) on CO,11

minimizing

s

1
[f(t)12dt

3
2 ;: s

1 2, y:

= - y.0 i=O ' 0
f(t)Pi(t)dt + i 2i+l ,

i=O

relations. This expression is quadratic in the yi, and by compj.eting

squares it is easily shown that its minimum value is

1
[f(t)12dt -

which is obtained for
.

s

1

0
f(t$(t)dt

Yi = 1/2i+l ; i = 0,1,2,3 .

(Al)

w

Now, let it be required that the approximation be convex on coy11  l

This condition is expressed as

= uy2 + ( 6o-uot)y3 > o ,

y2 + 5(1-2t)Y3 > 0 ; o<t<1 l- -

What this means geometrically is shown in Figure 2, where the shaded

region is the intersection of all of the half-spaces given by the

constraints. The boundary lines of the cone of possible solutions are

given by y2 + 5y3 = 0.
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Now, supposing it is known that the best unconstrained least squares

cubic approximation to f(t) is not convex. Then one can conclude by

applying Theorem 11.1 or Theorem 6.1(2) that the solution must lie on

the boundary lines. The expression to minimize then becomes

1s(f(t)
0

- [aoPo(t) + alPl(t> + y2P2(t) k $ Y2P2(t)]j2dt  ,

and again it is easy to show by completing squares that the minimum is

s 1 [f(t)12dt - + A 31 a2 +-L 52 a2 + 1 7 (l 5&2) 2 , 03)
0

and that the minimum is obtained for

'i = (2i+l)
J

f(t)Pi(t)dt  , i = 0,l ;
0

(A4)

s 1 f(t)
0

[p,(t) + 5 P3(t)ldt

Y2 =
1

l

5
+
1 1 2
-
7 (-) 5

Two solutions are possible from equations (A3) and (A4); the

correct one is that

To illustrate,

cubic approximation

which gives the smallest value in (A3).

consider the problem of obtaining the best convex

on [O,l] to f(t) = t4. Using equations (A2)

it is found that the best approximation is

IP
5

2p +
o-5 1

FP2-lP10 3 ,
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--7:, + $ t - g t2 + 2t3 .

The mean square error from equation (A2) is found to be approximately

2.3 x 10 -5 . It is easily shown that this approximation is not convex.

Applying equations (Ah) with minus sign (which is seen to be

correct by plotting the point of best unconstrained approximation in

Figure 2), one obtains

$Po-27 Pl + & P2 - 7,120 3 ,

+-m7t+p .
From equation (A3), the mean square error obtained is approximately

2 . 8  ⌧ 10

-4
l

Approximation in C2(T) can be handled in essentially the same

manner using the orthogonal polynomials described by Forsythe 161.

A2. Convex Quartic Approximation in C2(T).

By application of Theorems 9.3 and 10.2 for the case n = 2, every

polynomial of degree < 4 which is convex on coy11 can be represented

in the form

t t

P(YYG) = Y, + Ylt + Y2
ss0 0

[z2(t-zl)2 + (1-z,)t(l-t)]dt2  , (A5)

with y2 2 0, 0 5 z1 < 1, 0 5 z2 < 1.
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Thus, best least squares convex approximations to functions f(t)

in C2(T) are obtained by minimizing

II f - PI/~ = ~ [f(ti)
i=l

- P(Yyz,ti)12- (Ah)

subject to the constraints. In Section 11 it was pointed out that the

constraint y2 >, 0 need not be applied in practice, so only the bounds

on , z1 and z2 will be used.

One might now proceed by trying to solve the problem using the

method of Lagrange multipliers.

However, the equations so obtained will be non-linear and difficult

to solve, thus it seems worthwhile to use a numerical procedure from

the start. Fortunately, such procedures are available, and many are

programmed for digital computers The method to be employed here is the

gradient projection method of Rosen [lp]. It has been programmed for

use on the IBM 7090 computer by Merrill [12]. For use on the problem

at hand, a subprogram for evaluating expression (A6) and its gradient

on the parameter space must be supplied. The program is already ahle

to handle the constraints. A subprogram has been written for the

following test problem:

T = (ti : ti = O.li ; i = 0,1,2,...,10) ,

-7-t.
f(ti) = e i .

For purposes of comparison, and to obtain starting approximations

for the gradient projection code, best unconstrained quartic approxi-

mations for this test case were computed. This was done using the



i’;t;”
” ,

I
’

.

method described in Forsythe [6] and an IBM 7094 computer code based

on the program described in Rudin [2O]. The second, third, and fourth

degree approximations and the corresponding sums of the squared errors

were computed as follows:

Second degree, c c; = 0.092146842 ,

0.82273361 - 2.58po284t + 1.86=j6677t2  s

Third degree,

0.95122132 - 4.6305554t-+  7.2173224t2

- 3.56plo31t3 .

Fourth degree, = 0.0012569747 ,

0.99040337 - 5epplo43ot + 14.01p760t2

- 14.453004t3 + 5.441950pt 4 .

The third and fourth degree approximations are not convex. Thus,

the best convex approximations in these cases must lie on the boundary

of the constraint set*

However, in the first application of the gradient projection

method, the solutions were not constrained to lie on the boundary of Z2

(see Section lo), but allowed to range over all of Z2 . No other

constraints were applied. As a starting guess, the above second degree

approximation was used, for it is convex.

Convergence towards a minimum was very slow, despite various

accelerating options in the program that were applied. After some 3500

iterations, the following result was obtained:
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YO
= 0.92700600 ,

Yl = -4.7174867 ,

y2 = 29-390549 ,

z1 = 0.78380506 ,

z2=1 .

, The corresponding polynomial and sum of squared errors are:

P(YYG) = 0.92700600 - 4.7174867t

+ p.0280473t2  - 7.6788203t3

+ 2.4492124t 4 ,

c cf = 0.0092285508 .

This result is better than the best third degree (unconstrained)

polynomial approximation, but not as good as the best fourth degree

approximation, which gives a lower bound for the error. NoteZthat'this

result is on the boundary of Z2 .

Some subsequent computations were made forcing the solutions to

lie on the boundary of z2 -, but unless the starting approximation was

close to the one found above, convergence was also quite slow. It

appears that slow convergence is the price that one must pay for the

lack of convexity of the expression (A6).

It should be mentioned, however, that the long computation referred

to above took 12 minutes on the IBM 7090 computer.
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Perhaps better (e.g., faster) computational procedures can be found;

however, the principal aim here has been to demonstrate the possibility

of solving such problems by practical means. This has been

accomplished.
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