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PART 1:  GENERAL CONSI DERATI ONS

[ ntroduction.

The problemto be considered is that of obtaining pol ynom al approx-
imations to continuous functions or enpirical data in such a way that
the approximating polynomals are convex in sonme prescribed interval.

This problemarises naturally in connection with data snoothing and
was in fact suggested to the author by a problemrequiring the calcul ation
of derivatives from data,

The difficulties arising fromthe use of interpolation and | east
squares nmethods for data smoot hing by pol ynom al approxi mation are well
known.  There are excellent discussions in Lanczos [10]*, and Hanmmi ng
(7]. There appears, however, to be very little literature which treats
the problem of interest by nethods of constrained polynonial approximation.

Such problems are usually posed in terms of mninmzing functionals,
which suggests treatment by variational nethods. A sinilar problem has
been so treated by Boltjanskii [3]. He exanined the problem of approx-
imating continuous functions with functions whose n-th derivatives
satisfy a Lipschitz condition. By application of the Pontrjagin maxi mum
principle [15 ], he obtained necessary conditions which solutions of the
probl em nust satisfy. The problem of interest here can be formally
stated in a manner simlar to that of Boltjanskii, but such a represen-
tation does not appear to help in the study of neans of conputing best
appr oxi mat i ons.

Met hods of pol ynom al approxi mation where the pol ynom al coefficient

vectors are constrained to lie in a convex set are treated in the recent

*Nunbers in brackets indicate references in the Bibliography.




paper of Rice [16]. He showed that the problem of obtaining best
approximations to continuous functions with n-th degree polynomals
whose k-th derivative is positive on [0,1] has solutions and gives
condi tions for uniqueness and |ocation of these solutions. However, he
does not find the problem of conputing such approximtions to be tract-
abl e.

The difficulties that Rice encountered are of two kinds. First,
the problem is essentially nonlinear, having nonlinear constraints.
Second, the geonetry of the constraint set is difficult to deal wth
because it is not given explicitly.

In this work, both of the aforementioned difficulties will be
dealt with. In this first part, after devel opment of some necessary
prelimnaries, a theory for treating a class of nonlinear approximtion
problenms is presented. This class is of interest not only because it
includes the convex polynom al approxination problem but because it
provides a potentially useful generalization of the linear theory. A
typical problem of this class is expressed as follows: Gven an el enent
f of a real normed |linear space V, a set {xi(z) i =1,...,k} of
el ements of V which are continuous functions of z in a subset S
of En, and a set Hin Ek determne an elenent (y*,z*) in

Hx Ssoas to mnimze
“f- (ylxl(z) + . .. ykxk(z))“ .

To the witer's know edge,this class of problenms is being treated

for the first time in this work. Questions of existence, uniqueness,




and | ocation of best approximtions of this type are discussed in
Sections 5 and 6. Except as otherwi se noted, the theorens given there
appear to be new. (One concludes from these results that under fairly
general conditions, this class of problens exhibits most of the nice
features of constrained |inear approxination problens.

In the second part, the geonetry of the set of polynomals convex
on [0,1] is developed. The theorens which represent the convex poly-
nomals in such a manner that the results of Part 1 are applicable are
given in Sections 10 and 11. These theorens appear to be new, in
essence, they say that the problemof convex polynom al approximation
on an interval can be reduced to a problemof mninmzing a function
subject to linear constraints. Further, the problem exhibits features
which make it anenable to treatnent by readily available conputationa
procedures. In particular, the function to be mnimzed cannot have a
relative mninum even though it need not be convex. It is also shown
that under certain conditions solutions can only lie on the boundary
of the set of constraints

Conput ation of best |east squares approximations by convex poly-

nomals is illustrated in an appendix.

1. Definitions and Notation.

Throughout, V will denote a normed |inear space over the rea
nunbers with norm | ||; elenents of V will be denoted with letters
f, g, x. E° will denote n-dinensional Euclidean space. It will be
convenient to have two neans of referring to coordinate systens in

n+l

Eucl i dean space: the elenent y of E will be witten in either




of the forms

a (yl)'-°)yn+l> or . s (y PRENBN )

Sets or sequences of points are denoted by capital letters such as
A, B. The elements of a set or sequence are indicated by enclosing them
in brackets, and the custonmary procedure of witing "X is the set of

all x which have property P" as

X=(x: x has property P)

i's used.

The closed interval 0 <t <1 will be written as [0,1] or |I.
The finite set of points on | given by 0 = by <ty < e <t S 1
will be denoted by T. The linear spaces of real-valued continuous
functions f(t) on | or T will be witten as C(1) and C(T)
respectively. Cc(I) is a Banach space with norm

Il = max |£(t)] ;
t el

c(T) is a Banach space with norm

FIl = mex ety
0<i<N

G her norms can be put on these linear spaces to obtain Banach spaces.

The spaces CP(I), P > 1, are obtained with definition

1 1/
el = o teceRae]




and the spaces (T) are obtained when

C
1Y

N 1/p
Fll, = [ 2z lf(tinp}
i=0

The same notation is used for both norns, but context will always make
the usage clear.

I nner product notation for sums of products will be used whenever
convenient: y .x =yx_+ .00 *yx for x, y in E**1 Wth the
convention that x"(t) = (L,t,...,87), pol ynom als p(t) of degree

< n can be witten in the form
_ n - . n
p(t) =y .x () =y + b+ %%+ y b
[f p(t) >0 on aset S it wll sinply be called positive on

s; if p(t) >0, it will be called strictly positive on S.

It is now possible to state the convex polynonial approxination

problem Gven an f(t) in C(1) or C(T) normed in one of the ways

. . . + .
given above, an integer n, and a set Hin E" l, deternine an ele-

nment y* in H such that

n

Iy - - -
is mnimzed at y = y* subject to the condition that
a2 n n-2
S,y - x(8) =2y, + bygt A=+ n(n-1)y t" - > 0

dt2

for all t in I.




2. The Problem is Reasonabl e. !

It is worthwhile to inquire as to whether the problem posed at the
end of the last section is reasonable in the follow ng sense: Gven a
function convex on [0,1], are there polynomals convex on [0,1]
which are arbitrarily close to the function in some norn? |f the answer
is yes, the problemw |l be considered reasonabl e.

The desired affirmative answer is contained in the follow ng

Theorem 2.1: Let f(t) be a function which has positive k-th derivative
on [(0,1]. Then given any ¢ > 0, there is a polynomal p(t) with

positive k-th derivative on [0,1] such that

max lp(t) - £(t)| < € .
o0<t<1
The desired result is the special case of this theoremwth k = 2.
The theoremis proved as a consequence of two other theorens, the
first of which is S. Bernstein's version of the Wierstrass approxi-
mation theorem

For a function f(t) defined on [0,1], the expression

B [£(t)] = i £(2) ()" (1-)" "
m=1

is called the Bernstein polynomial of order n of the function #£(t).

Wth this definition, one can obtain

Theorem 2.2 (S. Bernstein): If f£(t) is continuous on [0,1], then

limB [£(t)] = f(t)

n — oo




uniformy on [0,1].
Proof can be found in Natanson [14].

Now, define forward differences of f(t) at t = min by

ar(2) = f(E2) - 2(B)
Akf(il-) = A(Ak-lf(g)) , k =2,3,...

Then, by direct differentiation and termrearrangenent, the follow ng

expression for the k-th derivative of B [£(t)] is obtained:

, h=k
5 le(0)] $T Ak

for kK =1,2,...,n. |If the k-th derivative of f(t) is positive on

[0,1], then Akf(g) is positive for 0 <m<n-k. This proves

Theorem 2.3: If f(t) has positive k-th derivative on [0,1], then
the Bernstein polynomals of f(t) have positive k-th derivative on
[0,1].

The proof of Theorem 2.1 follows directly from Theorens 2.2 and 2. 3.

The above results are contained in Lorentz [11]. Convergence in
the uniform norminplies convergence in any of the nornms for c[0,1]
considered in Section 1.

Armed with the conforting know edge that there are convex poly-
nomals close to convex functions, it is now interesting to ask the
following question: Anong all n-th degree polynonials convex on [0,1]
Is it possible to find best approximtions to a given function (in

particular, a convex function)? Here, "best" will mean the usual thing:




best in the sense that some normis mnimzed.

To answer this question, the problem of Section 1 will be inbedded
ina larger class of problems. To do this, and to facilitate discussion
of the geonetry of convex polynomals, the next two sections wll be

devoted to a devel opnent of results on convex sets and cones.

3. Convex Sets.

, Aset Sin E" is convex if for each pair of points yl and y2
inS the points y = le + (1-9)y2 are in S, where 0 <8 < 1;
that is, the line segnent joining yl and y2 liesinS Sis called

strictly convex if 0O <6< 1 causes the points y to lie in the in-

terior of S. For a fixed vector x and a constant c, the plane E"

determned by

Y.x:y1x1+.--+yx = C

is called a supporting plane to S if the plane contains at |east one

point of Sand S lies entirely in one of the half-spaces
{(y:y'x > c}, {y:y'x < c}. Any half-space containing Sis called a

supporting half-space to S. Theorens relating these concepts can be

found in many places; for exanple, Karlin[8] proves:

Theorem 3.1: A closed convex set is the intersection of all of its
supporting hal f-spaces, and every boundary point of the set lies on a
supporting plane.

The dinmension of a convex set S is defined as the dinension of

the linear subspace of smallest dinmension which contains S




If the set S is convex, closed, bounded, and n-dinensional, it is

called an n-di nensional convex body.

A supporting plane to a closed convex set S wll be called proper
if it contains exactly one point of S. In such a case, that point is

called an extrene point of s. It is an inmmediate consequence of the

definition that an extrenme point cannot lie in the interior of a line
segnent joining two points of sS.

The follow ng theorens give relationships between convex sets,
extreme points, and supporting planes. Their proofs can be found in

Berge [2].

Theorem 3.2: If S is a conpact non-enpty convex set in E°, it has
an extreme point; further, every supporting plane of S contains an

extreme point of S

Theorem 3.3: A conpact non-enpty convex set S in E' is the inter-
section of the closed convex sets containing the set of extreme points

of 8.

Theorem 34: |If R and S are conpact convex sets in E®, each havi ng

at least one interior point, then R and S are homeomorphic.

4. Convex Cones.

A set Kin E® is a convex cone if for each pair of points yl
and y2 in K the points y = Otyl + Bye are in K where o, B > 0.
A convex cone is a convex set. The relationship of convex cones and

supporting planes is shown by

Theorem 4.1: Let K be a closed convex cone in E*. Then every




supporting plane to K contains the origin, and a supporting plane can

be proper only at the origin.

Proof : Suppose y .x = c is a supporting plane to K at y # O.
Then ¢ = 0, else there are points of K nanmely ay for o < 1
and o> 1, on both sides of the plane. This shows that every support-
ing plane to K is of the formy .x =0 fromwhich both parts of the
theorem can be concl uded.

For convenience, it wll be supposed that any x which defines a
supporting plane to a closed convex cone K is always taken so that K
lies in the half-space given by y .x > 0. The intersection of the
translate y .x = 1 of a supporting plane to Kwith Kwll be

called a cross section of K If K has a 'proper supporting plane,

its corresponding cross section is called a proper cross section, and

Kis called pointed (the origin is an extreme point).

Theorem 4.2: Let K be a closed convex cone in E®. A cross section

of Kis bounded if and only if it is proper.

Proof: For each fixed vector X, yx is a continuous function

on En.

Define the set S = {y:y € K, |lyll = 1) and let u be the
greatest lower bound of y - x on S. S is conpact, so there exists
ay in Sfor which y .-Xx =u. By convention, y -x > 0 for each
y in KK so p>0. If p>0, then for each y in Sthere is a
nunber A, o<)“5';lI such that Ay .X = 1. This says that the cross
section corresponding to x is bounded if and only if p > 0. If
w=0, there is a non-zeroy in K such that y . x = 0, which

makes the supporting plane inproper. The desired result follows

i medi ately.

10



5. Existence.

Throughout this section and the next, y = (yl,...,yk) wi Il denote

a point of Ek, and z = (zl,...,zn) a point of E®. The unit sphere

2 2
y’l+. +yk=l

K Will be called U

in E
Achieser [1] gives the fundanmental existence theorem for approxi-

mation in normed |inear spaces as follows:

Theorem 5.1: Let Xy5e+-5%  be k linearly independent elenents of

V.  Then for any element f in V there exists a point y* in o

such that the function

oly) .y .x-1 |l

attains its greatest |ower bound (and hence its mnimmnm at y*.
Rice [16] shows that o(y) wll also attain a mininumif y is

constrained to lie in a closed set Hin Ek.
The approxi mation probl em under consideration involves the para-

nmeters nonlinearly. Thus, it would be useful to have an existence

t heorem whi ch-covers the situationof interest and mght also be appli-

cable to other approximation problenms. A rather general theoremis

gi ven by Young [22], and di scussed by Rice [17], but appears difficult

to apply. The theoremwhich will be given here is appropriate to the

situation and is an extension of Theorem 5.1.

Definition 5.2: Let X,(z),...,x,(z) be k continuous functions on

11




E® into Vv. Let S be a subset of E®. If for each z in S, the

set B(z) = (xy(z),...,x(2)} is linearly independent in V, then the
set B(S) = {B(z) : z€9S) is called a basic set on S, or sinply a
basi c_set.

An exanpl e of a basic set is obtained by taking V= C(l), S the

Z
square in E2 given by 0 < z; < 1, i =1,2, and xl(z) =t .

2+z
2
=t

 xy(2)

Definition 53: Let B(S) be a basic set and define the function

¥(yoz) = lyx(2)| = lbyx(2) + -+ + yx (2)].

Since ¥(y,z) is positive, it has a greatest |ower bound . > 0 on
the set Ux Sin ESx E% If u>o0, B(S) is called an adnissible
basi c set.

The exanpl e of a basic set given above is admssible. It would be
tedi ous to show this by direct conputation; however, the reason for the

truth of the assertion is contained in the follow ng

Lemma 5.4: Let B(S) be a basic set. If Sis a conpact set in N
then B(S) is admssible.

Proof: Since S is conpact in En, UXx Sis conpact in B x B
The function y(y,z) given in Definition 5.3 is continuous on £ % B
and hence attains its greatest lower bound . on Ux S, Now, |et

(y*,2%) be a point in Ux S such that
V(y*,z%) = fly*-x(z*)|] . u .

Since B(S) is a basic set, the xi(z*) are linearly independent.

12




Hence p = 0 if and only if vt =0, all i. Since y* is in U,

uw# 0 and B(S) is consequently adnissible.

Theorem 5.5: Let f be an elenent of V, H a closed set in Ek,

S 'a compact set in E®. Let B(S) be a basic set in Vwith elenents

xl(z),...,xk(z). Then there exists an elenment (y*¥,z*¥) in Hx S such

that the function
W(y,z) = |ly-x(z) - £

attains its greatest lower bound on H x S at (y*,z*).
Proof: U is conpact in o Thus, for each fixed z in S
the continuous function

V(y,2z) = [y-x(2)]l

attains its greatest lower bound u(z) on U. By Lemm 5.4,
p(z) >wu > 0,where u is the greatest |ower bound of ¥(y,z) on

uxs. Aso, observe that for any y in e and z in S,

k 1/2 | k 1/2
Ily-x(z)llz<2 yﬁ)/ u(z)2<z yi)/ .

i=l" i=1

Now, let p be the greatest |ower bound of ®(y,z) on H x S.

By the inequality just derived,

ko, 1/2
lrex(z) - £l > lly-x(2)] - Jie]] <§ yi) S ]

1

Thus, if y is taken such that

k 1/2
2 1
(2 yi> >=(p + 1+ [£]) =1,
{=1 K

13 -




t hen

ly-x(z) - £]|>p + 1

This shows that only those y in the sphere

k N
R= {y: y2. < e J*
i=1

permt ¢(y,z) to approach p.

"R is closed and bounded, so RN His closed and bounded and

hence conpact in B Sis conpact in E%, so (RNH x Sis com

pact in X x E°. Since ®(y,z) i s continuous on EX X EY, it will
attain its greatest lower bound on (RN H x S which by the above
argument IS its greatest lower bound on Hx S, and this is what was
to be proved.

Theorem 5.1 can be obtained from Theorem 5.5as the special case
when x

..,x, are constant linearly independent elenents of V.

1’ k
Condi tions under which solutions of approxination problenms such
as those under discussion are unique are discussed in the next section.

Location of solutions is also discussed.

6. Uni queness and Location of Sol utions.

Achieser (1] proves a uniqueness theorem for |inear approxination
in a finite dinensional linear manifold in V under the condition that

Vis a strictly nornmalized space. This condition holds whenever

equality in the expression

14




£+ el <l Il +llell (£,& # 0)

holds only for g = af(a > 0).
Rice [16] gives nore specific results. Let Hbe a closed set in

k

E, and let x .,x, be fixed linearly independent elenents of V.

177777k

Let f be an elenment of V and suppose that

mn ly-x = £l < nin |y-x - £] .
yeE yEH

Ri ce proves:

Theorem 6.1: (1) Every local nminimmof |y-x - £| on His a gl obal
m ni mum on H.

(2) If y* minimzes |y-x - £l on H then y* is in the
boundary of H.

(3 If H is strictly convex, then y* is unique.

(4 If v is strictly normalized, then y* is unique.

(Rice actually proves a slightly different statenent than (4), but
it is essentially the same in the present context.)

Sone theorens simlar to those of Rice can be proved under sone
assunptions on the nature of the mapping of Hx S to the set of
possi bl e approximations in V.

Let @ denote the mapping which associates the element y .x(z)

K« B Let C=0HXS).

in Vwith the element (y,z) in E
Henceforth, it will be assuned that Cis a closed convex set in V.
It will also be assumed that ¢ sets up a 1 - 1 correspondence

between Hx S and C. If @ is a honmeonorphi sm between H x S and

15




C, then Cwll automatically be closed because H x S is closed.

Definition 6.2 (R esz-Nagy [18]): A Banach space V is called uniformy

convex if for each f, g in V such that |f|,]g|] <1+ €and
lt + &l > 2, then JIf - g|| < €.
It can be shown (O arkson [5]) that of the spaces defined in Section

1, CE(I) is uniformy convex, but C(1) is not.

Theorem 6.3: If Vis a uniformy convex space, then
(y,z) = |ly-x(z) - £|| has a unique minimumin H x s.

Proof: Let {(yn,zn)} be a minimzing sequence for ¢. Let
n

g" =y" .x(z") and p be the minimumof ¢ on HxS. Then given

€>0, thereis an Nsufficiently large so that for m n > N,

le-gll  lef-gll < |+
2
p p-
Now, because C = ®(H x S) is assumed convex, %( g™ is an el ement
of C and
n m
+
I &5 - fl>p
which inplies

Hop o gter
&=+ &= |2
P P =
By the assumed uniform convexity of V, it then follows that
||gn - gm“ < pE€ ,

which shows that (g%}, and hence any nininmizing sequence in C, is

a Cauchy sequence. By the conpleteness of V and the fact that C

16




is closed, this sequence converges to an element g of c. The element

g is unique in C  for if (n"} is another ninimzing sequence, then

is also a nmininizing sequence which nust converge to g. The assunption
that ® is a 1 - 1 correspondence inplies the existence of a unique
element (y,z) in HX Swith ®(y,z) = o, which is what was to be

proved.

Theorem 6.4: Let & be a homeomorphism. Then every [ocal m nimum of

®(y,z) on Hx Sis a global minimmon Hx S.

Proof: Using the notation of the previous theorem |et gl and

g2 be el ements of C such that llgl-fll < ||g2-f!|. The el ements ¢

of the line segment between gl and 92 in Care given by the

expressi on.

g:6g1+(l-9)g2, 0<o6<1 .

By hypothesis, the points d)'l(g) lie on a continuous path from

(yl,zl) to (yz,zz) in HxS. Aong this path, o(y,z) i s nonotone,

since
logt + (1-0)é® - £t < olgh-£]l  (1-0)[E® - £ < [|€® - £ .

1

Now, let @(y,z) have a global ninimmat (y-,z') and a candidate

for a local m ninum at (y2,z2). Construct the path from (yl,zl)

to ( ,22) as indicated above. Because the path is continuous and

® is nonotone along it, it is not possible for a relative mninmmto

17




be at (yg,ze). This conpletes the proof.

There are several conditions which can cause ¢ to be a homeo-
morphism In particular, if His conpact, then ¢is a 1l -1 con-
tinuous map from a conpact space onto a Hausdorff space and hence a
homeonor phism  Also, if C can be deconposed into a product A x B
and ¢ into a product ¢ X ¢, such that ¢, is a honeonorphi sm of

H onto A and ¢, is a honeomorphismof S onto B, then it can be

2
shown that ¢ is a honeonorphism

It is now interesting to inquire about conditions which would force
solutions to lie on the boundary of Hx S. A set of conditions for
this is given in
Theorem 6.5: Let ¢ be a honeonorphism Let H xS be closed, con-

vex, and have interior points in B x B Let (y*,z*) be a point

of EX x E® such that (y*,z*) is not in H xS and

P(y*,z*%) < ¢(y,z) for all (y,z) in HxS. Let V be the small est
| i near subspace of V which contains g = y*.x(z*¥) and C. Then
if Chas an interior point in the relative topology in v¥, the

m ni mum points of ® on H xS nust be on the boundary of H xS.

Proof: It is easily shown that ¢ is a honmeonorphi smof H xS
onto C considered as a subset of v*. Let g2 =y2 . x(z2) be a

candidate for a mnimumin the relative interior of C corresponding
to a point ( ,22) in the interior of H xS (guaranteed by the
homeonor phisn).  Construct the line segnent fromg* to ge. Because
Cis closed and convex with an interior, this line segnent nust neet
the boundary of C in exactly one point which will be called gl.

By the sane argument used in Theorem 6.4, |f-g| is monotone al ong the

18




line segnent g* to g?, and consequently is also nonotone fromgl
to ge. Under the honeonorphism gt corresponds to a point (yl,zl)

on the boundary of H x s and w(yl,zl) < ¢(y2,z2). This conpl etes

the proof.

The remai nder of this work is devoted to an exanple in which the

foregoing theorens apply.

19



PART 2:  CONVEX POLYNOM ALS

7. Methods of Representation.

Sone kind of parametric representation of the set of polynomals
of degree < n which are convex on [0,1] is needed before a com
putation of best convex polynom al approximtion can be attenpted. (ne
such representation is suggested by Section 2: form Bernstein poly-
nomals with coefficients whose second differences are positive. The
second difference expressions will yield a finite set of linear in-
equalities which the coefficients nust satisfy, which is desirable,
but this method will be rejected since it can be shown that not all poly-
nomals of degree < n which are convex on [0,1] can be represented
exactly by Bernstein polynomals of degree < n (see Section 12).

Anot her nethod would be the direct nmethod of Section 1: make the

polynomial y . x"(t) satisfy the infinite set of constraints
' n-2
2y, * 6y3t + oees + n(n-l)ynt >0

for each t in [0,1]. This is the nethod found intractable by Rice
[16].

The method which will be adopted here derives fromthe existence
of a paranetrization of the set of polynomals of degree < n which
are positive on [0,11. It has the desirable property that the para-
meters nust satisfy a finite set of linear constraints. This repre-
sentation can be integrated twice to obtain a representation of the

polynom als of degree < n + 2 which are convex on [0,1].

20




8.  The Cone of Positive Polvnonials.

The results of this section and the next were obtained by Karlin
and Shapley [9] by less direct means.

o+l representing the poly-

The point y = (yo,yl,...,yn) in E
nomial y .x(t) = Yo * oyt et yntn corresponds to a pol ynomi al
positive on [0,1] when y-- x(t) >0 for each t in [0,1]. Let
K+ denote the set of all y in E**X which have that property.

. . E3
Theorem 8.1: k® is a closed convex cone in E*¥:

whose boundary con-
sists of points representing polynomals of degree < n which have roots
in [0,1] but are otherw se positive there.

Proof: If Pl and P2 are polynomals of degree < n which are
positive on [0,1], then so also are the polynonials ap, + Bp, for
all «,8 > 0; hence, K® is a convex cone. Since a polynomial is a
continuous function of its coefficients, a polynomal p(t) which is
strictly positive on [0,1] wll remain so in an open nei ghborhood about
its coefficient point in EP*L hence, that point nmust lie in the
interior of k*. If p(t) is positive but has a root at tO in [0,1],
t hen each open nei ghborhood of its coefficient point contains a point
corresponding to a pol ynom al which is negative at to, hence, p(t)
corresponds to a boundary point of - k. Since X" contains its boundary,

it is closed.

Corollary 8.2: The planes of the form

n
p(t)) =y, + vyt + F*F + ¥t =0,

where p(t) is positive with a root at t on [0,1] are supporting

pl anes to k.
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Proof: If a(t) is a positive polynomal of degree Cn on
[0,1], then q(t) > p(to) = 0, so K° 1ies to one side of the pl ane
p(to) = 0. By hypothesis, p(t) corresponds to a point in the plane,
S0 p(to) = 0 is a supporting plane.

If p(t) has a root at t, on [0,1], then so does ap(t) for
all o> 0. Thus, the supporting planes of the formp(to) = 0 cannot
be proper. K" does have a proper supporting plane, however. This fact

Is used to prove

Theorem 8.3: k" is poi nted.

Proof: It will be shown that the plane

1 1
Yo 271 T i Yn *

is a proper supporting plane to K. First, the plane neets K% at
the origin. Second, if y #0 is in K, then p(t) =y . x"(t) >0

for t in [0,1], but p(t) is not identically zero, so
] 1

yo+§‘Yl+ * * n+lyn=[ p(t)dt > 0 .
. Jo

The rest of the proof follows imediately from Theorem 4.1 and the

definitions of Section 3and L.

9. The Cross Section P .

Theorem 8.3i nplies that K" has a proper cross section defined

by the intersection of x* with the plane

1

Yo+ 5V 4+ %t s T Yn =1 -
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This cross section will be called P® and will be described in detail.

Theorem 9. 1: P is an n-dinmensional convex body.

Proof: It nust be shown that P" is convex, closed, bounded, and
n- di nensi onal

P* is closed and convex because it is the intersection of two
closed convex sets. By Theorem 4.2, P" is bounded. To show that p"
is n-dimensional, observe that the points in P corresponding to the

polynomals 1, 2t, 3t2,. .»(n+1)t® lie in the plane defining the

cross section. Thus, the n vectors

(-1,2,0,0, . , 0) ,
(-1,0,3,0, . .. > 0)

’
(-1,0,0,0,.. . , 0, n+¥l) ,

formed by subtracting the vector to the first point fromthose to the
others, all liein the plane of the cross section and are clearly
linearly independent. The dinension of the plane nust therefore be at
least n. Since the dinmension of the plane nmust also be < n + 1, the
proof is conpleted.

Theorem 3.3 says that to describe P%, it suffices to describe
its set of extreme points. The nature of the extreme points of Plis

given by

Theorem 9.2: The extrene points of P° correspond to polynomials which
have n roots (counting multiplicities) on [0,1].
Proof: Each polynomal corresponding to an extrene point of P

must be of degree n exactly. To see this, suppose p(t) corresponds
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to an extrene point but is of degree < n. Then the polynomals tp(t)
and (1-t)p(t) are positive on [0,1] and both are of degree < n. It

is then clear that positive scaling factors a, and vy can be found

1
so t hat altp(t) and aE(l—t)p(t) correspond to points of P s and

further, there will be a8, 0 <8< 1, sothat

p(t) = Ba tp(t) + (1-6) a,(1-t)p(t) ,

which contradicts the hypothesis that p(t) corresponds to an extrene
poi nt .

Now, if p(t) is positive on [0,1] but does not have all of
its roots there, then its corresponding point in K" cannct be an
extrenme point of Pn, for p(t) nust then have a root a < 0, a
root b > 1, or a pair of conplex roots c #id. This inplies that

p(t) is expressible in one of the forns

p(t) = (t-a)u(t) = 5 (t-2a)u(t) + 5 tu(t)

p(t) = (b-t)v(t) = 5 (2b-1-t)v(t) + & (1-t)w(t)

noj

2

p(t) = [(t-c)® + @®lw(t) = (t-c)2u(t) + a%w(t) ,

where u, v, and w are polynomals positive on [0,1]. Al three of
the right-hand expressions can be scaled so that they are of the form
Qpl(t) + (1-e)p2(t) wWith 0 <é<1andp and p, corresponding
to points in P, This proves one half of the theorem

Now, suppose p(t) is a polynomal corresponding to an extrene

poi nt of P, and that there are polynonials pl(t), p2(t)
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corresponding to points of Pt

and 6, 0 <6 < 1, so that

p(t) = Gpl(t) + (1-9)p2(t). Because P, and p, Must each have the
sane roots as p, they nust be identical, for p(t) already has the
maxi mum possi bl e nunber of roots. Thus, the supposed convex combination
Is inmpossible, and this conpletes the proof.

Knowi ng the permissible disposition of all of the roots makes it
possible to wite down polynomals proportional to those corresponding
to extrene points of P'. Any roots in the interior of [0,1] must
be' of even order; Roots of odd order can occur only at 0 and 1.

Hence for n even (n=2m), the extrene polynomals are

n m |

H(t-zzj_l)2 or t(I-t) H(t-z2j)2,,

j=1 j=1
and for n odd (n=2m+l), they are

m m

t II(t-z2j)2 or (I-t) II (t-zej_l)2 ,
J= J=1

where the 1, are in [0,1] and need not be distinct. The subscripts
were taken as shown for later convenience.

One woul d expect that a convex linear combination of n + 1
extreme points would be required to represent an arbitrary point of
P?. However, it is a remarkable fact that every point in Pn, and
hence any point of k%, can be represented by a unique positive |inear
conbination of at nost two extrene points, and the extrene points can
be chosen in a conpletely systematic manner. That this is so is stated

in
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Theorem 9.3 (Karlin-Shapley): Every polynomal corresponding to a
point y of P* has a unique representation by a pair of polynonials

corresponding to extreme points of P' as fol | ovs:

n m m |
i 2 2
igo y,t7 = a ] (t-2553)" + Bt(1-t) ]| (t-zp5)
J=1 =1
if n=2m, and
n m m
1 2 2
izzjoyit =at g (t-zy,)7 + B(1-t) H Zpi.1)
J=1 j-
if n=2m+1 wtha>0 8>0, 0<z;<z,..** <z , <1l

Moreover, y is interior to P if and only if all of the inequalities
are strict. Note that o and B are not independent. They are
actually of the forma =a'z, p = B'(1-z 0 <z <1, where
and p' are scaling factors which make the corresponding extreme points
liein 2"

The proof of this theoremis too lengthy to repeat here. See Karlin
and Shapl ey [9]. Note that each point in the sinplex in ™! defined
by 0 < zy <-+*<z 5 <1 generates two linearly independent poly-

nomals proportional to polynomals corresponding to extreme points of

P, A sketch of the cross section P Is shown in Figure 1.

Corollary 9.4. Every polynomal corresponding to a point y of K"

has a uni que representation of the same type as that given in Theorem
9.3. Here, o and B may be regarded as independent.
Proof: Every elenent of X* is a positive mltiple of an elenent

in Pn.
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The plane of the page is

1 1
Vot ¥ t3v, =L

~ 6t(1-t)

Figure 1

. 2
The cross section P



The representation of Theorem9.3 will be used to generate the

desired parametric representation of the convex polynom als.

10. Convex Pol ynoni al s.

Let z" denote the set of those z in E® whose conponent s

satisfy the relations 0 <z, < ... <z <1l 0<z <1 It is
- - n-1-— - n—

clear that 2" is a conpact convex set. Define the mapping & from

z% to P* by ¢&(z) = the elenent in P° corresponding to the poly-

nom al given by Theorem 9.3.

n+l to En+3

Now, define the mapping n from E as follows:

(v, 0 T05t9) = (0,0, == ¥, == y.,... 1
AR R Rl L Yy 371 Vo2 302 l""’myn

Under the corresponding relation between polynonmials, the polynomals of
degree < n are nmapped into their indefinite double integral s) Let
n+2 n

Q  =n(P).

Theorem 10. 1: Qn+2 I's an n-di mensional convex body homeomorphic toO A

Proof; By Theorem 9.3,¢is a 1 - 1 continuous map of 7"

onto P 2" s conpact and P' is Hausdorff, so ¢ is a homeomorphism

Aso, nmis alinear 1 -1 continuous map of P" onto Qn+2 from
which the rest of the proof follows.
The polynomals corresponding to points in Qn+2 can be realized

as images of points in Z° in the forma(z,t) = n(&(z)).x"2(t),
+2( n+2

where x%<(t) = (1,t,...,tn+2). Let C denote the set of poly-

nomals of degree < n + 2 which are convex on [0,1].

n+2

Theorem 10.2: Each elenent of C has a unique representation of the
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form

Yo + ¥pt + voa(z,t)

with q(z,t) defined as above and (yo,yl,yz) a point in B> subj ect
to the condition y, > 0.

Proof: Let p(t) be convex on [0,1]. There is no loss of
generality if it is supposed that the degree of p(t) is exactly
n+2 Let p'"(t) be the second derivative of p(t). By Corollary
9.4, there is a scale factor > 0 so that p"(t)/y2 cor responds
to a point of P* and a uni que point z of z" whi ch represents that
el enent of P". By Theorem 10.1, the point z determ nes a unique
el ement of Qn+2 and a correspondi ng pol ynom al q(z,t). It follows
t hat ygq(z,t) agrees. with p(t) except for the terms y_and y;t

_Which are absent from yeq(z,t). The rest of the proof follows easily.

In the proof of the last theorem it is observed that the degree
of any of the polynomals q(z,t) is > 2. Thus, for each fixed z,
the set {1,t,q(z,t)} is linearly independent in the space of poly-

nomals of degree <n +2. Since z® is conpact, this proves

Theorem 10.3:  {1,t,a(z,t)} is an adm ssible basic set.

Now define H = {y:7 = (v_,¥,,¥,) in E, v, >0}. His
closed. Define the mapping ¢ fromH X 7% to C(1) by the
expressi on

o(y,z) . ¥o - ¥t o yyalz,t) |

Theorem 10.4:  The mapping © is a homeonorphism of H x z" onto

n+2
c .
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He) = wy + vyt s (3oyy) € B},

Cn+2

Proof: Let E = vy, 1y, > 0}, E

+2

= the set of all polynomals of

n : - -
and Co Wlthyo—y = 0.

1
Then the mapping ® can be considered as a mapping from

B X (" x 2%) to B (t) x Crol+2. Now, ® can be deconposed into the
form o, x 9, wher e ¢, maps B to El(t) and % maps E+ Xx z?
to Cn(;+2. By definition 2, is 1l-1, continuous, and onto Cg+2.

A product of an open interval in E and an open set in N s

n+2

mapped to an open set in C, because n

Qn+2 i S homeomorphic to Z .

Thus, 9, is an open mapping and consequently a honeonor phi sm o is
a honeonor phi sm by definition Fromthe remarks follow ng Theorem 6.4,

it follows that ¢ is a honeonorphism

11.  Convex Pol ynomi al Approxi nati on.

Theorem 10.2 isolates the class of convex polynomals and Theorens
10. 3 and 5.5 establish the fact that the best approximations exist wth-
inthe class Furthermore, Theorenms 10.4 and 6.4 give assurance that
during conputation of best convex approximations to f(t), if a |ocal
mninum of the function |y, + vyt + v,a- £|l is found, then it is a

solution to the problem

Now, observe that with the definitions of H and z" given in

Section 10, H x 7% is a closed convex set with interior in En+3,

c®*2 is a convex set of dimension n + 3 in either

Observe al so that
C(1) or C(T). Thus, the linear subspace of either of these spaces
generated by Cn+2 is just the set of all polynonmals of degree
<n+2, and in this subspace Cr1+2 has interior points (by an

extensi on of Theorem 8.1). Thus, an inmedi ate application of Theorem
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6.5 yields

Theorem 11.1: Let f be an element of C(1) or C(T). Suppose the

best approximation to f by polynomals of degree < n + 2 in one of
the norns of Section 1 is not convex. Then the best convex polynom al
approximation to f is obtained on the boundary of H x .

In conputational practice, one may as well allow H to be all of
E°, in which case either the best convex or the best concave poly-
nom al approximation wll be found. Since best approximations must occur
in a conmpact part of E3, application of Theorem 11.1 inplies that
all solutions are on the boundary of z® whenever the unconstrai ned

best approximation is not already convex or concave.

Conput ational exanples are described in the Appendi x.

1 2. A Note on the Bernstein Polynom als: Sone Unsol ved Probl ens.

A look at Figure 1 shows that it is inpossible to express the poly-
nom al (t-%)2 as a positive linear conbination of the polynom als t2,
t(l-t), and (1-t)2. Thus, it is not in general possible to obtain
a best approxi mation by positive polynomals of degree < n by taking
positive linear conbinations of the polynomals tk(l-t)k, K=0,1l,...,n.
The set of polynomals just referred to is linearly independent, so any
polynom al of degree < n can be represented as a linear combination
of them However, conditions on the coefficients making the pol ynom al
positive are not known. This is an interesting problem which woul d
bear investigation.

For reasons much the same as in the positive polynomal case, the

attenpt to represent all polynonials convex on [0,1] by I|inear
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conbi nations of the same kind with a condition on the second differences
of the coefficients will fail.

Another difficulty with the ordinary Bernstein polynomals is that
no matter how many derivatives the parent function has, the order of
convergence of B,(f) to f is o(%). See Voronowskaj a [21] or
Lorentz [11]. Butzer (4] has shown that certain |inear conbinations of
the ordinary Bernstein polynonmials converge to f like n-k if fis
bounded and has 2k derivatives on [0,1]. The question of whether
Butzer's pol ynom als exhibit properties-like that of the parent function
is also open.

Now that best convex polynom al approximations can be conputed,
the problem of order of convergence estimation for these approxinations
becomes nore interesting and should be investigated. However, no

course of attack is imediately evident.
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APPENDI X:  COVPUTATI ONAL  EXAMPLES

The spaces CE(I) and CE(T) defined in Section 1 are uniformy
convex, SO0 best convex polynom al approximations in these spaces will

be unique. Furthermore, the functions of the form |f - y'x(z)“g whi ch

are to be mnimzed are differentiable functions of the paraneters in
the cases to be considered. One example will illustrate approximtion

in CE(I)’ the other in c,(T).

Al. Convex Cubic Approximation in C,y(I).

This case can be solved exactly. This is facilitated by the use
of the Legendre polynomials on the interval [0,1], the first four of

which are (see MIne [13])

Po(t) =1,
Pl(t) =1-2t,
p) = 1- 6t +6t°,

Py(t) = 1 - 12t + 3062 - 20t3

These polynom als are orthogonal on [0,1]: in fact, they satisfy

the relationship

fol P;(t)P,(t)at = { 0 t J

(25+1)™, 0 = j

They are linearly independent, forning a conplete orthogonal set;
hence any polynonial of degree n can be witten as a unique |inear

conbination of the first n + 1 of them
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Pol ynom al approxi mations of the third degree to f(t)

on [0,1]
are obtained by mnimzing
3 1, yo
f- 5 yp |P 1 f (t)P,( tdt+""———1
” s id ”2 o [£(t)1Pat - 2 | oyl P; (%) i&p2itl

where the right hand side has been obtained by using the orthogonality

relations. This expression is quadratic in the y., and by completing

squares it is easily shown that its mninum value is

2
1 5 3, v
\/; (£(t)]%at - igo ST (A1)
which is obtained for
‘ 1
f ()P, (t)dt
0 - .
yi = I/2i+l 3 = 0,1,2,3 . (A2>
Now, let it be required that the approxi mation be convex on [0,1].
This condition is expressed as

@ 3

Lam)
— . y.P.(t) =12y, + ( 60-120t)
at? g% Tt .

>0 ,
3

or,

v, *+ 5(1-2t)y3 >0 0<t<1

Wiat this neans geonetrically is shown in Figure 2, where the shaded

region is the intersection of all of the half-spaces given by the
constraints. The boundary lines of the cone of possible solutions are

gi ven by v, t 5y3 =0
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Now, supposing it is known that the best unconstrained |east squares
cubic approximation to f(t) is not convex. Then one can conclude by
appl ying Theorem 11.1 or Theorem 6.1(2) that the solution nmust lie on

the boundary lines. The expression to mnimze then becomes

1 1 N2
fo {f(t) - [a P (t) + & P (t) + voB(t) * 5 yePe(t)]} at |

and again it is easy to show by conpleting squares that the mnimmis
2 : x
_/,;-)1 [£(t)]%at - {ao + 1318 v v b (L3 ae)e} (3)

and that the mninumis obtained for

1
. = (2ivl £(t)P,(t)dt , = 0,1 :
v, <1+>f0 ()P, (t) |
(AL)
1
\/; 1 £(t) [Pe(t) 5 P3(t)]dt
Y2 = 132
1,
5 7(=)5

Two sol utions are possible from equations (A3) and (Ak); the
correct one is that which gives the smallest value in (A3).

To illustrate, consider the problem of obtaining the best convex
cubic approximtion on [0,1] to f(t) = tl*. Usi ng equations (A2)

it is found that the best approximtion is

|-

+J

1
(621 1)V

as]
._J

+
=
m*tl

1
w*d
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or,

L 2942 4 03,
- Tt 7‘[',

The mean square error fromequation (A2) is found to be approxi mately
2.3 x107°. It is easily shown that this approximation is not convex.
Applying equations (Ak) with minus sign (which is seen to be
correct by plotting the point of best unconstrained approximation in

Figure 2), one obtains

1 2 T I
5P -5htamf- T
or,
1T 4 T3
0°"20°TE

From equation (A3), the mean square error obtained is approxinately

2.8.10%

Appr oxi mation in Cz(T) can be handled in essentially the sane

manner using the orthogonal polynom als described by Forsythe [6].

A2,  Convex Quartic Approximation in Ce(T).

By application of Theorems 9.3 and 10.2 for the case n = 2, every
pol ynomi al of degree < 4 which is convex on [0,1] can be represented

in the form
U t 2 2
p(r2st) =y, +ae e va [ ) lnyleen) 4 g en)les ()

Withy220, 0 <z <1, 0§ze<1.

1
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Thus, best |east squares convex approximations to functions f(t)

in c,(T) are obtained by ninimzing

N

le - oy = T [£(t,) - p(y,2,t, )IF (46)
i=1
subject to the constraints. In Section 11 it was pointed out that the

constraint Y 2 0 need not be applied in practice, so only the bounds

on , and Zy will be used.

4
One nmight now proceed by trying to solve the problem using the
met hod of Lagrange nultipliers.

However, the equations so obtained will be non-linear and difficult
to solve, thus it seens worthwhile to use a nunerical procedure from
the start. Fortunately, such procedures are available, and many are
programmed for digital conputers The nethod to be enployed here is the
gradient projection nmethod of Rosen [19]. It has been programred for
use on the | BM 7090 conputer by Merrill [12]. For use on the problem
at hand, a subprogram for eval uating expression (46) and its gradient
on the paraneter space nust be supplied. The programis already ahle

to handl e the constraints. A subprogram has been witten for the

following test problem

T={(t,: t, =0.14i; i =0,1,2,...,10} ,

For purposes of comparison, and to obtain starting approximations
for the gradient projection code, best unconstrained quartic approxi-

mations for this test case were conmputed. This was done using the
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net hod described in Forsythe [6] and an | BM 7094 conputer code based
on the program described in Rudin [20]. The second, third, and fourth
degree approximations and the corresponding suns of the squared errors

were conputed as foll ows:

Second degr ee, z e? = 0.092146842 ,
0.82273361 - 2.5890284t + 1.8636677Tt> .
Third degree, by ei = 0.013453531 ,
0.95122132 - L.6305554t + 7.217322ut2
- 3.5691031t3
Fourth degree, b) ei = 0.0012569747
0. 99040337 - 5.9910L430t + 1k4.019760t°

144530043 + 5.4419500t%

The third and fourth degree approxi mations are not convex. Thus,
the best convex approximations in these cases nust lie on the boundary
of the constraint set.

However, in the first application of the gradient projection

met hod, the solutions were not constrained to lie on the boundary of 7°

(see Section 10), but allowed to range over all of 72 No other
constraints were applied. As a starting guess, the above second degree
approximation was used, for it is convex.

Convergence towards a mninum was very slow, despite various

accel erating options in the program that were applied. After some 3500

iterations, the follow ng result was obtained:
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y_ = 0.92700600 ,
[¢]

y, = -4.7174867
Y, = 29.390549

2, = 0.78380506 ,

, The corresponding polynomal and sum of squared errors are

o(y,2,t) = 0.92700600 - 4. 7174867t
+ 9.0280473t2 - 7.6788203t3
+ 24010kt 4
5 eei = 0.0092285508 .

This result is better than the best third degree (unconstrained)
pol ynoni al approxinmation, but not as good as the pest fourth degree
approxi mation, which gives a lower bound for the error. Note.that this
result is on the boundary of 72

Sone subsequent conputations were made forcing the solutions to
lie on the boundary of z?" but unless the starting approximtion was
close to the one found above, convergence was also quite slow It
appears that slow convergence is the price that one must pay for the
|l ack of convexity of the expression (A6).

It should be nentioned, however, that the long conputation referred

to above took 12 minutes on the |BM 7090 conput er
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Perhaps better (e.g., faster) conputational procedures can be found
however, the principal aim here has been to denonstrate the possibility
of solving such problenms by practical means. This has been

acconpl i shed.
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