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YIELD-POINT LOAD DETERMINATION  BY NONLINEAR PROGRAMMING

bY

Philip G. Hodge, Jr.

Abstract

The determination  of the yield-point load of a perfectly  plastic 4

structure can be formulated as a nonlinear programming  problem by.

means of the theorems of limit analysis. This formulation  is dis-

cussed in general terms and then applied to the problem of a curved

beam. Recent results in the theory of nonlinear programming  are called

upon to solve typical problems for straight and curved beams. The

theory of limit analysis enables intermediate answers to be given a

physical interpretation  in terms of upper and lower bounds on the

yield-point  load. The paper closes with some indication of how the

method may be generalized to more complex 'problems of plastic yield-

point load determination.

YReproduction in Whole or in Part is permitted for any Purpose of the

United States government. This report was supported in part by

Office of Naval Research Contract Nonr-225(37)  (NR C&-211) at

Stanford University.
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I 1. Introduction

L The constitutive behavior of an ideal elastic/perfectly-plastic  material

is defined in terms of a yield function
f(~ij)*

The stress tensor CT
ij

must be such that

f
L-

!

f(~ij) I O

and the strain rates E'ij
are then given by

where

and

l=O if f<O or ?<O

i

‘

Here the C..
1Jkl

are the elastic constants of the generalized  Hooke's law,

t is an unknown scalar function, and a dot over a symbol indicates dif-

i ferentiation with respect to time.

The general elastic-plastic problem is concerned with a structure or

(L)

(2)

(3 >

(4)

t body made of an ideal elastic/perfectly-plastic  material subjected to a

i

c



I
c

given set of surface tractions* Pi which are prescribed at all points

of the surface except where the corresponding velocity is prescribed to be

zero, A solution consists in finding a stress tensor CT..,
1J

and a velocity

vector vi such that

i (a) the stresses are in internal equilibrium

"ji,j =o

(b) for a given constant S, the stresses are in equilibrium  with

loads SPi on the boundary

'ji 2
= SPi

I
i

(c) the yield inequality (1) is valid;

(d) the velocity satisfies any boundary constraints,  and the strain

rate field derived from it satisfies (2), (3) and (4).

i

i

This problem may be viewed as a boundary value problem, but such an

approach involves several difficulties among which are the following.
L

A different set

!

i

I

llelastic region" (f

Further, the plastic

L The location of

is an unknown of the

of differential equations must be solved in the

<0 or h < 0) and "plastic region" (f = h = 0).

region equations are nonlinear.

the elastic-plastic  interface between the two regions

problem.

Continuity requirements across the interface and within the plastic

region are not entirely straightforward.

*
For simplicity of exposition,  body forces are neglected; this restriction

is not vital to the material that follows.

(5)

(6)

I 2
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If S is less than a certain critical value So, known as the safety

factor or yield-point load, (and which is not known & priori) a unique

solution to the problem exists. However, for S> S
0’

no solution exists.

For S=So, a solution exists for which the magnitude of the velocity

vector is not unique. Further, in many problems there will be further

lacks of uniquene,ss associated with the case S = So. Therefore, solution

of the boundary value problem for a given S depends upon the relation of

S to the unknown So for such vital properties as existence and uniqueness.

Within the boundary-value-problem approach, So can be determined  by

first solving for an arbitrarily  small S for which the entire solution

will be elastic. Since the elastic solution is linear in S, the maximum

S = Sl for which the fully elastic solution holds is easily determined  by

observing the largest S for which this solution satisfies (1) everywhere.

One then solves a sequence of problems with S =

for as long as a solution exists, deducing that

Si + (Kl - l>M 5 so 5 s1

Sl+ K&S, K = 1,2,...

+ KIM

where Kl
is the smallest K for which no solution exists. Although

easily stated, the above problem is obviously far from trivial in any but

the very simplest of cases.

Although only a very few simple problems have been completely solved,

it is instructive to examine the behavior of a typical displacement d

of the problem as a function of the load-magnitude  S. Figure 1 shows the

qualitive behavior that is always present. For, S < Sl, d is a linear

function of S. As S increases above Sl, d increases (generally

3
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non-linearly) at an increasing rate, tending to infinity as S tends to

sOa
Since infinite displacements  are rarely admissible,  it appears that

the value of So is of crucial importance in the analysis of the problem.

From the mathematical  viewpoint knowledge of its value is a necessary pre-

requisite to proper posing of the problem. From a practical viewpoint in

many applications, determination  of So may be the primary question of

interest, and additional effort spent on finding 0. o and v
13 i may be un-

warranted.

To summarize, if one uses a boundary-value-problem  approach to a

practical  problem in plasticity, one must solve a non-linear,  free boundary,

difficult to pose problem; if one is successful one ends up with the desired

number So together with a stress and displacement distribution  which may

not be required.

The Theorems of Limit Analysis* provide an alternative approach to

the determination  of So. The Lower Bound Theorem, with which we will be

chiefly concerned, states that if for any number S- there exists a stress

tensor 0 ij which satisfies requirements (a), (b) and (c) listed earlier,

i-e", which is in internal and external equilibrium  with S-Pi and does

not violate (l), then S- is a lower bound on S :
0

s- 5 so

----
*
The theorems were independently discovered by Gvozdev [l], Drucker,

Greenberg, and Prager L&3,41, and Hill [5,6]. Textbook accounts

may be found in C7,8,91 .
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Since a solution to the complete problem is known to exist for S = So,

this theorem establishes the uniqueness of So and may be restated in

slightly stronger form by saying that So is the maximum of the set of

numbers for which (l), (5) and (6) possess a solution:

so = =(Sla
ji,j

= 0, 0..n = SPi, f(oij) C 0)
31 3

The similarity of this formulation to a programming problem suggests that

techniques of mathematical programming may be of value in the solution of

plasticity problems. That this is indeed the case will be demonstrated  in

the remaining sections of this paper.

The Upper Bound Theorem of limit analysis will not be used directly.

However, we will make use of a corollary to this theorem which states that

if the given structure is replaced by a "replacement structure" which is

"stronger" (i.e., one whose yield inequality (1) is nowhere more restrictive

than that of the given structure) and of the same size, shape, and loading,

then the yield-point load of the replacement structure will not be less than

that of the given structure.

(9)

I

i
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2. Beam Problem as a Nonlinear Programming Problem

In order to make the discussion definite, a particular relatively

i

.simple problem will be considered, rather than the general three dimen-

sional one. Specifically, we will consider a straight or curved beam

subjected to in-plane loading.

According to beam theory, the stress state of any cross section of the I.

I
L

beam is adequately specified by giving three numbers corresponding to the

I
L

direct (axial) force N, the shear (transverse)  force Q, and the bending

moment M transmitted  across the given section. Each of these quantities

I
i

is a function of the arc length along the centroid of the beam. Further,

it is assumed that the shear force does not noticeably  affect the plastic

I
t

behavior of the beam. Therefore analogous to (1) we have the requirement

i- F(N, M) 5 0 (10)

i
If, in particular, we specify a rectangular beam and choose suitable di-

1
mensionless variables* n, q, and m, then (10) becomes [lo]

c f(n,m) E n2 + 1 m 1 -15 0 (11)

Further discussion will be based on (11) although it will be evident that

j

c-

rI
I

t

any more complex function would be as easily handled.

If the beam is subjected to normal and tangential loads Pn and Ps,

respectively, then equilibrium in the axial and transverse directions and

i
*

L Precise definitions of dimensionless quantities may be found the the

Appendix.



moment e.quilibrium lead to

d E - K.q - p
S

q’ = K.n - p
n

m' = w

in place of (5). Here primes indicate differentiation  with respect to the

dimensionless  arc length s, K = K(S) is the dimensionless curvature of the

beam, P, and p, are dimensionless  loads, and q = q(s) is a known property

i-
of the cross-section  dimensions (q = const. for a beam of uniform section).

For further definiteness we assume that the beam is fully constrained at

either end. Then, since the reactions at the ends are not prescribed, there

i is no requirement analogous to (6).
c

The lower bound approach to the problem of determining the yield-point

c
load may be formulated as follows: to determine the largest value a0 of

\

L

al for which there exists a solution to

i-

n'tKq+ p
011 S

= q' - Kn + alp, = m' - qq = 0 (13)

i
i.

which satisfies (ll), a0 being the dimensionless equivalent of the yield-

point load.

t A programming problem is generally concerned with matrices of finite

size, rather that functions which correspond to infinite matrices. The pre-

sent problem may be conveniently reduced to finite size by taking advantage of
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the linearity of Eqs. (13). To this end, let nl(s), ql(s), ml(s) be the

solution of Eqs. (12) (i.e., Eqs. (13) with Q: =
1 1) subjected to

L

i
go) = qlw = m-Jo) = 0

c

i
1
i

and let njCs), Sj(s)'  mj(s), j = 2,3,4 be the solution of the

homogeneous counterparts of (13) subject to

L

f

n,(o) = q3(0) = m4(0) = 1

5 (0) = n4(0) = q2(0) = q4(0) = m2(0) = m$O) = 0

\ -
L

Then obviously

!
i

4 4
n(s) =C a.n.(s)

j=l JJ
m(s)C a.m.(s)

j=l JJ

(14)

05)

( 6)1

(17)

1

i

I
L

for any solution of (13) whatsoever.

as known functions of s which may be determined once and for all, we may

Therefore, regarding n. and m.
3 3

formulate the problem as:

L.
maximize 5 subject to

c

i
For programming  purposes we must replace the functional inequalities

(18) by a finite set of inequalities. Therefore we select a finite sequence

of r points
'k

at which to demand that (18) be satisfied.

8
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Further, it proves

so as to eliminate

convenient to replace each inequality by two inequalities

the absolute value signs. Thus we obtain

2Qk = +Ca.m
J jk

K= 1,2, ..* , r

( 9)1

where
?k =

nj(sk), etc. Thus we have formulated the beam problem as the

nonlinear programming  problem of choosing al, . . . , a4 so as to maximize

5 subject to the 2r inequalities (19).

9

L.
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3. Solution of the Programmipg  Problem

L The method used to solve the problem posed in the preceding section is

f
L

1
i-

I
c

known as the Created-Response  Surface Technique and will be referred to as

CRST. It was first suggested by Carroll [ll] and later given theoretical

validation by Fiacco and McCormick [12].

In the CRST method a parameter 5 is introduced and the primal function

pb, cs 1 is defined by

i

L

f

@Q)

L

1

where gk and hk are defined in (19). The interior of the domain in-an ai

space defined by the inequalrties (19) is referred to as the feasible domain,

If consideration is limited to points in the feasible domain, then it can be

i I shown [12] that for any given 5, P achieves its minimum value F(c) at

i

i
some point Z(c) in the feasible domain. Further, if 5, is a sequence of

values tending to zero, then

i
i

a0 (21)

i
!-

\

L-

i

Figure 2 shows a schematic flow diagram of the program for automatic

computation on the IBM 709C at Stanford University using the SUB&CCL corn-

piler. Details of the method used for optimizing 5 for a given ak and

of the second-order gradient method used in minimizing  P(a,c) are beyond

the scope of this discussion  and the interested reader is referred to [12].

c

!
i

I
i

However, the method used in manipulation  of the mesh size provides an

interesting example of interaction between numerical analysis and the physical

field of application; it will be described in some detail.

10



If r points sk are used, the computation time required will be almost

proportional  to r, so that there is an obvious advantage to keeping r

small. Now, froma physical picture of a curved beam at the yield-point load,

we see that four yield hinges will be sufficient to turn the beam into a

mechanism. If there is a yield hinge at sk, then one of the inequalities

(19) will be an equality, and at all points where there is not a yield hinge,

the strict inequalities will be satisfied,  Therefore, for the first coarse

mesh we take r = 4 and, lacking any better information,  we take the points

to be equispaced.

Consider now the situation when we

mesh and denote the resultant value cr:
1

have found the solution for this

by a+. If we evaluate the yield

inequalities  (18) for values of sfstk
we may find that they are violated.

_ However, consider a replacement structure whose strength at the points
'k

is the same as the given structure, but which is infintely strong for all

other values of s; obviously  a' is the desired yield-point load for the

replacement structure, hence it follows from the corollary to the Upper

Bound Theorem that the yieldrpoint  load a0 of the given structure must

satisfy

a0 5 a+ . (22)

Next, using the ultimately  fine mesh decided upon, find the value of s

for which (18) is violated most severely and replace a;c by Wk> (0 < B < 1)

so that this worst inequality is just an equality. It then follows from

the Lower Bound Theorem that

11
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i

f3a+la
0 (23)

so that both upper and lower bounds on the desired yield-point load have been

obtained.

For the next mesh sk, we take only those points at which one of the

inequalities  (18) has a relative maximum* and repeat the reasoning. In

applications it turns out that this process need be repeated only once or

twice before the bounds (22) and (23) are sufficiently  close together to

terminate the computation.

-- yI-.s-

*

As a refinement, only that one of (19) which had a relative maximum was

retained, and a band of three mesh points was considered for each maximum,

thus speeding the convergence.

12
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4. Examples

The purpose of the present paper is to present a method rather than an

exhaustive set of calculations, although with the computer program available

it is a trivial matter to analyze any beam under any loading. Examples run

to test the program included a straight beam under uniform load (a trivial

problem designed to discover "bugs" in the program), and a circular arch of

arbitrary angle under either a uniform vertical load, a concentrated vertical

load at the center, or a uniform load perpendicular to one end of the arch.

Figure 3 shows some typical results for-the three cases.

L
I
t

13
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5. Extensions

The method described here for the relatively simple problem of a curved

beam should prove useful in finding the yield-point loads of more complex two

and three dimensional  structures. It may be of some interest to mention

briefly a two dimensional problem on which research is currently being done:

An annulus of inner and outer radii b and a, respectively  is subjected

to a uniform uniaxial tensile load F on its outer edge. Assuming conditions

of either plane stress or plane strain, the internal equilibrium  equations

will be satisfied if the three non-vanishing  stress components are given in

terms of a stress function q(r,e) by

CT r = *Jr/ r + $$ r2

*e = JI, rr z r6 = - ($ 8 / d, r

i

and the boundary conditions at r=b and r=a will be satisfied if

df(r,e) =(F@+) (r-b)2 / (a-b) [l -t cos26 (a2 + ab -2br) / (a-b)2 ]

c

+hb) + 5 g (d cos2rne
k=l m

for any well behaved functions h and gm which satisfy

(24)

(25)

i
h'(a) = gm(a) = gm (a) = h'(b) = gm (b) = gm (b) = 0 . (26)

14



The yield inequality will be a quadratic expression in the derivatives of

IJ whose precise form will depend upon the material yield condition and upon

whether the annulus is in plane strain or plane stress 0

.

The problem is to determine F and the functions h(r) and g,(r) so as

to int3.XimiZ~ F subject to (q).

As with the beam problem, (27) is trtinsformed  from a functional ine-

qual.ity to a matrix of inequalities by considering a mesh of points

Pi' fJ* ; presumably  similar techniques for keeping the number of mesh points
J

reas0nabl.y small can be developed.

An addi_tional complication is the functional form of h and gm in

contrast to the finite vector Q!k
in the beam problem. Two possibilities

are currently being investigated to deal with this phenomenon. On the one

hand, h and gm may be replaced by truncated series of complete functions

such as polynomials, trigonometric  functions, Bessel functions etc. For

example, if

h' =c a.+
jn~ Jl

sin jR(r-b) / (a-b)
z:

gm -c
j=l

(r-b) (a-r) am+j+l sin jn(r-b) / b-b) w

then by putting the load F = al we retain the formalism of the beam problem

formulation except that k runs to m(n+l) +l instead of only to 4.

15
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Alternatively, the values of h and gm at the mesh points may be taken

as the unknown a's and the derivatives in (27) replaced by appropriate finite

difference formulas,

Still further complications may be introduced if the boundary conditions

do not lend themselves to analytic expression. One method of handling this

would be to replace a typical boundary condition

Hh’l = 0

at a point by a pair of boundary inequalities

and add the contraints (30) to the yield constraints (2'7)* Alternatively,

some positive measure E of the extent to which the required boundary con-

ditions arc in error could be calculated, and the primal function formulated

as

( 9)2

(30)

P&5) = -F+ E - (&(i/~p])  o

Minimization  of P would then lead to the largest load and the smallest

boundary error.

Despite the questions which remain to be resolved, it appears likely

that the CRST method of nonlinear programming will provide a valuable tool

for the calculation of yfeld-point loads of complex structures

(31)

-- 16
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APPENDIX

List of Symbols

Beam Properties

Typical measurement

Width

Height

Yield stress

Yield force

A

2B

2H

5
0

No = 4BH o.

Yield moment
MO

= 2BH2 o.

Dimensioned and dimensionless variables and parameters
(Lower case symbols are dimensionless, capitals have dimension)

Axial force n= N/N
0

Shear force q= NoQ/

Moment m= Mw 0

Normal load

Tangential load

Beam length

Beam curvature

Beam constant

Arc length

P, = PIIA/N 0

P, = yJ/N 0

I = L/A

K = K A

v = MO/M
0

= 2A/H

S = S/A

19



Mathematical  definitions

n,(s), ml(s)

njCs), mj(s)

njk' mjk

5

a.
3

aO

gk ' hk

Particular equilibrium solution under unit load

Complementary  equilibrium  solutions under zero loads,

j = 2, 3, 4

nj(sk), mj(sk) (point values), j = 1, 2, 3, 4

multiplier  of particular solution

multiplier  of complementary  solutions, j = 2, 3, 4

value of Q!
1

at yield-point load

yield functions at s = sk, defined by Eqs. (19)

20



FIGURE TITLES

Figure 1.

Figure 2.

Figure 3.

Typical load-displacement  curve.

Schematic diagram of computer program.

Yield-point load of circular arch.

(P = total load, A N / M = 40)
0 0
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Figure 1 - Typical Load-Displacement  Curve
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. CHOOSE COARSE MESH sk

p CHOOSE INITIAL FEASIBLE POINT

------+ D E T E R M I N E  O P T I M U M  Is 1

--i

FIND MINIMUM OF P BY
SECOND-ORDER GRADIENT

METHOD TO TOLERANCE T1

NO YES

1 l

NO
if

REDUCE MESH SIZE
BUT KEEP ONLY

ACTIVE CONSTRAINTS

YES

NO YES

Figure 2 - Schematic Diagram of Computer Program
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