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W want to reexam ne the Cauchy problem for systens with constant
coefficients, together with the matrix questions which arise after a
Fourier transformation, Qur nain results are in fact purely matrix-
theoretic, so that after notivating those results in the follow ng para-
graphs, we hardly need to mention partial differential equations again.

W\ do hope, however, that our ideas will prove to be useful locally in
studying certain systens with variable coefficients; such an application
will of course require a nuch fuller discussion of differential operators.

A sinple exanple will illustrate the problem we solve here, Con-

sider the system

O H@2)C D ED) (D) ()« wno,

whi ch has the solution
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of

(2) ul(t)zfl, u,(t) = £, +t 'g%(

Since we may choose f, € L,(-=,») such that Uy ¢ Ly, the system (1)

fails to be well-posed over L. Neverthel ess, on the cl osed subspace

normed by
ou, 2
G) o0 = [ P 1l P

we no |onger lose a derivative, and (1) becomes well-posed; in fact,

(%) la(e) || << ++V1+ >l /2 el < ot/2 Ik

Wiat we want is to associate with nore general systens such a sub-

space, naximal in a certain sense, over which the problemis well-posed.

Wthout the maximality requirement, this question has been treated
i ndependently by Birkhoff and others (see [I]).
After Fourier transformation, a linear differential (or pseudo-

differential) systemw th constant coefficients |ooks Iike

A
A A
(5) = p) &, Bw,0) = Aw)
where o = (wl. .,.,wd), Ga(ﬁl(w,t), : ,.,Gm(w,t)), and .. m . m
matrix P is the synbol of the given differential operator. To stay
within the framework of the Fourier transform we introduce the Hilbert

spaces LQ(H), normed by



(6) Il = [ (i) de), Sonas
R

d

Here H is a neasurable Hermtian matrix function, normalized by the

requirement H > I, i.e., H- | shall be non-negative definite,

Let us call (5) well-posed over LQ(H) provi ded that for some a,

(7) ()l < < llelly

for all t>0 and all initial data f. Solving (5), this can be nade

more explicit:
(8) Pt (W) LF@)t < 20t H(0)

Differentiating at t =0, we come to a still sinpler equivalent con-

dition; for alnmost all w,
(9) H o) P(w) + P¥(w) HW < 2aH(w) .

(To recover (8), post-nmultiply by exp(P(w) - a)t, pre-nultiply by its
adjoint, and integrate.) In the exanple described by (1) and (3), for

instance, the condition (9) becones
l+(1>2 0 0 0 0 i l+(.l)2 0
-iw
(10) (O l)(ia) o)+ (o o)(o 1)
_ (0 -iw < l+u>2 0
" \iw 0 /J=\0o 1/ °




Qur definition (7) is stronger than the usual one, which permts
a constant factor Mon the right side. Nothing is changed, however,
since if (5) is well-posed in this weaker sense with respect to 12(H1>’
there is an equival ent normH, such that (7) holds on LE(HQ) = L2(Hl).
This follows from Theorem Il below, and in fact it is the chief result
of the Kreiss theorems which our work extends,

It is no trouble to bound o frombelow. If some P(w) has the

eigenvalue X with eigenvector v, we nust have from(9) that
((HP + P*H)v,v) < 2a(Hv,v) ,

which vyields

(11) Re A< a .

Therefore a is not |ess than

(12) o = sup Re A (P(w)) ,
w, J J

and we nust inpose on the synbol P the Petrowsky-Gédrding condition

¢ <o Subtracting a constant multiple of the identity, we shall in
fact suppose o < 0. Now fixing o = 0, there is no doubt that we

can construct H(o) to satisfy (9). The delicate problemis to keep
H as small as possible; this we achieve, up to a constant depending
only on the order m in TheoremIll. The correspondi ng space Le(H)
I's consequently nmaxinmal; its normis weaker than that of any LE(H')

over which (5) is well-posed.




The theory of partial difference operators leads to a closely related

matrix problem In place of (5) we have

(13) B, t4c,k) = 4 () Blo,t,x), Rlw,0,%) = Plw) .

The Ak(w) are called anplification matrices; we don't want to discuss
such systems fully, but we need to explain that the time-step k ranges

over sone interval 0 < k < ke The anal ogue of (9), equivalent to the

condition (7) on LE(H}:)’ is sinply
(14) (o) B (0) A (@) < ™ B (@) .

Again there is a lower bound on «, nanely

Ed

log |M. (4 (w))
(15) o = s | % Al
@y Jy

Therefore we inpose on (13) the von Neumann condition ¢’ < =, By a

sinple manipulation, we may achieve ¢’ < 0 and fix a = 0 as before,
Thus our two matrix problenms can be very concisely stated: given suit-
able P and A to construct two corresponding nmatrices H> 1 as

"smal | as possible so that

HP+ P¥H <O and A*HA < H,

respectively, Since the second problemis perhaps the more famliar,
and its solution leads to a solution of the first, it will be treated

in full detail, W need the definitions




|V| = (|Vl|2+ +‘Vm|2)l/2; |Al = Ssup |Av|/|v|, p(A) = max \xj(A)l .
1<j<m

Theorem |, For a suitable constant K(m, depending only on the

order m of the matrix A~ each of the followi ng statements inplies

the next:
. , 1/2 _
i)  A¥HA < Hfor some H> 1 with (#v,v)7° = Q(v) for |v] = 1.
ii)  |sas™l| < 1 for some s with |s}| < 1 and |sv] = (V)
for }]= 1.
iii) |A%| < c(v) for all n>0 and J|= 1.

iv) | (21-4)"1v| sﬁl_’% for all conplex |z| > 1 and all
V| = 1.

v) AHA < (—l+—§(—“i))%—|_< Hfor some H>1 with

1/2

(Hv,v)™” < < K(m C(v) for all |v| = 1.

This theoremis very close to one originally proved by Kreiss [2],
and studied subsequently by Mrton [3] and Mrton and Schechter [4].

Therefore we should clarify those respects in which it is new

a) The previous estimates in v), established by induction on m
had a power Cp(m) in place of C wth p(m -« as m-o =,

b) W estinmate the action of H on each vector v, where earlier
there appeared only the single constant C = sup C(v). It follows
that the Hin v) is mniml in a stronger sense than just in norm

if H >1 and AAH A < B, then H < K-(m) H'.



C) We construct the newH in v) explicitly, leading to the
foll owing additional information:

For sone s with s*s = H,~- A" = SAS-l i s upper triangular,

with A{J. = 0 unless hi and >\J_ are in the same cluster (see bel ow),

‘ 1 . .
and |Aij\ <5 (1 - max(|r |, P‘j‘)) in this case,
A trivial nodification of 8 reduces this constant % to any

other, say 1/2m, so that the absolute row and colum sums (the !
and £, norms of A') may also be made less than (1 + p(4))/2.

It remains to determne the behavior of the best constant K(nm.
Qur constant (which we don't conpute) grows roughly like m, while
exanpl es of McCarthy and Schwartz [5] show that it nust grow at |east
as fast as some power of log m this leaves a wide gap, It is not

surprising that K(m - « in view of the Foguel-Hal mos counterexanpl es

[6,7] to the Nagy conjecture.

2. In this section we establish the first three inplications in Theorem
|* These are easy steps, valid also for operators on Hilbert space.
Wth H = s%s, the equivalence of i) and ii) follows fromthat of

the inequalities

(A*HAv,v) < (Hv,v) for all v

|sav|® < |Svl2 for all v

ISAS'lw|2 < |w|2 for all w .

In the applications, ii) corresponds to a change of variables and i)

to a newnorm In one respect the use of His to be preferred,




it may depend nore smoothly on some relevant paranmeters than does an

i nproperly chosen S. The positive square root § = Hl/2 is as snooth
as H but a diagonalizing S may not be, although the latter change

of variables |ooks especially desirable. M zohata [8] points out this

difficulty when d = 2, arising from the nultiple-connectedness of the
circle; there is no difficulty in his context with H

To show that ii) inplies iii), we conpute

(16) |a%| = |s7(sas™)® sv| < |57 |sas™H? |sv]| < c(v) -

Finally, given iii), we have for |z| > 1

(17) |(z1-8)"2v] = | % vy co L

‘z‘n+l = Tz]-1°

3. Before comng to the final step in Theoreml|, we warmup with a nore
special result of the same kind, which shows how the georetry of the
ei genval ues enters the problem

Theorem I1.  Suppose the resolvent condition iv) holds, and the

ei genval ues of A satisfy
(18) alxi-le >1 - |xj| for all distinct i,j .
Then A¥HA < QE(A) H< Hfor some H> 1 wth

(Hv,v)l/ 2 < m(2+’+m6)(l+26}2m_50(v)




for | § 1. Furthernore, there exists s such that H = s¥s and

-1

SAS is diagonal,

Proof « Fromiv) it is clear that no eigenvalue |ies outside the unit

circle, so p(A) < 1. Athough (18) adnits repeated eigenval ues of
modul us one, suppose for the present that the eigenvalues are distinct,

Then we construct the projections

A-h.
(19) Li:.TT.XT:%’ 1<i<m
AL

Applying L, to the eigenvectors v we find Livj =5..v

1 Vm 5%

so there are the standard identities

2 = = . .
(20) L =L . LiLi=0 for 14
(21) 3 3
1 - _
§Li I, g)\iLi_A'

Now define the Hermtian matrix H by

m
(22) H=m ¥ 1% 1, .

T 1 1

From (20) and (21) we have
e 2 2
(23) AXHA = Zk‘jhg m-.ZL*-{ L-lz AN =m ) |>~i I L¥L, <p (AH .

To prove H> | we need only (21) and the Schwarz inequality:




(2L) |v|2 = ‘z Liv|2 S_mz: |L.lv|2 = (Hv,v) .
From (22),
(25) (Hv,v) < n° max |Liv|2 :

and the crucial estimate is that of |Liv|. W use the resol vent con-

dition in the nost natural way, by expanding

(26) L, :k§ bik(zkI-A)-l .

Ve shall choose z = 1/A ;if |n|is 0 or 1, then it is no
longer true that 1 < Izkl <o and a sinple limting argument is

required in what follows, To conpute the b..» apply (26) to the

k)
ei genvectors; for each i,

m
_ -1 -1 .
(27) 5,5 = k);lbik(xk AN, 1<igm .
Solving this system we get
- 2
@8) T T gLl
i TG |xj-xi|
(29) Ibik‘ ( 1- P\i l |l_xk}\'i ‘ ‘l'x'}"i‘ ll'xk}‘ : l
Tt = DD J d
z, -1 k 1| |>\k->\if |>\k->\i| s,k |>\j_>\i[|>\j- kf ’

k Ai .

10




For any distinct i and j,

1-x.>\i _ RS
(50) _}\_:J_ET; = Kj + (l+|}‘j‘) Té—:‘}ld\— <_1 + 26 .

Putting the pieces together,

R P N DRI RCET R P e

2m-2

< [2(1428)7"° + (m-1)b8(1428)°773) (V)

Sinplifying the last term and using (25),
(32) (HV,V)l/2 < m(2+hms ) (1428)°03 (v)

To conplete the theorem we introduce the left (row) eigenvectors

r so that

k’
(33) A=Ay g TA=NT

J

Multiplying t he first by T and the second by v.J, there is the

fam liar biorthogonality condition

(34) nv; = (0) for | £k .

Since vy cannot be orthogonal also to r., we may fix the eigenvectors
J

11




by the normalization

(35) m\vjl2 =1 and 1= (1), 1<j<m .

[t follows that
(36) L, =v,r, ,

since both sides, applied to vy gi ve 6'13'Vj'

Now l et the rows of Sbher, .. r so that sas™tis di agonal .
1 m’

By matrix multiplication

1
m
(37) S*S = (rale . o rﬁ} ) = ; r¥r, .
T
Using (35) and (36), this is precisely
m
(38) ; ré(mvt v)r, =m Y I¥L =H .

Finally, we have to return and admt eigenval ues >»i of modul us
one and nultiplicity M> 1.  From the resolvent condition iv), }‘i
possesses M linearly independent corresponding eigenvectors; one puts
A in Jordan formto conmpute the resol vent (zI-A)'l, and then lets z
approach xi. The eigenvectors may still be chosen to satisfy (34).

Let us nunber the eigenval ues so that Moyeeo Ay are di stinct,

N
and the rest are duplicates of these. Then instead of (19) we want

12




(39) L, =TT }\—_Tl , 1= 1,ese,N 4
j=L 17y
I

Sinply replacing m by Nin all the equations (20) to (32), the first

part of the proof continues to hold. In place of (35) and (36), we have
(40) vaj|2 = 1 and Tvs o= (1) , 1<j<m

(1) L, =V, T, + ses + v, T, ,
1Y MM

wher e A seessMare the appearances of the eigenval ue Mo Then we
1 M
may once nore identify

m m N
(42) S*S = % r¥ r, = ; r¥(Mv¥ v, )r, = N % ¥ L =H.
Notice that when all |>\j| =1 we may take 8 = 0, so that
2 . : : . ,
(Hv,V)l/ < 2mcC(v). Even this estimate is too large, since MCarthy

[5] has shown that in this special case iii) inplies v) with K(n = 1.
A simlar comment applies to Theorembk, and is especially relevant for

hyperbolic equations, in which Re Kj(P(m)) = 0 by definition,

4. To conplete the proof of Theorem |, it remains to show that iv)
inplies v). Fromiv) we know the eigenval ues satisfy |>\J.| <1 we

shall put theminto clusters as Mrton [3] has done, |nto the cluster

15




C1 goes an eigenval ue, say xl, of largest nodulus, together with

all others that can be connected to N by a chain of eigenval ues, each
link having length less than (1- ]}»l| )/t C, is formed in the same way
from the remaining eigenvalues, and so on until every eigenvalue enters

one of the clusters C c05C . O course r <m when r = m our

1’
basi ¢ constructions coincide with those in Theorem |, Notice that an
ei genval ue of nodulus one and nultiplicity M appears alone in M
clusters.

Let us suppose that

(43) p(A) < 1 and %.i;éhj for i £ ,

and renmove this hypothesis later by a continuity argunent.

Ve want to associate with each cluster several matrices from which
to construct H  Gven the cluster Cy | et }‘a be the eigenval ue of
| argest modulus in Coz from which the cluster was formed. Recalling

the projections L., defined in (19), | et

1

2(r,-N)

(s4) 1, = 2L, A, = LML, Z—-—I——TL ,

suming over the indices i such that xi € Ca' Defi ne

(45) By = I¢ T+ 12 (8%)"(3)"

From (20), I, acts like the identity relative to Ca' and matrices
associated with different clusters are orthogonal, In particular, we

wite down

14




2

(46) T =Ty IBy =3By IA, =4 TA =BA =HA =0, afB .

From the definitions it follows that

Iy = A ] B
(47) By = N t T o’

= = - T
(48) 13 HaIa =H, Bi&HaBa Ié| I Ia_gg .
Then from the appropriate triangle inequality

-] | \2 2
Q 1+9(A2

(k9) _:’ HaAcxs(P‘al * 2) Ha 5( 2 ) Ho
From (21) we see at once that

r r
(50) Zl:Ia::I, gAazA .
Now the matrix we want is just
’ r
(51) H=mn % H, .

" Conbining the last three equations with (46),
2
= _ 1+p(A
(52) A*HA~ZA'&"mZHBZA7.-mZ%(' HaAaS <___§£_).>H .
To see that H > | we use the Schwarz inequality to conpute

2 o 2 2 :
(53)  |v|” =] E; IS Lyt < mA(Eg,y) = (8v,v)

15



The essential problemis to bound
2 S n 2
(54) (w,v) =m L (J1° + T |89 .
S 1

There are two nmeans of carrying out this estimte. Conceptually, the

sinpl est possible approach is to expand Ia and Bg as suns of resolvents,
just as L, was expanded in (26), and then apply iv). Unfortunately,

the choice of the z, has to be nore conplicated than it was there,

and the consequent algebra is a sorry mess. Therefore we adopt a more
econom cal alternative; with some mnor refinements, the estimtes we

need can be lifted fromthose made by Mrton [3]. W denote his equations
by an added asteri sk.

Mrton's final result is
(55) iv) => |a%] < X (m) sup c(v) ,

but his proof works w thout requiring the suprenumon the right side,
by noticing the action on each v in (13%)-(16%) and (18%). Further-
more, his estimate of Av is found precisely by bounding the contribu-

tion fromeach cluster; thus when n = 0, i.e., v=0in (18%),

(56) |zv| < Xy(m) C(v)

and al so when n > 0,

(57) 12 v| < Km) c(v) .

16




Now we introduce one nmore matrix associated with Co
(58) D,= A, + Aa(I-Ia).
Fromthe identities (4), we know

n n n
(59) Dy = Ay * Mg (I-I)), n > 0.
According to (56) and (57),
(€0) o R vls k@), n2o0-

Then the inplication iii) ==> iv) gives

(m) c(v)
(61) |(zI—D )T v| < -—1-1——-——- |z >1 .

Mani pulating with the definitions, we find

1-|x | 1-In)

(zdI-D ,za=}\a+2—z.

(62) (zI-Ba)-l

Let z lie on the circle zZ, of radius 1 about the point
W/ In ) (or 4 it A, = 0). The ninimmof |z | on this circle

occurs when z is closest to the origin, and an easy conputation gives

| 1|y
(63) |za| -1>—%—, z on

%1 .

Thus it follows from(61) - (63) that

17




(64) |(zI-Ba)'lv| < Ks(m) o(v) , z on Z,.

From (44), the eigenval ues u; of B, are

2(n M)

My 7 1-|xa| s My € Cy 5y =0, N g Ca

Si nce each A € Cy is connected to Ny by a chain with fewer than m

i nks,

(65) e ml-ltzl j;llxal
Thus for all i,

(66) oyl <1/2 .

Using only (64) and (66), we will obtain the required bound (70); this
result may have sone independent interest. Looking a second tine at
Morton's argunent, we put all the by into one cluster, so his X = 1.
Denoting by P a divided difference formed at some p + 1 of the

points ., (11*) becones
(67) IP(zM)| < PP .

Carrying out the contour integration (14*) over z,, and applying (64),

(16%) sinplifies for g<m to

(68) Ip%(P)| < ®,(m) c(v) .

18



Here P(z) = (ZI-Ba)-l TT (z-n;) is a mtrix polynonial of degree Iess
than m. As in (4), Bg v is just the divided difference of order

ml of the product 2" p(z)v formed-at the uye Constructing a

Leibnitz rule, this divided difference is the sum of i1 products,

each bounded by
(69) PP (R (z)v) | < 07T ()" Kym) (V)
Consequent | y

(70) |55 v] < 0"THE)® K(m) C(v)

Substituting (70) and (56) into (54), the infinite series converges to

give the final estimte
(71) (v, )Y < K Q) .

W still have to eliminate the hypothesis (43). It is easy to choose

M (after triangularizing A for exanple) so that

A= (1-¢)a + 52M

satisfies (43) as e >0 . Then for |v|=1 it follows fromiv) that

(72) (o2 (-e)) ™| < Ty < m(ﬁ“’% , 9—)

for |zl >1, where C=sup c(v)* (The uniform boundedness theorem

applied to iv) assures that ¢(v) can be chosen so that C < =,)

19



Therefore
(73) l (ZI—AG)'lv| = | i [62(21-(l-e)A)_lM]n (zI-(l-e)A)'lv|
0 !

< 1-ecl:ny . |§%‘-’i

Since (43) holds for A, there is an H > | W th

1+p(A_) \2
€ . 1/2 _ K(m) Cﬁv!
(74) A"é HeAe = ( 2 > He’ (Hev,v) < 1-eC|M )

As € -0, some subsequence of H‘E converges by conpactness to an

H>1I, and taking the limt in (74) gives v).

5. In this section, we establish the italicized statement about §
which follows Theorem |I. Again we start by assumng (43), and we recall
the left eigenvectors T defined in (33). Suppose we now nunber the

eigenvalues in the order that they fall into clusters, and |et C1

- i 242 = 5% i
contain }\l’“m'}\q' W want to prove that H Sl 8.5 where the first

g rows of s are linear combinations of r,| 6905 and the ot her

1
m-q rows are zero. Fromthe definition (45),

(75) Hv, =0 for k>q, rank (H) =q .

Witing Hi/g for the positive sem-definite square root,

(76) |H';t/'?rk| 2 ,(Hlvk’vk) = o for k >q.

20




By (34), rl,.,“,rq span the orthogonal conplement of the space generated

by Vgr1? oo Vit Therefore each row of Hi/g is a conbination of

Tysene,Toe Let V be the space spanned by the col ums of H:lL/Q. Ve
onornal bases

construct orth Uyseeesty and Uq+l,...,um for V and

V"‘. Taking the u. as the rows of a unitary matri.x Ul, we have shown

t hat 8, = UlH:lL/2 has the required properties; of course

1/2 1/2
% S = * - H
ST = H U UHET =H

For every C,p We construct in the sane way an sa sati sfying

H ws%§. : . ) : .
o SaSa.rOW J of 5, s non-zero if and only if xjeca. Then

defining § = ml/QZSa, and recalling the multiplication rule (37),

we have S¥S = H,

Let X = SA5 "', Since the first rowof Sis by construction a com-

bination Of T1seeesTos and r A = ATy the same is true of the first
row of SA. This nust coincide with the first rowof Z S, which is

a conmbination with weights 4—13' of the rows of §. Again by construction,

the rows of S after row q are conbinations of SNRPRTIIE Usi ng

the linear independence of the r, and also of the rows of S, we

concl ude that ZJ_ =0 for j >qg.In the sane way, A .= 0 whenever
)

xi and xj are in different clusters. Therefore

0

s

21



the square bl ock Ia on the diagonal corresponding to the cluster Ca'
Wth a final unitary simlarity U of the same block form we triangul ari ze
each Txa separately. Thus with S = U'S, we have H = S*3, and

A = sas™t

has the required (triangular, block diagonal) form

W have still to estimate the off-diagonal entries of A'. Denoting
by a prime the result of applying the simlarity S, we conclude fromthe
reasoni ng of the previous paragraph that AC;, I(;, B(’x and Lio‘i € Co:)
all have zero entries outside block a. Since Iolz is the sum of the
right nunber of nutually orthogonal projections I, we know that I(;
is just the identity matrix in its block. Therefore by (47) the off-

di agonal entries are introduced through BCIZ. According to (48),

|B(;| <1, and the sane nust be true of all its entries. Then the off-
di agonal entries of Aclx are bounded by (1-|>\a\)/2 < (1-|>\i|)/2,

%’i € Ca‘

Again we nmust circunvent (43). Recall that the sequence A +A
led to a subsequence H - H; for each He we have seen how to con-
struct Se, and taking a further subsequence, we get S, ~ S, where
s*s = H Unless (43) is violated by a repeated eigenvalue of nodul us
one, the clusters for A and A coincide for small e, Therefore
the limt matrix S gives an A = sas™ with the right properties.

In case A has a repeated eigenvalue with P‘j' =1, we still know
A is upper triangular and |A’| = 1; but from this the off-diagonal

entries in the rows containing A, nust vanish, and once nore A" is

J
all right.
It is worth remarking that in v), Hand S cannot be made con-

tinuous functions of A The famly

22




A7= s 7 real

satisfies iv) with some c¢(v) independent of 7. Since the eigenval ues
of A7 have nodul us one, A7 nmust be diagonal with respect to H7 to
satisfy Ax H7A7 < H7. However, one of the eigenvectors of 7A is
discontinuous at 7 = 0, from which one easily verifies that H7 is

t 0o.

6. Wth the definitions
(78) 7(P) = max Re %.J,(P) , Re P = .1.)."'2_13*_

we can state the analogues of Theorems | and Il for the exponential case.

Theorem II1. For a suitable K (m depending only on the order m

of the matrix P, each of the following statements inplies the next:

i') HP + P*"H < 0 for some H> 1 wth (Hv,v)l/EZC(V)

for V| |- 1.

ii') Re sps™ <o for some S with s8] < 1 and

|sv] = C(v) for |v| = 1.
Pt _
iii') Jev] < v) for all t > 0 and |v| = 1.
iv') |(z1-p)v| 5%—‘% for Re z >0 and |v| = 1,

V') HP + P < ¢(P)H < 0 for some H> 1 with

V2 o e (m ov) for v = 1.

(HVJ V)
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Theorem IV.  Suppose iv') holds, and the eigenvalues of P satisfy

(79) 6|>\i-7~.j| > -Re A, for all distinct i,j .

]

Then HP + P¥H < 2 7(P) H< 0 for some H> I with
(Hv,v)l/2 < m(2+l+m8>)(J.+26)2m'5 C(v)

for |v| = 1. Furthernore, there exists S such that H = s*s and
sas™t is di agonal .

O course Theorem IV goes al nost exactly as Theorem Il did; one
makes the choice z, = -Tk in (26), as in the original paper by Kreiss
[9], and reconputes (28), (29), and (30).

In Theorem |11, the step iii') => iv') involves the Laplace trans-

formin place of the power series in(17):
® t Re z

(80)|(zI-P)'lv| = l[ e~ 2t Pty at| < C(v)fe_ € %at = c(v)/Re z .
o0

The cl uster Ci is now formed by starting with an eigenval ue >\1
of largest real part (necessarily < 0 by iv')) and connecting to it

those eigenval ues which can be reached with links [ess than -Re xl/hm.

Then ¢/, Care forned in the same way, In analogy with (43) we

may tenporarily assunme that

(81) 1(P) < 0 and A, £ xJ. for i £ ,
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and then renove this restriction as before. now we can define

| 2(n_-A.)
= - - a 1
(82) Ia-ZLi s Pa-inLi, Gazz_WLi s
sunm ng over indices | such that A € Cd Next we | et
_ - n —
(83) TR NCOLCRIIL IS P

Fromthe Orthogonality Of the Li, |t fo||ov\5 as usua| that

-~

8L Y
(84) Holy * 12 H=2H

Qoviously for n >0
n * n
(85) (@%)%(c 1) (64T (@) >0

or in other words,

)n+l(G )n+l + (Gi)n(G )n

n n+l L4\ *
(86)  (a)™(e )™ + (0™ (a) < (@2) 7@ ) v a

where the last termis to be interpreted as 1x 1 when n = 0.
aa

Summing (86) from 0 to e,
(81) HGy * GEH <2 H

From (82) we have
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(88) P =AI -—5= G, ,
so that (84) and (87) yield
(89) HPy, + BEH < Re MNH, < 7(P) Hy

Summi ng on « and using orthogonality,
(90) HP + P < 7(P) H .

The inequality H> | is (53), and we have now to estinmate (Hv, v).
This time there are three possibilities. The first two — to expand
I, and Gg as suns of resolvents, or to repeat the argunent of Theorem
| with appropriate changes — would be safe but tedious. Therefore we
shall try to derive the estimate from Theorem | itself, using only sone
essential remarks about its proof. In fact, we now give a conplete
proof of the last step in Theorem Il wthout using the H defined
explicitly in (83), and then identify the new H with that H.

For a given positive integer k, let w= ez/k, so that

Rez > 0 <=> |w| > 1. Then as in (73)

(91) I(wI-eP/k)_lvl = k l(zI-P+Fk Z)-:]‘v|
< k| (21-P) " 1v| < c(v) 1
T | @-n) | TR R 1. Re—éT
1 c(v)
< |wl—l ﬂFl{’,.ZT )
- T
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where we used u < e” - 1 for real u. Estimating the perturbation

(92) |Fk’z‘ = k}(ez/k-l- —;—)I—(eP/k-I- E)\ = o(%)

as k-, uniformy for z in a conpact set z. If Rez >0 in

Z, we have
C(v
(93) C(v)=sup—l-rL—T—»C(v) as k —» « ,
k z . Clry
Re z

Ve want to deduce from(91) that Mrton's result (55) holds for

A=e P/lf in the strong form

(9k) ]ePn/kvl < K (m)c(v) for n20, |v] =1

Then Theorem 1 provides an explicit B> | such that

1/2

(95) (v, v)

< K(m)K:L (m)Ck(v)

2 - 2

' P/k) \° 1(P)/k \°
(96) eP*/kaeP/kS (E'_Qﬁ.e_ﬁ{__) H'k- <;Le____/__> Hk .

As k - », sone subsequence H converges toalimt E>1, wth
J

(97) (Fv,v)7? < KK, (m)C(v) = K’ (m)c(v) .




Expandi ng (96) in powers of k, subtracting H, multiplying by Kk,

and taking the limt as kj—->°°, we get

(98) HP + P¥H < 1(P)E .

Al this is justified if, in applying Mrton's argunent to eP/k,

we actual ly need the estimate (91) only for z in a conmpact set Z
in the right half-plane. It turns out that this is actually the case.
Morton uses the resolvent condition in the contour integrations (1k*),
where w = ez/k iies on circles wth

Rexo/k -Re A _iIm)s.‘Q/k
(99) radius = § = 1-e < —, center = (1-+-26a)e .

On this contour it is easy to bound z by Re Ay and Imxa.

To make the identification H = H we want to match the clusters

c& derived fromP with the clusters ¢, derived from eP/k, k

)\.O/k o

* maxi mum nodul us, and also the ratios which arise in formng clusters

large, Cearly Ay of maximum real part corresponds to e

satisfy

1 - Ie%'a/kl Re }\Ot
(lOO) >‘-./k >\./k b 4 HmP\..-?\.l as k - ®
i 3 i
lLmle -e

N, /k
Therefore A, € ¢/ if and only if e ™ €c_, if we exclude eigen-

val ues of equal real part (which may nake the choice of Ao ambi guous)

and al so exclude the possibility that the limting ratio in (100) is one,
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Wth these exceptions,

ple VEOAN 20ghy)
(lOl) Ba = Z }\O[k Li —)Ga = —PW—— Li
1l - |e l
and B = IimHk = H. In the excluded cases, as in the case when (81)

fails, the proper estimate for (Hv,v) follows by a continuity argunent.

Repeating the proof in Section 5, we can describe a further pro-
perty of H

For some Swith S S=H P = sps7t s upper triangular,

with P:ij = 0 unless %'i and )"J are in the same cl ustera,ﬂ' and

2
There is one additional consequence of our nethod of proof which

lPij‘ <Znin (-Re hy - Re A).

is significant in the applications to partial differential equations:

The conclusions in v) and v') nmay be changed to

2-6+6p(A) 2
A¥HA < | —— | H and HP + P*i < et(P)H ,

where 0 < 6 < 2 and the constants X and K depend on 6 as wel |
as m

It follows that our space L2(H), over which (5) is to be well-
posed, does not depend on the constant multiple of the identity which
was subtracted in order to make o< 0. In other words, the ninimal
renorming famlies H(w) used to achieve (7) are equivalent for any

two choices a > o.
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7. W want finally to extend TheoremI to apply to matrices such that

p(A) = 1 but A" is unbounded; this occurs if and only if some eigen-
value of modulus one has a non-sinple elementary divisor, and conse-

quently too few correspondi ng ei genvectors. The standard exanple is

h=(g 1) -

It is easy to see that all the conditions i) - v) fail for A}, no

matter how large c¢(v) is chosen; in particular, IAQI grows like n
and the resolvent has a double pole at z = 1. The following result

shows that such a relationship is typical.

TheoremV. There exist constants a(s) and g(s) depending on

s >0, such that with A = e and the constant K(nm) as in Theorem

|, each of the followi ng statenents inplies the next:

n l .
i1") For <e<1l, A*HA <He for some H > | wth
2 € € ¢ € —

(8v, )2 < c(v)/(1-0)° for y|= 1.

1 -1 -
ii") For 5<e<1, [SASTT|<1for some s_ with

IS;]'I < 1 and |s€v| < ¢(v)/(1-¢)® for V= 1.
iii”) |a%| < a(s)(n+1)%c(v) for n > o and |v| = 1.

iv”) | (ZI-A)-ll < a(s)s(s) lz1°c(v)

(lZI-—l)S+l

for |z > 1 and

v") For %<e<l, there exists H > | such that

A% H A < H_and (Hev,v)l/2 < OAS)BEiKgg)C(V) for | |= 1.
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Proof, The first two conditions are equivalent as before with

H = 8% s_. Gven ii”), we have for lv| = 1

(103) |Ar€l v| < c(v)/(1-¢)® , %< e< 1

(104) |a%| < c(v)/e™(1-€)® < a(s)(n+1)%C(v) » >0

by maxinmzing the denom nator with respect to e, It follows that iv')

hol ds; for |z| > 1,

N o Ay S = (n+1)®
(105) | (z1-8)""v| = | ] zn+l| < afs) ¢(v) % |Z+|n+l

L a()8(s)ew) |2]®
(Izl‘l)s+l

In order to apply Theorem| e conpute
-1 _ 1 -
(106) l(zI-Ae) v| = I-e- (2 I-4) lv|

a(s)p(s)e(v)|z/el® _ a(s)a(s)c(v)|z]®
e(]7/]-1)° (|2]-e)**

Sa(T;{?Ei)C(v) < |2] )S< a(s)B(s)c(v)
7€) T (a1 (1-)®

Now the last step in Theorem| yields v"),
& |eave to the reader the exponential anal ogue of Theorem V, which

arises naturally in the attenpt to take a = ¢ in (7). When equality is
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inpossible to achieve, as it is in our exanple (1), a sequence of norns

H€ with a decreasing to o retains nmore information about the true

eP(w)t

growth of than any single norm-with respect to which a > .
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