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MATRIXTHEOREMS FOR PARTIAL DIFFERENTIAL

AND DIFFERENCE EQUATIONS

John Miller and Gilbert Strangl

We want to reexamine the Cauchy problem for systems with constant

coefficients, together with the matrix questions which arise after a

Fourier transformation, Our main results are in fact purely matrix-

theoretic, so that after motivating those results in the following para-

graphs, we hardly need to mention partial differential equations again.

We do hope, however, that our ideas will prove to be useful locally in

studying certain systems with variable coefficients; such an application

will of course require a much fuller discussion of differential operatorsa

A simple example will illustrate the problem we solve here, Con-

sider the system

(1)

which has the solution

1
This paper developed from the first author's M,I.T, thesis; the second

author was supported by the Office of Naval Research and by the

Stanford Linear Accelerator Center,
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(2)
af

u,(t) = fl , u,(t) = f2 + t '-& .

Since we may choose fl E L2(-a,=) such that I+ 9 L2, the system (1)

fails to be well-posed over L2" Nevertheless, on the closed subspace

normed by

(3) lbl12 = / lull2 + 121’ + Iu, I2

we no longer lose a derivative, and (1) becomes well-posed; in fact,--_

(4) lb(t) II 5 (1 + t GG + $)1’2 l\f 11 5 etj2 llfll .

What we want is to associate with more general systems such a sub-I

sp,acet maximal in a certain sense, over which the problem is well-posed.

Without the maximality requirement, this question has been treated

independently by Birkhoff and others (see [l]).

. After Fourier transformation, a linear differential (or pseudo-

differential) system with constant coefficients looks like

(5)
A

&l

a t
= P(U) & G(w,o) = &.I)

where w = (w
1' �  l d-$,

9 = ($(m,t),  . . .,km((Dtt)), and the m X m

matrix P is the symbol of the given differential operator. To stay

within the framework of the Fourier transform we introduce the Hilbert

spaces L20-0, normed by -



Here H is a measurable Hermitian matrix function, normalized by the

requirement H 2 I, i,e,, H - I shall be non-negative definite,

Let us call (5) well-posed over L2(H) provided that for some Q,

(7) Ib(t)llH <, ‘?ifll,

for all t > 0 and all initial data f, Solving (5), this can be made

more explicit:

ew4t H(w) eP(co)t 5 e2& H(o) .

Differentiating at t = 0, we come to a still simpler equivalent con-

dition; for almost all 03,

(9) H(o) P(w) + p"(w) H(w) 5 &H(U) L

(To recover (8)’ post-multiply by exp(P(o3) - a)t, pre-multiply by its

adjoint, and integrate.) In the example described by (1) and (3), for

instance, the condition (9) becomes

(10)



Our definition (7) is stronger than the usual one, which permits

a constant factor M on the right side. Nothing is changed, however,

since if (5) is well-posed in this wea,ker sense with respect to I'

there is an equivalent norm H2 such that (7) holds on L2(5) = L2(Hl)#

This follows from Theorem III below, and in fact it is the chief result

of the Kreiss theorems which our work extends,

It is no trouble to bound Q! from below. If some P(U) has the

eigenvalue h with eigenvector v, we must have from (9) that

--. ((HP + p"H)v,v) 2 &(Hv,v) ,

which yields

(11) Reh<a.

Therefore a is not less than

(12) CY = sup Re hj(P(o)) ,
wj.

and we must impose on the symbol P the Petrowsky-Gxrding  condition

CJ -< 43. Subtracting a constant multiple of the identity, we shall in

fact suppose 0 < 0. Now fixing Q = 0, there is no doubt that we

can construct H(o) to satisfy (F),, The delicate problem is to keep

H as small as possible; this we achieve, up to a constant depending

only on the order m, in Theorem III. The corresponding space L2(H)

is consequently maximal; its norm is weaker than that of any L2(H')

over which (5) is well-posed.



The theory of partial difference operators leads to a closely related

matrix problem, In place of (5) we have

(13) G(w,t+k,k) = $$a) f&&k), &qO,k) = %((u, 8

The
%( )

0 are called amplification matrices; we don't want to discuss

such systems fully, but we need to explain that the time-step k ranges

over some interval 0 C k < kg* The analogue of (g), equivalent to the

condition (7) on L2(H& is simply

Again there is a lower bound on QI namely

(15) 6' = sup
9 j,k

k 0

Therefore we impose on (13) the von Neumann condition 0' < % By a

simple manipulation, we may achieve CJ' < 0 and fix a = 0 as before@

Thus our two matrix problems can be very concisely stated: given suit-

able P and A, to construct two corresponding matrices H > I as

'small as possible so that

HP+ l=HLO and A*HA < H ,

respectively, Since the second problem is perhaps the more familiar,

and its solution leads to a solution of the first, it will be treated

in full detail, We need the definitions

5



Iv1 = ((vl12+ a.9 +Iv,~~)~~, IAl = sup
l<jsm

I’j(A)

. .

Theorem I, For a suitable constant K(m), depending only on the

order m of the matrix A, each of the following statements implies

the next:

i> A*HA < H for some H > I with (Hv,v)112 = C(v) for Iv1 = 1.

ii) ISAS-l( < 1 for some S with IS-'\ < 1 and \SV~ = C(v)

for v = 1,I I --.

iii) IAnvl 2 c(v) for all n > 0 and v = 1.I I

iv> l(z~-A)-'vl  5-e for all complex 1~1 > 1 and all

I IV = 1.

V> A*HA <_ ( 1+gcA))2 -H < H for some H > I with-

(Hv,v)~~ _< K(m) C(v) for all Iv\ = 1.

. This theorem is very close to one originally proved by Kreiss [2],

and studied subsequently by Morton [3] and Morton and Schechter [4],

Therefore we should clarify those respects in which it is new:

a) The previous estimates in v), established by induction on m,

had a power ,p(m) in place of C, with p(m) 3~0 as rn-,?

b) We estimate the action of H on each vector v, where earlier

there appeared only the single constant C - s12p C(v). It follows

that the H in v) is minimal in a stronger sense than just in norm:

if H' > I and A*H'A < H',- then H < K2(m) H'.
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c) .We construct the new H in v) explicitly, leading to the

following additional information:

with

and

For some S with S*S = H,- A'= SA& is upper triangular,

are in the same cluster (see below

in this case,

A trivial modification of S reduces this constant $ to any

other, say l12m, so that the absolute row and column sums (the I co

and I
1 norms of A') may also be made less than (1 + fdmp*

It remains to determine the behavior of the best constant K(m).

Our constant (which we don't compute) grows roughly like m!, while

examples of McCarthy and Schwartz [5] show that it must grow at least

as fast as some power of log m; this leaves a wide gap, It is not

surprising that K(m) + 03 in view of the Foguel-Halmos counterexamples

[6,7] to the Nagy conjecture.

2, In this section we establish the first three implications in Theorem

I* These are easy steps, valid also for operators on Hilbert space.

-
With H = S*S, the equivalence of i) and ii) follows from that of

the inequalities

.
(A*HAv,v) 5 (Hv,v) for all v

lSAv12 5 lsv12 for all v

@s-1w)2 < Iw12 for all w l

In the applications, ii) corresponds to a change of variables and i)

to a new norm, In one respect the use of H is to be preferred;

7 ’



it may depend more smoothly on some relevant parameters than does an

improperly chosen S, The positive square root S = H112 is as smooth

as H, but a diagonalizing S may notbe, although the latter change

of variables looks especially desirable. Mizohata [8] points out this

difficulty when d = 2, arising from the multiple-connectedness of the

circle; there is no difficulty in his context with H,

To show that ii) implies iii), we compute

( 7)1

IA”v1 = IS-‘(SAS-‘)”  svl < ldjISid(n  IsVl 5 c(V) -

--.

Finally, given iii), we have for lzl > 1

\(zI-A)-%1 = 1 ; $ I 5 1 $-+ = +& *

3* Before coming to the final step in Theorem I, we warm up with a more

special result of the same kind, which shows how the geometry of the

. eigenvalues enters the problem.

Theorem II. Suppose the resolvent condition iv) holds, and the

eigenvalues of A satisfy

( 8)1 slyj( 21 - IhjI for all distinct i,j .

Then A*HA <_ p2(A) H < H for some H > I with

(Hv,v)~~ 5 m(2+4m6)(l+2G)2m-JC(v)
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for v = 1, Furthermore, there exists S such that H = S*S andI I
Sd- is diagonal,

-.

Proof P From iv) it is clear that no eigenvalue lies outside the unit

circle, so PW 5 1, Although (18) admits repeated eigenvalues of

modulus one, suppose for the present that the eigenvalues are distinct,

Then we construct the projections

(19) ~~ = 'IT
j#i

A-h.

x-f
i- j

Y llisrn .

--.
Applying Li to the eigenvectors vltWe*,v ,

m we find L.v. = 6..v
=J =J j'

so there are the standard identities

(20)

(21)

L; = Li , L.L = 0
13

for if3

m

c1
LiEI,

m

c h.L = A .
1 ii

Now define the Hermitian matrix H by

(22)

From (20) and (21) we have

m
H = m c LT Li I

1

(23) A*HA=CxL*mCLYL.Chk\ =mxlh
33. 11 i

To prove H 2 I we need only (21) and the Schwarz inequality:
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lv12 = 11 Liv12 <rnz ILiv12 = (Hv,v) .

. .

From (22)'

(Hv,v) 5 m2 max IL~vJ~ ,

and the crucial estimate is that of I IL v .
i

We use the resolvent con-

dition in the most natural way, by expanding

(26)
--.

Li = 2 bik(zkI-A)-l  s
k=l

We shall choose zk = l/5;,; if 1~~1 is 0 or 1, then it is no

longer true that 1 < lzkl < ~0, and a simple limiting argument is

required in what follows, To compute the bik, apply (26) to the

eigenvectors; for each i,

cm 6 ij = f bik(xk-'-kj)-'  , l<j<_m j
k=l

Solving this system, we get

(28) I I
l$$ = W-lhiIj TJ

pjq2

l i Ihj-hi  I2

k#i .

10



For any distinct i and j,

(30)
1-X.h.
.3 lrb I
A.-h, =
3 1

';j + (l+(hjI‘)  * < 1 + 26 *
3-i -

Putting the pieces together,

(31)
lbikl ‘tv>

ILiVI L C IbikI I (%I-A)-~vI SC 7

5 [2(l+26)2m-2 + (m-l)415(1+28)2m-3]  C(V) l

--.

Simplifying the last term and using (25)'

(32)

rky

a

(33)

(Hv,v)~~ s m(2+4m6)(1+26)2m-3 C(v) .

To complete the theorem, we introduce the left (r,o$ eigenvectors

so that

Av. j j, rkA=\rk *=hv
J

hltiplying the first by rk and the second by v., there is the
J

familiar biorthogonality condition

(34) rkvj = (0) for j + k *

Since v.
J

cannot be orthogonal also to r.,
3

we may fix the eigenvectors

11



by the normalization

(35) mlvj12 = 1 and
'jVj

‘& (1) Y l<jsm o

It follows that

(36) Li -jiY=vr

since both sides, applied to V-Y3
give 6. .v..

13 3
Now let the rows of S be rl, . . . . 'my so that SAS-' is diagonal.

--.
By matrix multiplication

(37) s*s= (rT* a rg)( 1’)- c ryri -

rm

Using (35) and (36)’ this is precisely

(38)
m
C r-F(m~ Vi)ri = m c
1

LyLi=H w

Finally, we have to return and admit eigenvalues hi of modulus

one and multiplicity M > 1. From the resolvent condition iv), hi

possesses M linearly independent corresponding eigenvectors; one puts

A in Jordan form to compute the resolvent (zI-A) -1, and then lets z

approach hi. The eigenvectors may still be chosen to satisfy (34).

Let us number the eigenvalues so that hl,...,hN are distinct,

and the rest are duplicates of these. Then instead of (19) we want

12



(39)
N A-h.

Li = hm r;_r;S. y i = ly*rayN a
j=l i- j . .

j+i

Simply replacing m by N in all the equations (20) to (32), the first

part of the proof continues to hold. In place of (35) and (36)’ we have

~1~~1~ = 1 and rjvj P (1) , lsjlrn

(41)
-w.

Liz Vi ri + *I* + Vi ri ,
1 1 M M

where h. ,rrr,&
5 =M

are the appearances of the eigenvalue h.. Then we
1

may once more identify

m
(42) s*s = c

1
rr ri = f rr(NvT vi)ri = N f Lr Li = H 1

1 1

Notice that when all I Ihj = 1 we may take 6 P 0, so that
a

(Hv,v)~~ 5 2m C(v), Even this estimate is too large, since McCarthy *

[5] has shown that in this special case iii) implies v) with K(m) E 1,

IA similar comment applies to Theorem 4, and is especially relevant for

hyperbolic equations, in which Re hj(P(~)) E 0 by definition,

4, To complete the proof of Theorem I, it remains to show that iv)

implies v). From iv) we know the eigenvalues satisfy IhjI 5 1; we

shall put them into clusters as Morton [3] has done, Into the cluster
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C1 goes an eigenvalue, say Al, of largest modulus, together with

all others that can be connected to h1 by a chain of eigenvalues, each

link having length less than Cl- IAl I Wm. cg is formed in the same way

from the remaining eigenvalues, and so on until every eigenvalue enters

one of the clusters Cl' cr.l l ., Of course r < m; when r = m, our

basic constructions coincide with those in Theorem I, Notice that an

eigenvalue of modulus one and multiplicity M appears alone in M

clusters.

Let us suppose that

(43)

--.

p(A) < 1 and hi

and remove this hypothesis later by a continuity argument.

We want to associate with each cluster several matrices from which

to construct H. Given the cluster
%I!'

let ha be the eigenvalue of

+ A
j

for i + j ,

largest modulus in Ca from which the cluster was formed. Recalling

the projections L.
1 defined in (19)' let

.
(44) 1a = cLi , Aa = 1h.L BQ, = c

‘(‘i-ha>
i i ' "-l",lLi'

sming over the indices i such that hi c C l Definea

Ha = I; Ia + f (B;)n(Ba)n .
1

From (20)’ Ia acts like the identity relative to C
a'

and matrices

associated with different clusters are orthogonal, In particular, we

write down

14



From the definitions it follows that

%
l- lh,l

= ho;ca, + 2 Ba

I*HI =Ha? B*HB = H  -I;Ia<H I:a aa aaa a - a

Then from the appropriate triar)@;le inequality

From (21) we see at once that

r

c
1
IanI, f Aa=A 3

1

~QW the matrix we want is just

r
H=m c

1 Ha l

'Combining the last three equations with (46)'

To see that H 2 I we use the Schwarz inequality to compute

(53) lV12 = 1 f Iav12ei r c II&vi2 5 m ~(Hav,v) = (Hv,t) .
1

15



The essential problem is to bound

(54) (Hv,v) = m c (lIavj2 + f IB;vl') l

a 1

There are two means of carrying out this estimate. Conceptually, the

simplest possible approach is to expand Ia and Bna as sums of resolvents,

just as Li was elcpanded in (26)' and then apply iv). Unfortunately,

the choice of the zk has to be more complicated than it was there,

and the consequent algebra is a sorry mess. Therefore we adopt i more

economical alternative; with some minor refinements, the estimates we

need can be lifted from those made by Morton [3]. We denote his equations

by an added asterisk.

Morton's final result is

(55) iv) => 1~~~1 5 Kl(m) sup C(v) ,

but his proof works without requiring the supremum on the right side,

by noticing the action on each v in (13~).(16~) and (18*). Further-
.

more, his estimate of Anv is found precisely by bounding the contribu-

tion from each cluster; thus when n = 0, i.e., v = 0 in (IS*),

(56)

and also when n > 0,

(57)

16



Now we introduce one more matrix associated with Ca:

(58) Da = Aa + ha(I-Ia) .

From the identities (46)’ we know

(59) D; = Ai + $ (I-la) , n > 0 *

According to (56) and (g),

(60) -a_ ID, VI 5 K3(m) C(v) , n 2 0 w

Then the implication iii) => iv) gives

(61) ~(~I-o,,-~v\

Manipulating with the definitions, we find

(62) ‘-IX,1
(zI-B,)-~ = 2

‘-l’al
(z&D,,-' , za = ha + 2 z *

Let z lie on the circle Za of radius 1 about the point

:4+,&l (or 4, if Aa = 0). The minimum of lz,I on this circle

occurs when z is closest to the origin, and an easy computation gives

(63) I Iza -12
‘-Ihal

2' , z on Za a

Thus it follows from (61) - (63) that

17



(64) I(zI-B~)-~v\ 5 K3(m) C(v) , z on 'a l

From (44)' the eigenvalues pi of Ba are

2 (hi-‘a>
Pi = �1.-lh,l  Y �i � �a ; pi = O Y �i 9 �a l

Since each hi E Ca is connected to ha by a chain with fewer than m

links,

(65)
--. ‘- l’al ‘- l’al

l’i-‘al L m ‘7 = 4 *

Thus for all i,

Using only (64) and (66), we will obtain the required bound (70); this

result may have some independent interest. Looking a second time at

Morton's argument, we put all the 1-1.
1

into one cluster, so his X s 1.
.

Denoting by Dp a divided difference formed at some p + 1 of the

points pi, (11%) becomes

IDp(Z">I <, n'($,"-" s

Carrying out the contour integration (lb*) over Z, and applying (64)’

(16*) simplifies for q<m to

(68) ID9(P>l  5 K4(m) c(v) *

18



Here P(z) = (zI-Ba)-l 17 (z-pi) is a matrix polynomial of degree less

than m, As in (4*), Bi v is just the divided difference of order

m-l of the product zn P(z)v formed-at the pir Constructing a

Leibnitz rule, this divided difference is the sum of 2m-1 products,

each bounded by

(69) ~6p(zn)Dm-p~1(~(~)v)~ 5 nm-' ($n Kg(m) C(v) 1

Consequently

--.

(70) lB; VI 5 llm-'($)" Kg(m) c(V) m

Substituting (70) and (56) into (54), the infinite series converges to

give the final estimate

(71) (Hv,v)~~ _< K(m) C(v) e

We still have to eliminate the hypothesis (43). It is easy to choose

.
M (after triangularizing A, for example) so that

. AE = (1-e)A + e2M

satisfies (43) as E +O
+* Then for v =I 1I I it follows from iv) that

(72)

for I Iz >l, where C =I sup c(v)* (The uniform boundedness theorem

applied to iv) assures that_ w can be chosen so that C < CD,)

19



Therefore

(73) 1 (zI-Ac)-‘vl s 1 f [c’(zI-(l-E)&-M]”  (ZI-(l-E)A)-lVl

0
-.

Since (43) holds for Ae, there is an He > I with

A; HeAe <- ('+fAE'&; (HEY,Y)~~ 5 ?w .

--.

As E +O, some subsequence of H
E

converges by compactness to an

H L I' and taking the limit in (74) gives v).

5. In this section, we establish the italicized statement about S

which follows Theorem I. Again we start by assuming (43)' and we recall

the left eigenvectors rk defined in (33). Suppose we now number the
,

eigenvalues in the order that they fall into clusters, and let C
1

- contain A
1' hq*l ... We want to prove that Hl = ST Sly where the first

q rows of Sl are linear combinations of r1� l **Y�qY and the other

m-q rows are zero. From the definition (45),
.

(75) Hlvk = 0 for k>q, rank (Hl) = q .

Writing Hti2 for the positive semi-definite square root,

(76) I $I2 21 vkl = !H1vk’vk) = ’ for k > q .

20



By (34), ry-,r
q

span the orthogonal complement of the space generated

bY vq+l' sasyv 0 112
m Therefore each row of Hl is a combination of

rl' aao,r +
q

Let V be the space spanned by the columns of Hl112 u We

construct orthonormal bases
uly 904,U and u

q q+l' rrryum for V and

VId: Taking the u. as the rows of a unitary matrix U we have shown

that Sl = UIHtl' 'has the required properties; of courz:

s* s
1 1

= $I2UT UlH;12 = H
1 "

For every Cd we construct in the same way an S
a satisfying

--.

Ha = S*  S l row j of
a a' Sa

defining 5 s ml/'Cs

is non-zero if and only if hj c Cae Then

a, and recalling the multiplication rule (37)’

we have s*E = H,

Let X = EG -II Since the first row of 5 is by construction a com-

binatioh of rl,llo,rq, and rkA =
3srky the same is true of the first

row of -A, This must coincide with the first row of x g, which is

a combination with weights -
4 3

of the rows of 5, Again by construction,

the rows of 5 after row q are combinations of
. rq+l' rr*,r .m Using

the linear independence of the rk and also of the rows of x, we

conclude that -
4 3

= 0 for j > q, In the same way, z.. = 0 whenever
13

xi and h
j

are in different clusters. Therefore

(

pi
4

x=
0

0

0

J

Y

'r

21



the square block xa on the diagonal corresponding to the cluster Ccl!*

With a final unitary similarity -U of the same block form, we triangularize

each xa separately. Thus with S = c-g, we have H = S*S, and

A' E s& has the required (triangular, block diagonal) form.

We have still to estimate the off-diagonal entries of A.'. Denoting

by a prime the result of applying the similarity S, we conclude from the

reasoning of the previous paragraph that Ah, I&, BL and L& E Ca)

all have zero entries outside block Q. Since 1; is the sum of the

right number of mutually orthogonal projections L!,
1

we know that 1;

is just the identity matrix in its block. Therefore by (47) the off-

diagonal entries are introduced through B&. According to (48),

I IB; 51, and the same must be true of all its entries. Then the off-

diagonal entries of A& are bounded by (1-Iha\)/ < (1-lAi\)/2,

hi c Ca.

Again we must circumvent (43). Recall that the sequence Ae +A

led to a subsequence He +H; for each He we have seen how to con-

struct S
E'

and taking a further subsequence, we get SE + S, where

.
s*s = H. Unless (43) is violated by a repeated eigenvalue of modulus

one, the clusters for Ae and A coincide for small es Therefore

the limit matrix S gives an A' = SAS-l with the right properties.

In case A has a repeated eigenvalue with Jhj( = 1, we still know

A' is upper triangular and IA'I = 1; but from this the off-diagonal

entries in the rows containing h.
J

must vanish, and once more A' is

all right.

It is worth remarking that in v), H and S cannot be made con-

tinuous functions of A. The family

22



A =
7 3 7 real

satisfies iv) with some c(v) independent of 7. Since the eigenvalues

of A
7

have modulus one, A
7

must be diagonal with respect to H to
7

satisfy AT H7A7 < H o However,
- 7

one of the eigenvectors of A is
7

discontinuous at 7 = 0, from which one easily verifies that H is
7

too.
--_

6. With the definitions

(78) dp> =maxReAj(P), ReP=F

we can state the analog;ues of Theorems I and II for the exponential case.

Theorem III. For a suitable K'(m) depending only on the order m

of the matrix P,. each of the following statements implies the next:

i') HP + FH 5 0 for some H > I with (Hv,v)112 = c(v)

.for v = 1.I I

ii') Re SPS-' 5 0 for some S with I&l 5 1 and

I = 1,\Svl = C(v) for Iv

iii') je%I 5 C(v) for all t >, 0 and Iv1 = 1.

iv') ~(zI-P)-'v~ 5% for Re z > 0 and Iv\ = 1 .

v') HP + FH < T-(P)H G 0 for some H > I with

- -(Hv,v)~~ 5 K'(m) C(v) for Iv1 = 1.

23



Theorem IV. Suppose iv') holds, and the eigenvalues of P satisfy

(79) QyhjI >, -Re A.
J

for all distinct i,j .

Then HP + PnH 5 2 T(P) H 5 0 for some H > I with

(Hv,v)~~ 5 m(2+4m6)(1+26)2m-3  C(v)

for Iv1 = 1. Furthermore, there exists S such that H = S*S and

SAd is diagonal.--.

Of course Theorem IV goes almost exactly as Theorem II did; one

makes the choice -X
'k- k in (26), as in the original paper by Kreiss

[g], and recomputes (28), (29), and (30).

In Theorem III, the step iii') => iv') involves the Laplace trans-

form in place of the power series in'(lq):

(80) I(zI-P>-~v~ = I/- emzteRv d-t! 5 C(v)Jemt Re 'dt = C(v)/Re z .
0

The cluster C; is now formed by starting with an eigenvalue h
1

of largest real part (necessarily 5 0 by iv')) and connecting to it

those eigenvalues which can be reached with links less than -Re hl/4m,

Then C;, l ?a) C'r are formed in the same way, In analogy with (43) we

may temporarily assume that

(81) T(P) < 0 and hi # A. for i k j ,
3
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and then remove this restriction as before. Now we can define

Ia=cLi> P =Ch.L
2(~~‘hi>

Q Ii' -'G
a =

c Heh
cl!

Li 9

summing over indices i such that Ai c C'.
Q

Next we let

(83) Ha: = I; I, + f (Gg)n(Ga)n 9 H = dH
1 a *

From the orthogonality of the Li, it follows as usual that

--.

(84) H
c?a

+ I* H = 2H
a a Q l

Obviously for n > 0

(G$ba-Ia)*(Ga-Ia) (Gajn 2 0

or in other words,

.
(86) (G$“(G~)“+~  + (~g)“+l(G  >” < (G*)n+l(G Y+' + (G*Yb 1"

a - Q! a Q a '

yhere the last term is to be interpreted as 1; Ia when n = 0.

Swing (86) from 0 to 03,

From (82) we have
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(88)

-.

so that (84) and (8'7) yield

(89) HaPa + P$ HCI: 5 Re holHa 5 T(P) Ha: .

Summing on Q! and using orthogonality,

(90) HP + WH 5 7(P) H .

The inequality H 2 I is (53), and we have now to estimate 0-N v> *

This time there are three possibilities. The first two - to expand

sYl and Gn
a as sums of resolvents, or to repeat the argument of Theorem

I with appropriate changes - would be safe but tedious. Therefore we

shall try to derive the estimate from Theorem I itself, using only some

essential remarks about its proof. In fact, we now give a complete

proof of the last step in Theorem III without using the H defined

explicitly in (83), and then identify the new F with that H,

For a given positive integer k, let w = e Z/k , so that

Re z > O <=> IwI > 1, Then as in (73)

I( wI-epik -'v = k) I I( zI-P+Fk, z ) I-'v

<
kl(zI-P)-'vi

- ~-I(zI-P)-~~ jFk ,I
t

1l T
9l- Re z

q& --4$-J ’
l- 9

Re z
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where we used u < e
U - 1 for real u. Estimating the perturbation

F
k,z'

(92) IFS,,\ = kl(ezlk-l- :)I-(epik-I-  $1 = O(i)

as k+m, uniformly for z in a compact set Z. If Re z > 0 in

2, we have

(93) c,(v) = s;p ‘+--J 4 c(v) as k + = =
l - >

--_ Re z

We want to deduce from (91) that Morton's result (55) holds for

P/kA=e , in the strong form

(94) I e=ikvl 5 Kl(m) C,(v) for n?O, Iv\=1 .

Then Theorem 1 provides an explicit Hk 2 I such that

.
(95) o-p, d2 *’ K(m)Kl(m)Ckb)

.
(96)

As k +=, some subsequence 5s
converges to a limit E 2 I, with

3

(97) (iiv,v)1~2 31< K(m)Kl(m)C(v)=  K'(m)C(v) .



Expanding (96) in powers of k, subtracting s, multiplying by k,

and taking the limit as kj + 03, we get

All this is justified if, in applying Morton's argument to eP/k ,

we actually need the estimate (91) only for z in a compact set Z

in the right half-plane. It turns out that this is actually the case.

Morton uses the resolver-& condition in the contour integrations (lb*),

where w = eZ/k lies on circles with

Reh k -Re h .i Im A k
(99) radius = 6 = 1 - e d

a 5 ka' center = (1+2Qe
cl!

0 l

On this contour it is easy to bound z by Re hQ: and Im $.

To make the identification fT = H, we want to match the clusters

%
derived from P with the clusters CQI derived from ep/k k

A ii
large, Clearly Aa of maximum real part corresponds to e cd of

- maximum modulus, and also the ratios which arise in forming clusters

satisfy

(100)
Re Aa

as k+= .

Therefore hi c CA if and

values of equal real part

only if e
hi/k

E %?
if we exclude eigen-

(which may make the choice of ha ambiguous)

and also exclude the possibility that the limiting ratio in (100) is one,
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With these exceptions,

(101)
. .

Li +Ga! = c Li

and E = lim % = H, In the excluded cases, as in the case when (81)

fails, the proper estimate for (Hv,v) follows by a continuity argument.

Repeating the proof in Section 5, we can describe a further pro-

perty of H:

--,
For some S with S*S = H, P' E SPS-' is upper triangular,

with Pi.
13

= 0 unless hi and h. are in the same cluster C' and
3 cl'

min (-Re h.,-Re Xj).
1

There is one additional consequence of our method of proof which

is significant in the applications to partial differential equations:

The conclusions in v) and v') may be changed to

.
H and HP + PnH 5 f%(P)H ,

where 0 5 8 < 2 and the constants K and K' depend on 8 as well

as m.

It follows that our space L2(H), over which (5) is to be well-

posed, does not depend on the constant multiple of the identity which

was subtracted in order to make CJ < 0. In other words, the minimal

renorming families H(O) used to achieve (7) are equivalent for any

two choices ~1: > 0'.

29



7- We want finally to extend Theorem I to apply to matrices such that

P(A) = 1 but An is unbounded; this occurs if and only if some eigen-
. .

value of modulus one has a non-simple elementary divisor, and conse-

quently too few corresponding eigenvectors. The standard example is

It is easy to see that all the conditions i) - v) fail for Al, no

matter how large c(v) is chosen; in particular, nbll grows like n

and the resolventhas a double

shows that such a relationship

pole at z = L The following result

is ty-pical,

Theorem V. There exist constants a(s) and S(s) depending on

s > 0, such that with Ae = eA and the constant K(m) as in Theorem

I, each of the following statements implies the next:

i") For $<E<l, AZ HEAE < He for some He 1 I with

o$b v> u2 < C(V)/(l-E)S for v = 1.I I
ii") For $<E<l, IScAE”;‘I < 1 for some Se with-

IS;'1 < 1 and Is,v~ < c(v)/(l-e)' for v = 1,I I
iii”) IA~v\ 5 a(s)(n+l)sC(v)  for n >, o and Iv1 = 1.

iv”) I (zI-A)-ll  < a(S)B(S)  Izlsc(v)
(lzl-l)s+l

for I Iz > 1 and

I Iv =l*

v") For $<e<l, there exists He > I such that

AZ HeAe < He and u2o$bv) _
@s)S(s)K(m)C(v)

(l-e)s
for v = 1,I I.
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Proof, The first two conditions are equivalent as before with

HE = s; s 0
E Given ii@), we have for Iv1 = 1

(104)

IA: VI 5 C(v)/(l-E)~ , $< e < 1

IAnvl 5 C(v)/en(l-e)S  ~~(s)(n+l)SC(v) ) n>O ,

by maximizing the denominator with respect to E. It follows that iv')

holds; for IzI > 1,

--.

(105) l(zI-A)-lv~  = 1 c $1 5 a(s) c(v) f -bd0 lzln+l

In order to apply Theorem I, we compute

(W ~(~I-Ae)-~vl =
.

I$ cf I-A)-%1

< a(s)p(s)c(v)[z/EIS =: a(s)p(s)c(v)lzlS
- E( IZ/E l-1)” ( IZI-E>S+l

Now the last step in Theorem I yields v"),

We leave to the reader the exponential analogue of Theorem V, which

arises naturally in the attempt to take O! = CT
i-1 (7)* When equality is
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impossible to achieve, as it is in our example (l), a sequence of norms

HE
with a decreasing to CI retains more information about the true

growth of epb>t than any single norm--with respect to which a > (3.
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