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ON IMPROVING AN APPROXIMATE SOLUTION OF A FUNCTIONAL

EQUATI0.H  BY DEFERRED CORRECTIONS

bY

Victor Pereyra

Introduction

Many problems of mathematical physics and applied analysis are par-

ticular instances of the problem of solving the functional equation

--.
F(v) = f , (1)

with v and f belonging to appropriate general spaces and F being

an operator between these spaces.

Most of the time this equation cannot be solved in a closed form, and

some approximations are required. We are interested in considering the

associate, simpler problem dependingcase in which (1) is replaced by an

on a real (small) parameter h :

.

'h(' > =g .

In-this general formula& many problems can be dealt with. For example,

Kantorovich [1948] has proved, under suitable hypothesis, several impor-

tant relationships between the solution of (1) and (2).

More recently, Stetter [196>] has discussed the asymptotic behavior

(for h + 0) of the error of discretization e = V - 4l v, obtaining

very general result and showing several applications. His main aim was

to have a rigorous basis for-the application of Richardson's extrapolation

to the limit.
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In this paper we intend to analyze in general another method for

accelerating the convergence of certain approximate processes. In dif-

ferent contexts this method has been known as "the difference (or deferred)
. .

correction method" (Fox and Goodwin [ 19491).

In Section 1 we state the problem and give the notation and some

definitions.

In Section 2 a special form of a theorem by Stetter is proved, stating

the existence of an asymptotic expansion for the error of discretization.

In Section 3 a linear deferred correction procedure is presented.

In Theorem 3.1 we prove that in fact this procedure will produce an im-

proved approximate solution.

Section 4 is devoted to the analysis of an iterative deferred cor-

rection.

Sections 5 and 6 provide means of proving some of the hypotheses used

in the former sections when some other hypotheses hold.

In Section 7 two applications are discussed. Finally in Section 8

some numerical results are presented.

A list of references has been included.- Some of them are not alluded

to in the text but are nonetheless relevant.
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1. . Statement of the problem and definitions-m

We .will consider the functional equation

The (generally

a Banach space

F(v) = f . (1.1)

non-linear ) operator F will map a linear subspace  of

D into a Banach space E. Problem (1.1) will always
c

be assumed to have a unique solution u E: D’C D.

We are interested in accelerating the convergence of approximate

methods for solving (1.1).

Let us consider now a discretized version of (1.1)--.

Oh(V) = 4 f . (1.2)

The operators Oh will map certain Banach spaces Dh into Banach

0
spaces Eh’ while Ah, Ah will be bounded linear transformations from

-

D into Dh and from E into Eh respectively. The possible values

for the real parameter h will be: ho > hl n.. > 0, (hi] = H being

a vanishing sequence given in advance bpa$l O In what follows the

norms of the different spaces will appear, and to avoid cumbersome no-

tation we will. use only the symbol \I 0 \\ w enever this is not confusing.h

The operator in (1.2) will be assumed to have the following proper-
.
t i e s :

For each V E D
t and h e H there exists an expansion*

*
The symbolic expression,

y(h) = O(hk) ., y(h)e Banach space (possibly different for each h)

has the meaning,

z hgk \ly(h)(\ 5 K ,  K  constant ,
h-Q



Qh(% v) = LA; {F(V) + Jtl hpj F v] + O(hN+l) ,
. = 'j

0.3)

where the linear operators F do not d‘kpend upon h and are bounded

t
Pj'

on D .

The exponents appearing in (1.3) will be positive rational numbers

satisfying

0 < p1 < p2 c . . . < pN . (1.4)

The operators F and ah will always be assumed to be at least twice

Frechet-differentiabee  on D and Dh respectively.

Definition 1: If for any e E Dh, a fixed V E D
h

and any h E H

there exists anon-negative constant K (which may depend on V) such that

L5)

then we will say that the operator Q,(V) is stable at V. Observe- -

that this is equivalent to say that if oh(V) is onto, then it has an

inverse and jl[@;(V)3-'\\ <, K.

Definition 2: Let q be a positive number. We will say that

U(h) .e Dh is an approximate solution of (1.2) if it satisfies

(1.6)

where C is a positive constant.

Whenever this is not confusing we will not mention in U(h) the

specific dependence on h.
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Definition 3':

is an approximate

If h E H, u is the solution of (l.l), and U(h)

solution of (1.2), then the vector

will be called the plobal  discretization error (g.d,e”)  of (1.2).

Definition 4 : The method (L2) having an asymptotic expansion (L3)

will be _converffent  of order 5--I if for any h E H, \\e(h)\\ 5

C is a positive constark

In  th is  case  U(k) ~~11 also Be called a $lspproximate

of (Ll.). --.

sCL where

solution

Definition 5: g,d.e. admits an asymptotic expansion up to the order

pN > 0 if there exist eJ E: D, independent of h E H, such that

lie(h) - Ah f hpj ej\\ 5 CN h’ WV
j=l

with CN > 0 constant, and ';; > p o
N

.
2. Existence of an asymptotic expansion for g.d.e,-.

In Stetter [1965] it is proved that under certain conditions g.d.e.

has an expansion of the form (1.8) if Oh has an expansion like (1.3)..

We will present a simpler proof for the case in which only the first

term of such an expansion is needed,

Until something else is said we will assume that the operator Oh(V)

has the property

( >u I\Q~~(v) 11 < 2K2 for v E Dh ,
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and also that

w F'(u) e = b has a unique solution e E D for any b E E .

Now we can state

Theorem 2.12 Let U(h) be a pl-approximate solution with q >, p2,

and let u be the exact solution of (1.1). If Qh is stable at Ah u,

then e(h) = U(h) - Ah u admits an asymptotic expansion up to the order

pl (Def. 5), where el (independent of h) satisfies

F'(u) el = - F u .
pl

(2.1)

--.

Proof: On one hand we have that, by the general Taylor-expansion and (01):

5 K2 l \14h,l12 l

Also, by using (1.3),

.
‘h(‘> pl- Qh(4,u) = Qh(U) - 4 [F(u) + h Fplu] + O(h

p2
) . (2.3)

' Hence, since Qh(U) - 4 f = O(h') and F(u) = f we obtain,

@,(�>  - @h(4n�>  = -h

pl 0
+$F,,u, + Oh

p2
> l

Combining (2.2) and (2.4),

@;(A.p) e(h) = - <(F
pl
u) + O(h'*) ,

where e(h) = h
-pl

e(h) and p* = min(pl, p2 - p,).

(2.2)

(2.4)

(2.5)
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Consider now the equation

F'(u) e = - Fplu , (2.6)

.  .
which by (S) has a unique solution el E D.

We have, by differentiating (1.3) and combining (2.5) and (2.6),

$$j$ [e(h) - el] = O(h'*) .

Using the stability, it is found that

e(h) - el = O(h'*) 9

--.
or in other words

lb(h) - Ah hPI- elII 5 C hp

(2.7)

(2.8)

with 5 = p* + p
1>p1*

39 Accelerating the convergence

A deferred correction

Once the expansion (2.8) has been secured, several procedures are

available in order to obtain a more accurate approximation than
U(h) l

A well known one is Richardson's extrapolation to the limit (Stetter

[X965]). This procedure requires the solution of (1.2) for two different

values of h, say hl' h2’ (p > h2L and a suitable combination of these

two solutions permits the term hp1 el to be eliminated giving an approxi-

mation of order hp1'

We intend now to describe a different approach aimed at serving the

same purpose. The underlying idea can be traced back to Fox and Goodwin
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[l%g] and in its present restricted form to Bickley,  Michaelson and Osborne

[196O], Volkov [1957], and Henrici Cl9621 . It essentially consists in

calculating an approximate value of el by using the already computed
. .

solution (of order hpl ), U. We will now assume the existence of an operator

. s such that
pl

0
43 F u - s

pl pl
0) = O(h'*)

and range (S ) C range (Qh) . -
pl

Theorem 3.1:

Under the hypotheses of Th. 2.1, and if (3.1) is valid, then
--.

pl= U - h  e*

is an approximate solution of (1.1) of order 5, that is,

II i?Ul - u = O(h )
4l 11

.

Here e* is the solution of

@h(U) e* = - Spl(U) . (3*3)

Proof: Calling 7 = e(h) - e* and subtracting (3.3) from (2 5. 1 , we obtain

Q;@+$ 7 = Oh’*) 9

since

am e(h) - @h(U) e* = @$j$ q + O(h)

and (3.1).

From this and the stability

(3.1)

(3.2)

(3.4)

lkdl = obP”)  9
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or

II plU-h e* - u42 11
i;

: oh > 0,

Observe that here we have only needed q > pl .

Remarks:

i) A procedure similar to this has been empirically employed for many

different problems (mainly linear) in differential and integral equations

(see Fox [lg62] and Noble [1964]).

t ii) From Theorem 3.1 it is clear that this procedure will give an

approximate solution with the same order of accuracy as the Richardson

extrapolation technique but with much less work. In fact, both procedures

consist of essentially two steps. The first step, common to both, is the

computation of a=.pl -approximate solution U.

For Richardson's extrapolation one has now to compute another solu-

tion with a smaller parameter, say h/2. That involves solving once again

the non-linear problem (1.2), which in general will be of a "larger size"

than the one corresponding to the original h, On the other hand, for com-

puting the deferred correction
pl
h e*, one only has to solve the linear

problem (3.3) (for the same h). The only drawback that we can point out

is the computation of @h(U) and S U,
pl

which are necessary for the de-
e

ferred correction but not for Richardson's .extrapolation.

With respect to ''ph(U) we can say that, if Newton's method is being

used for solving problem (1.2), then it will already be available from the

first part of the computation.

The extra computation (and derivation) of S
p1

(U) is rapidly compen-

sated for in problems wherein decreasing h by a factor a! increases the

size of the problem by a power n > 2 of l/a (for instance, in elliptic

partial differential equations),

iii) The purpose of introducing the notion of an approximate solution

of (1,2)(Definition  2) will appear clearly in the applications. At this
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point we can say that since the exact solution of (1.2) will only be an

approximation to the solution of (l.l), it is of no use to solve (1.2) exactly.

Moreover, the condition q > pl says how incomplete this solution can be.
. .

This idea is present in the works of J. Douglas [I9611 and Henrici [1962],

in connection with the solution of mildly non-linear elliptic equations

and two-point boundary value problems respectively, and it has a very im-

portant practical value since only "incomplete" solutions are computationally

available.

The expansion in Th. (2.1) will generally be needed for the construc-

tion of the operator S
-m. pL'

4. Iterated deferred corrections

In Section 3 we developed a way of eliminating the first term in the

expansion of g.d.e. It had the advantages of involving only the solution

of a linear problem and preserving the "size" of the main equation. If a

longer expansion is available one can ask whether it is possible to elimi-

nate further terms in a similar fashion. This seems to be unlikely, since

in eliminating the first term we have thrown information away which can-

not be regained within a linear process.

However, if we are willing to loose the linearity, then it is possible

to describe an iterative procedure which will give an asymptotically more

accurate solution for each (non-linear) step.

This procedure will have an advantage over the successive Richardson's

extrapolation in that the parameter h will not have to be changed.

It will also have a disadvantage in that for each special problem some

expressions will have to be worked out. In order to carry out the proof

of the next theorem we have to introduce a new definition.
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Definition 6: ',('> is said to have the mean value property (m.v.p.)m-

(Schroder [1961]) if for Vl, V2 E Dh t there exists a linear operator

wJ19 V2) such that
-.

'h ('1) - 'h&2) = M(V1, v2) ('1 - ‘2, l

Theorem 4.1:

Let Oh have m.v.p. with M(Vl, V2) non-singular. Let us assume

also that for Vl, V2 E D I
h \I[M(v1, v2)3-1\/<K 9 where K does not

depend on Vl, V2.

If an expansion (1.3) is valid, U (k)(k < N) is a pk-approximate

solution of (l.l), and there exist operators S such that
'3

p* 0hJ
42 F u-S

'3

(k+U(k)) = O(hpk+') ,

'3

then the solution of the equation

Q, (Jk+l)) = ah” f +
h

$ s(k)(U(k))
j=l pj

.is a pk+l-approximate solution of (1.1).

Proof:

By (1.3) we have that

'h(+$ = f [f +
P.

5 h J F ~1 + O(h
'k+l

) .
j=l pJ

Hence, by subtracting (4.2) from (4.3), we obtain

(4.1)

(492)

(4 93 >

(4.4)
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and the hypothesis on M implies

,ck+l>
=

u _ Ulk+l)  =‘)(hpk+‘)
.

With this result it is simple now to describe the iterated deferred

corrections procedure (i.d.c.p.). In order to obtain approximate solutions

of increasing accuracy we will proceed as follows.

i) Obtain U(1) by solving

II (Qh UC')) - < fl\ 5 Kl hql (4.5)

with ql 2 pl 9 Kl-$ 0 .

ii) For k = 1,2,..., N-l compute U
b+l) satisfying

\lQ (U(k+l)
h

where qk+l 2 'k+l ' 'k+l 2 ' '

Then, and from Theorem 4.1, Jk+l> will satisfy

11%u - u(k+l ‘II 'k+l
<C*h .

(4.6)

(4 97 >

On writing (4.5) and (4.6) we have shown explicitly how "incomplete"

the approximate solutions U(k) can be.
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5. Operators of

We will now

monotonic type

assume that the spaces 0
Eh' Eh introduced in Section 1

have also a compatible structure of Archimedean lattices.
. .

Thus it makes sense to consider operators Qh whose Frechet deriva-

tives are of monotonic type (Schr6der [196X]).

In this case Qh will be non-singular and [Q;? will be isotone.

In the usual way, for any V E Eh (or EE) we have a notion of

absolute value I Iv E Eh (or EE): _0 < Iv1 = sup(v, - v) .

In many practical problems of monotonic type one has information not

on Q;(V) but on a certain (generally simpler, and independent of V)
--_

linear operator, say Bh.

The following Theorem gives a sufficient condition for the operator

'h
to be stable, in terms of assumed bounds for -1

llB, \I .

Theorem 5.1: If Q;(V), Bh and (Q;(V) - Bh)-' are operators of mono-

tonic type, and

bB, 11 _-' <K

. then Qh is stable.

Proof: It is enough to prove that for any w 2 0,

Q; w <, B;' w .

In fact,

(B -' - [Q;]-l)-l = Q;(Q; - Bh)-' Bh .h

(5.1)

(5.3)

(5*3)

Since the product of inverse-monotonic operators is inverse-monotonic,

it follows that Bhl - [Qh.] -1
is isotone and from the definition of

isotonicity we obtain that, 0 5 (B;' - [Q']-l) w and (5.3) follows.

11



We can write now,

e = [QA]-' (Qi e) ,

and from this

IHI 5 IIBh’ I QA eI II 5 K 11~; ell ;

and, according to Definition 1,
'h

is stable.

6. A, sufficient condition for convergence

In many cases convergence can be proved from the properties of

Section 2 if some additional hypothesis is valid. For instance,

--.
Theorem 6.1: If all the hypotheses assumed in Theorem 2.1 are valid (ex-

cept the convergence), Qh has the mean value property and the M(Vl,V2)

of Def. 6 has an inverse bounded in norm, then the method (1.2) is con-

vergent of order
pl*

Proof: If instead of using the development (2.2) we use the mean value

property, then we obtain instead of (2.4) the equations

plM e(h) = O(h ) , (6.2)

and if K 1 \\M-~\\, then it follows that

.
\Ie (h)\l 5 K hpl .

Observation:

The point in using m.v.p. is that it eliminates the term in lb wl12
from the discussion. Observe that m.v.p. is not an automatic property for

arbitrary, (let us say) twice Frechet differentiable non-linear operators.

12



7. Applications

We will consider now several applications of the methods described

in the preceding Sections.
. .

7 .l Two-point boundary vaIue Problem

We want to solve the problem

&Y) = - Y"(X) + fb, Y(x), Y'(X)> = 0 for x e[a,b

F'(y) = y(a) - a = 0

F2(y) = y(b) - p = 0 (7-l)

In Pereyra [I9651 the author has considered a simpler instance of (7.1)

for which y'(x) was not present in the differential equation. We would

like to discuss this problem at length, since we feel that all the important

features of d.c.p. can be displayed here in an environment of median tech-

nical difficulty, not so complicated as to obscure the issues and not too

simple as to be trivial. Furthermore, besides the paper mentioned above,

we do not know of any publication in which this application has been dis-

cussed rigorously and in detail.

In order to insure existence and uniqueness of a solution of (7.1)

we will assume that

fyh YI 4 L 0 I lfZ(% Y9 4 < K.
in a certain bounded region R = [a,b] X B X B'. Let us call that solu-

tion y(x).

(7.2)

The different spaces are D = C [a&], the space of continuous func-

tions on [a,b], and E = C [a,b] X R2 ' F(y) will be defined on C2[a,b].

13



In order to define a discretization of (7.1), we introduce the vanishing

sequence H = (hi), where h
b-a

= -i qi (si
positive integers, qi 303 for

i+a), and ho < 2/K.
q.+l

Then D = Eh = R i
hi i

the qi+l - ‘dimensional real space. The

link between the spaces corresponding to the continuous and discrete cases

will be provided by the operators

42 : Y(X) +(y(xj)) with xj = a + j hi j = O,l,..., qi
i

01
4l : YCx> + EY(xj)lj=l

t l � l f
q 1. . 0

i i

4-l

0°:

,'
Y(X) +Yb) 9 9: y(x) +y(b) .

iI I--.

In what follows we will use p to symbolize a fixed, but otherwise arbitrary qi.
The norms involved will be the Lob norms for vectors and matrices.

We can now define a discrete version of (7.1):

[~~(v)3j = ho2(-Vj 1 + 2 V. - Vj+l) ' f(xj, V., (Vj+l - Vj-1)/2h) = O
J J

[Q,(V)], = V - Q = 0
0

j = l,..., p-l

[Qh(v)l, = VP - B = o 9
(7.3)

where H h = b-d/p .

-The Frechet derivative of Qh is

{Qi(v)e)j = ho2(-(l + $ fi(V))ejol + (2 + h2fi(V))ej - (' - $ f~'v)'ej+ll

j = l,..., p-l

{Qk(V)elo = e.
(7.4)

14



The notation for the partial derivatives of f in (7.4) is,

f~(V) = fz(Xj, Vj, (Vj+l-Vj-l)/‘h), and so on.

For v e C2N+3 [a,b] = Dt we have the expansions

N --
Qh" (Ahv)=Gl-{F'(v) + c h2j[,& ~(~j+~) +

j=l
.

+ -p&T fZ(v) v @d+l)]] + o(h2N+1)

(73)

Q; (+)= q F'(v)

Since Qh(V) clearly has the mean value property (with [M(Vl, V )I. = [Q'(y)]
2 3 h 3 j'

the subindex meaning the j-th rowsof the corresponding matrices, where 7
j

are different intermediary points for each row), if we are able to show

that it is also stable then, by Theorem 6.1, we will have that it is con-

vergent of order 2.

We will next show that Q;(V) is of monotonic type.

sidered is componentwise in RP .
.

The order con-

Lemma 7.1.

The operator Oh(V) of (7.4) is of monotonic type for any V E Dh .

Proof: Let e E Eh , and assume that

Q;(V) e 2 0 .

We want to prove that e > 0, Suppose that for some j, 0 < j < p ,

ej 5 ei for all 0 < i < p and e. < 0 .
3

15



But

I
cQh('

or

> Ie
j = - ‘1 ej-l + *L [2+h2 fj(VY >I

ej
-A e2 j+l > O '

O>ej L2.(h e.
1 J-1 + '2 eji-l

")/[2+h2 f;(V)] ,

with

hl+h =l ,
2 5' h2.0 .

Hence, we obtain that

ej 1 min(e.
J-1' ej+l '>

and from this follows that e = e
--. j j-lzej+l  l

Repeating this argument we will finally obtain that for all

Osi<p, ei=e.<O.
J

But this is a contradiction.

From Lemma 7.1 we have in particular that Q;(V) is invertible

and that [Q;(V)]-' has positive elements.

Corollary 1:

If e is the solution of
.

[Q;(V) el. = 0
J

j = l,..., p-l

eO =a ,
eP =B

then

min(O, min(a,@)) < e. < max(0, ma&a,@)) .
-J-

Proof:

It is enough to observe that, for 1 < j < p-l,

ej 5 max(e.
~-1'~ ej+l > if ej > 0

16



or

ej > min(e.
J-l' ej+l >

if ej L O '

and a reasoning similar to the one used in Lemma 7.1 shows that e
3

cannot have either a positive maximum or a negative minimum at an interior

point (maximum principle). Observe that both Lemma 7 .l and its corollary

are also valid for the operator M(V1' v,>, since the arguments of f;w

did not play any role in the proof, the only relevant property being the

positivcity  of f,(V) .

Theorem 7.1:

Qh(V) --.is stable on D (uniformly in h and V). Moreover, the

operators NV19 V2) are non-singular and their inverses are uniformly

bounded in norm.

Proof: If in Theorem 5.1 we take M(Vl, V2) as Q;(V) and diag(fiflj))

as Bh then it is clear that these operators and OR) = M(Vl, V2) -

- diag(fifi)) satisfy the hypothesis of the theorem and, consequently

MWl' V2) will have an inverse bounded in norm if 0 has this property.

. Since this will be valid for arbitrary arguments y
3

in M, let

Y
3
=V for j=O,...,p. In this case M E Q;(V) and we have from the

above result that Qh is stable. That these properties are uniform will
.

stem from the fact that the bounds on Il~-lll will be independent of Y
j

and h.

Hence we will show that I\o-'ll is bounded. Let p(x) E C2[a,b] be

a negative function for which

< C (K, (b-a)) . (7*7 >

17



We have that

P-l
O L [41_‘pli  = c [dlis [o(T

s=l
)(4_l(P)ls  + [O-lIioIPCa)I  + [@-'Ii,(Cp(b)l  ,

and from (7.7) we obtainthe inequality

‘~ [O-lIis  I[o(~~)IsI  <, maX(Icp(a)l,  I~(‘)1 > t
s=l

since maxwllio, [o-l] ) < 1 .ip -

(7.8)

Finally we obtain from (7.7) and (7.8) that

max f I[611isl < C(K, b-a)-
i s=l

--.

Or0 in other words, ll@-7i <c t03- where C only depends on the bound K

of the partial derivative f
Z

and on the length of the interval [a&l.

That a function q(x) with properties (7.7) exists is shown in detail

in Bers [1953], Section 3.

Theorem 7 .l has been proved.

In conclusion, Qh is stable and convergent of order 2, and we can

apply any of the deferred correction algorithms of Sections 3 and 4. We

will now assume that f(x, y, y') is sufficiently differentiable as a

function of its three arguments, which in particular will imply that the

solution Y(X) of (7.1) has continuous derivatives up to the order neces-

sary iin the following discussion.

For the linear, one-step correction, which will give a fourth order

approximate solution, we will develop some special formulas in order to

approximate y'"(x) and y+I'(x) at the interior points. Since

P* = min(Pp P2 - P,) = 2 we needthese approximationstibe of order

bee (3.1)).
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Lemma 7.2: Let U be an approximate solution of (7.3) with q >, 2. The

expressions

6f
j
= 6f(x j9 'j9 OJj+loUj-1)/2h)

-.
= f Cxj+19 'j+l, C"j+2-'j )/2h)

- f(x U OJj-1' j-1' j - 'j I21/2hl

and the similarly defined B2f
3

satisfy

y"(xj) - (Sfj)/2h = O(h2)

+'(x+ - (S2fj)/h2 = O(h2)

for j = l,..., -p-l.

(7.9)

Proof: We will prove (7.9) for 6f
3

and exactly the same argument can be

used in order to obtain the second formula.

First of all we recall that

i> Yw = fbb Y(X), Y'(X)) 9

ii) = u
ej 3

- Y(xj) = O(h2) ,

iii) e"(x) = fy e(x) + f 'yl e’(xj + L121 yIV(x) - 2 fy, y"(x)] ,

.
and finally

iv) e =
J

h2 e(x,> + O(h4) .

Also from (i) we have that

V> exY” (x > = Sxf(x,

Hence, it is enough to show

In fact,

y(x), y'(x)) = 2h y"(x) + O(h3) .

that 6f
J

approaches Exf(x) as O(d).

6rf(x, y(x), Y’(x)>  - f(x, u, 6U/2hjl=

= h2S[fy e(x) + fy'&Se(x)/2h  + y"'(x))] + O(h4)
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and

SC f(x ) - fj]/2h=h2$[fy l e(x) + fy,(e'(x) + y'(x))] + O(h4) ,

and from the differentiability properties--of all the involved functions

we have that

6f(x) - 6f
j

= O(h3) ,

and Lemma 7.2 is proved.

From this lemma we can now define

Cs,oJ)l. =J j j '
(7*10)

--.

which satisfies condition (3.1) since also f$ (u) - fy/(~(xj)) = O(h2) .

Hence, by Theorem 3.1 we can obtain by solving (3.3) and using (3.2) an

approximate solution
5 of order 4.

For the iterated deferred corrections, besides the increased differ-

entiability requirements, it is necessary to define the operators S ( >k

'i
of (4.1).

As before, the approximations to the different derivatives will be in

terms of differences, either of the successive approximate solutions

U04 or of the values of the right hand side f(x, y, y') at this U(k) .

Formulas (7.5) and (4.1) show that at the k-th step we need to approxi-
.

mate' the quantities h2juc2j+ ‘) (x) and h
2j (2j+2)
u (x)(j<_k) up to the order

2k+2 in h.
From Milne - Thomson [196O], Chap. 7 we take the following formulas

for numerical differentiation.

i> forward differences,

n-l
f(m)(x) = h-m c ( > mh -

s=m (s-Z)!s ',Sm nsf(x) + (nymy!ns
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fcm)(x) = horn nc -e B;ri As f(x-sh) + s Bn!m f(")(v,)
s=m

. .
and

iii) central differences,

f (2m+x) = h-2m e2' f(x) + O(h2n-2m+2)  ;

f b+l) (x) = h-(2m+1) I$ & Bii!;;) (s+l) p e2'+' f(x) + O(h2n-2m > ..

ii) backward differences,

( >BVn (x) stands for the Bernoulli polynomial of order n and degree v ,

defined by =.

tneXt O3 tV
c

(et-l)" = v=Ov'
( >

-7ByV⌧)  l (7 J2)

( >The Bernoulli number Bvn is equal to the value of the corresponding

polynomial at x = 0.

The expressions in (iii) make it clear that the use of central differences

will soon require points outside of the interval [a,b]. Even if unsym-

metric differences are used, care would have to be taken in order to have

a enough points, especially if several iterations are planned. In fact the

maximum number of iterations desired and the set of formulas chosen for

approximating the derivatives at the different points will impose a new

restriction on the largest step ho (minimum number of points p) which

can be allowed.

A highly sophisticated scheme might be to take symmetric differences

at all points where possible, and for the remaining points to take unsym-

metric formulas using all the points up to the closest boundary. This

technique will give the smallest truncation error at each point but it

will require many different formulas. In order to avoid this proliferation
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of formulas, another possibility can be to take, as before, symmetric

expressions wherever possible and to use for the remaining points either

forward or backward differences. Still another scheme may be to eliminate
-.

the symmetric,formulas  altogether, to take forward differences until the

right boundary is reached, and then to switch to backward differences..

Any of these schemes is feasible, and we will now discuss the second

of them.

For completeness it may be interesting to present a general algorithm,

but that would take us too far and too long. Hence, we will restrict the

discussion to the case N = 2, where all the relevant questions are present*.
--.

As we observed above, it is necessary to approximate Y%) and

the order 2 in h.
,

VI
y"(x) up to orders 2 and 4 and y and yv up to

As we did in Lemma 7.2, recalling the observation at the

it is possible to show that if L is a linear operator

end of Theorem 4.1

involving finite

differences) such that,

wY (x

then it also holds that, ife

) = L [y(x)] + O(h2K+2)

Y(X) is sufficiently differentiable,

,(t) (x) = y [h* f(x, u(k), L,(u(k))/h] + O(h2K+2) 9

where' y has the same form as L with all the difference orders decreased

by two, and h
-1

order 2K in h.
Ll is a difference operator approaching y'(x) up to the

For K
' IV

= 1 the approximations to y and y" are obtained from

(iii) with n = 2. Those will be enough for the whole interval since we

*
Professor M. Lees of CASE Institute of Technology has mentioned to the

author that a general procedure has been developed, but it has so far not
been published. s
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will later drop two orders in the differences. In fact this first step

coincides with the one already described for the linear deferred correction.

For K = 2 we have the following situation:

if j = 3,..., p-3 then all the approximations are obtained from (iii)

with n = 3. For j = 1, 2 y
IV

(xj) and yvl(xj) are obtained from (i)

with n = 8, while y"'(xj) and yv(xj) are obtained also from (i) but

with n = 7.

Finally, at the right end (j = p-l, p-2) formula (ii) is used with

the same values of n as at the left boundary.

7.2. Mildly nonlinear partial differential equations of elliptic type

Here the continuous problem is

F?d = A&, Y> - f(x, y, z, zxJ zy) = 0 for (x, y) E D

F2(z> = dx, Y> - dx, Y> = 0 for (x, y) E 8 D ,
(7 013 >

where gh Y> is a given function.

Let (V,] be the nodal points of a square mesh of width h which

covers 5.

The discretization will be given as usual (Forsythe and Wasow [196O])

by the system of difference equations

.
[Qh(V)Ij = ho2(&V - ? - 5 - 9 - VW) +

j J 3 j 3

+ fb, Y, v-9
3

(Vf - V;)/2h, ($ - +!)/2h)= 0
3

(7.14)

for each V
j

which with its four closest neighbors is contained in 5.

This problem has been discussed in Bers [1953], and all the necessary

properties and conditions can be obtained from there. In Volkov [I-957]
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an iterated deferred corrections algorithm for A u = f(x, y) is discussed.

The treatment of a general boundary, needing interpolation, can be taken

from there. In order to make our description simpler we will assume that
-.

the boundary a D is such that it does not require interpolation, for my

h E H, or in other words that all the interior grid points V.
J

are reg-

ular. We will also assume that the given functions g(x, y) and

f-(X Y YY ZY Zx' zy) have enough regularity properties to insure that the

solution 4% Y> of (7.13) is sufficiently differentiable. In this case

the boundary equations will simply be

Both in formulas (7.14) and (7.14') the (x, y) represents the node

in D corresponding to V..
J

With these hypotheses the treatment parallels the one of Section 7 .l

and we will not repeat it here. The quantity F2 = &

needs to be approximated in order to compute the linear

If, instead of using the approximate solution V, one uses the values

of the right hand side at V, then it is possible to approximate F2

using only second differences in every given direction. This will reduce

the complexity of the problem at points close to the boundary.

4 a42= - +
A2z(x,

4
12F 3Z

y) 2

3Z

2 ax4 2
-- -

axgay '

In fact, for any sufficiently differentiable function z(x, y)

(7-15)

In turn, if V. - z(x, y) = O(h2), then
J

12F2 = Ah f(x, y, z, exz/2h, SyZ/2h) - 2 S(z ) + O(h2 1 Y (7.16)
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where S(z) is defined by

s(Zo) = h-4(&zo - 2(zl + z3 + z5 +z)+z7 2 + 24 + z6 +z8) Y

-.
with zi defined in Fig. 1.

Fig. 1

Formula (7.16) would be used every time that at least one zi (i = l,..., 8)--.

belongs to the boundary a D.

When solving the system of nonlinear equations (7.14) (or any similar

discretization) some iterative technique will be needed. Let us suppose

that Newton's method can be applied successfully. At each stage of this

outer iteration it will be necessary to solve a large system of linear

equations.

In order to do so, generally, an iterative technique will also be

. used. To minimize the amount of work in this inner iteration it is im-

portant that the matrix which represents the Frechet derivative Qh be

as simple as possible.

If a fourth order approximation in h is desired then, broadly speak-

ing, we have available three different kinds of techniques.

i) We may use a fourth order discretization instead of the one of

second order in (7.14). For instance, one may use the g-point

approximation given in Bramble and Hubbard [1962].
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ii) We may solve (7.14) twice with different steps and then use

Richardson's extrapolation to the limit.

iii) We may solve (7.14) once and then perform a linear deferred

correction as described above. **

Let us suppose, as an example, that D is a square with sides of

length one.

The most significant figure here is the number of nodal points, which

in turn gives the number of equations involved. Suppose h is such that

we have 100 equations. It is clear that (i) will have a more compli-

cated matrix (less zero entries) than either (ii) or (iii), which in turn

-=.
will imply more arithmetic operations at each inner iteration step. More-

over, the outer iteration will need to be more "complete" than in the

latter cases. (ii) and (iii) have already been compared in Section 3.

This is one instance in which method (iii) noticeably involves less com-

putation than (ii).

The conclusion is that for multidimensional problems (iii) may be a

valuable technique.

For the iterative deferred correction we will have an increasing task

in setting up the necessary approximations to the successive error terms,

but the possibility of obtaining more and more accurate results with a

fixed h must also be born in mind.

To end this Section we can say that many other applications are

possible. A few more are listed in Stetter [1965], and those examples

show that most of the time many of the necessary properties will have al-

ready been proved. One need only follow the general guidelines in either

Theorem 3 .l or Theorem 4.1 in order to generate approximations with the

proper accuracy.
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8. Numerical examples

Let us consider the two-point boundary value problem

0 y’f =xy’e -2Y

y(1) = 0-e

Y(2) = In 2

whose solution is Y(X) = an x.

An Extended Algol program which implements the discretization described

in Section 7.1 has been written for the Burroughs B5500 at the Stanford

University Computation Center.

The system of non-linear equations was solved by Newton's method

(this solution -is called h2 - APP. on Table _ 1 ), and then a linear de-

ferred correction (Section 3) was applied (h4 - APP.). The results ob-

tained are displayed in Table 1. A linear interpolation b.etween  the two

ends was taken as the initial approximation.

The step used for the results in Table 1 was h = l/8.

The same problem was solved using i.d.c.p. and the same step size.

The results of this experiment are shown in Table 2. The norms of the

corresponding g.d.e. were,

II U ('I - %"\I  = 7 -44 x loo5 , lluc2) - nh”ll = 4.03 X l&, I$3 ) - A ull
h

= 7 -59 X loo8 .

-The number of inner iterations were respectively 3, 3 and 5 in order to.

reduce the norms of the residuals below 2 X 10-5 , 4 x loo7 and

6 x lo-' , those being the bounds indicated by the theory.



INIT. VAL.
I.'( ~

2 - APP. 4 - APP. EX. SOL.

8,6643397571+02 1.1773379749@-01

1,7328679514+01 2,230734OI68@-01 ~,2313410329@-01 2,23143S4132@-01

2.59930192726-01 3*1a379333058-01 3.154463682?@-01 3,1R45373113@-01

3,4657359029+01 4,053946o218@-01 q,os45937547@-ol 4,0546510811+01

4,3321698786+01 4,8545156963@'-01 ~4,R550340779@-01 4,~5507Rl578@-01

5,1986038543@-01 5,5957509913e-01 5,5961249691@-01 5,59615?8794@-01

6,06503?8300@-01 6,2853781812@-01 6,2R60634127@-01 6,286Ofl55943@-01

Table 1

INILVAL. 2-APP.

8,664339?5?1@-02 1*1773379749+01

~,?3286?9514@-01 2,2307340768@-01

2,5993019272@-01 3,1837933305+01

3,465?359029@-01 ~4,0539660218@-01

4,3321698786@-01 4,~5451569R3@-01

5,1986038$43@-ol 5.5357589913fJ-01

6,06503?8300+01 6,285d781812@-01

4'APP;

2,2314088343@-01

~.~545189955~-01

4,05463805336-01

4,8550686029@-01

5,59615067~8+'-01

6,286081017OF-01

6-APP,

~,1??830004?@'0~

2,2314349185@-01

3,1845365526?-01

4,05465036238-01

4,8550775453@-ol

5,59615?4283@"01

6,2860863474@-01

!

ELSOL

1.1?78303566@-01

2,2314355132@-01

3,18453?3112@-61

4,0546510811e-01

4,855Q?815?8@'01

5,5961S7R794~'01

6,2R60865943@-01

Table 2
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