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ON | MPROVI NG AN APPROXI MATE SOLUTI ON OF A FUNCTI ONAL
EQUATION BY DEFERRED CORRECTI ONS

by

Victor Pereyra

| ntroduction

Many probl ems of nathematical physics and applied anal ysis are par-

ticular instances of the problem ofsolving the functional equation
F(v) =f, (1)

with v and f belonging to appropriate general spaces and F being

an operator between these spaces.

Most of the time this equation cannot be solved in a closed form and
sone approximations are required. W are interested in considering the
case in which (1) 1s replaced by an associate, sinpler problem depending

on a real (snall) paraneter h :
o, (V) =g . (2)

In-this general formulatim many problens can be dealt with. For exanple,
Kant orovi ch [1948] has proved, under suitable hypothesis, several inpor-
tant rel ationships between the solution of (1) and (2).

Mre recently, Stetter [1965] has discussed the asynptotic behavior
(for h - 0) of the error of discretization e = V - ALV obt ai ni ng
very general result and showi ng several applications. H's main aim was
to have a rigorous basis for-the application of R chardson's extrapol ation

tothe limt.







In this paper we intend to analyze in general another nethod for
accel erating the convergence of certain approximate processes. |n dif-
ferent contexts this method has been known as "the difference (or deferred)
correction method" (Fox and Goodwin [‘1949]L

In Section 1 we state the problem and give the notation and sone
definitions.

In Section 2 a special formof a theoremby Stetter is proved, stating
the existence of an asynptotic expansion for the error of discretization.

In Section 3 a linear deferred correction procedure i s presented.
In Theorem 3.1 we prove that in fact this procedure will produce an im
proved approximate solution.

Section 4 is devoted to the analysis of an iterative deferred cor-
rection

Sections 5 and 6 provide means of proving sone of the hypotheses used
in the former sections when sone other hypotheses hol d.

In Section 7 two applications are discussed. Finally in Section 8
some numerical results are presented.

A list of references has been included. Some of them are not all uded

toin the text but are nonethel ess rel evant.







1. Statement of the problem and definitions

We will consider the functional equation
Fv) =f. (1.1)

The (generally non-linear ) operator F will map a linear subspace of
a Banach space D into a Banach space E. Problem (1.1) will always
be assumed to have a unique solution u e];' .

We are interested in accelerating the convergence of approximate
methods for solving (1.1).

Let us consider now a_discretized version of (1.1)
o, (V) = & f. (1.2)

The operators ®, Wwill map certain Banach spaces D into Banach

h h

spaces E while Ah, AP] will be bounded linear transformations from

n?
D into D, and from E into E_ respectively. The possible values
for the real parameter h will be: ho>hlﬁ..> o, {hi}= H being
a vanishing sequence given in advance (h,>0). In what follows the
norms of the different spaces will appear, and to avoid cumbersome no-

tation we will. use only the symbol ||.|| Whenever this is not confusing.

The operator in (1.2) will be assumed to have the following proper-

ties:

For each V ¢ Dt and h ¢ H there exists an expansion*

* The symbolic expression,

y(h) = O(hk) , v(h)e Banach space (possibly different for each h)
has the meaning,

Tmn " ly(»)ll< K , K constant,
0




N

p.
0 N+1
lty V) = 4 (F) 4 g n T B ol (1.3)
where the linear operators F_ = do not depend upon h and are bounded

t "
on D

The exponents appearing in (1.3) will be positive rational numbers
satisfying

O<pl<pQ<...<pN ‘ (1.4)

The operators F and @ will always be assumed to be at |east twice

h

Fréchet-differentiable on D and D_ respectively.

h

Definition 1: If for any e ¢ D afixedVeDh and any h ¢ H

h)
there exists anon-negative constant K (which may depend on V) such that

llell < & flo, (Ve (1.5)

then we will say that the operator @h(v) is stable at V. Cbserve
that this is equivalent to say that if @I'l(v) is onto, then it has an

inverse and H[@};(V)]_IH < K.

Definition 2. Let g be a positive nunber. W will say that

Uh) e Dy is an approximate solution of (1.2) if it satisfies

H@h(U(h)) - Ag fl<c-n?, (1.6)
where C is a positive constant.

Wienever this is not confusing we will not mention in Uh) the

speci fic dependence on h.




Definition 3: If h ¢ H, u is the solution of (1.1), and U(h)

is an approximate solution of (1.2), then the vector

e(h) = U(h) - A, weD (1.7)

will be called _the global discretization error (g.d.e.) of (1.2).

Definition 4: The method (1.2) having an asymptotic expansion (1.3)

will be convergent of order ¢ if for any h ¢ H, |e(n)||< ¢ h;, where

C is a positive constant.,

In this case U(h)will also bte called a {-epproximate solution

-

of (1.1).

Definition 5:g.d.e. admits an asymptotic expansion up to the order

Py > 0 if there exist e, ¢ D, independent of h ¢ H, such that

N p, -
lle(n) - Ah %’ th eJ.H < ¢ n? (1.8)
J:

with ¢ > 0 constant, and D > Py

2. Existence of an asynptotic expansion for g.d.e.

In Stetter [1965] it is proved that under certain conditions g.d.e.
has an expansion of the form(1.8) if e has an expansion |ike (1.3).

W will present a sinpler proof for the case in which only the first

term of such an expansion is needed,

Until something else is said we will assume that the operator ¢ (V)

W (
has the property

() loy (V) Il < 2k, for veD,
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and al so that

F'(u) e = b has a unique solution e ¢ D for any b ¢ E .

Now we can state

Theorem 2.1: Let U(h) be a pl—approxima.te solution with q > Dy

and let u be the exact solution of (1.1). If o is stable at Ah u,

then e(h) = Uh) - Ahu

admts an asynptotic expansion up to the order

p, (Def. 5), where e (i ndependent

satisfies

F' (u) e, = - glu .

(2.1)

On one hand we have that, by the general Tayl or-expansion and ():

llo, (1) - @, (A ) - o (& u) e(m)] <
< K, . llem)|? .
Al'so, by using (1.3),
0 51 Pa
cph(U) - ¢h(Ahu) =0 (U) -4 [F(u +h F, ul + Qh %)
" Hence, since @h(U) - Aﬁ f o(h?) and F(u) = f we obtain,
p P
o (V) - o (A u) . -h L AE(FP w)  o(n 9)
1
Conbining (2.2) and (2.4),

() B0) = - A, W+ o)

e(h) and p* min(pl, P, - pl)°

(2.2)

(2.4)

(2.5)



Consi der now the equation
F(u e=-TF u, (2.6)

whi ch by (B) has a uni que sol ution él e D

W have, by differentiating (1.3) and conbining (2.5) and (2.6),
o/ (A w) [e(h) - e ] = on®) .
Using the stability, it is found that
s(n) - e, = 0(n®), (2.7)
or in other words

le(n) - A hpl elH < C n? (2.8)

3. Accelerating the convergence

A deferred correction

Once the expansion (2.8) has been secured, several procedures are
available in order to obtain a nore accurate approximation than y(n),

A well known one is Richardson's extrapolation to the limt (Stetter
[1965]). This procedure requires the solution of (1.2) for two different
and a suitable conbination of these

h., (h, >h

l’ 2’ 1. 2)’
p
two solutions pernmts the term h L e, to be elimnated giving an approxi-

values of h, say h

mation of order nf,
W intend now to describe a different approach ained at serving the

sane purpose. The underlying idea can be traced back to Fox and Goodw n



1949] and in its present restricted formto Bickley, Mchael son and Gshorne
[1960], Vol kov [1957], and Henrici ([1962]. It essentially consists in

cal culating an approxi nate value of e; by using the already conputed
solution (of order hpl), U W will now a‘ssurre t he exi stence of an operator

.S such that
Py

4{1 Fplu ; spl(U) = o(n™) (3.1)

and range (S ) C range (o) .
jouy h
Theorem 3.1:

Under the hypot h\gses of Th. 2.1, and if (3.1) is valid, then
U, = U- ht ex (3.2)
is an approximate solution of (1.1) of order p, that is,
o, - &, [ AnP)
Here e* is the solution of
2, (V) e* = -5 (V). (3.3)

1

Proof: Calling n = e(h) - e and subtracting (3.3) from (2.5), we obtain
®};(Ahu) N = O(hp*) , (3.4)

since
o, (& u) e(h) - @(U) ex = o, (au) n + Q(h)
and (3.1).
From this and the stability
Il = o™,

6




or

||U-hpl e¥* -Ahun O(hi;)

Ml

(oserve that here we have only needed q

v

Pl .
Remar ks:

i) A procedure simlar to this has been enpirically enployed for nmany
different problems (nmainly linear) in differential and integral equations
(see Fox [1962] and Noble [1964]).

ii) From Theorem 3.1 it is clear that this procedure will give an
approxi mate solution with the sane order of accuracy as the Richardson
extrapol ation technique but with nuch less work. In fact, both procedures
consist of essentially two steps. The first step, comon to both, is the
conput ation of a*pl-approxi mate solution U

For Richardson's extrapol ati on one has now to conpute another sol u-
tion with a snaller parameter, say h/2. That involves solving once again
the non-linear problem (1.2), which in general will be of a "larger size"
than the one corresponding to the original h. On the other Hand, for com-
puting the deferred correction hpl e¥, one only has to solve the linear
problem (3.3) (for the sanme h). The only drawback that we can point out
is the conputation of Q{l(U) and Splu, whi ch are necessary for the de-
ferred correction but not for R chardson's .extrapolation.

Wth respect toq’r:-(U) we can say that, if Newton's method is being
used for solving problem (1.2), then it will already be available fromthe

first part of the conputation.
The extra conputation (and derivation) of Sp (U is rapidly compen-
1

sated for in problems wherein decreasing h by a factor a increases the
size of the problemby a power n > 2 of |/a (for instance, in elliptic
partial differential equations),

iii) The purpose of introducing the notion of an approximate solution

of [mSthekimiiden 2) W || appear clearly in the applications. At this




point we can say that since the exact solution of (1.2) will only be an
approximation to the solution of (1.1), it is of no use to solve (1.2) exactly.
Moreover, the condition q > p, Says how i nconplete this solution can be.
This idea is present in the works of J. Dou‘gl as [1961] and Henrici [1962],
in connection with the solution of mldly non-linear elliptic equations
and two-point boundary value problens respectively, and it has a very im
portant practical value since only "inconplete" solutions are conputationally
avai | abl e.

The expansion in Th. (2.1) will generally be needed for the construc-
tion of the operator Sp

<~ 1

4, Iterated deferred corrections

In Section 3 we devel oped a way of elimnating the first termin the
expansion of g.d.e. It had the advantages of involving only the solution
of a linear problem and preserving the "size" of the main equation. If a
| onger expansion is available one can ask whether it is possible to elim-
nate further terns in a simlar fashion. This seens to be unlikely, since
in elimnating the first term we have thrown information away which can-
not be regained within a |inear process.

However, if we are willing to loose the linearity, then it is possible
to describe an iterative procedure which will give an asynptotically nore
accurate solution for each (non-linear) step.

This procedure will have an advantage over the successive R chardson's
extrapolation in that the paraneter h will not have to be changed.

It will also have a disadvantage in that for each special problem sone
expressions wll have to be worked out. In order to carry out the proof
of the next theorem we have to introduce a new definition.

8




Definition 6: ¢ (V) is said to have the nean value property (mv.p.)

(Schroder [1961]) if for V., V, €D _» there exists a linear operator

M(Vl, V2) such t hat

o, (vl) - <1>h(V2) = M(Vl, V2) (Vl -V2),

Theorem 4. 1:
Let o, have mv.p. wth M(Vl’ V2) non-singul ar. Let us assume
-1
also that for vy, V, € D “[M(Vl, v,)] | <x , where K does not

depend on Vl’ V2’

If an expansion (1.3) is valid, U(k)(k <N is a p -approximate
k

solution of (1.1), and there exist operators S such t hat

%3
p
J (k). (k) k+1
b oy Fp.u sp. () = o(h ) (%.1)
J J
then the solution of the equation
k
kt+1 0 k
J=1 7
is @ p,,-approximate solution of (1.1).
Pr oof :
By (1.3) we have that
0 &P Pret1
d)h(Ahu) = o [f + jé:l h Fp;.] + o(n ) (L .3)
Hence, by subtracting (4.2) from (k.3), we obtain
kt+1 b
e o WLy (4 .4)




and the hypothesis on M inplies

J(k+1) _ _ () =‘O(hpk+1)

Ahu

Wth this result it is sinple nowto describe the iterated deferred

corrections procedure (i.d.c.p.). In order to obtain approximte solutions

of increasing accuracy we will proceed as follows.
i) Qbtain U(l) by sol ving

q
|Eph(U(l)) -t <Kk b 1

with ¢ 2 p, , K, 2 0
. 1 . ,
ii) For k = 1,2,..., NN\l conpute U(k+ ) satisfying

qk+ 1

k
H“’h(U(kﬂ)) - ra T ng SI(:;)(U(k))]“ < Kt

wher e K > 0.

Usl 2 P10 B
(k+1)

Then, and from Theorem 4.1, U will satisfy

D
p L

lau - u® ) <c

» (4.6)

Oh witing (%.5) and (4.6) we have shown explicitly how "inconplete"

the approximate solutions can be.

10




5. Qperators of nonotonic type

Ve will now assune that the spaces E,» Eg introduced in Section 1

have also a conpatible structure of Archinedean lattices.
Thus it makes sense to consider operators @, whose Fréchet deriva-

tives are of nonotonic type (Schroder [1961]).

-1

In this case <I>k'1 will be non-singular and [¢k’l] will be isotone.

In the usual way, for any V ¢ E (or Eg) we have a notion of
0
absolute value |v| e B~ (or E )0 <|v| = sup(v, - v)
In many practical problens of nonotonic type one has information not

on ¢k’l(v) but on a certain (generally sinpler, and independent of V)

| i near operator, say B, -

The fol Il owing Theorem gives a sufficient condition for the operator

¢, Lo be stable, in terns of assumed bounds for HBI-11“‘

Theorems.1: 1f o (V), B, and (e, (V) - B are operators of mono-

h)-

tonic type, and

I8t <K (5.1)
t hen o is stable.
Proof: It is enough to prove that for any w > 0,
cbk'lwgB;llw. (5.3)
In fact,
(3" - Lo 1 ™)™ = 0/(0) -8 ) B (5.3)

Since the product of inverse-nonotonic operators is inverse-nonotonic,

it follows that 31_11 - [¢>£~]'l is isotone and fromthe definition of

i sotonicity we obtain that, 0 < (8'-[e'1™") wand (5.3) foll ows.




W can wite now,

e = [0/17F

7
nl o (0 ) .

and fromthis
lell < B;" 1 o) el Il <k Jlo) el

and, according to Definition 1, o is stable.

6. A sufficient condition for convergence

In many cases convergence can be proved from the properties of

Section 2 if sone additional hypothesis is valid. For instance,

Theorem 6.1:  If all the hypot heses assumed in Theorem 2.1 are valid (ex-
cept the convergence), 2, has the nean value property and the M(Vl’VE)
of Def. 6 has an inverse bounded in norm then the method (1.2) is con-

vergent of order P, -

Proof: If instead of using the devel opnent (2.2) we use the nean val ue

property, then we obtain instead of (2.4) the equations
51
Me(h) = Qh =) | (6.2)

and if K> MY, then it follows that
p
le )l < xn 't
Qbser vati on:
The point in using mv.p. is that it elimnates the termin |\e(h)l\2
fromthe discussion. Cbhserve that mv.p. is not an automatic property for

arbitrary, (let us say) twice Fréchet differentiable non-linear operators.

12




7. Applications

Ve will consider now several applications of the nethods described

in the preceding Sections.

7.1 Two-point boundary value Problem

V& want to solve the problem

F(y) = - ¥ (x) + £(x, y(x), v'(x)) = 0 for x e[a,b]
P(y) = y(a) -a =
F(y) = y(b) - p = (7.1)

In Pereyra [1965] the author has considered a sinpler instance of (7.1)

for which y'(x) was not present in the differential equation. W would
like to discuss this problem at length, since we feel that all the inportant
features of d.c.p. can be displayed here in an environment of nedian tech-
nical difficulty, not so conplicated as to obscure the issues and not too
sinple as to be trivial. Furthernore, besides the paper nentioned above

we do not know of any publication in which this application has been dis-

cussed rigorously and in detail

In order to insure existence and uniqueness of a solution of (7.1)

we will assume that
fy(x: ) z) >0, Ifz(x; Y Z)l < K (7-2)

in a certain bounded region @ =[a,b] X B8 XB’., Let us call that solu-

tion y(x).

The different spaces are D = C [a,b], the space of continuous func-

tions on [a,b], and E =c[a,b] X R® - F(y) will be defined on Cz[aﬂﬂ.

13




In order to define a discretization of (7.1), We introduce the vanishing
b-a

sequence H = {hi}, where h, = a;— (qi positive integers, g -« for
i »=), and h, < 2/ K.
g.+t1l
Then D = E, = R* t he qi+l - “dinensional real space. The
h. -

i
link between the spaces corresponding to the continuous and discrete cases

will be provided by the operators

At y(x) a{y(xj)} with x,=a+j ny ] =0L.a;
|

01
T v = Wbedlyn a4t
Aﬁ?: y(x) - y(a) , Ahoz.:r y(x) - y(b)

In what follows we will use p to synbolize a fixed, but otherwise arbitrary q..
The norns involved will be the L, norms for vectors and matrices.

We can now define a discrete version of (7.1):

-2 : _
[0, (V)] = (v 1+ 2 W= Vo) o+ £l Vo (V) - Wy )/2h) = O
j =L p'l
[<r>h(v)]O =V-a=0
(7.3)
[Qh(v)]p = Vp -B = 0 ’

where H h = (b-a)/p .

-The Frechet derivative of o, is

. . hoJ
{(Dl'll(v)e}j - h-z{-(l + g— f‘;(V))ej_l + (2 + hgf;(V)-)ej - (1 - > f‘;(V))ejJrl}

j =L... p'l
{®£(V)e}o =

|
[¢]
(@]

n
o

fo, (Vel,

14



The notation for the partial derivatives of f in (7.k)is

fg(v) = f (x., V., (V

2Xgr Vs (Vo Jl)/;2h), and so on.

For v e ¢ [a,b] = ot we have the expansions

(Ahv =ASI{F( ) + E hEJ[ 23+2 . J(232) |

(2j+l)]} + o(th+1)

1
+ 25+ 1)! £,(v) v
(7.5)

0, (%) = &2° Fo(v)

o (&) = A% FP(v)

Since @h(v) clearly has the nean value property (wth [M(Vl, Y é ¢ﬁ
t he subi ndex nmeaning the j-th rowof the corresponding matrices, where '\7
are different intermediary points for each row), if we are able to show
that it is also stable then, by Theorem 6.1, we will have that it is con-
vergent of order 2.

W will next show that %(V) is of nmonotonic type. The order con-

sidered IS conponentw se in RP.

Lemma 7.1.
The operator ¢1;(V) of (7.4) is of nonotonic type for any V ¢ D, -
Proof: Let e € E . and assume t hat
@h(v) e>0.

W want to prove that e > 0. Suppose that for sone j, 0 <j <p,

e, <e, for all 0<i <pande _<0.
J— i J

15




But

(o, (V) e}j - -2 L

Lol od
1851 + 5 [2+h fY(V)] ey = hy€4, 20
or
. 5
0>e, >2.(N, & _ + J
ey 2 ( 181 7 ej+l)/[2+h fy(V)] ,
with
Mt A=1 0, My Ay >0

Hence, we obtain that

S ms
ej_mln(ej_l, ej+l) ,

and fromthis follows that e =ze, . = ¢
- . j-1 J+1 -
Repeating this argunment we will finally obtain that for all
0<i<p

, €. =e,<0.,
1 J

But this is a contradiction.

From Lemma 7.1 we have in particular that Q};(V) IS invertible

and t hat [<I>I;(V)]'l has positive elenments.

Corollary 1:

If eis the solution of

[@h(v)e]J:o i =1,..., p-|
eo =a ep =f
t hen
m n(Q, min(a,B))_< % < max (0, max(a,B)) .
Proof :

It is enough to observe that, for 1 <j < p-I,

< ‘ .
e; < max(ej_l, ej+l) if e.>0

16
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or

eJ.Zmin(e if e, < 0,

J-1" ej+l) 3

and a reasoning simlar to the one used in Lemma 7.1 shows t hat e
cannot have either a positive maxinmum or a negative minimum at an interior
point (maxi mum principle). (bserve that both Lemma 7.1 and its corollary
are also valid for the operator N(vl, Vz)’ since the arguments of fg(v)

did not play any role in the proof, the only relevant property being the

positivdty of fy(v)‘ .

Theorem 7.1:
o, (V) is stable on D (uniformy in h and V). Mreover, the
operators M(Vl’ V2) are non-singular and their inverses are uniformy

bounded in norm

Proof: If in Theorem5.1 we take M(Vl, V2) as d>;1(V) and diag(fsjr(vj))
as By then it is clear that these operators and e(V) = M(Vl, V2) -
- diag(fg(ff)) satisfy the hypothesis of the theorem and, consequently

M(Vl, V,) will have an inverse bounded in normif @ has this property.

5)
Since this will be valid for arbitrary argunments '\”fj inM et

VJ. =V for §=0,..., p. Inthis case ME®£(V) and we have from the
above result that o is stable. That these properties are uniformuwill

stem from the fact that the bounds on le"tl will be independent of ?fj

and h.

2

Hence we will show that ll@'lH i s bounded. Let ¢(x) e C[a,b] be

a negative function for which

e(M)(ao) <o , and %%%50(& (b-a)) . (7.7)

xela,b]

17




W have that

p-l ~
0<lapl - T le i 1eM@a)], + 167 lo()] + 1071 le()] |
S=

and from(7.7) we obtainthe inequality

p-1
Y 107, Nt e)] | < max(le)], lo®)] ), (7.8)
s=1

since max([@'l]io, [@'l]i p) <1.

Finally we obtain from(7.7) and (7.8) t hat
I
max ) |le ]isl < (K, b-a)
I s=1

or, in other words, \l\®'lllm < C , where Conly depends on the bound K
of the partial derivative fZ and on the length of the interval [a,b].
That a function ¢(x) with properties (7.7) exists is shown in detail

in Bers [1953], Section 3.

Theorem 7 .1 has been proved.

In concl usion, o, is stable and convergent of order 2, and we can
apply any of the deferred correction algorithns of Sections 3 and 4. W
will now assume that f(x, y, y') is sufficiently differentiable as a
function of its three argunents, which in particular will inply that the
solution y(x) of (7.1) has continuous derivatives up to the order neces-
sary in the follow ng discussion.

For the linear, one-step correction, which will give a fourth order
approximate solution, we will devel op some special formulas in order to
approximate y'"(x) and yIV (x) at the interior points. Since
2

¥ = min(pl, Py - pl) = 2 we needthese approximationstobe Of order n

(see (3.1)).

18



Lemma_7.2: Let U be an approximate solution of (7.3) with q > 2. The

expressi ons

)/2h)

5f = - =
3 Sf(xj, UJ., (Uj+l Uj_l)/ah) N f (xj+l, UJ.+1, 54" J

- f(x U 1 (Uj - Uj_g)/Eh)

j-1r 7

and the simlarly defined 52f3 satisfy

y'(x,) - (8£,)/2n = o(n®)
(7.9)
IV(x.j’) . (82fj )/% = o(n?)

for j =1,.04, -p-1.

Proof: W wll prove (7.9) for 8fj and exactly the same argument can be
used in order to obtain the second formla
First of all we recall that
i) ¥ (x) = £(x, y(x), v (x)) ,
. 2
. =u, - .) = O(h

i) ey = Uy Y(XJ) (n%) ,

" _ 1 "

iii) e"(x) = fy e(x) + fy,e (x) + [—5 y (x) 3 ¥ y'(x)] .
and finally

v e = n2 e(x,) + o(n') .

Al'so from (i) we have that

v) sy (x) =8 2(x, y(x), ¥ (X)) = 2h y"(x) + O() .

Hence, it is enough to show t hat 6fj appr oaches 6xf(x) as O(h5).
In fact
s[f(x, y(x), y'(x))- f(x, U, 8U/2h)] =
4

= h25[fy e(x) + fy (x)/2n + y"' (x))] + o(n")
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and

'),

o £(x) - £,)/20 = 0" gL (2 e(x) + £(e"(x) + ¥ (x))] + o(n

and fromthe differentiability properties of all the involved functions
we have that

of(x) - Be 5 = o(r’) |

and Lemma 7.2 is proved.
Fromthis emma we can now define

-2 -1

1T [} 1~ -
R < SRERPN =Y < My
[SQ(U)]J_] = oy B fy/(U) B, (7.10)

which satisfies condition (3.1) since also fg;/ (v) - fy/(y(xj)) = 0(n

Hence, by Theorem 3.1 we can obtain by solving (3.3) and using (3.2) an

approxi mate solution U of order 4.

For the iterated deferred corrections, hesides the increased differ-

entiability requirenments, it is necessary to define the operators Sék)
Fi

of (4.1).
As before, the approximations to the different derivatives will be in

terns of differences, either of the successive approximte solutions

k)

U( or of the values of the right hand side f(x, y, y') at this U(k)‘

Formulas (7.5) and (4.1) show that at the k-th step we need to approxi-

mate' the quantities hEJu(EJJ“ 1)(x) and hzju( J+2)(x)(j§k) upto the order
2k + 2 in

From M| ne - Thomson [1960], Chap. 7 we take the follow ng formulas
for numerical differentiation.
i) forward differences,

Deten) | e o)1

f(m)(x) = n " ni: m__ g5
- oadl (s-m)'s “s-
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i) backward differences

-1 -
f(m)(x) _p nz ;:-Lms*!’m: Bgfi AS f(x-sh) + % Bl’(lr-lzzl f(n)(,ﬂ) ,

S=m
and
iii) central differences,
P s(2s-2m)! “2s-sm'‘° !
(em+1) (w1 B 1 (25+2) o5+l on-2m
f (X) =h & Tm Ss-2m (s+1) u ® f(x) + o(h )
Bgn)(x) stands for the Bernoulli polynomal of order n and degree v,
defined by -
tnext E: v (n)( )
5 . - - B x) . (7 .12)
(ef-1)®  yovr TV
The Bernoul |i nunber B(n) is equal to the value of the corresponding

v

polynomal at x = 0.

The expressions in (iii) nmake it clear that the use of central differences
will soon require points outside of the interval [a,b]. Even if unsym
nmetric differences are used, care would have to be taken in order to have
enough points, especially if several iterations are planned. |n fact the
maxi mum nunber of iterations desired and the set of fornulas chosen for
approxi mating the derivatives at the different points will inpose a new
restriction on the largest step by (mininmum nunber of points p) which

can be al | owed.

A highly sophisticated scheme mght be to take symetric differences
at all points where possible, and for the remaining points to take unsym
metric formulas using all the points up to the closest boundary. This
technique will give the smallest truncation error at each point but it

will require many different formulas. In order to avoid this proliferation
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of formulas, another possibility can be to take, as before, symmetric
expressions wherever possible and to use for the remaining points either
forward or backward differences. Still another schene may be to elininate
the symmetric,formulas altogether, to take forward differences until the
right boundary is reached, and then to switch to backward differences

Any of these schenmes is feasible, and we will now discuss the second
of them

For conpleteness it may be interesting to present a general algorithm
but that would take us too far and too long. Hence, we wll restrict the
discussion to the case N = 2, where all the relevant questions are present*.

As we observed aLove, it is necessary to approximte yIV(x) and
y"(X) up to orders 2 and & and yVI and yV up to the order 2 in h.
As we did in Lemma 7.2, recalling the observation at the end 0{ Theorem 4.1
it is possible to show that if L is a linear operator involving finite

di fferences) such that,

Y ) = L [y(x)] + 0?2

then it also holds that, if y(x) is sufficiently differentiable,

y By o T f(x, v, Lﬂb(k))/h] + o(n’%*?)y

b

where' T has the same formas L with all the difference orders decreased

by two, and h'l L,
order 2K in h. ‘
For K= 1 the approxinations to vy

is a difference operator approaching y'(x) up to the
IV

"

and y~ are obtained from

(iii) with n =2. Those will be enough for the whole interval since we

* Professor M Lees of CASE Institute of Technol ogy has nentioned to the
author that a general procedure has been devel oped, but it has so far not
been publ i shed. .
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will later drop two orders in the differences. |n fact this first step
coincides with the one already described for the linear deferred correction.
For K =2 we have the follow ng situation:
if j =3,..., p-3 then all the approxinations are obtained from (iii)
withn=3. For j =1, 2 yIV(xj) and yVI(xJ,) are obtained from (i)
with n =8, while y’”(xj) and yv(xj) are obtained also from (i) but
withn=r7.
Finally, at the right end (j = p-1, p-2) formula (ii) is used with

the same values of n as at the left boundary.

7.2. Mldly nonlinear partial differential equations of elliptic type

Here the continuous problemis

Fl(Z) = odx, y) - £(x, ¥, 2, Z s Zy) =0 for (x, y) e D
FE(Z) = Z(X, y) - g(x, y) =0 for (X, y) ced D ’ (7 -15)

where g(x, y) is a given function.

Let {VJ.} be the nodal points of a square mesh of width h which

covers D.

The discretization will be given as usual (Forsythe and Wasow [1960])

by the system of difference equations

_ =2 W
[0, (V)]y = 05y, - v - V) - V) - V) 4

+ f(x, ¥, Vs (V? - V?)/zh, (Vl‘;.I - v%)/en): 0 (7.1%)

for each VJ. which with its four closest neighbors is contained in D.
This probl em has been discussed in Bers [1953], and al | the necessary

properties and conditions can be obtained fromthere. In Volkov [1957]
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an iterated deferred corrections algorithmfor Au = f(x, y) is discussed.
The treatnent of a general boundary, needing interpolation, can be taken
from there. In order to make our description sinpler we will assunme that
the boundary 3 D is such that it does not require interpolation, for any
heH or inother words that all the interior grid points V.J are reg-
ular. We will also assune that the given functions g(x, y) and

£(x, y, z, Z zy) have enough regularity properties to insure that the
solution z(x, y) of (7.13) is sufficiently differentiable. In this case

the boundary equations wll sinply be
[o, (], =V, - g(x, ¥) . (7.1%)

Both in formulas (7.14) and (7.14') the (X, y) represents the node
in D corresponding to V.J.
Wth these hypotheses the treatment parallels the one of Sectl on 7.1
and we will not repeat it here. The quantity Fy i
needs to be approximted in order to conmpute the |inear deferred orrection.
If, instead of using the approxi mate solution V, one uses the values
of the right hand side at V, then it is possible to approximte F,
using only second differences in every given direction. This will reduce

the conplexity of the problem at points close to the boundary.

In fact, for any sufficiently differentiable function z(x, y)

Iy 4 L
1F =92, 8z - o . 2E (7.15)
2 Bx oy  AL%z(x, y) 2 Xx"Oy
In turn, if \6 -z(x, y) = o(hg), then
12F, = Ah f(x, vy, z, 6Xz/2h, Byz/Eh) -2 8(z) + O(h2) s (7.16)
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where S(z) is defined by

-k
S(zo)=h (420-2(zl+25+25+z,?)+22+z4+z6+z8) s

with zZ, defined in Fig. 1.

Iy 2
5 0 |1
A 4
5 Z $§
Fig. 1
Formul a (7.16) woul d be used every tinme that at |east one z; (I =1,..., 8)

bel ongs to the boundary o D.

When solving the system of nonlinear equations (7.14) (or any simlar
discretization) sone iterative technique will be needed. Let us suppose
that Newton's method can be applied successfully. At each stage of this
outer iteration it will be necessary to solve a large system of |inear
equations.

In order to do so, generally, an iterative technique will also be
used. To mnimze the anount of work in this inner iteration it is im
portant that the matrix which represents the Fréchet derivative @é be
as sinple as possible.

If a fourth order approximation in h is desired then, broadly speak-
ing, we have available three different kinds of techniques.

1) W may use a fourth order discretization instead of the one of

second order in (7.14). For instance, one may use the g-point

approxi mation given in Branble and Hubbard [1962].
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ii) W may solve (7.1%) twice with different steps andthen use
Richardson's extrapolation to the limt.

iii) W may solve (7.1%) once and then perform a linear deferred

correction as described above.

Let us suppose, as an exanple, that Dis a square with sides of
| ength one.

The nost significant figure here is the nunber of nodal points, which
in turn gives the nunmber of equations involved. Suppose h is such that
we have 100 equations. It is clear that (i) will have a nore conpli-
cated matrix (less zero entries) than either (ii) or (iii), which in turn
will inply nore arithietic operations at each inner iteration step. More-
over, the outer iteration will need to be nore "conplete" than in the
latter cases. (ii) and (iii) have already been conpared in Section 3.
This is one instance in which nethod (iii) noticeably involves |ess com
putation than (ii).

The conclusion is that for multidinensional problems (iii) may be a
val uabl e techni que.

For the iterative deferred correction we will have an increasing task
in setting up the necessary approximations to the successive error ternms,
but the possibility of obtaining nore and nore accurate results with a
fixed h nust also be born in mnd.

To end this Section we can say that many other applications are
possible. A few nore are listed in Stetter [1965], and those exanples
show that nmost of the time many of the necessary properties will have al-
ready been proved. One need only follow the general guidelines in either

Theorem 3,1 or Theorem 4.1 in order to generate approxinmations with the

proper accuracy.
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8. Numerical examples

Let us consider the two-point boundary value problem

- y// = x y./ e-Ey
y(2) =In2

whose solution is y(x) = in x.
An Extended Algol program which implements the discretization described

in Section 7.1 has been written for the Burroughs B5500 at the Stanford

University Computation Center.

The system of non-linear equations was solved by Newton's method

2 _ APP. on Table "1), and then a linear de-

4

(this solution 4s called h
ferred correction (Section 3) was applied (h" - APP.). The results ob-
tained are displayed in Table 1. A linear interpolation between the two
ends was taken as the initial approximation.

The step used for the results in Table 1 was h = 1/8.

The same problem was solved using i.d.c.p. and the same step size.

The results of this experiment are shown in Table 2. The norms of the

corresponding g.d.e. were,

-aull =7 bk x 107, ||U(2) - ol = hos X 10'6, HU(5 ). AhuH = 7.59%X107°

-The number of inner iterations were respectively 3, > and 5 in order to
reduce the norms of the residuals below 2 X 10™ , 4 x 10~ and

6 X 10'9 those being the bounds indicated by the theory.
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g2

INIT. VAL

2 - APP.

L - APP.

CEX saL

8,66433975718=02 1.1773379749€=~01 1.17770797958=01 1,17783035668=01
1,73286795148=01 2,2307340768€8~01 2.,23134103298=01 2,23143551328=01
2,59930192728=01 3,13379333058=01 3,1R446368278=01 3,18453731178=01
3,86573590299-01 4.05396602186=01 8,05459375478=01 4,05465108118=01
4,33216987868«01 4,85451569838=01 "4 ,85503407798=01 4,85507815788=01
5,19860385438=01 5.59575899138=01 5,59612496918=01 5.59615787948=01
6,06503783008=~0% 6.28537818128=01 6,28606341278=01 6.28608559438=01
Table 1
INIT,VAL, 2=APP, 4=APP, 6=APP, EX,SOL,
8,.66433975718=02 1,17733797498 =01 1.17779007788=01 1.17783000478=01 1.17783035668=01
1,73286795148=01 2.,2307340768€~01 2.23140883439=01 2.23143491858=01 2,23143551328=01
2,59930192728-01 3,18379333058=014 3.184518995598=01 3,1845365526@=01 3,18453731128=01
3,46573590298-01 4,05396602188-01 4,05463805338~01 4,05465036238~01 4,05465108116=01
4,33216987868=04 4,354515569838 =01 4,85506860298=01 4,85507754538=01 4,85507815788=01
5,1986038583@=01 5.59575899138=01 5,59615067888=01 5.,59615742838=01 5.59615787948=01
6,06503783008=01 6.,28537818128~01 6,283608101708=01 6,28608634748=01 6,28608659430~01

Table 2
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