ON THE APPROXIMATION OF WEAK SOLUTIONS OF LINEAR PARABOLIC EQUATIONS BY A CLASS OF MULT I STEP D IFFERENCE METHODS

BY
PIERRE ARNAUD RAV IART

TECHNICAL REPORT CS31
 DECEMBER 6, 1965

PREPARED UNDER CONTRACT Nonr-225(37) (NR-044-211) OFFICE OF NAVAL RESEARCH
Reproduction in Whole or In Part is Permilted for any Purpose of the United States Government
Qualified requesters may obtain coples of this report from DEFENSE DOCUMENT CENTER
CAMERON STATION
ALEXANDRIA, VIRGINIA

ON THE APPROXIMATION OF WEAK SOLUTIONS OF LINEAR PARABOLIC EQUATIONS BY A CLASS OF MULTISTEP DIFFERENCE METHODS

BY
Pierre Arnaud Raviart

We consider evolution equations of the form

$$
\begin{equation*}
\frac{d u(t)}{d t}+A(t) u(t)=f(t), \quad 0 \leq t \leq T, f \text { given }, \tag{1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(0)=u_{0}, u_{0} \text { given }, \tag{2}
\end{equation*}
$$

where each $A(t)$ is an unbounded linear operator in a Hilbert space H, which is in practice an elliptic partial differential operator subject to appropriate boundary conditions.

Let V_{h} be Hilbert space which depends on the parameter h. Let k be the time-step such that $m=\frac{T}{k}$ is an integer. We approximate the solution u of (1), (2) by the solution $u_{h, k}$ $\left(u_{h, k}=\left\{u_{h, k}(r k) \in V_{h}, r=0,1, \ldots, m-1\right\}\right)$ of the multistep difference -scheme
(3)

$$
\begin{aligned}
& \frac{u_{h k}(r k)-u_{h k}((r-1) k)}{k} \psi \sum_{l=0}^{p} \gamma_{\ell} A_{h}((r-\ell) k) u_{h, k}((r-\ell) k) \\
& =\sum_{l=0}^{p} \gamma_{\ell} f_{h, k}((r-\ell) k), \quad r=P, \ldots, m-1
\end{aligned}
$$

(4)

$$
u_{h, k}(0), \ldots, u_{h, k}((p-1) k) \text { given }
$$

where each $A_{h}(r k)$ is a linear continuous operator from V_{h} into V_{h}, $f_{h, k}(r k)(r=0,1, \ldots, m-1)$ are given, and $\gamma_{l}(\ell=0, \ldots, p)$ are given complex numbers,

Our paper is mainly concerned by the study of the stability of the approximation. The methods used here are very closely related to those developed in Raviart [7] and we shall refer to [7] frequently, In §1, 2, we define the continuous and approximate problems in precise terms, In $\delta 4$, we find sufficient conditions for $u_{h, k}$ to satisfy some a priori estimates. The definition of the stability is given in $\$ 5$ and we use the a priori estimates for proving a general stability theorem. In 56 we prove that the stability conditions may be weakened when $A(t)$ is a self-adjoint operator (or when only the principal part of $A(t)$ is self-adjoint), We give in $\$ 7$ a weak convergence theorem. \$8 is concerned by regularity properties., We apply our abstract analysis to a class of parabolic partial differential equations with variable coefficients in §9。

Strong convergence theorems can be obtained as in Raviart [7] (via compactness arguments) or as in Aubin [1]. We do not study here the discretization error (see [1]).

For the study of the stability of multistep difference methods in the case of the Cauchy problem for parabolic differential operators, we refer to Kreiss [3], Widlund [8].

1. The continuous problem.

We are given two separable Hilbert spaces V and H such that $V \subset H$, the inclusion mapping of V into H 'is continuous, and V is dense in H. If X is a Banach space with norm $\left\|\|\right.$, we denote by $L^{P}(0, T ; X)$ the space of (classes of functions: f which are L^{p} over $[0, T]$ with values in X, provided with the usual norm ($1 \leq p<\infty$):

$$
\left(\int_{0}^{T}\|f(t)\|_{x}^{p} d t\right)^{1 / p}
$$

and the usual modification in case $p=\infty$
For every $t \in[0, T]$, we are given a continuous sesquilinear form on v x v:

$$
u, v \rightarrow a(t ; u, v), \quad(u, v \in V) .
$$

We assume that:
i) $t \rightarrow a(t ; u, v)$ is measurable $(u, v \in V)$,
ii) there exists a constant K such that
(1.1) $\quad|a(t ; u, v)| \leq K\|u\|_{V}\|v\|_{V} \quad(u, v \in V, t \in[0, T])$.
iii) there exist constants $\lambda, \alpha(\alpha>0)$ such that

$$
\begin{equation*}
\operatorname{Re} a(t ; v, v)+\lambda\|v\|_{H}^{2} \geq \alpha\|v\|_{V}^{2} \quad(v \in V, t \in[0, T]) \tag{102}
\end{equation*}
$$

Then we have the following result (cf. Lions [4])
Theorem 1.1:
Given:
(1.3)

$$
\begin{equation*}
f \in L^{2}(0, T ; H) \tag{1.4}
\end{equation*}
$$

$u_{0} \in H$.

There exists a uniaue function U satisfying

$$
\begin{align*}
& u \in L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H) \tag{1.5}\\
& \int_{0}^{T}\left\{a(t ; u(t), \varphi(t))-\left(u(t), \varphi^{\prime}(t)\right)_{H}\right\} d t=\int_{0}^{T}(f(t), \varphi(t))_{H} d t \\
& \quad+\left(u_{0}, \varphi(0)\right)_{H},
\end{align*}
$$

for every function φ satisfying
(1.7) $\varphi \in L^{2}(0, T ; V), \varphi^{\prime} \in L^{2}(0, T ; H), \varphi(T)=0$.

Remarks:

1) The derivatives are taken Inthesense of distributions,
Ii) We may assume that $\lambda=0$ In Hypothesis (1.2) (Replace $u(t)$ b y $u(t) \exp (X t), x$ a real number chosen sufficiently large).
2) W e define V^{\prime} to bethe antidual of V.since $v \rightarrow a(t ; u, v)$ is a continuous condugate linear form onV, we may write:

$$
a(t ; u, v)=\langle A(t) u, v\rangle \quad \text { for all } v \in V
$$

where $A(t) \in \mathscr{L}\left(V ; V^{\prime}\right)$. Then $u^{\prime} \in L^{2}\left(0, T ; V^{\prime}\right)$ so that u is equal a.e. to a continuous function from $[0, T]$ to $H(c f . L i o n s[5])$ and equation (1.6) may be replaced by

$$
\begin{equation*}
u^{\prime}(t)+A(t) u(t)=f(t), \quad \text { for a.e. } t \in[0, T] \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u_{0} . \tag{1.9}
\end{equation*}
$$

In the following, we shall assume that the function $t \rightarrow a(t ; u, v)$ is once continuously differentiable for every $u, v \in V$. Then, because of the uniform boundedness principle, there exists a constant L such that

$$
\begin{equation*}
\left|\frac{d}{d t} a(t ; u, v)\right| \leq L\|u\|_{V}\|v\|_{V} \quad(u, v \in V, \quad t \in[0, T]) \tag{1.10}
\end{equation*}
$$

For the study of the approximation of the solution u of equation (1.6) when the function $t \rightarrow a(t ; u, v)$ is only measurable, we refer to Raviart [7].

2. The approached problem.

Let $\left\{V_{h}\right\}$ be a family of Hilbert spaces where the parameter $h=\left(h_{1}, \ldots, h_{n}\right)$ is a strictly positive vector of R^{n} such that

$$
|h|=h_{1}+\cdots+h_{n} \leq h_{0}
$$

$h_{o}>0$ being a fixed number. We provide each Hilbert space V_{h} with two scalar products denoted by $(,)_{h}$ and $((,))_{h}$ respectively.

- We assume that the corresponding norms $\left\|\|_{h}\right.$ and $\| \|_{h}$ are equivalent and verify

$$
\begin{equation*}
c(h)\left|u_{h}\right|_{h} \leq\left\|u_{h}\right\|_{h} \leq C(h)\left|u_{h}\right|_{h} \quad\left(u_{h} \in V_{h}\right) \tag{2.1}
\end{equation*}
$$

where $C(h)$ may tend towards $+\infty$ when h tends towards 0 . Let O_{h} be an operator belonging to $\mathcal{L}\left(H ; V_{h}\right)$ with

$$
\begin{equation*}
\left.\hat{O}_{h}\right|_{h}=\sup _{u \in H} \frac{\left|O_{h} u\right|_{h}}{\|u\|_{H}}<\frac{c}{1} \tag{2.2}
\end{equation*}
$$

where C_{1} is a constant independent of h.

For every $t \in[0, T]$, we are given a family of continuous sequilinear forms on $V_{h} \times V_{h}$:

$$
u_{h}, v_{h} \rightarrow a_{h}\left(t ; u_{h}, v_{h}\right) .
$$

$$
\left(u_{h}, v_{h} \in v_{h}\right)
$$

We assume that:
(i) $t \rightarrow a_{h}\left(t ; u_{h}, v_{h}\right)$ is once continuously differentiable $\left(u_{h}, v_{h} \in v_{h}\right)$;
(ii) there exist constants M, P independent of h such that

$$
\begin{equation*}
\left|a_{h}\left(t ; u_{h}, v_{h}\right)\right| \leq M\left\|u_{h}\right\|_{h}\left\|v_{h}\right\|_{h}, \tag{2.3}
\end{equation*}
$$

$\cdots\left|\frac{d}{d t} a_{h}\left(t ; u_{n}, v_{h}\right)\right| \leq P\left\|_{u_{h}}\right\|_{h}\left\|v_{h}\right\|_{h} ;$
(iii)
(2.5)

$$
\operatorname{Re} a_{h}\left(t ; v_{h}, v_{h}\right) \geq \alpha\left\|v_{h}\right\|_{h}^{2}
$$

$$
\left(v_{h} \in V_{h}\right)_{9}
$$

where α is the constant involved in inequality (1.2).

From (2.1), (2.3) and (2.4) we deduce that

$$
\begin{equation*}
\left|a_{h}\left(t ; u_{h}, v_{h}\right)\right| \leq M(h)\left|u_{h}\right|_{h}\left|v_{h}\right|_{h}, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{h}\left(t ; u_{h}, v_{h}\right)\right| \leq N(h)\left\|u_{h}\right\|_{h}\left|v_{h}\right|_{h}, \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{d}{d t} \quad a_{h}\left(t ; u_{h}, v\right)\right| \leq P(h) \quad\left|u_{h}\right|_{h}\left|v_{h}\right|_{h} \tag{2.8}
\end{equation*}
$$

Where $M(h), N(h)$ and $P(h)$ may tend towards $+\infty$ when $h \rightarrow 0$ 。 Moreover $M(h),(N(h))^{2}, P(h)$ have the same order of magnitude when $h \rightarrow 0$. We denote by $\mu(h)$ and $v(h)$ respectively the principal parts of $M(h)$ and $N(h)$ when $h \rightarrow 0$ 。

Let us introduce now a set of consecutive integers cog 1,...,r,...m3 and the "time-step" $k=\frac{T}{m}$. We define $E_{k}\left(r_{1} k, r_{2} k ; V_{h}\right)$ to be the space of sequences $u_{h, k}$ of the form

$$
u_{h, k}=\left\{u_{h, k}(r k), r=r_{1}, \ldots, r_{2}-l\right\}
$$

where each $u_{h, k}(r k)$ belongs to V_{h}. We provide $E_{k}\left(0, T ; V_{h}\right)$ with the two following sequences of equivalent norms:

$$
\text { I } \|_{h, k, p} \quad \text { and } \quad\left\|\|_{h, k, p} \quad(1 \leq p \leq+\infty)\right.
$$

defined by

$$
\begin{aligned}
& \left|u_{h, k}\right|_{h, k, p}=\left(\left.\left.k \sum_{r=0}^{m-1}\right|_{u_{h} k}(r k)\right|_{h} ^{p}\right)^{l / p} \quad(1 \leq p<+\infty), \\
& \left\|u_{h, k}\right\|_{h, k, p}=\left(k \sum_{r=0}^{m-1}\left\|_{u_{h} k}(r k)\right\|_{h}^{p}\right)^{1 / p} \quad(1 \leq p<+\infty), \\
& \left|u_{h, k}\right|_{h, k, \infty}=\sup _{0 \leq r \leq m-1}\left|u_{h, k}(r k)\right|_{h}, \\
& \|y,\|_{h, k, \infty}=\sup _{0 \leq r \leq m-1}\left\|u_{h, k}(r k)\right\|_{h} . \\
& \text { If } u_{h, k} \in E_{k}\left(r_{1} k, r_{2} k ; V_{h}\right) \text {, we may define } \\
& \bar{\nabla}_{k} u_{h, k}=\left\{\bar{\nabla}_{k} u_{h, k}\left(x_{k}\right) r=r_{1}+1, \ldots, r_{2}-l\right\} \in E_{k}\left(\left(r_{1}+I\right) k, r_{2} k, v_{h}\right)
\end{aligned}
$$

$$
\begin{equation*}
\bar{\nabla}_{k} u_{h, k}(r k)=\frac{1}{k}\left[u_{h_{9} k}(r k)-u_{h_{9} k}((r-1) k)\right] \tag{2.9}
\end{equation*}
$$

For every $t \in\left[s k, T I(s \geq 0)\right.$, we define for all $u_{h h^{v}} \in K_{h}$:

$$
\begin{equation*}
\left\{\bar{\nabla}_{s k} a_{h}\right\}\left(t ; u_{h}, v_{h}\right) \text { a } \frac{l}{s k}\left[a_{h}\left(t ; u_{h}, v_{h}\right)-a_{h}\left(t-s k ; u_{h}, v_{h}\right)\right] . \tag{2.10}
\end{equation*}
$$

We introduce now

$$
f_{h, k} \in E_{h}\left(0, T ; V_{h}\right) \quad b y
$$

$$
\begin{equation*}
f_{h, k}(r k)=\frac{1}{k} \int_{r k}^{(r+1) k} O_{h} f(t) d t \tag{2.11}
\end{equation*}
$$

The following inequality is easily verified:

$$
\begin{equation*}
\left|f_{h, k}\right|_{h, k, 2} \leq c_{1}\left(\int_{0}^{T}\left\|_{f(t)}\right\|_{H}^{2} d t\right)^{\frac{1}{2}} \tag{2.12}
\end{equation*}
$$

> Let us consider now the "approached" problem

Problem I:
Find $u_{h, k} \in E_{k}\left(0, T ; V_{h}\right)$ satisfying

$$
\begin{align*}
& \left(\bar{\nabla}_{k} u_{h g k}(r k), v_{h}\right)_{h}+\sum_{\ell=0}^{p} \gamma_{\ell} a_{h}\left((r-\ell) k ; u_{h g k}((r-\ell) k), v_{h}\right) \tag{2.13}\\
& \quad=\sum_{\ell=0}^{p} \gamma_{\ell}\left(f_{h}{ }_{k}((r-\ell) k), \quad v_{h}\right)_{h^{9}} \quad r=p, \ldots, m-l_{9}
\end{align*}
$$

for all $\mathrm{v}_{\mathrm{h}} \in \mathrm{V}_{\mathrm{h}}$,
(2.14) $u_{h, k}(0), u_{h, k}(k), \ldots, u_{h, k}((p-1) k)$ given in $V_{h} \gamma_{0}, \gamma_{1}, \ldots, \gamma_{p}$
are chosen complex numbers.

Theorem 2.1:

Assume that γ_{0} is a real number ≥ 0. Then Problem I has a unique solution.

Proof:
Note that the theorem is trivial for $\gamma_{0}=0$. Let us assume $\gamma_{0}>0$. Then equation (2.13) may be written

$$
\begin{equation*}
\hat{a}_{h, k}\left(r k ; u_{h_{h} k}(r k), v_{h}\right)=\left(F_{h, k}(r k), v_{h}\right)_{h} \tag{2.15}
\end{equation*}
$$

where $\hat{a}_{h, k}\left(r k ; u_{h}, v_{h}\right)$ is a continuous sequilinear form on $V_{h} X V_{h}$ which verifies for all $\mathrm{v}_{\mathrm{h}} \in \mathrm{V}_{\mathrm{h}}$

$$
\begin{align*}
\left|\hat{a}_{h, k}\left(r k ; v_{h}, v_{h}\right)\right| & \geq \operatorname{Re} a_{h, k}\left(r k ; v_{h}, v_{h}\right) \geq\left|v_{h}\right|_{h}^{2}+k \gamma_{0} \alpha\left\|_{v_{h}}\right\|_{h}^{2} \tag{2.16}\\
& \geq\left|v_{h}\right|_{h}^{2} .
\end{align*}
$$

and $F_{h, k}(r k)$ is an element of V_{h} which does not depend on $u_{h, k}(r k)$. Then (2.16) is a sufficient condition for equation (2.15) to have a unique solution.

In the following, we shall always assume that γ_{0} is >0.

Remarks:

(i) We could slightly generalize by choosing other complex constants
than $\gamma_{0}, \ldots, \gamma_{\mathrm{p}}^{\mathrm{g}}$ in the left-hand side of equation (2.13).
(ii) Let $A_{h}(t) \in \mathscr{R}\left(v_{h} ; V_{h}\right)$ be the operator defined by

$$
\left(A_{h}(t i) u_{h}, v_{h}\right)_{h}=a_{h}\left(t ; u_{h}, v_{h}\right) \quad\left(u_{h}, v_{h} \in v_{h}\right) .
$$

Then equation (2.13) may be written on the equivalent form
(2.17)

$$
\begin{aligned}
\bar{\nabla}_{k} u_{h ; k}(r k) & \left.+\sum_{\ell=0}^{p} \gamma_{\ell} A_{h}(r-\ell) k\right) u_{h, k}((r-\ell) k) \\
& =\sum_{\ell=0}^{p} \gamma_{\ell} f_{h, k}((r-\ell) k), \quad r=p, \ldots, m-l .
\end{aligned}
$$

3. Some Lemmas.

Lemma 3.1:
We denote by E a linear space and by $b(.,$.$) a sequilinear$
hermitian form on $E X E$. Let φ be a mapping from $Z k$ into. E. Then
(3.1)

$$
\begin{aligned}
\bar{\nabla}_{\mathrm{k}} \mathrm{~b}(\varphi(r k), \varphi(r k) \lambda & =2 \operatorname{Re} b\left(\varphi(r k), \bar{\nabla}_{k} \varphi(r k)\right)-k b\left(\bar{\nabla}_{\mathbf{k}} \varphi(r k), \bar{\nabla}_{k} \varphi(r k)\right) \\
& \left.=2 \operatorname{Re} b\left(\varphi((r-1) k), \bar{\nabla}_{k} \varphi(r k)\right)+k_{k} b \bar{\nabla}_{k} \varphi(r k), \bar{\nabla}_{k} \varphi(r k)\right)
\end{aligned}
$$

Lemma 3.2:
. Let φ be any scalar function defined on $Z k$, Then
(3.2)

$$
\mathrm{k} \sum_{s=r_{1}+1}^{r_{2}} \bar{\nabla}_{k} \varphi(s k)=\varphi\left(r_{2} k\right)-\varphi\left(r_{1} k\right)
$$

Lemma 3.3:
Let φ be any real function defined on $\left\{r_{1} k,\left(r_{1}+1\right) k, \ldots, r_{2} k\right\}$. We
assume that the following inequality holds for all integer $r\left(r_{1} \leq r \leq r_{2}\right)$
(3.3) $\varphi(r k)+\alpha(r k) \leq c+\frac{k}{k_{-}} \sum_{0^{-}=r_{1}}^{r-1} \varphi(s k), \quad \alpha(r k) \geq 0$,
where $C \geq 0$ and $\mathbf{k}_{0}>0$ are given.constants. Then
(3.4) $\varphi(\mathrm{rk})+\alpha(\mathrm{rk})<C\left(1+\frac{\mathrm{k}}{\mathrm{k}_{0}}\right)^{\mathrm{r}-\mathrm{r}_{1}} \leq C \exp \left(\frac{\left(\mathrm{r}-\mathrm{r}_{1}\right) \mathrm{k}}{\mathrm{k}_{0}}\right)$.

If we replace for all r inequality (3.3) by
(3.5) $\varphi(r k)+\alpha(r k) \leq C+\frac{k}{k_{0}} \sum_{s=r_{1}+1}^{r} \varphi(s k), \quad \alpha(r k) \geq 0$,

Then , for, $k<k_{0}$,
(3.6) $\quad \varphi(r k)+\alpha(r k) \leq C\left(1-\frac{k}{k_{0}}\right)^{-r+r_{1}} \leq C \exp \left(\frac{\left(r-r_{1}\right) k}{k_{0}}\right)$

All these lemmas are obvious.
4. A priori estimates for the solution of Problem I.

Before establishing an energy inequality for the solution $u_{h_{9} k}$ of Problem I, we shall put equation (2.13) into a more convenient form.
a) Another form for equation (3.13)

Equation (2.17) may be replaced by

$$
\text { (4.1) } \quad \begin{aligned}
\bar{\nabla}_{k} u_{h_{9} k}(r k) & +\left(\sum_{\ell=0}^{p} \gamma_{\ell}\right) A_{h}(r k) u_{h, k}(r k) \\
& +k \sum_{\ell=1}^{p} \beta_{\ell} \bar{\nabla}_{k}\left\{A_{h}((r-\ell+1) k) u_{h \ell k}((r-\ell+1) k\}\right.
\end{aligned}
$$

where

$$
\beta_{\ell}=-\sum_{\ell^{\prime}=\ell}^{p} \gamma_{\ell}^{\prime}, \quad \quad \ell=1_{\imath} \ldots \mathrm{p}
$$

Assume that the operator $A_{h}(t)$ is consistent with the operator $A(t)$ in a certain sense which will be precised later in $\oint 7$. Then the operator $\sum_{\ell=1}^{p} \gamma_{\ell} A_{h}(t-\ell k)$ is consistent with $A(t)$ if and only if
(4.2)

$$
\sum_{\ell=0}^{\mathrm{p}} \gamma_{\ell}=1
$$

In the following, we shall assume that equality (4.2) is always verified. Then equation (4.1) may be written:
(4.3) $\quad \bar{\nabla}_{k u_{h} k}(r k)+A_{h}(r k)\left[u_{h, k}(r k)+k \sum_{\ell=1}^{p} \beta_{\ell} \bar{\nabla}_{k} u_{h_{f} k}((r-\ell+1) k)\right]$

$$
\begin{aligned}
& +\sum_{\ell=2}^{p} \beta_{\ell}\left\{A_{h}((r-\ell+1) k)-A_{h}(r k)\right\} u_{h, k}((r-\ell+1) k) \\
& +\sum_{\ell=1}^{p} \beta_{\ell}\left\{A_{h}(r k)-A_{h}((r-\ell) k\} u_{h, k}((r-\ell) k)\right.
\end{aligned}
$$

$$
=\sum_{\ell=0}^{p} \gamma_{\ell} f_{h_{h} \quad k}((r-\ell) k)
$$

We define
(4.4) $\quad v_{h_{9} k}(r k)=u_{h, k}(r k)+k \sum_{\ell=1}^{p} \beta_{\ell} \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k)$

$$
=\sum_{\ell=0}^{p} \gamma_{\ell} u_{n, k}((r-\ell) k)_{9} \quad r=P 9 \ldots, m-1
$$

Hence another form for equation (2.13) is given by

$$
\begin{align*}
& \left(\bar{\nabla}_{k} u_{h, k}(r k), v_{h}\right)_{h}+a_{h}\left(r k ; v_{h, k}(r k), v_{h}\right) \tag{4.5}\\
& \quad-k \sum_{\ell=2}^{p}(i-1) \ddot{\beta}_{\ell}\left\{\nabla_{(\ell-1) k} a_{h}\right\}\left(r k ; u_{h, k}((r-\ell+1) k), v_{h}\right) \\
& \quad+k \sum_{\ell=1}^{p} \ell_{\ell}\left\{\bar{\nabla}_{\ell k} a_{h}\right\}\left(r k ; u_{h_{9} k}\left((r-\ell) k, v_{h}\right)\right. \\
& \quad=\sum_{\ell=0}^{p} \gamma_{\ell}\left(f_{h_{9} k}((r-\ell) k), v_{h}\right)_{h} \quad r=p, \ldots, m-1 .
\end{align*}
$$

b) The energy-inequality.

In the following, D_{1}, D_{2}, \ldots will be positive constants independent of h and k.

We replace v_{h} in equation (4.5) by $v_{h_{9} k}(r k)$. We obtain

$$
\begin{align*}
& \left(\bar{\nabla}_{k} u_{h, k}(k), u_{h, k}(r k)\right)_{h}+k \sum_{\ell=1}^{p} \beta_{\ell}\left(\bar{\nabla}_{k} u_{h_{9} k}(r k) ; \bar{\nabla}_{k u_{h} k}((r-\ell+1) k)\right)_{h} \tag{4.6}\\
& \quad+a_{h}\left(r k ; v_{h, k}(r k)_{9} v_{h, k}(r k)\right) \\
& -k \sum_{\ell=2}^{p}(\ell-1) \beta_{\ell}\left\{\bar{\nabla}_{(\ell-1) k}\right\}\left(r k ; u_{h, k}((r-\ell+1) k), v_{h, k}(r k)\right) \\
& \quad+k \sum_{\ell=1}^{p} \ell \beta_{\ell}\left\{\bar{\nabla}_{\ell k} a_{h}\right\}\left(r k ; u_{h, k}((r-\ell) k), v_{h, k}(r k)\right) \\
& =\sum_{\ell=0}^{p} \gamma_{\ell}\left(f_{h_{9} k}((r-\ell) k), v_{h}(r k)\right)_{h} 9 \quad r=p, \quad \bullet \quad \cdots g_{m-1} .
\end{align*}
$$

Taking real parts and applying lemma 3.1 gives:

$$
\begin{align*}
& \bar{\nabla}_{k}\left|u_{h_{9} k}(r k)\right|_{h}^{2}+k\left|\bar{\nabla}_{k h_{h} k}(r k)\right|_{h}^{2} \tag{4.7}\\
& \quad+2 k \operatorname{Re}\left\{\sum_{\ell=1}^{p} \beta_{\ell}\left(\bar{\nabla}_{k} u_{h, k}(r k), \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k)\right)_{h}\right\} \\
& \quad+2 \operatorname{Re} a_{h}\left(r k ; v_{h_{9} k}(r k), v_{h_{9} k}(r k)\right) \\
& =2 k \operatorname{Re}\left\{\sum_{\ell=2}^{p}(\ell-1) \beta_{\ell}\left\{\bar{\nabla}_{(\ell-1) k} \cdot a_{h}\right\}\left(r k ; u_{h, k}((r-\ell+1) k), v_{h, k}(r k)\right)\right\} \\
& \quad-2 k \operatorname{Re}\left\{\sum_{\ell=1}^{p} \ell \beta_{\ell}\left\{\bar{\nabla}_{\ell k} a_{h}\right\}\left(r k ; u_{h_{g} k}((r-\ell) k), v_{h_{9} k}(r k)\right)\right\} \\
& \quad+2 \operatorname{Re}\left\{\sum_{\ell=0}^{p} \gamma_{\ell}\left(f_{h_{9} k}((r-\ell) k), v_{h_{g} k}(r k)\right)\right\}, \quad r=p, \ldots, m-1 .
\end{align*}
$$

Note that $\beta_{1}=\gamma_{0}-1$ is a real number. Then it follows from the Cauchy-Schwarz inequality and Hypotheses (2.5), (2.8) that
(4.8) $\quad \bar{\nabla}_{k}\left|u_{h, k}(r k)\right|_{h}^{2}+\left(1+2 \beta_{1}\right) k\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}$

$$
\left.\begin{aligned}
& -2 k \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|\left|\bar{\nabla}_{k} u_{h_{9} k}(r k)\right|_{h}\left|\bar{\nabla}_{k u_{h_{9} k}}((r-\ell+1) k)\right|_{h}+2 \alpha\left\|v_{h_{9} k}(r k)\right\|_{h}^{2} \\
& \leq 2 k P(h) \sum_{\ell=2}^{p}(\ell-1)\left|\beta_{\ell}\right|\left|u_{h_{9} k}((r-\ell+1) k)\right|_{h}\left|v_{h_{9} k}(r k)\right|_{h} \\
& +2 k P(h) \sum_{\ell=1}^{p} \ell\left|\beta_{\ell}\right|\left|u_{h, k}((r-\ell) k)\right|_{h}\left|v_{h, k}(r k)\right|_{h} \\
& +2 \sum_{\ell=0}^{p}\left|\gamma_{\ell}\right| \mid f_{h_{9} k}((r-\ell) k \mid \\
& h
\end{aligned} v_{h, k}(r k)\right|_{h}, r=p, \ldots, m-1 .
$$

We deduce from the inequality $2 a b \leq a^{2}+b^{2}$ (a, b real numbers):

$$
\begin{gather*}
\bar{\nabla}_{k}\left|u_{h, k}(r k)\right|_{h}^{2}+\left(1+2 \beta_{1}-\sum_{\ell=2}^{p}\left|\beta_{l}\right|\right) k\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \tag{4.9}\\
-k \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|\left|\bar{\nabla}_{k} u_{h, k}((r-\ell+1) k)\right|_{h}^{2}+2 \alpha\left\|_{v_{h, k}}(r k)\right\|_{h}^{2} \\
\leq\left(D_{1} k P(h)+D_{2}\right) \sum_{l=0}^{p}\left|u_{h, k}((r-\ell) k)\right|_{h}^{2}+D_{3} \sum_{l=0}^{p} \mid f_{h, k}\left(\left.(r-\ell) k\right|_{h} ^{2},\right. \\
r=p, \ldots, m-l .
\end{gather*}
$$

Multiplying equation (4.9) by k and summing from $r=p$ to $r=s$ ($\mathrm{p} \leq \mathrm{s} \leq m-1$) gives:
(4.10) $\left|u_{h_{9} k}(s k)\right|_{h}^{2}+\left(1+2 \beta_{1}-2 \sum_{l=2}^{p}\left|\beta_{l}\right|\right) k^{2} \sum_{r=p}^{s}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}$

$$
+20 \mathrm{k} \sum_{\mathrm{r}=\mathrm{p}}^{\mathrm{s}}\left\|\mathrm{v}_{\mathrm{h}, \mathrm{k}}(\mathrm{rk})\right\|_{\mathrm{h}}^{2}
$$

$$
\leq\left|u_{h, k}((p-1) k)\right|_{h}^{2}+k^{2} \sum_{\ell=2}^{p}\left|\beta_{\ell}\right| \sum_{r=p-\ell+1}^{p-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}
$$

$$
+\left(D_{1} k P(h)+D_{2}\right) k \sum_{\ell=1}^{p} \sum_{r=p-\ell}^{p-1}\left|u_{h, k}(r k)\right|_{h}^{2}
$$

$$
+D_{3_{l=0} k}^{p} \sum_{r=p-\ell}^{s-l}\left|f_{h_{9} k}(r k)\right|_{h}^{2}
$$

$$
+\left(D_{1} k P(h)+D_{2}\right) k \sum_{\ell=0}^{p} \sum_{r=p}^{s-\ell}\left|u_{h, k}(r k)\right|_{h}^{2}
$$

Let us assume that there exist two constants K_{1}, K_{2} independent of h and k such that

$$
\begin{equation*}
\left|u_{h, k}(r k)\right|_{h} \leq K_{1}, \quad r=0, \ldots, p-1 \tag{4.11}
\end{equation*}
$$

$$
\begin{equation*}
k^{2} \sum_{r=1}^{p-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \leq k_{2} \tag{4.12}
\end{equation*}
$$

We consider now two different cases according to the sign of

$$
1+2 \beta_{1} 32 \sum_{\ell=2}^{p}\left|\beta_{\lambda}\right|
$$

(i) $1^{\text {st } \text { case: }} \quad 1+28,-2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right| \geq 0$.

Let us assume that

$$
\begin{equation*}
k(\nu(h))^{2} \leq \rho_{9} \tag{4.13}
\end{equation*}
$$

.where ρ is an arbitrary >0 constant independent of h and k. Note that (4.13) is equivalent to
(4.13) $\quad k P(h) \leq \rho^{\prime}, \rho^{\prime}>0$ arbitrary constant independent
of h and k. Then, because of (2.12), we obtain:
(4.14) $\quad\left|u_{h, k}(s k)\right|_{h}^{2}+\left(1+2 \beta_{1}-2 \sum_{l=2}^{p}\left|\beta_{l}\right|\right) k^{2} \sum_{r=p}^{S}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}$
$+2 k \sum_{r=p}^{S}\left\|v_{h, k}(r k)\right\|_{h}^{2} \leq D_{4}+D_{5} k \sum_{r=p}^{s}\left|u_{h, k}(r k)\right|_{h}^{2}$,

$$
\mathrm{s}=\mathrm{p}, \ldots, \mathrm{~m}-\mathrm{l}
$$

By applying lemma 3.3, we find for $\mathrm{kD}_{5}<1$ and for every s (p<s<m-1) the following energy inequality

$$
\begin{gather*}
\left|u_{h_{9} k}(s k)\right|_{H}^{2}+2 \alpha k \sum_{r=p}^{s}\left\|_{v_{h_{9}}}(r k)\right\|_{h}^{2} \leq D_{4} \exp \left(D_{5}(s-p+1) k\right) \tag{4.15}\\
\leq D-4 \exp \left(D_{5}(T-p k)\right)
\end{gather*}
$$

(ii) $\underline{2}^{\text {nd }}$ Case:

$$
1+2 \beta_{1}-2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|<0
$$

We give an estimate for $\left|\bar{\nabla}_{k} u_{h, k}(k)\right|_{d^{h}}^{2}, r=p, \ldots, m-1$, which is obtained as follows: We replace v_{h} in equation (4.5) by $\bar{\nabla}_{k}^{u} u_{h, k}(r k)$. Applying inequalities (2.7) and (2.8) gives:

$$
\begin{align*}
& \left|\bar{\nabla}_{k u_{h, k}}(r k)\right|_{h} \leq N(h)\left\|v_{h_{9} k}(r k)\right\|_{h} \tag{4.16}\\
& +\left.\left.k P(h) \sum_{\ell=2}^{p}(\ell-I)\right|_{\beta_{\ell}}| |_{u_{h, k}}((r-\ell+I) k)\right|_{h} \\
& +k P(h) \sum_{\ell=1}^{p} \ell\left|\beta_{\ell}\right|\left|u_{h, k}((r-\ell) k)\right|_{h}+\sum_{\ell=0}^{p}\left|\gamma_{\ell}\right|\left|f_{h_{9} k}((r-\ell) k)\right|_{h}
\end{align*}
$$

Then

$$
\begin{align*}
& \left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \leq(N(h))^{2}(1+\delta)\left\|v_{h_{9} k}(r k)\right\|_{h}^{2} \tag{4.17}\\
& \quad+\left(D_{6}+\frac{D_{7}}{\delta}\right) k^{2}(P(h))^{2} \sum_{\ell=1}^{p} \|\left._{h} u_{k}((r-\ell) k)\right|_{h} ^{2} \\
& \quad+\left(D_{8}+D_{9}+\frac{1}{\delta} \sum_{\ell=0}^{p}\left|f_{h, k}((r-\ell) k)\right|_{h}^{2},\right.
\end{align*}
$$

where $\delta>0$ may be chosen as small as we please. Assume that Hypothesis (4.13) is verified. Hence we deduce from (4.10) and 4.17):
(4.18)

$$
\left|u_{h, k}(\mathrm{sk})\right|_{h}^{2}
$$

$$
+\left(2 \alpha-\left(2 \sum_{l=2}^{p}\left|\beta_{l}\right|-2 \beta_{1}-1\right) k(N(h))^{2}(1+\delta)\right) k \sum_{r=p}^{s}\left\|v_{\mathrm{h}_{\mathrm{g}}}(r k)\right\|_{h}^{2}
$$

$$
\leq D_{10}+D_{11} k \sum_{r=p}^{s}\left|u_{h, k}\left(\dot{r}_{.}\right)\right|_{h}^{2} .
$$

Let us assume now that

$$
\begin{equation*}
k(N(h))^{2} \leq \frac{2 \alpha}{2 \sum_{l=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1}(1-\delta) . \tag{4.19}
\end{equation*}
$$

Then

$$
\begin{align*}
& \left|u_{h, k}(s k)\right|_{h}^{2}+2 \alpha \delta^{2} k \sum_{r=p}^{s}\left\|v_{h_{g} k}(r k)\right\|_{h}^{2} \tag{4.20}\\
& \leq D_{10}+D_{11} k \sum_{r=p}^{s}\left|u_{h, k}(r k)\right|_{h}^{2}
\end{align*}
$$

By applying lemma 3.3, we find for $k D_{l l}<1$ and for every
$s(p \leq s \leq m-1)$ the energy inequality

$$
\begin{align*}
& \left|u_{h_{9} k}(s k)\right|_{h^{h}}^{2}+2 \alpha \delta^{2} k \sum_{r=p}^{s}\left\|v_{h_{9} k}(r k)\right\|_{h}^{2} \tag{4.21}\\
& \quad \leq D_{10} \exp \left(D_{11}(s-p+1) k\right) \leq D_{10} \exp \left(D_{11}(T-p k)\right)
\end{align*}
$$

Note that (4.19) implies (4.13). When k is small enough, we may replace condition (4.19) by

$$
\begin{equation*}
\mathrm{k}(\nu(\mathrm{~h}))^{2} \leq \frac{2 \alpha}{2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1}-\delta^{\prime} \tag{4.22}
\end{equation*}
$$

where $\delta^{\prime}>0$ is arbitrarily small.

Thus, under some appropriate assumptions, we have obtained an energy inequality for any value of $1+2 \beta_{1}-\sum_{\ell=2}^{p}\left|\beta_{\ell}\right|$. Let us assume that there exists a positive constant K_{3} independent of h and k such that

$$
\begin{equation*}
k \sum_{r=0}^{P-1}\left\|u_{h, k}(r k)\right\|_{h}^{2} \leq K_{3} . \tag{4.23}
\end{equation*}
$$

We define $V_{h_{g} k} \in E_{k}\left(0, T ; V_{h}\right)$ by
(4.24) $v_{h, k}=\left\{u_{h, k}(r k), r=0, \ldots, p-1, v_{h, k}(r k) r=p, \ldots, m-1\right\}$.

Then we have proved the following result:

Theorem 4.1:
Assume Hypotheses

$$
\begin{equation*}
\left|u_{h_{9} k}(r k)_{h}\right|_{_}<K_{1}, \quad r=0, \ldots, p-1, \tag{4.11}
\end{equation*}
$$

$$
\begin{equation*}
{ }_{k}^{2} \sum_{r=1}^{p-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \leq k_{2} \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
k \sum_{r=0}^{p-l}\left\|u_{h, k}(r k)\right\|_{h}^{2} \leq K_{3} \tag{4.23}
\end{equation*}
$$

There exist positive constants E_{1}, E_{2} independent_of h and k such that

$$
\begin{equation*}
\left|u_{h ; k}\right|_{h ; k ; \infty} \leq E_{1} \tag{4.25}
\end{equation*}
$$

$$
\begin{equation*}
\left\|v_{h, k}\right\|_{h, k, 2} \leq E_{2}, \tag{4.26}
\end{equation*}
$$

in the two following cases
(i) $1^{\text {st }}$ Case $: \quad 1+2 \beta_{1}-2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right| \geq 0$,

$$
\begin{equation*}
k(\nu(h))^{2} \leq \rho \tag{4.13}
\end{equation*}
$$

(ii) $\underline{2}^{\text {nd }}$ Case:
$1+2 \beta_{1}-\sum_{\ell=2}^{p}\left|\beta_{\ell}\right|<0{ }_{9}$

$$
\begin{equation*}
\mathrm{k}(\nu(\mathrm{~h}))^{2} \leq \frac{2 \alpha}{2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1}-\delta^{\prime}, \delta^{\prime}>0 \text { arbitrarily } \tag{4.2}
\end{equation*}
$$

small, k small enough,

Remarks:

(i) It is easy to determine $\left\{u_{h_{9}}(r k), r=0, \ldots, p-13\right.$; verifying (4.11),

- (4.12) and (4.23) by two-level difference schemes: see Raviart [7].
(ii) If the operator $A_{h}(t)$ is independent of $t, P(h)=0$ and Hypothesis (4.13) may be suppressed.

5. The Stability Theorem.

Let X be a Banach space with norm $\left\|\|_{X}\right.$. For every $\{\mathrm{h}, \mathrm{k}\}$
$\left(|h| \leq h_{0}, k \leq k_{0}\right)$ let $P_{h_{9} k}$ be an operator of $\mathcal{L}\left(E_{k}\left(0, T ; V_{h}\right) ; L^{\infty}(0, T ; X)\right)$. such that $P_{h, k} u_{h, k}(t)$ is defined in X for all $t \in[0, T]$ and all $u_{h, k} \in E_{k}\left(0, T ; V_{h}\right): \quad P_{h_{g} k}$ is called a prolongation operator.

Definition 5.1:

 and k such that:

$$
\begin{aligned}
\left\|P_{h, k} u_{h, k}(t)\right\|_{X} \leq C \quad, & \text { for all } t \in[0, T] \\
& \text { for all }\{h, k\}\left(|h| \leq h_{0}, k \leq k_{0}\right)
\end{aligned}
$$

Let F be a Hilbert space such that H is a closed subspace of F. Let π denote the projection operator from F onto H. For every $\{h, k\}$, let $P_{h_{g} k}$ be a prolongation operator of $\mathcal{L}\left(E_{k}\left(0, T ; V_{h}\right) ; L^{\infty}(0, T ; F)\right)$. Then $Q h, k=\pi \circ P_{h, k}$ is a prolongation operator of $\mathcal{L}\left(E_{k}\left(0, T ; V_{h}\right) ; L^{\infty}(0, T ; H)\right)$. We assume that

$$
\begin{equation*}
\left\|P_{h, k} u_{h, k}\right\|_{L}{ }^{2}(0, T ; F) \leq C_{2} \quad\left\|u_{h_{9} k}\right\|_{h, k, 29} \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{t \in[0, T]}\| \|_{Q_{h, k}} u_{h, k}(t) \|_{H} \leq c_{3}\left|u_{h, k}\right|_{h, k_{9}} \infty \tag{5.2}
\end{equation*}
$$

for all $u_{h, k} \in E_{k}\left(0, T ; V_{h}\right)$, where C_{2} and C_{3} are positive constants independent of h and k.

Then the following result-can be deduced from theorem 4.1.

Theorem 5.1:
Assume Hypotheses (4.11), (4.12), (4.23), (5.1) (5.2). Let $u_{h} k$ be
 $P_{h, k} \cdot v_{h, k}$ remains in a bounded set of- ${ }_{L}{ }^{2}(0, T ; F)$ in the two following cases:
(i) $1^{\text {st }}$ case: $\quad 1+2 \beta_{1}-2 \sum_{\ell=2}^{p} \mid \beta_{\ell}!\geq 0$
(4.13) $k(\nu(h))^{2} \leq \rho\left(\underline{N o} \frac{\text { restriction }}{p}\right.$ if $A_{n}(t)$ is independent of t),
(ii) $2^{\text {nd }}$ Case: $1+2 \beta_{1}-2 \sum_{\ell=2}^{\ell}\left|\beta^{\ell}\right|<0$,
(4.22) $k(\nu(h))^{2}<\frac{2 \alpha}{2 \cdot \sum_{l=2}^{p}\left|\beta_{l}\right|-2 \beta_{1}-1}-\delta^{\prime}, \delta^{\prime}>0$ arbitrarily
small, k small enough.

6. The Hermitian Case:

Let us assume now that for every $t \in[0, T]$ the sesquiiinear
form $a(t ; u, v)$ is hermitian (iou. $a(t ; u, v)=a(t ; v, u))$. so we

- choose the family of sequilinear forms $a_{h}\left(t ; u_{h}, v_{h}\right)$ such that

$$
\begin{equation*}
a_{h}\left(t ; u_{h}, v_{h}\right)=\overline{a_{h}\left(t ; v_{h}, u_{h}\right)} \quad\left(u_{h}, v_{h} \in v_{h}, t \in[0, T]\right) \tag{6.1}
\end{equation*}
$$

Then it is possible to weaken condition (4.22) in case

$$
1+2 \beta_{1}-2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|<0
$$

First we give a new estimate for $k \sum_{r=p}^{s}\left|\bar{\nabla}_{k} u_{h}, k(r k)\right|_{h}$,
$p \leq s \leq m-1$. We replace v_{h} in equation (4.5) by $\bar{\nabla}_{k} u_{h_{9}}(r k)$:
(6.2)

$$
\begin{aligned}
& \left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}+a_{h}\left(r k ; u_{h, k}(r k), \bar{\nabla}_{k} u_{h, k}(r k)\right) \\
& +k \sum_{\ell=1}^{p} \beta_{\ell} a_{h}\left(r k ; \nabla_{k} u_{h_{I} k}((r-\ell+1) k), \bar{\nabla}_{k} u_{h, k}(r k)\right) \\
& -k \sum_{\ell=2}^{p}(\ell-1) \beta_{\ell}\left\{\bar{\nabla}_{(\ell-1) k} a_{h}\right\}\left(r k ; u_{h, k}((r-\ell+1) k), \bar{\nabla}_{k} u_{h, k}(r k)\right) \\
& +k \sum_{\ell=1}^{p} \ell \beta_{\ell}\left\{\bar{\nabla}_{\ell k} a_{h}\right\}\left(r k ; u_{h_{9} k}((r-\ell) k), \bar{\nabla}_{k} u_{h, k}(r k)\right) \\
& =\sum_{\ell=0}^{p} \gamma_{\ell}\left(f_{h_{\rho} k}((r-\ell) k), \bar{\nabla}_{k}^{u_{h, k}}(r k)\right)_{h}, r=p, \ldots, m-1 .
\end{aligned}
$$

From (2.1) and (6.1), it follows that

$$
\begin{align*}
& 2 \operatorname{Re} a_{h}\left(r k ; u_{h, k}(r k), \bar{\nabla}_{k} u_{h, k}(r k)\right) \tag{6.3}\\
& =\bar{\nabla}_{k_{k}}{ }_{h}\left(r k ; u_{h_{9} k}(r k), u_{h, k}(r k)\right) \\
& +k a_{h}\left(r k ; \bar{\nabla}_{k} u_{h 9 k}(r k), \bar{\nabla}_{k} u_{h, k}(r k)\right) \\
& -\left\{\bar{\nabla}_{k} a_{h}\right\}\left(r k ; u_{h 9 k}((r-1) k), u_{h \rho k}((r-1) k)\right) .
\end{align*}
$$

Taking real parts in equation (6.2) and applying identity (6.3) gives:

$$
\begin{aligned}
& \text { (6.4) } \quad\left|\nabla_{k} u_{h, k}(r k)\right|_{h}^{2}+\frac{1}{2} \bar{\nabla}_{k_{h}}{ }_{h}\left(r k ; u_{h, k}(r k), \quad u_{h, k}(r k)\right) \\
& +\frac{k}{2}\left(1+2 \beta_{l}\right) a_{h}\left(r k ; \bar{\nabla}_{k} u_{h, k}(r k), \bar{\nabla}_{k} u_{h, k}(r k)\right) \\
& +k \operatorname{Re}\left\{\sum_{\ell=2}^{p} \beta_{\ell} a_{h}\left(r k ; \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k), \bar{\nabla}_{k} u_{h, k}(r k)\right)\right\} \\
& -\frac{1}{2}\left\{\bar{\nabla}_{\left.k{ }_{k} a_{h}\right\}\left(r k ; u_{h, k}((r-1) k), \quad u_{h, k}((r-1) k)\right) ~}^{\text {(}}\right. \\
& \leq k P(h) \sum_{\ell=2}^{p}(\ell-1)\left|\beta_{\ell}\right|\left|u_{h, k}((r-\ell+1) k)\right|_{h}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h} \\
& +k P\left(h \sum_{\ell=1}^{p} \ell\left|\beta_{\ell}\right|\left|u_{h, k}((r-\ell) k)\right|_{h}\left|\bar{\nabla}_{k u_{h}, k}(r k)\right|_{h}\right. \\
& +\sum_{\ell=0}^{n}\left|\gamma_{\ell}\right|\left|f_{h, k}((r-\ell) k)\right|_{h}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h} \quad .
\end{aligned}
$$

Hypotheses (2.5) and (6.1) imply that
(6.5) $\left|a_{h}\left(t ; u_{h}, v_{h}\right)\right| \leq\left(a_{h}\left(t ; u_{h}, u_{h}\right)\right)^{\frac{1}{2}}\left(a_{h}\left(t ; v_{h}, v_{h}\right)\right)^{\frac{1}{2}}, \quad\left(u_{h}, v_{h} \in v_{h}\right) 。$

Hence
(6.6) $\quad 2\left|a_{h}\left(t ; u_{h}, v_{h}\right)\right| \leq a_{h}\left(t ; u_{h}, u_{h}\right)+a_{h}\left(t ; v_{h}, v_{h}\right)$.

By using (6.6), (6.4) becomes:
where $\epsilon>0$ may be chosen as small as we please. Using (2.6), multiplying (6.7) by k and summing from $r=p$ to $r=s$ ($p \leq s \leq m-1$) gives:
(6.8) . $\left(2-k M(h)\left(2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{l}-1\right)-\epsilon\right) k \sum_{r=p}^{s}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}$

$$
+a_{h}\left(s k ; u_{h, k}(s k), u_{h, k}(s k)\right)
$$

$$
-k \sum_{r=p}^{S}\left\{\bar{\nabla}_{k} a_{h}\right\}\left(r k ; u_{h, k}((r-1) k), u_{h, k}((r-1) k)\right.
$$

$$
\begin{align*}
& 2\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}+\bar{\nabla}_{k} \mathrm{a}_{\mathrm{h}}\left(\mathrm{rk} ; \mathrm{u}_{\mathrm{h}, \mathrm{k}}(\mathrm{rk}), \mathrm{u}_{\mathrm{h}, \mathrm{k}}(\mathrm{rk})\right. \tag{6.7}\\
& +k\left(1+2 \beta_{1}-\sum_{\ell=2}^{p}\left|\beta_{\ell}\right|\right) a_{h}\left(\mathrm{rk} ; \bar{\nabla}_{\mathrm{k} \mathrm{u}_{\mathrm{h}, \mathrm{k}}}(\mathrm{rk}), \bar{\nabla}_{\mathrm{k} \mathrm{u}_{\mathrm{h}, \mathrm{k}}}(\mathrm{rk})\right) \\
& -\mathrm{k} \sum_{\ell=2}^{p}\left|\beta_{\ell}\right| \mathrm{a}_{\mathrm{h}}\left(\mathrm{rk} ; \bar{\nabla}_{\mathrm{k}} \mathrm{u}_{\mathrm{h}, \mathrm{k}}((\mathrm{r}-\ell+1) \mathrm{k}), \bar{\nabla}_{\mathrm{k} \mathrm{u}_{\mathrm{h}, \mathrm{k}}}((\mathrm{r}-\ell+1) \mathrm{k})\right) \\
& \text { - }\left\{\bar{\nabla}_{\mathrm{k}^{2} \mathrm{~h}}\right\}\left(\mathrm{rk} ; \mathrm{u}_{\mathrm{h}, \mathrm{k}}((\mathrm{r}-1) \mathrm{k}), \mathrm{u}_{\mathrm{h}, \mathrm{k}}((\mathrm{r}-1) \mathrm{k})\right)
\end{align*}
$$

$$
\begin{aligned}
& \left.+\frac{D_{13}}{\epsilon} \sum_{\ell=0}^{p} \right\rvert\, f_{h, k}\left(\left.(r-\ell) k\right|_{h} ^{2}, \quad r=p, \ldots, m-1\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq a_{h}\left((p-1) k ; u_{h}, k\right. \\
& ((p-1) k), u_{h_{3} k}((p-1) k) \\
+ & D_{14} k M(h) k \sum_{r=1}^{p-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \\
+ & \left.\frac{D_{12}}{\epsilon} k^{2}(P(h))^{2} k \sum_{l=1}^{p} \sum_{r=p}^{s} \right\rvert\, u_{h}, k \\
+ & \left.\left.\frac{D_{13}}{\epsilon} k \sum_{l=0}^{p} \sum_{r=p}^{s} \right\rvert\,(r-\ell) k\right)\left.\left.\right|_{h, k} ^{2}((r-l) k)\right|_{h} ^{2} .
\end{aligned}
$$

Let us assume that

$$
\begin{equation*}
\mathrm{kM}(\mathrm{~h})<\frac{2}{2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1}(1-\delta) \tag{6.9}
\end{equation*}
$$

where $\delta>0$ is arbitrarily small
We can choose $\epsilon=\delta$. Then equation (6.8) becomes

$$
\begin{align*}
& \quad k \sum_{r=p}^{s}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}+\frac{1}{\delta} a_{h}\left(s k ; u_{h, k}(s k), u_{h, k}(s k)\right) \tag{6.10}\\
& \quad \leq \frac{1}{\delta} a_{h}\left((p-1) k ; u_{h, k}((p-1) k), u_{h, k}((p-1) k)\right. \\
& +D_{15} k \sum_{r=1}^{p-1}\left|\nabla_{k}^{-} u_{h}{ }_{k}(r k)\right|_{h}^{2} \\
& +\quad \frac{1}{\delta} k \sum_{r=p}^{s}\left\{\bar{\nabla}_{k} a_{h}\right\}\left(r k ; u_{h, k}((r-1) k), u_{h, k}((r-1) k)\right) \\
& +\quad D_{16} k \sum_{r=0}^{s-1}\left|u_{h, k}(r k)\right|_{h}^{2}+D_{17} k \sum_{r=0}^{s}\left|f_{h, k}(r k)\right|_{h}^{2},
\end{align*}
$$

where D_{15}, D_{16}, D_{17} depend on δ 。

We deduce now from (4.10) and 6.10):

$$
\begin{align*}
& \left|u_{h, k}(s k)\right|_{h}^{2}+2 \alpha k \sum_{r=p}^{s}\left\|v_{h, k}(r k)\right\|_{h}^{2} \tag{6.11}\\
& \leq\left(2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1\right) k\left[\frac{1}{\delta} a_{h}\left((p-1) k ; u_{h, k}((p-1) k), u_{h, k}((p-1) k)\right)\right. \\
& +D_{15} \sum_{r=1}^{P-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}+\frac{1}{\delta} k \sum_{r=p}^{s}\left\{\bar{\nabla}_{k} a_{h}\right\}\left(r k ; u_{h, k}((r-1) k), u_{h, k}((r-1) k)\right) \\
& \left.+D_{16} \underset{r=0}{s-1}\left|u_{h, k}(r k)\right|_{h}^{2}+D_{17} k \sum_{r=0}^{S}\left|f_{h, k}(r k)\right|_{h}^{2}\right] \\
& +\left|u_{r, k}((p-1) k)\right|^{2}+k^{2} \sum_{l=2}^{p}\left|\beta_{\ell}\right| \sum_{r=p-\ell+1}^{p-1}\left|\bar{\nabla}_{k} u_{n, k}(r k)\right|_{h}^{2} \\
& +\left(D_{1} k P(h)+D_{2}\right) k \sum_{\ell=1}^{p} \sum_{r=p-\ell}^{p-1}\left|u_{h}, k(r k)\right|_{h}^{2} \\
& +D_{3} k \sum_{\ell=0}^{p} \sum_{r=p-\ell}^{s-\ell}\left|f_{h, k}(r k)\right|_{h}^{2} \\
& +\left(D_{1} k P(h)+D_{2}\right) k \sum_{\ell=0}^{p} \sum_{r=p}^{s-\ell}\left|u_{h, k}(r k)\right|_{h}^{2} .
\end{align*}
$$

But

$$
\begin{aligned}
& a_{h}\left((p-1) k ; u_{h, k}((p-1) k), \quad u_{h, k}((p-1) k)\right) \leq M(h)\left|u_{h, k}((p-1) k)\right|_{h}^{2}, \\
& \left|\left\{\bar{\nabla}_{k} a_{h}\right\}\left(r k ; u_{h, k}((r-1) k), u_{h, k}((r-1) k)\right)\right| \leq P(h)\left|u_{h, k}((r-1) k)\right|_{h}^{2}
\end{aligned}
$$

Thus because of Hypotheses (4.11), (4.12), (6.9), we may write:

$$
\begin{equation*}
\left|u_{h, k}(s k)\right|_{h}^{2}+2 \alpha k \sum_{r=p}^{s}\left\|v_{h, k}(r k)\right\|_{h}^{2} \tag{6.12}
\end{equation*}
$$

$$
\leq D_{18}+D_{19} k \sum_{r=p}^{s}\left|u_{h, k}(r k)\right|_{h}^{2}, \quad p \leq s \leq m-1
$$

Hence for $D_{19} k<1$
(6.13) $\left|u_{h, k}(s k)\right|_{h}^{2}+20 k \sum_{r=p}^{s}\left\|v_{h, k}(r k)\right\|_{h}^{2} \leq D_{18} \exp \left(D_{19}(s-p+1) k\right)$

$$
\leq D_{18} \exp \left(D_{19}(T-p k)\right)
$$

Note that we may replace condition (6.9) by

$$
\begin{equation*}
k \mu(h) \leq \frac{2}{2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1}-\delta^{\prime} \tag{6.14}
\end{equation*}
$$

where $6^{\prime}>0$ is arbitrarily small and k is small enough. Then we have proved the following result

Theorem 6.1:

Assume Hypotheses of Theorem -5.1 and, in addition, Hypothesis (6.1). Assume that $1+2 \beta_{1}-2 \sum_{\boldsymbol{\ell}=2}^{P}\left|\beta_{\boldsymbol{l}}\right|<0$. Then a sufficient condition
 in a bounded_set of $L^{2}(0, T ; F)$ is given by
(6.14) k $\mu(\mathrm{h}) \leq \frac{2}{2 \underset{\substack{\ell=2 \\=}}{ }\left|\beta_{\ell}\right|-2 \beta_{1}-1}-\delta^{\prime}, \delta^{\prime}>0 \quad \begin{aligned} & \text { arbitrarily small, }\end{aligned}$

We could slightly generalize by replacing $a(t ; u, v)$ by $a(t, u, v)$ $+a^{l}(t ; u, v)$ where $a^{l}(t ; u, v)$ is a continuous sesquilinear form on $V \mathbf{x H}$ and the function $t \rightarrow a^{\perp}(t ; u, v)$ is once continuously differentiable. It is easy to see that the results given above remain valid in this case (cf. RAVIART [7]).

7. A weak convergence theorem.

We examine now the convergence of the solution $u_{h, k}$ of Problem I towards the solution of equation (1.6) when h and k tend towards 0. We shall only prove a weak convergence theorem.

Let π be an operator of $\mathcal{L}(V ; F)$. Let \mathcal{V} denote a dense subspace of V and let r_{h} be a linear mapping from \mathcal{V} into V_{h}. Under the assumptions of Theorem 5.1 or Theorem 6.1, we may extract a subsequence $\left\{u_{h_{1}}, k_{1}\right\}$ from $\left\{u_{h, k}\right\}$ such that

$$
\begin{equation*}
\mathrm{P}_{\mathrm{h}_{1}, \mathrm{k}_{1}} \mathrm{v}_{\mathrm{h}_{\mathrm{l}}, \mathrm{k}_{1}} \rightarrow \mathrm{U} \quad \text { weakly in } \mathrm{L}^{2}(0, \mathrm{~T} ; \mathrm{F}) \tag{7.1}
\end{equation*}
$$

$$
\begin{equation*}
Q_{h_{1}, k_{1}} u_{h_{1}, k_{1}} \rightarrow u \quad \text { weakly in } L^{\infty}(0, T ; H) \tag{7.2}
\end{equation*}
$$

when h and k tend towards 0 .
Now clearly $P_{h_{1}}, k_{1} \rightarrow U$ weakly in $L^{2}(O, T ; F)$ and $u=\pi$. U. Then we assume that:

$$
\begin{equation*}
u \in L^{2}(0, T ; V), \quad U=\text { au . } \tag{7.3}
\end{equation*}
$$

Let $\psi(t)$ be a scalar function once continuously differentiable in [0,T] with $\Psi(T)=0$. We assume the following consistency Hypotheses:

$$
\left\{\begin{array}{l}
\text { If } \quad P_{h, k} u_{h, k} \rightarrow \text { wu weakly in. } L^{2}(0, T ; F), \text { then } \tag{7.4}\\
k \sum_{r=r_{1}}^{m-r_{2}} a_{h}\left(r k ; u_{h, k}(r k), \psi\left(\left(r+r_{2}-1\right) k\right) r_{h} w\right) \rightarrow \int_{0}^{T} a(t ; u(t), \psi(t) w) d t
\end{array}\right.
$$

where r_{1} and r_{2} are positive arbitrary integers independent
of k; (7.4) means that $A_{h}(t)$ is consistent with $A(t)$. Then a necessary and sufficient condition for $\sum_{\ell=0}^{p} \gamma_{\ell} A_{h}(t-\ell k)$ to be consistent with $A(t)$ is $\sum_{\ell=0}^{p} \gamma_{\boldsymbol{l}}=1$).
(7.5) $\left\{\begin{array}{l}\text { If } Q_{h, k} u_{h, k} \rightarrow u \text { weakly in } L^{\infty}(0, T ; H), \text { then } \\ k \sum_{r=r_{1}}^{m-r_{2}}\left(u_{h, k}(r k), \bar{\nabla}_{k} \psi((r+1) k) r_{h} w\right)_{h} \rightarrow \int_{0}^{T}\left(u(t), \psi^{\prime \prime}(t) w\right)_{H} d t \quad ;\end{array}\right.$

- (7.6)

$$
k \sum_{r=r_{1}}^{m-r_{2}}\left(f_{h, k}\left(\left(r+r_{2}-1\right) k\right), \psi(r k) r_{h} w\right)_{h} \rightarrow \int_{0}^{T}(f(t), \psi(t) w)_{H} d t
$$

$$
\begin{equation*}
\left(u_{h, k}((p-1) k), \psi(p k) r_{h} w\right)_{h} \rightarrow\left(u_{o}, \psi(0) w\right)_{H} \tag{7.7}
\end{equation*}
$$

for all $w \in \vartheta$.

Theorem 7. 1:
Assume Hypotheses (7.1), ..., (7.7). Then $P_{h, k} u_{h k} \rightarrow \overline{\omega u}$ weakly in $L^{2}(0, T ; F), Q_{h}, k_{h, k} \rightarrow u$ weakly in $L^{\infty}(0, T ; H)$, 'where $u_{h, k}$ denotes
the solution of Problem I and u denotes the solution of equation (1.6).

Proof:

We deduce from (2.13):

$$
\begin{align*}
& k \sum_{r=p}^{m-1}\left(\bar{\nabla}_{k} u_{h, k}(r k), \psi(r k) r_{h} w\right)_{h}+ \tag{7.8}\\
& +k \sum_{r=p}^{m-1} \sum_{l=0}^{p} \gamma_{\ell} a_{h}\left((r-\ell) k ; u_{h, k}((r-\ell) k), \psi(r k) r_{h} w\right) \\
& =k \sum_{r=p}^{m-1} \sum_{l=0}^{p} \gamma_{\ell}\left(f_{h, k}((r-\ell) k), \psi(r k) r_{h} w\right)_{h}
\end{align*}
$$

It is easy to see that
(7.9) $k \sum_{r=p}^{m-1}\left(\bar{\nabla}_{k} u_{h, k}(r k), \psi(r k) r_{h} w\right)_{h}=-k \sum_{r=P}^{m-1}\left(u_{h, k}(r k), \bar{\nabla}_{k} \psi((r+1) k) r_{h} w\right)_{h}$

$$
-\left(u_{h, k}((p-1) k), \psi(p k) r_{h} w\right)_{h}
$$

Then (7.8) may be written

$$
\begin{aligned}
(7.10) & -k \sum_{r=p}^{m-1}\left(u_{h, k}(r k), \bar{\nabla}_{k} \psi((r+1) k) r_{h} w\right)_{h} \\
& +k \sum_{\ell=0}^{p} \gamma_{\ell} \sum_{r=p-\ell}^{m-\ell-1} a_{h}\left(r k ; u_{h, k}(r k), \psi((r+\ell) k) r_{h} w\right) \\
& =k \sum_{\ell=0}^{p} \gamma_{\ell} \sum_{r=p-\ell}^{m-\ell-1}\left(f_{h, k}(r k), \psi((r+\ell) k) r_{h} w\right)_{h}+\left(u_{h}, k((p-l) k), \psi(p k) r_{h} w\right)_{h}
\end{aligned}
$$

If h and $k \rightarrow 0, P_{h_{1}}, k_{1} u_{h_{1}, k_{1}} \rightarrow$ wa weakly in $L^{2}(0, T ; F)$ and $Q_{h_{l}}, k_{l} u_{h_{l}, k_{l}} \rightarrow u$ weakly in $L^{\infty}(0, T, H)$. So u satisfies
(7.11) $\quad \int_{0}^{T}\left\{-\left(u(t), \psi(t)_{W}\right)_{H}+a(t ; u(t), \psi(t) w)\right\} d t=\int_{0}^{T}\left(f(t), \psi(t)_{w}\right)_{H} d t$

$$
+\left(u_{o}, w\right)_{H} \psi(o),
$$

for all $w \in \mathscr{V}$. It follows from the density of \mathcal{V} in V that (7.11) is true for all $w \in V$. Moreover the space of functions $\Sigma \psi \otimes w$ (Σ denotes a finite sum), $\psi \in C^{l}(0, T)$ with $\psi(\mathbb{T})=0, W \in V$, is dense in the space of functions φ satisfying (1.7) provided with the norm $\quad\left(\int_{n}^{T}\left(\|\varphi(t)\|_{V}^{2}+\left\|\varphi^{\prime}(t)\right\|_{H}^{2} d t\right)^{1 / 2}\right.$ (cf. Lions [4]). Then u satisfies (1.06). We deduce from the uniqueness of the solution u of (1.6) that $P_{h, k} u_{h, k} \rightarrow \overline{\alpha u}$ weakly in $L^{2}(0, T ; F)$ and $Q_{h, k} u_{h, k} \rightarrow u$ weakly in $L^{\infty}(0, T ; H)$ 。

8. Regularity theorems:

a) The Hermitian Case:

For every $t \in[0, T]$, we are given a continuous sesquilinear form $a(. t ; u, v)$ on $V X V$ with the following hypotheses:
(i) $t \rightarrow a(t ; u, v)$ is once continuously differentiable in $[0, T](u, v \in V)$; (ii) $a(t ; u, v)=\overline{a(t ; v, u)}(u, v \in V)$;

$$
\text { (iii) } \quad a(t ; v, v)+\lambda\|v\|_{H}^{2} \geq \alpha\|v\|_{V}^{2} \quad \alpha>0, v \in V
$$

[^0]
Theorem 8.1:

Given:
(8.1)

$$
f \in L^{2}(0, T ; H)
$$

$$
\begin{equation*}
\mathrm{U}_{\mathbf{0}} \in \mathrm{V} . \tag{8.2}
\end{equation*}
$$

There exists a unique function u satisfying

$$
\begin{equation*}
u \in L^{\infty}(0, T ; V) \tag{8.3}
\end{equation*}
$$

(8. 4) $u^{\prime} \in L^{2}(0, T ; H)$,

$$
\begin{equation*}
u^{\prime}(t)+A(t) u(t)=f(t), \underline{\text { for }} \quad \text { a.e. } t \in[0, T], \tag{8.5}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u_{0} . \tag{8.6}
\end{equation*}
$$

Remark:

For a slight generalization see the remark following Theorem 6.1.

For every $t \in[0, T]$, we are given a family of continuous sesquilinear forms $a_{h}\left(t ; u_{h}, v_{h}\right)$ on $V_{h} \times V_{h}$ as in §6 (i.e. satisfying Hypotheses (i), (ii), (iii) of §2 and Hypothesis (6.1)). Let $u_{h, k} \in E_{k}\left(0, T ; V_{h}\right)$ be the solution of Problem I and let us assume now that there exist two positive constants K_{4}, K_{5} independent of h and k such that

$$
\begin{equation*}
\left|u_{h, k}(r k)\right|_{h},\left\|u_{h, k}(r k)\right\|_{h} \leq K_{4}, \quad r=0, \ldots \ldots, p-1 . \tag{8.7}
\end{equation*}
$$

$$
k \sum_{r=1}^{p-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \leq K_{5}
$$

Theorem 8.2:

Assume Hypotheses (i), (ii), (iii) of §2 and Hypotheses (6.1), (8.7), (8.8). There exist two positive constants E_{3}, E_{4} independent of h and k such that

$$
\begin{equation*}
\left\|u_{h, k}\right\|_{h, k, \infty},\left|u_{h, k}\right|_{h, k, \infty} \leq E_{3} \tag{8.9}
\end{equation*}
$$

$$
\begin{equation*}
\quad k \sum_{r=1}^{m-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \leq E_{4} \tag{8.10}
\end{equation*}
$$

in the two following cases
(i) $\quad 1^{\text {st }}$ case: $\quad 1+2 \beta_{1}-2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right| \geq 0$,
(4.13) $k(v(h))^{2} \leq \rho$ (No restriction if $A_{h}(t)$ is independent of t),
(ii) $\quad 2^{\text {nd }}$ Case: $\quad 1+2 \beta_{1}-2 \sum_{\underline{\equiv 2}}^{p}\left|\beta_{\ell}\right|<0$,
(6.14) $k \mu(h) \leq \frac{2}{2 \sum_{\ell=2}^{p}\left|\beta_{l}\right|-2 \beta_{1}-1}-\delta^{\prime}, \quad \delta^{\prime}>0$ arbitrarily small,

Proof:
(i) $1^{\text {st }}$ Case:
$1+2 \beta_{1}-2 \sum_{\ell=2}^{P}\left|\beta_{\ell}\right| \geq 0:$

Theorem 4.1 gives:

$$
\begin{equation*}
\left|u_{h, k}\right|_{h, k, \infty} \leq E_{2} . \tag{4.25}
\end{equation*}
$$

Inequation (6.4) is true and we deduce for $p \leq s \leq m-1$:

$$
\begin{align*}
& k \sum_{r=p}^{s}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}+\frac{1}{2} a_{h}\left(s k ; u_{h, k}(s k), u_{h, k}(s k)\right) \tag{8.11}\\
& +\frac{k}{2}\left(1+2 \beta_{1}-\sum_{\ell=2}^{p}\left|\beta_{\ell}\right|\right) k \sum_{r=p}^{s} a_{h}\left(r k ; \bar{\nabla}_{k} u_{h, k}(r k), \bar{\nabla}_{k} u_{h, k}(r k)\right) \\
& -\frac{k}{2} \sum_{\ell=2}^{p}\left|\beta_{\ell}\right| k \sum_{r=p}^{s} a_{h}\left(r k ; \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k), \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k)\right) \\
& \leq \frac{1}{2} a_{h}\left((p-1) k ; u_{h, k}((p-1) k), u_{h, k}((p-1 k))+\frac{p}{2} k \sum_{r=p}^{s}\left\|u_{h, k}((r-1) k)\right\|_{h}^{2}\right. \\
& +k P(h) \sum_{\ell=2}^{p}(\ell-1)\left|\beta_{\ell}\right| k \sum_{r=p}^{s}\left|u_{h, k}((r-\ell+1) k)\right|_{h}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h} \\
& +k P(h) \sum_{\ell=1}^{p} \ell\left|\beta_{\ell}\right| k \sum_{r=p}^{s}\left|u_{h, k}((r-\ell) k)\right|_{h}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h} \\
& +\sum_{\ell=0}^{p}\left|\gamma_{\ell}\right| k \sum_{r=p}^{s}\left|f_{h, k}((r-\ell) k)\right|_{h}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h} \cdot
\end{align*}
$$

-But

$$
\begin{aligned}
& a_{h}\left(r k ; \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k), \bar{\nabla}_{k}^{u_{h}, k}((r-\ell+1) k)\right) \\
& =a_{h}\left((r-\ell+1) k ; \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k), \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k)\right) \\
& +(\ell-1) k\left\{\bar{\nabla}_{(\ell-1) k} a_{h}\right\}\left(r k ; \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k), \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k)\right),
\end{aligned}
$$

$$
\begin{gathered}
\left|\left\{\bar{\nabla}_{(\ell-1) k} a_{h}\right\}\left(r k ; \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k), \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k)\right)\right| \\
\leq P(h)\left|\bar{\nabla}_{k} u_{h, k}((r-\ell+1) k)\right|_{h}^{2}
\end{gathered}
$$

Hence we deduce from (8.11), Hypotheses (4.13), (8.7), (8.8) and (4.25) that for $p \leq s \leq m-1$ and k small enough.
(8.12)

$$
\begin{aligned}
& k \sum_{r=p}^{s}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}+\alpha\left\|u_{h, k}(s k)\right\|_{h}^{2} \\
& -\quad \leq D_{l}+D_{2} k \sum_{r=p}^{s-1}\left\|u_{h, k}(r k)\right\|_{h}^{2} \cdot
\end{aligned}
$$

Then applying lemma 3.3 gives the first part of the theorem.
(ii) $2^{\text {nd }}$ Case: $\quad 1+2 \beta_{1}-2 \sum_{\ell=2}^{P}\left|\beta_{\ell}\right|<0$:

The second part 'of the theorem can be easily deduced from inequality (6.10).

- Remark:

It is easy to determine $\left\{u_{h, k}(r k), r=0, \ldots, p-1\right\}$ verifying (8.7) and (8.8) when $u_{0} \in V$. See RAVIART [7].

Let us assume now that (cf. \$5):

$$
\begin{equation*}
t \sup _{\epsilon[0, T]}\left\|P_{h, k} u_{h, k}(t)\right\|_{F} \leq C_{4}\left\|u_{h, k}\right\|_{h, k, \infty} \tag{8.13}
\end{equation*}
$$

(8.14) $\left\|\frac{d}{d t} Q_{h, k} u_{h, k}\right\|_{L}^{2}{ }^{2}(0, T ; H) \leq C_{5} k \sum_{r=1}^{m-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}$,
for all $u_{h, k} \in E_{k}\left(0, T ; V_{h}\right)$, where C_{4} and C_{5} are positive constants independent of h and k.

Theorem 8.3:
\mathbf{L} e $\mathbf{t} u_{h, k}$ be the solution of Problem I. Under the assumptions of Theorem 8.2 and, in addition, Hypotheses $P_{h}(8.13),\left(\gamma_{k}-4\right)$, y, is $L^{\infty}(0, T ; F)$-stable and $\frac{d}{d t} Q_{h, k} u_{h, k}$ remains in a bounded set of $L^{2}(0, T ; H)$ in the two following cases:
(i) $\frac{1^{\text {st }} \text { Case }_{i,}}{\sim} \quad 1+2 \beta_{1}-2 \sum_{=2}^{P}\left|\beta_{\boldsymbol{l}}\right| \geq 0$,
(4.13) $k(\nu(h))^{2} \leq \rho \quad$ (No restriction if $A_{h}(t)$ is independent of t)
(ii) $\quad 2^{\text {nd }}$ Case: $\quad 1+28,-2 \sum_{\underline{=2}}^{p}\left|\beta_{\boldsymbol{l}}\right|<0$,

$$
\begin{equation*}
\mathrm{N}-44 \leq \frac{2}{2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1}-\delta^{\prime}, 8^{\prime}>0 \quad \frac{\text { arbitrarily small, }}{\mathrm{k} \text { small enough }} \tag{6.14}
\end{equation*}
$$

If, in addition, the assumptions of Theorem 7.1 are verified, then

$$
\begin{gathered}
P_{h, k} u_{h, k} \rightarrow \overline{\omega u} \text { weakly} \text { in } L^{\infty}(0, T ; F), \\
\frac{d}{d t} Q_{h, k} u_{h, k} \rightarrow u^{\prime}=\frac{d u}{d t} \text { weakly} \text { in } L^{2}(0, T ; H),
\end{gathered}
$$

in cases (i), (ii).
b) A general regularity theorem.

For every $t \in[0, T]$, we are given a continuous sesquilinear form $a(t ; u, v)$ on $V \mathbf{x} V$ with the following hypotheses:
(i) $\quad t \rightarrow a(t ; u, v)$ is once continuously differentiable in $[0, T]$ ($u, v \in V$);
(ii) there exist constants λ, α such that

$$
\operatorname{Re} a(t ; v, v)+\lambda\|v\|_{H}^{2} \geq \alpha\|v\|_{V}^{2}, \alpha>0, v \in v .
$$

Let $A(t) \in \mathscr{L}\left(V ; V^{\prime}\right)$ be defined by

$$
a(t ; u, v)=\langle A(t) u, v\rangle \quad(u, v \in V) .
$$

We denote by $D(A(t))$ the set of all u in V such that $A(t) u \in H$. We provide $D(A(t))$ with the norm

$$
\left.\|u\|_{D(A(t)}\right)=\left(\|u\|_{H}^{2}+\|A(t) u\|_{H}^{2}\right)^{1 / 2}
$$

Theorem 8.4:
feta \quad be given satisfying

$$
\begin{gather*}
f \in L^{2}(0, T ; H), f^{\prime} \in L^{2}(0, T ; H) \tag{8.15}\\
u_{0} \in D(A(0)) \tag{8.16}
\end{gather*}
$$

There exists a unique function u which verifies:

$$
\begin{gather*}
u \in L^{\infty}(0, T ; V), \tag{8.17}\\
U^{\prime} E L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H) \tag{8:18}\\
u^{\prime}(t)+A(t) u(t)=f(t), \text { for ace. } t \in[0, T], \\
u(0)=u_{0} .
\end{gather*}
$$

For every $t \in[0, T]$, we are given a family of continuous resquilinear forms $a_{h}\left(t ; u_{h}, v_{h}\right)$ on $V_{h} X V_{h}$ as in §2 (ie., satisfying

Hypotheses (i), (ii), (iii) of §2). Let $u_{h, k} \in E_{k}\left(0, T ; V_{h}\right)$ denote the solution of Problem I and let us assume that there exist five positive constants K_{6}, \ldots, K_{10} independent of h and k such that:

$$
\begin{equation*}
\left|A_{h}(r k) u_{h, k}(r k)\right|_{h} \leq K_{7}, \quad r=0, \ldots, p-1, \tag{8.22}
\end{equation*}
$$

$$
\begin{equation*}
\left|\bar{\nabla}_{\mathrm{k}} u_{\mathrm{h}, \mathrm{k}}(\mathrm{rk})\right|_{\mathrm{h}} \leq \mathrm{K}_{8}, \quad \mathrm{r}=1, \ldots, \mathrm{p}-1, \tag{8.23}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{k} \sum_{-\mathrm{r}=1}^{\mathrm{p}-1}\left\|\bar{\nabla}_{\mathrm{k}} \mathrm{u}_{\mathrm{h}, \mathrm{k}}(\mathrm{rk})\right\|_{\mathrm{h}}^{2} \leq \mathrm{K}_{9}, \tag{8.24}
\end{equation*}
$$

$$
\begin{equation*}
\left|u_{h, k}(r k)\right|_{h},\left\|u_{h, k}(r k)\right\|_{h} \leq K_{6}, \quad r, 0, \ldots \bullet 0 \mathbb{0} \tag{8.21}
\end{equation*}
$$

$$
\begin{equation*}
k^{2} \sum_{r=2}^{p-1}\left|\bar{\nabla}_{k}^{2} u_{h, k}(r k)\right|_{h}^{2} \leq K_{10} \tag{8.25}
\end{equation*}
$$

Moreover let us assume that:

$$
\left\{\begin{array}{l}
\text { if }\left\|v_{h, k}\right\|_{h, k, 2} \text { is bounded by a constant independent of } \tag{8.26}\\
h \text { and } k\left(v_{h k},\right. \text { defined by (4.4) and (4.24)), then } \\
\left\|u_{h, k}\right\|_{h, k, 2} \text { has the same property. (1) }
\end{array}\right.
$$

Theorem 8.5:

 There exist four positive constants $\mathrm{E}_{5}, \ldots \ldots, \mathrm{E}_{8}$ independent of h and k such that
(1)

Hypothesis (8.26) is trivially verified when Theorem 7.1 may be applied and $\left\|W_{h}, k\right\|_{h, k, 2} \leq C_{2}^{\prime}\left\|P_{h, k} W_{h}, k_{L}\right\|_{2}(O, T ; F)$, for all
$W_{h, k} \in E_{k}\left(0, T ; V_{h}\right)$, where C_{2}^{\prime} is a constant independent of h and k.

$$
\begin{equation*}
\left|u_{h, k}\right|_{h, k, \infty},\left\|u_{h, k}\right\|_{h, k, 2},\left\|v_{h, k}\right\|_{h, k, \infty} \leq E_{5}, \tag{8.27}
\end{equation*}
$$

$$
\begin{equation*}
\left|A_{h}(\cdot) u_{h, k}(\cdot)\right|_{h, k, \infty} \leq E_{6} \tag{8.28}
\end{equation*}
$$

$$
\begin{equation*}
\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h} \leq E_{7}, \quad r=1, \ldots \ldots, m-1 \tag{8.29}
\end{equation*}
$$

$$
\begin{equation*}
k \sum_{r=1}^{m-1}\left\|\bar{\nabla}_{k} v_{h, k}(r k)\right\|_{h}^{2} \leq E_{8} \tag{8.30}
\end{equation*}
$$

in the two following cases:
(i) $\quad 1^{\text {st } \text { Case: }} 1+2 \beta_{1}-2 \sum_{l=2}^{p}\left|\beta_{\ell}\right| \geq 0$,

$$
\begin{equation*}
k(\nu(h))^{2} \leq \rho, \tag{4.13}
\end{equation*}
$$

(ii) $2^{\text {nd }} \quad$ Case:

$$
1+2 \beta_{1}-2 \sum_{\ell=2}^{\mathrm{p}}\left|\beta_{\ell}\right|<0,
$$

(4.22) $k(\nu(h))^{2} \leq \frac{2 \alpha}{2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1}-\delta^{\prime}, 6^{\prime}>0 \underset{\text { arbitrarily small, }}{k \text { small enough. }}$

Proof:
First, we may apply Theorem 4.1 and, in cases (i), (ii), we obtain:

$$
\begin{align*}
& \left|u_{\mathrm{h}, \mathrm{k}}\right|_{\mathrm{h}, \mathrm{k}, \infty} \leq \mathrm{E}_{1}, \tag{8.31}\\
& \left\|\mathrm{v}_{\mathrm{h}, \mathrm{k}}\right\|_{\mathrm{h}, \mathrm{k}, 2} \leq \mathrm{E}_{2} . \tag{8.32}
\end{align*}
$$

We deduce from (8.26) and (8.32):

$$
\begin{equation*}
\left\|u_{\mathrm{h}, \mathrm{k}}\right\|_{\mathrm{h}, \mathrm{k}, 2} \leq \mathrm{E}_{2}^{\prime} \cdot \tag{8.33}
\end{equation*}
$$

Then a "discrete" differentiation of equation (2.13) with respect to t gives:
(8.34) $\quad\left(\bar{\nabla}_{k}^{2} u_{h, k}(r k), v_{h}\right)_{h}+\sum_{l=0}^{p} \gamma_{l} a_{h}\left((r-l) k ; \bar{\nabla}_{k} u_{h, k}((r-l) k), v_{h}\right)$

$$
\begin{aligned}
& +\sum_{\ell=0}^{p} \gamma_{l}\left\{\bar{\nabla}_{k} a_{h}\right\}\left((r-\ell) k ; u_{h, k}((r-\ell+1) k), v_{h}\right) \\
& =\sum_{\ell=0}^{p} \gamma_{\ell}\left(\bar{\nabla}_{k} f_{h, k}((r-\ell) k), v_{h}\right)_{h}, \quad r=p+1, \ldots, m, m .
\end{aligned}
$$

We put (8.34) into a more convenient form as in §4.b.
(8.35) $\quad\left(\bar{\nabla}_{k}^{2} u_{h, k}(r k), v_{h}\right)_{h}+a_{h}\left(r k ; \bar{\nabla}_{k} v_{h, k}(r k), v_{h}\right)$

$$
-k \sum_{\ell=2}^{p}(\ell-1) \beta_{\ell}\left\{\bar{\nabla}_{(\ell-1) k} a_{h}\right\}\left(r k ; \bar{\nabla}_{k} u_{h, k}((r-\ell+1) k), v_{h}\right)
$$

$$
+k \sum_{\ell=1}^{p} \ell_{\ell}\left\{\bar{\nabla}_{\ell k} a_{h}\right\}\left(r k ; \bar{\nabla}_{k} u_{h, k}((r-\ell) k), v_{h}\right)
$$

$$
+\sum_{\ell=0}^{p}{ }_{\ell}^{\gamma}\left\{\bar{\nabla}_{k} a_{h}\right\}\left((r-\ell) k ; u_{h, k}((r-\ell-1) k), v_{h}\right)
$$

$$
=\sum_{l=0}^{p} \gamma_{l}\left(\bar{\nabla}_{k}{ }^{f}{ }_{h, k}((r-l) k), v_{h}\right)_{h} \quad r=p+l, \ldots ., m-l .
$$

We replace v_{h} in equation (8.35) by $\bar{\nabla}_{k} \mathrm{v}_{\mathrm{h} k}(r k)$. We obtain:

$$
\begin{aligned}
& \text { (8.36) } \quad \bar{\nabla}_{k}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}+\left(1+2 \beta_{1}-\sum_{\ell=2}^{p}\left|\beta_{\ell}\right|\right) k\left|\bar{\nabla}_{k}^{2} u_{h, k}(r k)\right|_{h}^{2} \\
& -k \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|\left|\bar{\nabla}_{k}^{2} u_{h, k}((r-\ell+1) k)\right|_{h}^{2}+2 \alpha\left\|\bar{\nabla}_{k} v_{h, k}(r k)\right\|_{h}^{2} \\
& \leq\left(D_{3} k P(h)+D_{4}\right) \sum_{\ell=0}^{p}\left|\bar{\nabla}_{k} u_{h, k}((r-\ell) k)\right|_{h}^{2}+\epsilon\left\|\bar{\nabla}_{k} v_{h, k}(r k)\right\|_{h}^{2} \\
& +D_{5}(\epsilon) \sum_{\ell=0}^{p}\left\|u_{h, k}((r-\ell-1) k)\right\|_{h}^{2}+D_{6} \sum_{\ell=0}^{p}\left|\bar{\nabla}_{k} f_{h, k}((r-\ell) k)\right|_{h}^{2}, \\
& r=p+1, \ldots . ., m-1 \text {, where } \epsilon>0 \text { may be chosen as small as 'we please, } \\
& \text { Multiplying equation (8.36) by } k \text { and summing from } r=p+1 \text { to } r=s \\
& (\mathrm{p}+1 \leq \mathrm{s} \leq \mathrm{m}-1) \text { gives: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8.37) }\left|\bar{\nabla}_{k} u_{h, k}(s k)\right|_{h}^{2}+\left(1+2 \beta_{1}-2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|\right) k^{2} \sum_{r=p+1}^{s}\left|\bar{\nabla}_{k}^{2} u_{h, k}(r k)\right|_{h}^{2} \\
& +(2 \alpha-\epsilon) k \sum_{r=p+1}^{S}\left\|\bar{\nabla}_{k} v_{h, k}(r k)\right\|_{h}^{2} \\
& \leq\left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h}^{2}+k^{2} \sum_{\ell=2}^{p}\left|\beta_{\ell}\right| \sum_{r=p=l+2}^{p}\left|\bar{\nabla}_{k}^{2} u_{h, k}(r k)\right|_{h}^{2} \\
& +\left(D_{3} k P(h)+D_{4}\right) k \sum_{l=1}^{p} \sum_{r=p-l+1}^{p}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \\
& +D_{6}{ }_{\ell=0}^{k} \sum_{r=p+1}^{p} \sum_{k}^{s}\left|\bar{\nabla}_{k^{\prime} f_{h, k}}((r-\ell) k)\right|_{h}^{2}+D_{5}(\epsilon) k \sum_{\ell=0}^{p} \sum_{r==p+1}^{s} \\
& \left\|u_{h, k}((r-\ell-1) k)\right\|_{h}^{2} \\
& +\left(D_{3} k P(h)+D_{4}\right) k \sum_{l=0}^{p} \sum_{r=p+1}^{S m}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} .
\end{aligned}
$$

It is very easy to prove (cf. RAVIART [7]):
(8.38)

$$
k \sum_{r=1}^{m-1}\left|\bar{\nabla}_{k} f_{h, k}(r k)\right|_{h}^{2} \leq c_{l}^{2} \int_{0}^{T}\left\|f^{\prime}(t)\right\|_{H}^{2} d t
$$

(8.39) $\left|f_{h, k}\right|_{h}^{2} ; \infty \leq 2 C_{1}^{2}\left(\frac{1}{T} \int_{0}^{T}\|f(t)\|_{H}^{2} d t+T \int_{\curvearrowleft}^{T}\left\|f^{\prime}(t)\right\|_{H}^{2} d t\right)$.

Then, it follows from the inequalities (4.13), (8.21), (8.23), (8.25) (8.33) and (8.38) that

$$
\begin{aligned}
& \text { (8.40) } \quad\left|\bar{\nabla}_{k} u_{n, k}(s k)\right|_{h}^{2}+\left(1+2 \beta_{l}-2 \sum_{l=1}^{p}\left|\beta_{l}\right|\right) k^{2} \sum_{r=p+1}^{s}\left|\bar{\nabla}_{k}^{2} u_{h, k}(r k)\right|_{h}^{2} \\
& +(2 \alpha-\epsilon) k \sum_{r=p+1}^{s}\left\|\bar{\nabla}_{k} v_{h, k}(r k)\right\|_{h}^{2} \\
& \leq D_{7}\left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h}^{2}+k^{2} \sum_{l=2}^{p}\left|\beta_{l}\right|\left|\bar{\nabla}_{k}^{2} u_{h, k}(p k)\right|_{h}^{2}+D_{8} \\
& \quad+D_{g} \sum_{r=p+1}^{s}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}, \quad s=p+1, \ldots, m-1 .
\end{aligned}
$$

Now,

$$
k^{2}\left|\bar{\nabla}_{k}^{2} u_{h, k}(p k)\right|_{h}^{2} \leq 2\left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h}^{2}+2\left|\bar{\nabla}_{k} u_{h, k}((p-1) k)\right|_{h}^{2}
$$

An estimate for $\left|\bar{\nabla}_{k} u_{h, k}(\mathrm{pk})\right|_{h}$ is obtained as follows, Equation (2.13) gives for $\mathrm{r}=\mathrm{p}$:

$$
\begin{aligned}
\left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h}^{2} \leq-\gamma_{o} \operatorname{Re} a_{h}\left(p k ; u_{h, k}(p k),\right. & \left.\bar{\nabla}_{k} u_{h, k}(p k)\right) \\
+\left[\sum_{\ell=1}^{p}\left|\gamma_{\ell}\right|\left|A_{h}((p-\ell) k) u_{h, h}((p-\ell) k)\right|_{h}+\right. & \left.\sum_{l=0}^{p}\left|\gamma_{\ell}\right|\left|f_{h, k}((p-\ell) k)\right|_{h}\right] \\
& \left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h} .
\end{aligned}
$$

But

$$
\begin{aligned}
a_{h}\left(p k ; u_{h g k}(p k), \bar{\nabla}_{k} u_{h, k}(p k)=\right. & a_{h}\left(p k ; u_{h, k}((p-1) k), \bar{\nabla}_{k} u_{h, k}(p k)\right) \\
& +k a_{h}\left(p k ; \bar{\nabla}_{k} u_{h, k}(p k), \bar{\nabla}_{k} u_{h, k}(p k)\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
-\operatorname{Re} a_{h}\left(p k ; u_{h, k}(p k), \bar{\nabla}_{k} u_{h, k}(p k) \leq\right. & \mid A_{h}\left(\left.(p-1) k u_{h, k}((p-1) k)\right|_{h}\left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h}\right. \\
\vdots & +k p(h) \| u_{h, k}\left((p-1) k \|_{h}\left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h}\right.
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\text { (8.41) } \quad \mid & \left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h} \leq \gamma_{o}\left|A_{h}((p-1) k) u_{h, k}((p-1) k)\right|_{h} \\
& +\sum_{\ell=1}^{p}\left|\gamma_{\ell}\right|\left|A_{h}((p-\ell) k) u_{h, k}((p-\ell) k)\right|_{h}+\sum_{\ell \equiv 0}^{p}\left|\gamma_{\ell}\right|\left|f_{h, k}((p-\ell) k)\right|_{h} \\
& +k P(h)\left\|u_{h, k}((p-1) k)\right\|_{h} .
\end{aligned}
$$

Then the inequalities (8.21),(8.22), (8.39) imply that $\left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h}$ is-bounded independently of h and k. So (8.40) becomes:

$$
\begin{aligned}
& \text { (8.42) } \quad\left|\bar{\nabla}_{k} u_{h, k}(s k)\right|_{h}^{2}+\left(1+2 \beta_{l}-2 \sum_{l=2}^{p}\left|\beta_{l}\right|\right) k^{2} \sum_{r=p+1}^{s}\left|\bar{\nabla}_{k}^{2} u_{h, k}(r k)\right|_{h}^{2} \\
& \quad+(2 \alpha-\epsilon) k \sum_{r=p+1}^{s}\left\|\bar{\nabla}_{k} v_{h, k}(r k)\right\|_{h}^{2} \leq D_{10}+D_{g} k \sum_{r=p+1}^{s}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}, \\
& s=p+1, \ldots, m-1
\end{aligned}
$$

(i) $\underline{1}^{\text {st }}$ Case : $\quad 1+2 \beta_{1}-2 \sum_{i=2}^{p}\left|\beta_{l}\right| \geq 0$.

By applying lemma 3.3, we find for $k D_{9}<1$ and for $p+1 \leq s \leq m-1$
(8.43) $\quad\left|\nabla_{k} u_{h, k}(s k)\right|_{h}^{2}+(2 \alpha-\epsilon){ }_{k} \sum_{r=p+1}^{s}\left\|\bar{\nabla}_{k} v_{h, k}(r k)\right\|_{h}^{2}$

$$
\leq D_{10} \exp \left(D_{9}(T-((p+1) k))\right)
$$

But

$$
\begin{aligned}
\alpha\left\|\bar{\nabla}_{k} v_{h g k}(p k)\right\|_{h}^{2} & \leq \operatorname{Re} a_{h}\left(p k ; \bar{\nabla}_{k} v_{h g k}(p k), \bar{\nabla}_{k} v_{h g k}(p k) \leq M(h)\left|\bar{\nabla}_{k} v_{h g k}(p k)\right|_{h}^{2}\right. \\
& \leq D_{l l} M(h)\left(\left|\bar{\nabla}_{k} u_{h, k}(p k)\right|_{h}^{2}+\sum_{r=1}^{p-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2}\right)
\end{aligned}
$$

Thus, because of Hypothesis (4.13), k $\left\|\bar{\nabla}_{\mathrm{k}} \mathrm{v}_{\mathrm{h}, \mathrm{k}}(\mathrm{pk})\right\|_{\mathrm{h}}^{2}$ is bounded independently of h and k.

Then we find

$$
\begin{equation*}
\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}^{2} \leq D_{12} \quad r=1, \ldots, m-1 \tag{8.44}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{k} \sum_{r=1}^{m-1}\left\|\bar{\nabla}_{k} v_{h, k}(r k)\right\|_{h}^{2} \leq D_{13} \tag{8.45}
\end{equation*}
$$

(ii) $2^{\text {nd }}$ Case:

$$
1+2 \beta_{1}-2 \sum_{\ell=2}^{P}\left|\beta_{\ell}\right|<0
$$

We deduce from (2.4) that

$$
\begin{equation*}
\left|\frac{d}{d t} a_{h}\left(t ; u_{h}, v_{h}\right)\right| \leq Q(h)\left\|u_{h}\right\|_{h}\left|v_{h}\right|_{h} \quad\left(u_{h}, v_{h} \in v_{h}\right) \tag{8.46}
\end{equation*}
$$

where $Q(h)$ has the same order of magnitude as $\mathbb{N}(h)$ when $h \rightarrow 0$ 。 To obtain an estimate for $\left|\bar{\nabla}_{k}^{2} u_{h, k}(r k)\right|_{h}^{2}, r=p+1, \ldots, m-1$, we replace v_{h} in equation (8.35) by $\bar{\nabla}_{\mathrm{k}}^{2} \mathrm{u}_{\mathrm{h}, \mathrm{k}}(\mathrm{rk})$ and apply inequalities (2.7), (2.8), (8.46):
$\left|\bar{\nabla}_{\mathrm{k}}^{2} \mathrm{u}_{\mathrm{h}, \mathrm{k}}(\mathrm{rk})\right|_{\mathrm{h}} \leq \mathbb{N}(\mathrm{h})\left\|\bar{\nabla}_{\mathrm{k}} \mathrm{v}_{\mathrm{h}, \mathrm{k}}(\mathrm{rk})\right\|_{\mathrm{h}}+\left.\mathrm{kP}(\mathrm{h}) \sum_{\ell=2}^{\mathrm{p}}(\ell-1)\left|\beta_{\ell}\right| \bar{\nabla}_{\mathrm{k}} \mathrm{u}_{\mathrm{h}, \mathrm{k}}((r-\ell+1) \mathrm{k})\right|_{\mathrm{h}}$
$+k P(h) \sum_{\ell=1}^{p} \ell\left|B_{\ell}\left\|\left.\bar{\nabla}_{k} u_{h, k}((r-\ell) k)\right|_{h}+Q(h) \sum_{\ell=0}^{p}\left|\gamma_{\ell}\right|\right\| u_{h, k}((r-\ell-1) k) \|_{h}\right.$
$+\sum_{l=0}^{\mathrm{p}}\left|\gamma_{\ell} \| \bar{\nabla}_{k}{ }^{\mathrm{f}}{ }_{\mathrm{h}, \mathrm{k}}((\mathrm{r}-\ell) \mathrm{k})\right|_{\mathrm{h}}$.

Using Hypothesis (4.22) and by the same device as in §4.b, (ii), this gives (8.44) and (8.45).

Now, we have:

$$
\left.v_{h, k}(r k)=u_{h, k} \dot{(}(p-1) k\right)+k \sum_{s=p}^{r} \bar{\nabla}_{k} v_{h, k}(s k)
$$

This identity implies that

$$
\left\|v_{h, k}\right\|_{h, k>p} \leq E_{5}
$$

'because of the inequalities (8.32),(8.45) and (8.21).
It remains to show the inequality (8.28). This is a trivial consequence of equation (2.17) and inequalities (8.22), (8.39), (8.44). This completes the proof of the theorem,

Remark:

It is easy to determine $\left\{u_{h, k}(r k), r=0, \ldots, p-1\right\}$ verifying . .i
(8.21),. . ., (8.25) by two level difference schemes when $u_{0} \in D(A(0)$:

We choose $u_{h, k}(0)=o_{h} u_{0}$ with ' ' n ' n^{\prime},

$$
\left|o_{h}^{\prime} u_{0}\right|_{h},\left\|o_{h}^{\prime} u_{0}^{\prime \prime}\right\|_{h},\left|A_{h}(0) o_{h}^{\prime} u_{0}\right|_{h} \leq c_{1}\left\|u_{0}\right\|_{D(A(0))}
$$

and apply Theorem.8.5, with $p=1$.
Let us assume now that

$$
\begin{equation*}
\sup _{\epsilon}[0, T] \quad\left\|P_{h} k^{u_{h}, k}(t)\right\|_{F} \leq c_{6}\left\|u_{h, k}\right\|_{h, k, \infty} \tag{8.47}
\end{equation*}
$$

(8.48) $\left\|\frac{d}{d t} P_{h, k} u_{h, k}\right\|_{2}{ }_{(0, T ; F)} \leq c_{7}\left(k \sum_{=\dot{c}=1}^{m-1}\left\|\bar{\nabla}_{k} u_{h, k}(r k)\right\|_{h}^{2}\right)^{1 / 2}$,
(8.49) $\sup _{t \in[0, T]}\left\|\frac{d}{d t} Q_{h, k} u_{h, k}(t)\right\|_{H} \leq C_{8} \sup _{r=1, \ldots, m-1}\left|\bar{\nabla}_{k} u_{h, k}(r k)\right|_{h}$,
for all $u_{h, k} \in E_{k}\left(0, T ; V_{h}\right)$, where C_{6}, C_{7}, C_{8} are positive constants independent of h and k.

Theorem 8.6:
Let $u_{h, k}$ be the solution of Probndern the assumptions of Theorem 8.5 and, in addition, Hypotheses (8.47), (8.48), (8.49), $\dot{Q}_{h, k} u_{h, k}$ is $L^{\infty}(0, T ; H)$-stable, $P_{h, k} v_{h, k}$ is $L^{\infty}(0, T ; F)$-stable, $\frac{d}{d t} Q_{h} 9 k U_{h} \% k$ is $L^{\infty}(0, T ; H)$-stable, $\frac{d}{d t} P_{h} 9 k V_{h}, k$ remains inca bounded set of $L^{2}(0, T ; F)$ in_the two following cases:
(i) $\underline{1^{\text {st }} \text { Case }:} \quad 1+2 \beta_{1}-2 \sum_{l=2}^{p}\left|\beta_{l}\right| \geq 0 \quad$ g

$$
\begin{equation*}
k(v(h))^{2} \leq \rho \tag{4.13}
\end{equation*}
$$

(ii) $2^{\text {nd }}$ case: $\quad 1+2 \beta_{1}-2 \sum_{\ell=2}^{P}\left|\beta_{\ell}\right|<0$,
(4.22) $k(\nu(h))^{2} \leq \frac{2 \alpha}{2 \sum_{\ell=2}^{p}\left|\beta_{\ell}\right|-2 \beta_{1}-1}-\delta^{\prime}, \delta^{\prime}>0$ arbitrarily small,

If, in addition, the assumptions of Theorem 7.1 are verified, then, in

$$
\begin{aligned}
& P_{h, k} u_{h, k} \rightarrow \text { au } \quad \text { weakly in } L^{\infty}(0, T ; F), \\
& \frac{d}{d t} Q_{h, k} u_{h, k} \rightarrow u^{\prime}=\frac{d u}{d t} w e^{-a k \perp y} \text { in } L^{\infty}(0, T ; H), \\
& \frac{d}{d t} P_{h}, k^{u}, k \rightarrow \bar{\alpha} u^{\prime}=\bar{\omega} \frac{d u}{d t} . \underline{w e a k l y} \text { in } \Psi^{2}(0, T ; F)
\end{aligned}
$$

Proof:
The first part of the theorem is trivial. We deduce, as in Theorem 7.1 , that $P_{h, k} u_{h, k} \rightarrow \overline{\omega u}$ weakly in $L^{\infty}(0, T ; F)$,

$$
\begin{aligned}
& \frac{d}{d t} \varphi_{h, k} u_{h, k} \rightarrow u^{\prime} \text { weakly in } L^{\infty}(0, T ; H) . \\
& \frac{d}{d t} P_{h, k} u_{h, k} \rightarrow \overline{a u}^{\prime} \text { weakly in } L^{2}(0, T ; F) .
\end{aligned}
$$

Then $P_{h, k} u_{h}, k$ remains in a bounded set of $L^{\infty}(O, T ; F)$ and $\frac{d}{d t} P_{h, k} u_{h, k}$ remains in a bounded set of $L^{2}(0, T ; F)$. But it is easy to see that
(8.50)

$$
\begin{aligned}
\sup _{t \in[0, T]}\left\|P_{h, k} u_{h, k}(t)\right\|_{F}^{2} \leq & D_{14}\left[\int _ { 0 } ^ { T } \left\{\left\|P_{h, k} u_{h, k}(t)\right\|_{F}^{2}\right.\right. \\
& \left.\left.+\left\|\frac{d}{d t} P_{h, k} u_{h, k}(t)\right\|_{F}^{2}\right\} d t\right]
\end{aligned}
$$

Thus, $\quad P_{h, k} u_{h, k}$ is $L^{\infty}(0, T ; F)$-stable.
9. Applications to parabolic partial differential equations.

We shall study here a simple example. For other examples see Lions
[4]. Let Ω be a bounded set in \mathbb{R}^{n}. We choose

$$
\begin{aligned}
& H=L^{2}(\Omega), \\
& v=H^{l}(\Omega)=\left\{u \mid u \in L^{2}(\Omega), \frac{\partial u}{\partial x_{i}} \in L^{2}(\Omega), i=1, \ldots, n\right\}, \\
& a(t ; u, v)= \sum_{i, j=1}^{n} \int_{\Omega} a_{i j}(x, t) \frac{\partial u(x)}{\partial x_{j}} \frac{\partial \overline{v(x)}}{\partial x_{i}} d x \\
&+\sum_{i=1}^{n} \int_{\Omega} a_{i}(x, t) \frac{\partial u(x)}{\partial x_{i}} \bar{v}(x) d x \\
&+\int_{\Omega} a_{0}(x, t) u(x) \overline{v(x)} d x,
\end{aligned}
$$

where $a_{i j} a_{i}, a_{0} \in L^{\infty}(\Omega \times(0, T))$.

- We assume that

$$
\operatorname{Re} \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{j} \bar{\xi}_{i} \geq \alpha \sum_{i=1}^{n}\left|\xi_{i}\right|^{2}, \quad \alpha>0, \quad \xi_{i} \in C, \text { a.e. in } \Omega \times(0, \mathbb{T})
$$

Then we may apply Theorem 1.1. There exists a unique function u which satisfies:

$$
\frac{\partial u}{\partial t}-\sum_{i,}^{n} \frac{a}{j=1} \frac{x_{1}}{}\left(a_{i, j}(x, t) \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{n} a_{i}(x, t) \frac{\partial u}{\partial x_{i}}+a_{0}(x, t) u=f,
$$

a. e. in $\Omega \times$]O, $T[$, with the initial condition

$$
u(x, 0)=u_{0}(x)
$$

and the (formal) boundary condition

$$
\left.\sum_{i, j=1}^{n} a_{i j}(x, t) \cos \left(n, x_{i}\right) \frac{\partial u}{\partial x_{j}}=0 \text { for } x \in \Gamma=\partial \Omega, t \in\right] 0, T[
$$

where n denotes the exterior normal to I^{\prime} in x . This boundary condition makes sense when Γ is smooth enough, see Lions-Magenes [6]. We examine now the approximation of the solution u.
a) The spaces V_{h} :

Let \mathscr{R}_{h} denote the set of points $M \in \mathscr{R}^{n}$ such that

$$
M=\left(e_{1} h_{1}, \ldots, e_{n} h_{n}\right)
$$

where the e_{i} 's are integers. Let $\sigma_{h}\left(M, O^{\prime}\right)$ be the set of points $\mathrm{x} \in \mathcal{R}^{\mathrm{n}}$ such that

$$
x_{i}(M)-\frac{h_{i}}{2}<x_{i}<x_{i}(M)+\frac{h_{1}}{2} .
$$

$W_{h, M}$ denotes the characteristic function of $\sigma_{h}(M, 0)$. Let $\sigma_{h}(M, I)$ be defined by

$$
\sigma_{h}(M, 1)=\bigcup_{i=1}^{n} \sigma_{h}\left(M \pm \frac{h_{i}}{2} 0\right)
$$

We define: $\Omega_{h}=\left\{M \mid M \in \mathscr{R}_{h}, \sigma_{h}(M, 1) \cap \Omega \neq \varnothing\right\}$,

$$
R(h)=\underset{M \in \Omega_{h}}{=} \sigma_{h}(M, 0)
$$

Then V_{h} is the space of functions u_{h} of the form

$$
u_{h}=\sum_{M \in \Omega_{h}} u_{h}(M) W_{h, M}, \quad u_{h}(M) \in C
$$

If u_{h} belongs to V_{h}, we may define $\delta_{y_{1}} u_{h}$ by

$$
\delta_{i} u_{h}(x)=\frac{l}{h_{i}}\left[u_{h}\left(x+\frac{h_{i}}{2}\right)-u_{h}\left(x-\frac{h_{1}}{2}\right)\right] \quad \text { a.e. in } \Omega,
$$

We set:

$$
\begin{aligned}
\left(u_{h}, v_{h}\right)_{h} & =\int_{\Omega(h)} u_{h}(x) \overline{v_{h}(x)} d x \\
\left(\left(u_{h}, v_{h}\right)\right)_{h} & =\int_{\Omega} u_{h}(x) \overline{v_{h}(x)} d x+\sum_{i=1}^{n} \int_{\Omega} \delta_{i} u_{h}(x) \delta_{i} \overline{v_{h}(x)} d x .
\end{aligned}
$$

We choose:

$$
0_{h} u=\frac{l}{h_{I} \cdots \cdots h_{n}} \sum_{M \in \Omega_{h}}\left(\int_{\sigma_{h}(M, 0)} \tilde{u} d x\right) W_{h, M} \text {, for all } u \in L^{2}(\Omega) \text {, }
$$

where $\tilde{\mathrm{u}}=\left\{\begin{array}{l}\mathrm{u} \text { in } \Omega \\ 0 \text { elsewhere. }\end{array}\right.$
Let $F=\left[L^{2}(\Omega)\right]^{n+1}$. If $U=\left(u, u_{1}, \ldots, u_{n}\right)$ belongs to $\left[L^{2}(\Omega)\right]^{n+1}$, we set: $u=\pi U \in L^{2}(\Omega)$ 。

If u belongs to $V=H^{l}(\Omega)$, we set:

$$
\bar{w} u=\left(u, \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{n}}\right) \in\left[L^{2}(\Omega)\right]^{n+1}
$$

Now, we define the prolongation operator $P_{h, k}$ (cf. 85). If $u_{h, k}$ belongs to $\mathrm{E}_{\mathrm{k}}\left(0, \mathrm{~T} ; \mathrm{V}_{\mathrm{h}}\right)$, we may define:

$$
\begin{aligned}
& u_{h, k}(t)=u_{h, k}(r k)+(t-r k) \quad \bar{\nabla}_{k} u_{h, k}((r+1) k), r k \leq t \leq(r+1) k \\
& u_{h, k}(t)=u_{h, k}((m-1) k) \quad, T-k \leq t \leq T .
\end{aligned}
$$

Then,

$$
P_{h, k} u_{h, k}(t)=\left(u_{h, k}(t), \delta_{1} u_{h, k}(t), \ldots, \delta_{n} u_{h, k}(t)\right) \in\left[L^{2}(\Omega)\right]^{n+1}
$$

The verification of our Hypotheses is trivial and left to the reader., For other examples of spaces V_{h}, see CÉA [2], RAVIART [7].
b) The forms $a_{h}\left(t ; u_{h}, v_{h}\right)$:

Let us assume that each $a_{i j}\left(r e s p . a_{i}, a_{0}\right)$ has one continuous
derivative in t which is bounded in $\Omega \times(0, T)$ together with $a_{i j}$ (resp. a_{i}, a_{0}) itself. We choose:

$$
\begin{align*}
a_{h}\left(t ; u_{h}, v_{h}\right)= & \sum_{i, j=1}^{n} \int_{\Omega} a_{i j}(x, t) \delta_{j} u_{h}(x) \delta_{i} \overline{v_{h}(x)} d x \tag{9.1}\\
& +\sum_{i=1}^{n} \int_{\Omega} a_{i}(x, t) \delta_{i} u_{h}(x) \overline{v_{h}(x)} d x \\
& +\int_{\Omega} a_{0}(x, t) u_{h}(x) \overline{v_{h}(x)} d x
\end{align*}
$$

We assume that Hypothesis (2.5) is verified (cf. Remark (ii) §1). Now, we compute $N(h)$ and $v(h)$:

$$
\begin{aligned}
\left|a_{h}\left(t ; u_{h}, v_{h}\right)\right| \leq & 2\|a\|_{L}^{\infty}(\Omega x(0, T))\left(\sum_{i=1}^{n} \frac{1}{h_{i}^{2}}\right)^{1 / 2}\left(\sum_{i=1}^{n} \int_{\Omega}\left|\delta_{i} u_{h}(x)\right|^{2} d x\right)^{1 / 2}\left|v_{h}\right|_{h} \\
& +\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{L(\Omega x(0, T))}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} \int_{\Omega}\left|\delta_{i} u_{h}(x)\right|^{2} d x\right)^{1 / 2}\left|v_{h}\right|_{h} \\
& +\left\|a_{0}\right\|_{L}^{\infty}(\Omega x(0, T)) \quad\left(\int_{\Omega}\left|u_{h}(x)\right|^{2} d x\right)^{1 / 2}\left|v_{h}\right|_{h}
\end{aligned}
$$

where $a(x, t)$ is the euclidean norm of the matrix $\left(a_{i j}(x, t)\right)_{i, j=1, \ldots, n}$. Then,

$$
\begin{aligned}
\text { (9.2) Neh) } \leq & \left\{\left[2\|a\|_{L}^{\infty}(\Omega \times(0, T))\right.\right. \\
& \left.\left(\sum_{i=1}^{n} \frac{1}{r_{i}^{2}}\right)^{1 / 2}+\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{L}^{2 \infty}(\Omega \times(0, T))\right)^{1 / 2}\right]^{2} \\
& \left.+\left\|a_{0}\right\|_{L}^{2}(\Omega \times(0, T))\right\}^{2},
\end{aligned}
$$

$$
\text { (9.3) } \quad v(h) \leq 2\|a\|_{L(\Omega \times(0, T))}\left(\sum_{i=1}^{n} \frac{1}{h_{i}^{2}}\right)^{1 / 2}
$$

We compute $M(h)$ and $\mu(h)$:

$$
\begin{aligned}
&\left|a_{h}\left(t ; u_{h}, v_{h}\right)\right| \leq 4\|a\|_{L}^{\infty}(\Omega \times(0, T)) \\
&+2\left(\sum_{i=1}^{n} \frac{1}{h_{i}^{2}}\right)\left|u_{h}\right|_{h}\left|v_{h}\right|_{h} \\
&\left.\left\|a_{i}\right\|_{L} \|_{(\Omega \times(0, T))}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} \frac{1}{h_{i}^{2}}\right)^{1 / 2}\left|u_{h}\right|_{h}\left|v_{h}\right|_{h} \\
&+\left\|a_{0}\right\|_{L}^{\infty}(\Omega \times(0, T)) \\
&\left|u_{h}\right|_{h}\left|v_{h}\right|_{h}
\end{aligned}
$$

(9.4)M(h) $\leq 4\|a\|_{L(\Omega \times(0, T))}\left(\sum_{i=1}^{n} \frac{1}{h_{i}^{2}}\right)+2\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{L}^{2}(\Omega \times(0, T))\right)^{1 / 2}\left(\sum_{i=1}^{n} \frac{1}{h_{i}^{2}}\right)^{1 / 2}$

$$
+\left\|a_{0}\right\|_{L(\Omega \times(0, T))}
$$

$$
\begin{equation*}
\left.\mu(h) \leq 4\|a\|_{L}^{\infty}(\Omega x(), T)\right) \sum_{i-1}^{n}{\underset{h}{i}}_{1}^{h_{i}^{-}} \tag{9.5}
\end{equation*}
$$

Whẹn

$$
\begin{equation*}
a_{i j j}(x, t)=\overline{a_{j i}(x, t)}, \tag{9.6}
\end{equation*}
$$

the principal part of $a_{h}\left(t ; u_{h}, v_{h}\right)$ is hermitian (see the remark following Theorem 6.1).
c) The initial values $u_{h, k}(r k), r=0,1, \ldots, p-1$:

We define $u_{h, k}(0)$ by
9.7

$$
u_{h, k}(0)=o_{h}^{\prime} u_{o}
$$

where O_{h}^{\prime} is a linear continuous mapping from $L^{2}(\Omega)$ (resp. $H^{1}(\Omega)$, $D(A(0))$) into V_{h} such that

$$
\begin{equation*}
\left|0_{h}^{\prime} u_{0}\right|_{h} \leq c\left\|u_{o}\right\|_{L^{2}(\Omega)} \tag{9.8}
\end{equation*}
$$

(resp. (9.9) $\left|o_{h}^{\prime} u_{o}\right|_{h},\left\|o_{h}^{\prime} u_{o}\right\|_{h} \leq c\left\|u_{o}\right\|_{H^{1}(\Omega)}$,

$$
\begin{equation*}
\left.\left|o_{h}^{\prime} u_{o}\right|_{h},\left\|o_{h}^{\prime} u_{o}\right\|_{h},\left|A_{h}(0) o_{h}^{\prime} u_{o}\right|_{h} \leq c\left\|u_{o}\right\|_{D(A(0))}\right) \tag{9.10}
\end{equation*}
$$

where C is a positive constant independent of h. If $u_{0} \in L^{2}(\Omega)$, we set

$$
\begin{equation*}
O_{h}^{\prime} u_{o}=\frac{1}{h_{l} \cdots \cdot h_{h}} \sum_{M \in \Omega_{h}}\left(\int_{\sigma_{h}(M, 0)} \tilde{u}_{0} d x\right) w_{h, M}, \tag{9.11}
\end{equation*}
$$

and (9.8) is true with $C=1$,
If $u_{0} \in H^{l}(\Omega)$ and if the boundary Γ of Ω is smooth enough, there exists an operator $\mathrm{P} \in \mathscr{\mathscr { L }}\left(\mathrm{H}^{\mathrm{l}}(\Omega) ; H^{1}\left(\boldsymbol{R}^{\mathrm{n}}\right)\right)$ such that

$$
\mathrm{Pu}_{0}=\mathrm{o} u \text { in } \Omega \quad(c f . \text { Lions [4]). }
$$

Then we set

$$
\begin{equation*}
O_{h}^{\prime} u_{o}=\frac{1}{h_{1}^{\prime} \cdot \ldots h_{n}} \sum_{M} \in \Omega_{h}\left(\int_{\sigma_{h}}(M, 0) P u_{o} d x\right) W_{h, M}, \tag{9.12}
\end{equation*}
$$

and (9.9) is true (cf. [7]).

Let us examine now the case $u_{0} \in D(A(0))$. Generally we do not know how to choose 0 such that (9.10) is true for all $u_{0} \in D(A(0))$. However when u_{0} 'belongs to an appropriate subspace W of $D(A(0))$, it is possible to find oh such that

$$
\left|0_{h}^{\prime} u_{o}\right|_{h},\left\|o_{h}^{\prime} u_{0}\right\|_{h},\left|A_{h}(0) a_{h}^{\prime} u_{0}\right|_{h} \leq\left\|u_{0}\right\| w
$$

For example, let $H^{2}(\Omega)$ be the space of functions u such that

$$
u, \frac{\partial u}{\partial x_{i}}, \frac{\partial^{2} u}{\partial x_{x_{i}} \partial x_{j}} \in L^{2}(\Omega), \quad i, j=1, \ldots, n
$$

We provide $H^{2}(\Omega)$ with the following norm

$$
\| u_{H}^{2}(\Omega)=\left(\|u\|_{L^{2}(\Omega)}^{2}+\sum_{i=1}^{n}\left\|\frac{\partial u_{i}}{\partial x_{i}}\right\|_{L^{2}(\Omega)}+\sum_{i j=1}^{n}\left\|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} .
$$

We define $H_{o}^{2}(\Omega)$ to be the closure in $H^{2}(\Omega)$ of the smooth functions with compact support in Ω_{0}. Then if $A(t)=-\Delta, H_{0}^{2}(\Omega) C D(-\Delta)$ and we can prove:

$$
\left|o_{h}^{\prime} u_{o}\right|_{h},\left\|o_{h}^{\prime} u_{o}\right\|_{h},\left|\Delta_{h} o_{h}^{\prime} u_{o}\right| \leq c\left\|u_{o}\right\|_{H}{ }^{2}(\Omega)
$$

where 0_{h}^{\prime} is defined by (9.11) (see [7]).
Then we define $u_{h, k}(k), \ldots, u_{h, k}((p-1) k)$ by one step difference methods (cf. [7]). Now we can easily see that the consistency hypotheses are verified,

It is very simple to state the stability theorems and the convergence theorems corresponding to our example: this is left to the reader.
[1] J. P。Aubin, Thesis (to appear).
[2] J. Céa, Approximation variationnelle des problemes aux limites, Annales Inst. Fourier, (1965).
[3] H. O. Kreiss, Über die Differenzen approximation hơher Genauigkeit bei Anfangswertproblem fur partielle Differentialglei chungen, Num. Math. (1959), 1, pp. 186-202.
[4] J. L. Lions, Equations différentielles opérationmelles et problèmes aux limites, Springer Verlag, Berlin (1961).
[5] J. L. Lions, CIME Course (May 1963) (Ed. Cremonese Roma).
[6] J. L. Lions, E. Magenes, Problèmes aux limites non homogènes (II), Annales Inst. Fourier (1961), 11, pp. 137-178.
[7] P. A. Raviart, Sur l'approximation de certaines équations d'évolution linéaires et non linéaires, Thesis (to appear).
[8] 0. B. Widlund, On the stability of parabolic difference schemes, Math. of Comput. (1965), 19, 89, pp. 1-13.

[^0]: Then we have the following regularity theorem (LIONS [4])

